JP2010133005A - Commercial magnesium alloy sheet material whose cold formability is improved, and method for producing the same - Google Patents
Commercial magnesium alloy sheet material whose cold formability is improved, and method for producing the same Download PDFInfo
- Publication number
- JP2010133005A JP2010133005A JP2009114038A JP2009114038A JP2010133005A JP 2010133005 A JP2010133005 A JP 2010133005A JP 2009114038 A JP2009114038 A JP 2009114038A JP 2009114038 A JP2009114038 A JP 2009114038A JP 2010133005 A JP2010133005 A JP 2010133005A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium alloy
- rolling
- less
- alloy sheet
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 142
- 239000000463 material Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 238000005098 hot rolling Methods 0.000 claims abstract description 43
- 239000000956 alloy Substances 0.000 claims abstract description 37
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 35
- 238000005096 rolling process Methods 0.000 claims description 127
- 239000013078 crystal Substances 0.000 claims description 42
- 239000011777 magnesium Substances 0.000 claims description 38
- 229910052748 manganese Inorganic materials 0.000 claims description 33
- 229910052725 zinc Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 20
- 238000000137 annealing Methods 0.000 claims description 19
- 229910052749 magnesium Inorganic materials 0.000 claims description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 14
- 238000001028 reflection method Methods 0.000 claims description 7
- 238000005097 cold rolling Methods 0.000 claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 17
- 229910018137 Al-Zn Inorganic materials 0.000 abstract description 13
- 229910018573 Al—Zn Inorganic materials 0.000 abstract description 13
- 238000010438 heat treatment Methods 0.000 description 33
- 238000012360 testing method Methods 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 17
- 238000005259 measurement Methods 0.000 description 13
- 238000011835 investigation Methods 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 229910000765 intermetallic Inorganic materials 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000005464 sample preparation method Methods 0.000 description 6
- 229910018131 Al-Mn Inorganic materials 0.000 description 5
- 229910018461 Al—Mn Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 241001657081 Karos Species 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910018657 Mn—Al Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005088 metallography Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Abstract
Description
本発明は、易成形性マグネシウム合金の製造方法、易成形性マグネシウム合金プレス成形体及び易成形性マグネシウム合金部材等に関するものであり、更に詳しくは、Al、Zn、Mnを適当量添加したマグネシウム合金圧延材を所定の試料表面温度(490〜566℃)に短時間(5分未満もしくは8分未満)で加熱した上で、熱間圧延し、その後に焼鈍を行うものであり、常温(30℃)で、アルミニウム合金(5000系もしくは6000系に相当)に匹敵する成形性を付与することを可能とする、マグネシウム合金板材、その製造方法、そのプレス成形体及びその部材に関するものである。本発明は、宇宙・航空材料・電子機器材料、自動車部材等の幅広い分野で利用することが可能なマグネシウム合金製部材及び筐体に関する新技術を提供するものである。 The present invention relates to a method for producing an easily formable magnesium alloy, an easily formable magnesium alloy press-formed body, an easily formable magnesium alloy member, and the like, and more specifically, a magnesium alloy to which an appropriate amount of Al, Zn, or Mn is added. The rolled material is heated to a predetermined sample surface temperature (490 to 566 ° C.) in a short time (less than 5 minutes or less than 8 minutes), hot-rolled, and then annealed at room temperature (30 ° C. ), A magnesium alloy sheet, a manufacturing method thereof, a press-formed body thereof, and a member thereof, which can provide formability comparable to that of an aluminum alloy (equivalent to 5000 series or 6000 series). The present invention provides a new technology relating to a magnesium alloy member and a casing that can be used in a wide range of fields such as space, aeronautical materials, electronic equipment materials, and automobile members.
マグネシウムは、実用構造金属材料の中で最も低密度(=1.7g/cm3)であり、金属材料特有の易リサイクル性を有し、資源も豊富に存在することから、次世代の構造用軽量材料として注目されている。現在、日本におけるマグネシウム製品の多くは、ダイキャスト等の鋳造法により作製されている。これらの手法により、薄肉成形が可能となったことが、マグネシウム合金の工業化を助長した最大の要因である。 Magnesium has the lowest density (= 1.7 g / cm 3 ) among practical structural metal materials, has easy recyclability unique to metal materials, and has abundant resources. It is attracting attention as a lightweight material. Currently, many magnesium products in Japan are produced by die casting or other casting methods. The fact that thin molding is possible by these methods is the biggest factor that promoted the industrialization of magnesium alloys.
特に、家電製品では、パソコン・携帯電話・デジタルカメラ等の家電製品筐体に、マグネシウム合金鋳造材が利用されている。しかし、現状の鋳造法による生産法には、鋳造欠陥を補うための後処理が必要であること、歩留りが低いこと、部材の強度・剛性に問題があること、等の問題が存在する。 In particular, in household electrical appliances, magnesium alloy castings are used in household electrical appliance casings such as personal computers, mobile phones, and digital cameras. However, the current production methods using casting methods have problems such as the need for post-processing to compensate for casting defects, low yields, and problems with the strength and rigidity of members.
一般的に、プレス成形は、歩留まりが高く、成形と同時に高強度・高靭性化を図ることができることから、需要拡大の有効な手段と言える。マグネシウム合金製板材から、プレス成形により成形体を作製できる場合、薄肉、かつ高強度な成形体を、安価なプロセスで作製することができ、家電製品筐体等、多くの需要が予測できる。 In general, press molding can be said to be an effective means of increasing demand because it has a high yield and can achieve high strength and toughness simultaneously with molding. When a molded body can be produced from a magnesium alloy sheet by press molding, a thin and high-strength molded body can be produced by an inexpensive process, and many demands such as home appliance housings can be predicted.
金属の塑性変形の基本となる転位の運動性は、すべり面間隔/原子間距離の比に影響されることが知られている。したがって、最密六方晶であるマグネシウム合金の場合、a軸長さとc軸長さの比(c/a比)が大きく(c/a=1.6236)、底面すべりと非底面すべりでは、転位の運動性に大きな違いが生じる。 It is known that dislocation motility, which is the basis of plastic deformation of metals, is affected by the ratio of slip plane spacing / interatomic distance. Therefore, in the case of a close-packed hexagonal magnesium alloy, the ratio of the a-axis length to the c-axis length (c / a ratio) is large (c / a = 1.6236). There is a big difference in motility.
そのため、マグネシウム合金の非底面すべりの臨界分解せん断応力(CRSS)は、常温において、他のすべり系と比較して、非常に大きく、常温成形性は、必然的に低い。更に、マグネシウム合金板材には、(0002)面が板面に対して平行に配向する集合組織が形成されるため、塑性変形時の板厚方向の歪みが期待できず、そのことが、常温成形性を妨げる一因となっている。 Therefore, the critical decomposition shear stress (CRSS) of the non-bottom slip of the magnesium alloy is very large at room temperature as compared with other slip systems, and the room temperature formability is inevitably low. Further, since a texture is formed in the magnesium alloy plate material in which the (0002) plane is oriented parallel to the plate surface, distortion in the plate thickness direction during plastic deformation cannot be expected. It is a factor that hinders sex.
現在、幅広い分野で利用されているアルミニウム合金の常温成形性(エリクセン値)は、上記のマグネシウム合金よりも高く、5000系合金では8.3(5083−O材)、6000系合金では9.2(6061−T4材)、1000系合金では11.0(1100−O材)である(非特許文献1)。一方、マグネシウム合金の常温成形性(エリクセン値)は、せいぜい2.0〜5.0である(非特許文献2)。 The room temperature formability (Ericsen value) of aluminum alloys currently used in a wide range of fields is higher than that of the above magnesium alloys, and is 8.3 (5083-O material) for 5000 series alloys and 9.2 for 6000 series alloys. It is 11.0 (1100-O material) in the case of (6061-T4 material) and 1000 series alloys (Non-Patent Document 1). On the other hand, the room temperature formability (Ericsen value) of the magnesium alloy is 2.0 to 5.0 at most (Non-patent Document 2).
したがって、マグネシウム合金に関しても、今後、マグネシウム合金板材の著しい需要を見込むためには、アルミニウム合金板材に相当する常温成形性(常温でのエリクセン値が少なくとも7.0以上)を付与することが必要であり、当技術分野においては、優れた易成形性を有する新しいマグネシウム合金板材の製造技術及びその製品を開発することが強く要請されている。 Therefore, regarding the magnesium alloy, it is necessary to provide room temperature formability (the Erichsen value at room temperature is at least 7.0 or more) corresponding to the aluminum alloy sheet in order to anticipate significant demand for the magnesium alloy sheet in the future. In this technical field, there is a strong demand for the development of new magnesium alloy sheet manufacturing technology and products having excellent easy formability.
成形性に乏しいマグネシウム合金を、常温でプレス成形する手法としては、集合組織を制御したマグネシウム合金板材を利用することが挙げられる。近年、本発明者らは、規定量の軽希土類元素、Zn、Mn、Zrを添加したマグネシウム合金、もしくは規定量のCa、Zn、Al、Mn、Zrを添加したマグネシウム合金を、特定の条件で熱間・温間圧延し、特定の条件で焼鈍すると、板材の(0002)面集合組織に、TD方向に約35度傾いた極が現れ、成形性が著しく改善すること(エリクセン値8.0以上)を発見した(特許文献1)。 As a technique for press-molding a magnesium alloy having poor formability at room temperature, use of a magnesium alloy sheet having a controlled texture can be mentioned. In recent years, the present inventors have developed a magnesium alloy to which a specified amount of light rare earth elements, Zn, Mn, and Zr are added or a magnesium alloy to which specified amounts of Ca, Zn, Al, Mn, and Zr are added under specific conditions. When hot and warm rolled and annealed under specific conditions, a pole inclined about 35 degrees in the TD direction appears in the (0002) plane texture of the plate material, and the formability is remarkably improved (Erichsen value 8.0). (Patent Document 1).
本合金を利用すると、アルミニウム合金並の常温成形性を有するマグネシウム合金板材を作製することができ、デジタルカメラ・ノートパソコン・PDA等の家電製品プレス成形体にマグネシウム合金を積極的に適用することが可能である。 By using this alloy, it is possible to produce magnesium alloy sheet material that has formability similar to that of aluminum alloy, and it is possible to positively apply magnesium alloy to press products of home appliances such as digital cameras, notebook computers, and PDAs. Is possible.
一方、本合金を作製するためには、軽希土類元素等の高価な元素を利用する必要があり、商用マグネシウム合金(Mg−Al−Zn系合金)と比較すると、製品コストは高くなる。また、本合金により得られる圧延材の(0002)面集合組織は、TD方向に約35度傾いた極を有するため、TD方向には変形し易いが、RD方向には相対的に変形しにくい。それゆえに、本合金では、機械的特性の異方性を解消することが、実用化に向けた課題となっている。 On the other hand, in order to produce this alloy, it is necessary to use an expensive element such as a light rare earth element, and the product cost is higher than that of a commercial magnesium alloy (Mg—Al—Zn alloy). In addition, the (0002) plane texture of the rolled material obtained from this alloy has a pole inclined about 35 degrees in the TD direction, so it is easily deformed in the TD direction but relatively difficult to deform in the RD direction. . Therefore, in this alloy, it is an issue for practical use to eliminate the anisotropy of mechanical properties.
マグネシウム合金の集合組織を改質する別の手法として、近年、マグネシウム合金板材に繰り返し曲げ加工を施す手法が提案された。本手法は、商用マグネシウム合金(Mg−Al−Zn系合金)に適用することができ、商用マグネシウム合金の常温成形性をアルミニウム合金並(エリクセン値:6.5以上)に高めることを可能とする(特許文献2)。 In recent years, a method of repeatedly bending a magnesium alloy sheet has been proposed as another method for modifying the texture of the magnesium alloy. This method can be applied to a commercial magnesium alloy (Mg—Al—Zn alloy), and allows room temperature formability of the commercial magnesium alloy to be improved to an aluminum alloy level (Erichsen value: 6.5 or more). (Patent Document 2).
本手法は、商用マグネシウム合金の常温成形性を改善する方法として注目されるものの、繰り返し曲げ加工を実施した圧延材の(0002)面集合組織には、RD圧延に約45度傾いた極が現れるため、RD方向には変形し易いが、TD方向には変形しにくい。それゆえに、本手法では、特許文献1の発明と同様、機械的特性の異方性を解消することが、実用化に向けた課題となっている。 Although this method is attracting attention as a method for improving the room temperature formability of commercial magnesium alloys, a pole tilted by about 45 degrees appears in the RD rolling in the (0002) plane texture of the rolled material subjected to repeated bending. Therefore, it is easy to deform in the RD direction, but difficult to deform in the TD direction. Therefore, in this method, as in the invention of Patent Document 1, it is an issue for practical use to eliminate the anisotropy of mechanical characteristics.
このような状況の中で、本発明者らは、上記従来技術を鑑みて、機械的特性に著しい異方性を生じさせずに、商用マグネシウム合金(Mg−Al−Zn系合金)にアルミニウム合金並みの常温成形性(エリクセン値で7.0以上)を付与することを目標として鋭意研究を重ねた結果、圧延時の試料表面温度を490〜566℃に限定し、更に、所定の試料表面温度まで短時間で昇温し、所定の圧延率で熱間圧延を実施し、更に、焼鈍を行うことにより、アルミニウム合金並みの常温成形性を有するマグネシウム合金を作製することに成功し、本発明を完成するに至った。 In such a situation, in view of the prior art, the present inventors have made an aluminum alloy into a commercial magnesium alloy (Mg—Al—Zn alloy) without causing significant anisotropy in mechanical properties. As a result of intensive research aimed at imparting normal room temperature formability (Erichsen value of 7.0 or more), the sample surface temperature during rolling is limited to 490-566 ° C., and the predetermined sample surface temperature Succeeded in producing a magnesium alloy having room temperature formability similar to that of an aluminum alloy by carrying out hot rolling at a predetermined rolling rate and performing annealing at a predetermined rolling rate. It came to be completed.
本発明は、希土類元素等の高価な元素を利用せずに、優れた常温成形性を有する商用マグネシウム合金(Mg−Al−Zn系合金)の製造方法を提供することを目的とするものである。また、本発明は、公知のマグネシウム合金圧延材とほぼ同じ(0002)面集合組織を有しつつ、その相対強度のみを飛躍的に低下させ、マグネシウム合金板材の異方性と常温成形性を飛躍的に改善したマグネシウム合金板材を提供することを目的とするものである。 An object of the present invention is to provide a method for producing a commercial magnesium alloy (Mg—Al—Zn alloy) having excellent room temperature formability without using expensive elements such as rare earth elements. . In addition, the present invention has substantially the same (0002) plane texture as that of a known rolled magnesium alloy material, but drastically reduces only the relative strength, thereby greatly improving the anisotropy and room temperature formability of the magnesium alloy sheet. An object of the present invention is to provide an improved magnesium alloy sheet.
また、本発明は、該マグネシウム合金板材を成形して、複雑形状を有するマグネシウム合金製プレス成形体及びマグネシウム合金製部材を常温で作製するこれらの成形体ないし部材の製造方法を提供することを目的とするものである。更に、本発明は、上記手法により作製されたマグネシウム合金板材、マグネシウム合金製プレス成形体及びマグネシウム合金製部材を提供することを目的とするものである。 Another object of the present invention is to provide a magnesium alloy press-molded body having a complex shape and a method for producing these molded bodies or members for producing a magnesium alloy member at room temperature by molding the magnesium alloy sheet. It is what. Furthermore, this invention aims at providing the magnesium alloy board | plate material produced by the said method, the magnesium alloy press-molded body, and the magnesium alloy member.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)質量%で、Al:1〜10%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなるMg合金圧延板の試料表面温度を、8分未満で490〜566℃まで加熱し、その後に、少なくとも総圧延率5%で熱間圧延し、更に熱間圧延後に焼鈍を行うことを特徴とする易成形性マグネシウム合金板材の製造方法。
(2)質量%で、Al:2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる圧延Mg合金板を用いる、前記(1)に記載の易成形性マグネシウム合金板材の製造方法。
(3)焼鈍後の平均結晶粒径が30μm未満である、前記(1)から(2)のいずれかに記載の易成形性マグネシウム合金板材の製造方法。
(4)質量%で、Al:1〜10%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなるMg合金圧延板の試料表面温度を、5分未満で490〜566℃まで加熱し、その後に、総圧延率5〜50%の範囲で熱間圧延し、更に熱間圧延後に焼鈍を行うことを特徴とする易成形性マグネシウム合金板材の製造方法。
(5)質量%で、Al:2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる圧延Mg合金板を用いる、前記(4)に記載の易成形性マグネシウム合金板材の製造方法。
(6)焼鈍後の平均結晶粒径が、20μm未満である、前記(4)又は(5)に記載の易成形性マグネシウム合金板材の製造方法。
(7)焼鈍前に、Mg合金圧延板の試料表面温度を、300℃未満に設定し、総圧延率30%未満の範囲で、温間圧延又は冷間圧延を行う、前記(1)から(6)のいずれかに記載の易成形性マグネシウム合金板材の製造方法。
(8)質量%で、Al:1〜10%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材であり、平均結晶粒径が、30μm未満であり、XRD法(シュルツの反射法)による測定で、RD−TD面の板厚中央部における、(0002)面集合組織の相対強度が5.5未満であり、(0002)面の極が、ND軸に対して30°未満に分布している(但し、RD:圧延方向、TD:板幅方向、ND:板厚方向)ことを特徴とする易成形性マグネシウム合金板材。
(9)質量%で、Al:2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材である、前記(8)に記載の易成形性マグネシウム合金板材。
(10)質量%で、Al:1〜10%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材であり、平均結晶粒径が20μm未満であり、XRD法(シュルツの反射法)による測定で、RD−TD面の板厚中央部における、(0002)面集合組織の相対強度が5.5未満であり、(0002)面の極が、ND軸に対して30°未満に分布している(但し、RD:圧延方向、TD:板幅方向、ND:板厚方向)ことを特徴とする易成形性マグネシウム合金板材。
(11)質量%で、Al:2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材である、前記(10)に記載の易成形性マグネシウム合金板材。
(12)エリクセン値が、少なくとも7.0である、前記(8)から(11)のいずれかに記載の易成形性マグネシウム合金板材。
(13)前記(8)から(12)のいずれかに記載の易成形性マグネシウム合金板材の成形体からなることを特徴とするマグネシウム合金製プレス成形体。
(14)前記(13)に記載のマグネシウム合金製プレス成形体からなることを特徴とするマグネシウム合金製部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) Mg alloy rolled sheet containing, by mass%, Al: 1 to 10%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%, the balance being Mg and inevitable impurities The sample surface temperature is heated to 490-566 ° C. in less than 8 minutes, then hot-rolled at a total rolling rate of at least 5%, and further annealed after hot rolling. A method for producing an alloy sheet.
(2) Rolled Mg alloy sheet containing, by mass%, Al: 2-7%, Zn: 0.2-2.0%, Mn: 0-1.0%, the balance being Mg and inevitable impurities The method for producing an easily formable magnesium alloy sheet according to (1), wherein
(3) The method for producing an easily formable magnesium alloy sheet according to any one of (1) to (2), wherein an average crystal grain size after annealing is less than 30 μm.
(4) Mg alloy rolled sheet containing, by mass%, Al: 1 to 10%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%, the balance being Mg and inevitable impurities The sample surface temperature is heated to 490-566 ° C. in less than 5 minutes, then hot-rolled in a range of 5 to 50% of the total rolling rate, and further annealed after hot rolling. A method for producing a formable magnesium alloy sheet.
(5) Rolled Mg alloy sheet containing, by mass, Al: 2-7%, Zn: 0.2-2.0%, Mn: 0-1.0%, the balance being Mg and inevitable impurities The method for producing an easily formable magnesium alloy sheet according to (4), wherein
(6) The method for producing an easily formable magnesium alloy sheet according to (4) or (5), wherein the average crystal grain size after annealing is less than 20 μm.
(7) Before annealing, the sample surface temperature of the Mg alloy rolled sheet is set to less than 300 ° C., and warm rolling or cold rolling is performed within a range of less than 30% of the total rolling rate. 6) The manufacturing method of the easily formable magnesium alloy sheet | seat in any one of.
(8) Magnesium containing Al: 1 to 10%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%, the balance being composed of Mg and inevitable impurities It is an alloy plate, the average crystal grain size is less than 30 μm, and the (0002) plane texture has a relative strength of 5 at the center of the RD-TD plane thickness as measured by the XRD method (Schulz reflection method). Less than 0.5, and the poles of the (0002) plane are distributed below 30 ° with respect to the ND axis (however, RD: rolling direction, TD: sheet width direction, ND: sheet thickness direction). Easy formable magnesium alloy sheet.
(9) Magnesium containing Al: 2-7%, Zn: 0.2-2.0%, Mn: 0-1.0%, the balance being composed of Mg and inevitable impurities The easily formable magnesium alloy sheet according to (8), which is an alloy sheet.
(10) Magnesium containing Al: 1 to 10%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%, with the balance being composed of Mg and inevitable impurities It is an alloy sheet, the average crystal grain size is less than 20 μm, and the relative strength of the (0002) plane texture in the central part of the plate thickness of the RD-TD plane is 5.5 as measured by the XRD method (Schulz reflection method). It is less than 5, and the pole of the (0002) plane is distributed to less than 30 ° with respect to the ND axis (however, RD: rolling direction, TD: sheet width direction, ND: sheet thickness direction). Easy-to-form magnesium alloy sheet.
(11) Magnesium containing Al: 2 to 7%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%, the balance being composed of Mg and inevitable impurities The easily formable magnesium alloy sheet according to (10), which is an alloy sheet.
(12) The easily formable magnesium alloy sheet according to any one of (8) to (11), wherein the Erichsen value is at least 7.0.
(13) A magnesium alloy press-molded body comprising the molded body of the easily formable magnesium alloy sheet according to any one of (8) to (12).
(14) A magnesium alloy member comprising the magnesium alloy press-molded product according to (13).
次に、本発明について更に詳細に説明する。
本発明は、質量%で、Al:1〜10%、Zn:0.2〜2.0%、Mn:0〜1.0%(0の場合を含む。以下同じ)、好ましくは、質量%で、Al:2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材を、所定の試料表面温度(490℃〜566℃)まで、短時間(8分未満:好ましくは5分未満)で昇温した上で、圧延率5%以上、好ましくは5〜50%の範囲で熱間圧延を行うものであり、熱間圧延後に焼鈍を行うことを特徴とするものである。
Next, the present invention will be described in more detail.
In the present invention, by mass%, Al: 1 to 10%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0% (including the case of 0, the same applies hereinafter), preferably, mass% And a magnesium alloy sheet having a composition containing Al: 2-7%, Zn: 0.2-2.0%, Mn: 0-1.0%, the balance being composed of Mg and inevitable impurities. After heating up to a sample surface temperature (490 ° C. to 566 ° C.) in a short time (less than 8 minutes: preferably less than 5 minutes), the rolling rate is 5% or more, preferably in the range of 5 to 50%. Rolling is performed, and annealing is performed after hot rolling.
また、本発明は、質量%で、Al:1〜10%、Zn:0.2〜2.0%、Mn:0〜1.0%、好ましくは、質量%で、Al:2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材からなり、結晶粒径が30μm未満、好ましくは20μm未満であり、XRD法(シュルツの反射法)による測定で、RD−TD面の板厚中央部における、(0002)面集合組織の相対強度が5.5未満であることを特徴とし、また(0002)面の極がND軸に対して30度未満に分布することを特徴し、更に、エリクセン値で、少なくとも7.0以上の常温成形性を示すものである。 Further, the present invention is mass%, Al: 1 to 10%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%, preferably, mass%, Al: 2 to 7% , Zn: 0.2-2.0%, Mn: 0-1.0%, the balance is made of a magnesium alloy sheet having a composition consisting of Mg and inevitable impurities, and the crystal grain size is less than 30 μm, preferably Is less than 20 μm, characterized in that the relative strength of the (0002) plane texture is less than 5.5 at the center of the thickness of the RD-TD plane as measured by the XRD method (Schulz reflection method), Further, the poles of the (0002) plane are distributed to less than 30 degrees with respect to the ND axis, and further, the Erichsen value exhibits room temperature formability of at least 7.0 or more.
また、本発明は、上記製造方法で作製した易成形性マグネシウム合金板材の成形体であって、結晶粒径が30μm未満、好ましくは20μm未満であり、(0002)面集合組織の相対強度が5.5未満であるマグネシウム合金製プレス成形体、及び該マグネシウム合金製プレス成形体からなるマグネシウム合金部材の点に特徴を有するものである。 The present invention also relates to a molded body of an easily moldable magnesium alloy sheet produced by the above production method, wherein the crystal grain size is less than 30 μm, preferably less than 20 μm, and the relative strength of the (0002) plane texture is 5 It is characterized by the point of a magnesium alloy press-molded body that is less than .5 and a magnesium alloy member comprising the magnesium alloy press-molded body.
本発明者らは、以前の研究において、マグネシウム合金プレス成形体を、常温(30℃)で作製するための手段として、規定量の軽希土類元素、Zn、Mn、Zrを添加したマグネシウム合金、もしくは規定量のCa、Zn、Al、Mn、Zrを添加したマグネシウム合金を熱間・温間加工し、更に、適当な熱処理に供することにより、集合組織を改質して、マグネシウム合金板材の成形性を向上させることを着想した。その結果として、集合組織を改質することに成功し、アルミニウム合金に匹敵する常温成形性を付与することに成功した。しかし、この手法では、軽希土類元素等の高価な元素を利用しており、そのため、経済的観点から、最も市場で出回っているMg−Al−Zn系合金に、繰り返し曲げ加工装置等の高価な設備を利用せずに、高い常温成形性を付与するための手段が求められていた。 In the previous researches, the inventors of the present invention, as means for producing a magnesium alloy press-formed body at room temperature (30 ° C.), a magnesium alloy to which a specified amount of light rare earth element, Zn, Mn, Zr is added, or Forming magnesium alloy sheet by modifying the texture by hot and warm processing of magnesium alloy with specified amount of Ca, Zn, Al, Mn and Zr, and then subjecting it to appropriate heat treatment. Inspired to improve. As a result, we succeeded in modifying the texture and successfully imparted room temperature formability comparable to aluminum alloys. However, in this method, an expensive element such as a light rare earth element is used. Therefore, from an economical viewpoint, the Mg-Al-Zn alloy that is most commercially available is expensive, such as a repeated bending apparatus. There has been a demand for means for imparting high room temperature formability without using equipment.
そこで、本発明者らは、商用マグネシウム合金(Mg−Al−Zn系合金)に、アルミニウム合金に匹敵する、常温成形性を付与する技術開発に着手した。本発明者らは、詳細かつ系統的な実験を試みた結果、質量%で、Al:1〜10%、Zn:0.2〜2.0%、Mn:0〜1.0%、好ましくは、質量%で、Al:2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%を含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材を、所定の試料表面温度(490℃〜566℃)まで短時間(8分未満:好ましくは5分未満)で昇温した上で、圧延率5%以上、好ましくは5〜50%の範囲で熱間圧延を行い、熱間圧延後に焼鈍を行うと、その集合組織が改質され、常温成形性が飛躍的に向上することを発見した。 Therefore, the present inventors have started a technical development for imparting room temperature formability comparable to an aluminum alloy to a commercial magnesium alloy (Mg—Al—Zn alloy). As a result of attempting detailed and systematic experiments, the present inventors have found that, in mass%, Al: 1 to 10%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%, preferably Magnesium alloy sheet material containing, by mass%, Al: 2-7%, Zn: 0.2-2.0%, Mn: 0-1.0%, the balance being composed of Mg and inevitable impurities Is heated to a predetermined sample surface temperature (490 ° C. to 566 ° C.) in a short time (less than 8 minutes: preferably less than 5 minutes), and the rolling rate is 5% or more, preferably in the range of 5 to 50%. It has been discovered that when hot rolling is performed and annealing is performed after hot rolling, the texture is modified and room temperature formability is dramatically improved.
マグネシウムの各種すべり系(双晶含む)のCRSSの温度依存性を図1にまとめて示す(非特許文献3〜7)。底面<a>すべり及び{10−12}<10−11>双晶(引張り双晶)のCRSSは、温度依存性が殆ど無く、常温〜200℃では、非底面すべり系(柱面すべり・錐面すべり)よりも十分低い値を示す。一方、柱面<a>すべり及び錐面<c+a>すべりのCRSSは、温度依存性が強く、温度上昇とともに減少し、450℃以上になると、底面<a>すべりや{10−12}<10−11>双晶とほぼ同じ値を取る。 The temperature dependence of CRSS of various sliding systems (including twins) of magnesium is summarized in FIG. 1 (Non-Patent Documents 3 to 7). The bottom surface <a> slip and {10-12} <10-11> twin (tensile twin) CRSS have almost no temperature dependence, and non-bottom slip system (column surface slip / cone) at room temperature to 200 ° C. The value is sufficiently lower than (surface slip). On the other hand, the CRSS of the columnar surface <a> slip and the conical surface <c + a> slip is strongly temperature dependent and decreases with increasing temperature, and when it reaches 450 ° C. or higher, the bottom surface <a> slip or {10-12} <10 -11> takes almost the same value as twins.
なお、マグネシウム合金圧延材に特有の、(0002)面が板面に対して平行に配向する集合組織は、熱間加工中の主たる変形モードが、底面<a>すべり、もしくは{10−12}<10−11>双晶の時に形成されることが数値計算により予見されている(非特許文献8)。本発明は、上記の知見を積極的に圧延材の製造プロセスに適用したものであり、試料を高温に加熱した上でマグネシウム合金を加工し、非底面すべりを活溌に活動させた状態加工を行い、集合組織を改質するものである。 In addition, the texture in which the (0002) plane is oriented parallel to the plate surface, which is peculiar to the magnesium alloy rolled material, is that the main deformation mode during hot working is the bottom surface <a> slip or {10-12} It is predicted by numerical calculation that it is formed at the time of <10-11> twinning (Non-patent Document 8). In the present invention, the above knowledge is positively applied to a rolled material manufacturing process, a sample is heated to a high temperature, a magnesium alloy is processed, and non-bottom slip is actively activated. , To modify the texture.
一方、圧延前に、試料を450℃以上に加熱すると、特に、試料を490℃以上に加熱すると、結晶粒が異常粒成長し、圧延後の結晶粒は粗大化する。粗大な結晶粒を有するマグネシウム合金の強度は低く、延性も劣化することが知られており、必然的に常温成形性も劣化する。それゆえに、現状の技術では、Mg−Al−Zn系合金を圧延する時の圧延温度は、せいぜい430℃であった(非特許文献9)。 On the other hand, when the sample is heated to 450 ° C. or higher before rolling, particularly when the sample is heated to 490 ° C. or higher, the crystal grains grow abnormally and the rolled crystal grains become coarse. It is known that the strength of magnesium alloys having coarse crystal grains is low and the ductility is also deteriorated, and the room temperature formability is inevitably deteriorated. Therefore, with the current technology, the rolling temperature when rolling the Mg—Al—Zn alloy was 430 ° C. at most (Non-patent Document 9).
そこで、本発明者らは、結晶粒の異常粒成長を抑制しつつ、高温で圧延を行うことができれば、機械的特性を劣化させずに、商用マグネシウム合金の集合組織を改質することができると考え、鋭意研究開発を行った結果、試料表面を短時間で加熱した上で圧延を行うと、結晶粒の異常粒成長を抑制しつつ熱間圧延できることを見出した。 Therefore, if the present inventors can perform rolling at a high temperature while suppressing abnormal grain growth of crystal grains, the texture of commercial magnesium alloy can be modified without deteriorating mechanical properties. As a result of intensive research and development, it was found that when rolling was performed after heating the sample surface in a short time, hot rolling could be performed while suppressing abnormal grain growth of the crystal grains.
本発明の成果の一つとして、図2[実施例1]に、後述する実施例で説明するMg−3.0質量%Al−1.0質量%Zn−0.5質量%Mn合金(AZ31B合金と記載することがある)を、545℃に保持した炉に試料を投入し、8分未満で試料表面温度を525℃まで加熱し、所定温度到達後に、すかさず圧延した試料の(0002)面集合組織を示す。 As one of the results of the present invention, FIG. 2 [Example 1] shows an Mg-3.0 mass% Al-1.0 mass% Zn-0.5 mass% Mn alloy (AZ31B) described in the examples described later. The sample is put into a furnace maintained at 545 ° C., the sample surface temperature is heated to 525 ° C. in less than 8 minutes, and after reaching the predetermined temperature, the (0002) surface of the sample rolled briefly Indicates the texture.
また、図2[比較例1]に、530℃に保持した炉に試料を15分間保持し(圧延直前の試料表面温度は520℃〜525℃)、その後、炉から取り出し、圧延を行った試料の(0002)面集合組織を示す。いずれの試料も、総圧延率80%(一パスあたりの圧延率20%)の熱間圧延に供し、その後に焼鈍(350℃、90分)した試料である。 Also, in FIG. 2 [Comparative Example 1], the sample was held in a furnace maintained at 530 ° C. for 15 minutes (the sample surface temperature immediately before rolling was 520 ° C. to 525 ° C.), and then removed from the furnace and rolled. The (0002) plane texture is shown. All the samples are samples subjected to hot rolling at a total rolling rate of 80% (rolling rate 20% per pass) and then annealed (350 ° C., 90 minutes).
実施例1で作製した試料の(0002)面集合組織には、ND軸に対して、RD方向に30°以内に傾いた位置に(0002)面の極が現れ、公知のマグネシウム合金圧延材とほぼ同じ集合組織が現れた。一方、その集合組織の相対強度は、公知のマグネシウム合金圧延材の相対強度(6.0以上:非特許文献10)よりも著しく低く、3.7であった。 In the (0002) plane texture of the sample produced in Example 1, a pole of the (0002) plane appears at a position inclined within 30 ° in the RD direction with respect to the ND axis. Almost the same texture appeared. On the other hand, the relative strength of the texture was 3.7, which was significantly lower than the relative strength of the known rolled magnesium alloy material (6.0 or more: Non-Patent Document 10).
比較例1で作製した試料の(0002)面集合組織にも、実施例1とほぼ同じ集合組織が現れた。すなわち、試料表面温度を高温に加熱した上で圧延を行うと、柱面<a>すべり及び錐面<c+a>すべりの活動が活発になり、圧延時の集合組織形成が抑制されることが把握できる。また、集合組織形成に試料の加熱時間は影響を及ぼさないことが分かる。 In the (0002) plane texture of the sample produced in Comparative Example 1, almost the same texture as in Example 1 appeared. That is, when rolling after heating the sample surface temperature to a high temperature, the activity of the column face <a> slip and the cone face <c + a> slip becomes active, and it is understood that the formation of texture at the time of rolling is suppressed. it can. It can also be seen that the heating time of the sample does not affect the texture formation.
次に、実施例1及び比較例1で作製した圧延材の光学顕微鏡組織を図3に示す。観察面は、RD−ND面である。実施例1で作製した試料の組織は、比較的均質であり、平均結晶粒径は18μmであるのに対し、比較例1で作製した試料の組織には、異常粒成長により、50μm以上に粗大化した結晶粒が散在し、平均結晶粒径は、32μmまで粗大化した。 Next, the optical microscope structure of the rolled material produced in Example 1 and Comparative Example 1 is shown in FIG. The observation surface is an RD-ND surface. The structure of the sample prepared in Example 1 is relatively homogeneous and the average crystal grain size is 18 μm, whereas the structure of the sample manufactured in Comparative Example 1 is coarser to 50 μm or more due to abnormal grain growth. The dispersed crystal grains were scattered, and the average crystal grain size was coarsened to 32 μm.
次に、実施例1及び比較例1で作製した試料の常温(30℃)エリクセン試験結果を図4に示す。実施例1で作製した試料はエリクセン値8.5を示し、アルミニウム合金に匹敵する常温成形性を示した。 Next, the normal temperature (30 degreeC) Eriksen test result of the sample produced in Example 1 and Comparative Example 1 is shown in FIG. The sample produced in Example 1 showed an Erichsen value of 8.5 and exhibited room temperature formability comparable to an aluminum alloy.
一方、比較例1で作製した試料のエリクセン値は、6.2であり、アルミニウム合金と比較すると低い値を示した。すなわち、試料を短時間で昇温し、圧延を実施すると、結晶粒の異常粒成長を抑制しつつ圧延を行うことが可能であり、常温成形性を飛躍的に改善することができることが示された。 On the other hand, the Erichsen value of the sample produced in Comparative Example 1 was 6.2, which was lower than that of the aluminum alloy. In other words, it is shown that when the sample is heated in a short time and rolled, it is possible to perform rolling while suppressing abnormal grain growth of crystal grains, and the room temperature formability can be drastically improved. It was.
試料の昇温時間を短時間に設定することにより、結晶粒の異常粒成長を抑制することができる理由として、Mg−Al系金属間化合物、もしくはAl−Mn系金属間化合物の固溶・溶融の抑制が挙げられる。 The reason why abnormal grain growth of crystal grains can be suppressed by setting the sample heating time to a short time is the solid solution / melting of Mg-Al intermetallic compounds or Al-Mn intermetallic compounds. Suppression.
Mg−Al−Zn系合金に、1.0質量%以上のAlを添加すると、金属間化合物(Mg17Al12)が粒内・粒界に析出することが知られている。また、Mg−Al−Zn系合金に、0.1質量%以上のMnを添加すると、Al8Mn5、Al11Mn4等の金属間化合物が粒界・粒内に析出し、それらがMg合金の結晶粒を微細化する効果を有することが知られている。 It is known that when 1.0 mass% or more of Al is added to an Mg—Al—Zn alloy, an intermetallic compound (Mg 17 Al 12 ) precipitates in the grains and at the grain boundaries. Further, when 0.1% by mass or more of Mn is added to the Mg—Al—Zn alloy, intermetallic compounds such as Al 8 Mn 5 and Al 11 Mn 4 are precipitated in the grain boundaries and grains, and they are Mg It is known to have an effect of refining crystal grains of the alloy.
一方、それらの析出物は、450℃以上に加熱すると、固溶・溶融が始まることが報告されている(非特許文献11,12)。本発明は、試料の昇温時間を短時間に設定することにより、Mg17Al12及びAl−Mn系化合物の固溶・溶融を極力抑制した状態で、高温で圧延を行い、異常粒成長抑制と集合組織制御を同時に達成したことに特徴を有するものである。 On the other hand, it has been reported that these precipitates start to dissolve and melt when heated to 450 ° C. or higher (Non-patent Documents 11 and 12). In the present invention, by setting the sample heating time to a short time, rolling is performed at a high temperature while suppressing solid solution / melting of Mg 17 Al 12 and Al—Mn-based compounds as much as possible, thereby suppressing abnormal grain growth. And texture control at the same time.
一連の研究開発から得られた知見より、商用マグネシウム合金(Mg−Al―Zn系合金)を、所定の試料温度、すなわち490℃〜566℃まで、短時間、すなわち8分未満:好ましくは5分未満で昇温し、圧延率5%以上、好ましくは5〜50%の範囲で熱間圧延を行い、熱間圧延後に焼鈍を行うことにより、組織が微細、すなわち平均結晶粒径30μm未満、好ましくは20μm未満で、公知のマグネシウム合金と同じ(0002)面集合組織を示しつつ、その強度を5.5未満に低めたマグネシウム合金圧延材を作製することに成功し、エリクセン値で、少なくとも7.0以上の常温成形性を示すマグネシウム合金圧延材を創製することに成功した。 Based on knowledge obtained from a series of research and development, commercial magnesium alloys (Mg—Al—Zn alloys) can be obtained at a predetermined sample temperature, that is, from 490 ° C. to 566 ° C. for a short time, that is, less than 8 minutes: preferably 5 minutes. The temperature is raised below, the rolling rate is 5% or more, preferably hot rolling in the range of 5 to 50%, and annealing is performed after hot rolling, so that the structure is fine, that is, the average crystal grain size is less than 30 μm, preferably Succeeded in producing a magnesium alloy rolled material having a strength of less than 5.5 while exhibiting the same (0002) plane texture as that of a known magnesium alloy, and having an Erichsen value of at least 7. We have succeeded in creating a magnesium alloy rolled material exhibiting zero or more room temperature formability.
本発明の常温成形性に優れた商用マグネシウム合金板材の成分及び作製条件の限定理由を説明する。本発明の製造方法に適用されるマグネシウム合金は、重量%で、Al:1〜10%、好ましくは2〜7%、Zn:0.2〜2.0%、Mn:0〜1.0%、残部が、Mg及び不可避不純物からなる成分組成を有するものである。 The reasons for limiting the components and production conditions of the commercial magnesium alloy sheet material excellent in room temperature formability of the present invention will be described. The magnesium alloy applied to the production method of the present invention is, by weight, Al: 1 to 10%, preferably 2 to 7%, Zn: 0.2 to 2.0%, Mn: 0 to 1.0%. The balance has a component composition composed of Mg and inevitable impurities.
Alの含有量は、Mg合金内部にAl−Mn系金属間化合物を析出させるために、1〜10%の範囲内で添加されていることが好ましく、2〜7%の範囲内で添加されていることがより好ましい。なお、Alの添加量が10%を超えると、熱間加工性が低下する。また、Alの添加量が1%未満では、十分なMn−Al金属間化合物の析出を期待することができない。 The content of Al is preferably added within a range of 1 to 10%, and within a range of 2 to 7%, in order to precipitate an Al—Mn intermetallic compound inside the Mg alloy. More preferably. In addition, when the addition amount of Al exceeds 10%, hot workability will fall. Further, if the amount of Al added is less than 1%, sufficient Mn—Al intermetallic compound precipitation cannot be expected.
Znの含有量は、0.2〜2.0%の範囲内で添加されてもよい。Znは、Alと同様に、鋳造性と強度等の機械的性質の向上に寄与するものであるが、Znの添加量が2.0%を超えると、鋳造性が低下する。 The Zn content may be added within a range of 0.2 to 2.0%. Zn, like Al, contributes to improvement of mechanical properties such as castability and strength. However, if the added amount of Zn exceeds 2.0%, castability deteriorates.
Mnの含有量は、0〜1.0%の範囲内(0の場合を含む)で添加されていることが好ましい。Mg合金にAl−Mn系合金を析出させるためには、0.1質量%以上のMnを添加することがより好ましい。一方、Mnが1.0質量%を超えると、金属間化合物が粗大化するため、避けるべきである。 The Mn content is preferably added within the range of 0 to 1.0% (including the case of 0). In order to precipitate an Al—Mn alloy in the Mg alloy, it is more preferable to add 0.1 mass% or more of Mn. On the other hand, when Mn exceeds 1.0 mass%, an intermetallic compound will coarsen and should be avoided.
熱間圧延に際しては、柱面<a>すべりや錐面<c+a>すべりが十分活動する、490℃以上に、試料表面温度を加熱する必要がある。また、結晶粒の異常粒成長を抑制するために、試料表面をなるべく短時間、具体的には、Mg17Al12及びAl−Mn系化合物の固溶・溶融を極力抑制できる8分未満、好ましくは5分未満で、目的温度まで加熱し、すかさず圧延を行う必要がある。試料表面を短時間で加熱する手法としては、例えば、試料を加熱するための保持炉(抵抗炉)の温度を、目的温度よりも少なくとも20℃以上高めに設定する方法や、急速加熱法(通電加熱や赤外線加熱等)を利用する方法がある。 In hot rolling, it is necessary to heat the sample surface temperature to 490 ° C. or higher where the column surface <a> slip and the conical surface <c + a> slip are sufficiently active. Further, in order to suppress abnormal grain growth of crystal grains, the surface of the sample should be as short as possible, specifically, less than 8 minutes, in which solid solution / melting of Mg 17 Al 12 and Al—Mn compounds can be suppressed as much as possible. It takes less than 5 minutes, and it is necessary to heat to the target temperature and perform rolling quickly. As a method for heating the sample surface in a short time, for example, a method of setting the temperature of the holding furnace (resistance furnace) for heating the sample at least 20 ° C. higher than the target temperature, or a rapid heating method (energization) There are methods using heating and infrared heating.
熱間圧延に際しては、柱面<a>すべりや錐面<c+a>すべりが十分活動する、490℃以上に試料表面温度を加熱する必要がある。一方、試料表面温度を固相線温度(566℃)以上に加熱すると、試料が溶解するため、試料表面温度は、566℃未満に設定すべきである。 In hot rolling, it is necessary to heat the sample surface temperature to 490 ° C. or higher where the column surface <a> slip and the conical surface <c + a> slide are sufficiently active. On the other hand, when the sample surface temperature is heated to the solidus temperature (566 ° C.) or higher, the sample is dissolved, and therefore the sample surface temperature should be set to less than 566 ° C.
試料の集合組織形成を弱めるためには、熱間圧延中に充分な塑性変形を板材に付与する必要がある。具体的には、少なくとも熱間圧延の全圧延率を5%以上に設定すると、集合組織の形成を抑制しつつ、圧延を実施することが可能である。 In order to weaken the texture formation of the sample, it is necessary to impart sufficient plastic deformation to the plate during hot rolling. Specifically, when at least the total rolling rate of hot rolling is set to 5% or more, rolling can be performed while suppressing formation of a texture.
一方、圧延材中の結晶粒の異常粒成長を極少化するためには、圧延中に試料を高温に晒す機会をなるべく減らすことが効果的である。例えば、所定の厚みまで、比較的低い試料表面温度、具体的には400℃未満で圧延を行い、最終的な圧延、具体的には総圧下率5〜50%のみ、試料を短時間で高温に加熱して圧延を行うと、試料を高温に晒す機会を減らすことができ、結晶粒の異常粒成長を極少化できる。 On the other hand, in order to minimize the abnormal grain growth of the crystal grains in the rolled material, it is effective to reduce the opportunity to expose the sample to a high temperature during rolling as much as possible. For example, to a predetermined thickness, rolling is performed at a relatively low sample surface temperature, specifically less than 400 ° C., and final rolling, specifically, the total rolling reduction is only 5 to 50%, and the sample is heated in a short time. When rolling with heating, the chance of exposing the sample to a high temperature can be reduced, and abnormal grain growth of crystal grains can be minimized.
圧延材の板厚の均一性を確保するような精密圧延を行う際には、圧延の最終パスに、温間圧延もしくは冷間圧延を行う必要がある。本発明者らは、圧延の最終パスに、試料表面温度300度未満で、総圧延率30%未満の温間・冷間圧延であれば、圧延材の集合組織及び結晶粒径に大きな変化は起きず、優れた成形性が保持されることを確認している。 When performing precision rolling to ensure the uniformity of the thickness of the rolled material, it is necessary to perform warm rolling or cold rolling in the final pass of rolling. In the final pass of rolling, if the sample surface temperature is less than 300 ° C. and warm / cold rolling with a total rolling rate of less than 30%, there will be a large change in the texture and crystal grain size of the rolled material. It has been confirmed that excellent moldability is maintained without occurring.
熱間圧延後の試料内部には、高密度の転位が蓄積されているため、板材の常温成形を行う前に熱処理、すなわち完全焼き鈍しを行うことが望ましい。具体的には、300〜450℃にて10分以上の熱処理に供した後に、プレス成形に供することが望ましい。450°以上に熱処理温度を設定すると、結晶粒の異常粒成長が起こる恐れがあるため、留意すべきである。 Since high-density dislocations are accumulated inside the sample after hot rolling, it is desirable to perform heat treatment, that is, complete annealing before performing room temperature forming of the plate material. Specifically, it is desirable to subject it to press molding after being subjected to heat treatment at 300 to 450 ° C. for 10 minutes or more. It should be noted that if the heat treatment temperature is set to 450 ° or more, abnormal grain growth of crystal grains may occur.
上記発明要素を駆使して作製されたマグネシウム合金板材は、常温(30℃)で、アルミニウム合金に相当する成形性、すなわちエリクセン値で少なくとも7.0以上を示す。ここでは、マグネシウム合金板材の成形性を表す指標として、エリクセン値を採用した。エリクセン試験は、JIS B7729及びJIS Z2274に準ずる試験を指す。 The magnesium alloy sheet produced by making full use of the above inventive elements exhibits a formability corresponding to an aluminum alloy at room temperature (30 ° C.), that is, an Erichsen value of at least 7.0 or more. Here, the Erichsen value was adopted as an index representing the formability of the magnesium alloy sheet. The Eriksen test refers to a test according to JIS B7729 and JIS Z2274.
また、上記発明要素を駆使して作製されたマグネシウム合金板材は、XRD法(シュルツの反射法)による測定で、相対強度が7未満となる(0002)面集合組織を示す。相対強度とは、測定された(0002)面集合組織を規格化(内部規格もしくは外部データ(ランダムデータ)による規格)した時のピーク強度の値を指す。 Further, the magnesium alloy sheet produced by making full use of the above inventive elements shows a (0002) plane texture in which the relative strength is less than 7 as measured by the XRD method (Schulz reflection method). The relative intensity refers to the value of the peak intensity when the measured (0002) plane texture is normalized (internal standard or standard based on external data (random data)).
本発明により作製される板材の結晶粒は、微細、具体的には30μm未満、好ましくは20μm未満で、公知のマグネシウム合金と同様の(0002)面集合組織を示しつつ、その強度は、5.5未満であり、アルミニウム合金に匹敵する常温成形性(エリクセン値で少なくとも7.0以上)を示す。 The crystal grains of the plate material produced according to the present invention are fine, specifically less than 30 μm, preferably less than 20 μm, exhibiting a (0002) plane texture similar to that of a known magnesium alloy, while having a strength of 5. It is less than 5 and exhibits room temperature formability (Erichsen value of at least 7.0 or more) comparable to aluminum alloys.
なお、板材の表層部と中央部において、(0002)面集合組織の相対強度は異なり、一般的に、表層部で強い相対強度が観察される。ここでは、相対強度が最も弱くなる領域の試料中央部で、RD−TD面の(0002)面集合組織を測定した際に検出されるピーク強度を、相対強度として採用する。 Note that the relative strength of the (0002) plane texture differs between the surface layer portion and the central portion of the plate material, and generally a strong relative strength is observed at the surface layer portion. Here, the peak intensity detected when the (0002) plane texture of the RD-TD plane is measured at the center of the sample in the region where the relative intensity is the weakest is employed as the relative intensity.
本発明により、次のような効果が奏される。
(1)商用マグネシウム合金(Mg−Al−Zn系合金)を、所定の試料温度(490℃〜566℃)まで、高速(8分未満:好ましくは5分未満)で昇温し、圧延率5%以上、好ましくは5〜50%の範囲で熱間圧延を行い、熱間圧延後に焼鈍を行うことにより、易成形性マグネシウム合金板材を作製することができる。
(2)得られた板材の組織は、微細(30μm未満、好ましくは20μm未満)で、公知のマグネシウム合金と同様の(0002)面集合組織を示しつつ、その相対強度は、5.5未満であり、エリクセン値で、少なくとも7.0以上の常温成形性が付与される。
(3)本発明を利用すると、資源枯渇・価格高騰が懸念される希土類元素を利用せずに、アルミニウム合金に匹敵する成形性が有するマグネシウム合金板材を作製することが可能であり、低コストで、易成形性マグネシウム合金板材を作製することができる。
(4)本発明を利用すると、機械的特性の異方性が少ない易成形性マグネシウム合金を作製することができ、幅広い用途に適用可能な、易成形性マグネシウム合金を提供することができる。
(5)上記易成形性マグネシウム合金板材を、常温成形することにより、マグネシウム合金製プレス成形体を作製し、提供することができる。
(6)上記マグネシウム合金製プレス成形体からなる筐体等のマグネシウム合金製部材を作製し、提供することができる。
The present invention has the following effects.
(1) A commercial magnesium alloy (Mg—Al—Zn alloy) is heated to a predetermined sample temperature (490 ° C. to 566 ° C.) at a high speed (less than 8 minutes: preferably less than 5 minutes), and a rolling rate of 5 %, Preferably in the range of 5 to 50%, an easily formable magnesium alloy sheet can be produced by annealing after hot rolling.
(2) The structure of the obtained plate material is fine (less than 30 μm, preferably less than 20 μm) and shows the (0002) plane texture similar to that of a known magnesium alloy, and its relative strength is less than 5.5. Yes, at an Erichsen value, a room temperature formability of at least 7.0 or more is imparted.
(3) By using the present invention, it is possible to produce a magnesium alloy sheet having formability comparable to that of an aluminum alloy without using rare earth elements that are feared to be depleted of resources and rising prices, and at low cost. An easily formable magnesium alloy sheet can be produced.
(4) When the present invention is used, an easily moldable magnesium alloy having little mechanical property anisotropy can be produced, and an easily moldable magnesium alloy applicable to a wide range of applications can be provided.
(5) A magnesium alloy press-molded body can be produced and provided by subjecting the readily formable magnesium alloy sheet material to room temperature molding.
(6) A magnesium alloy member such as a casing made of the magnesium alloy press-formed body can be produced and provided.
次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.
(1)実施例1〜3及び比較例1
実施例1〜3及び比較例1の試料作製方法(圧延時の試料温度の影響調査)
AZ31B合金(Mg−3.0質量%Al−1.0質量%Zn−0.5質量%Mn)を供試材として利用した。圧延前の試料形状は、50×60×5.0mm3である。圧延には、ロール直径152mm、ロール幅200mmの2段圧延機を利用した。予め、530〜560℃に保持したマッフル炉を利用して、試料の加熱を実施した。
(1) Examples 1 to 3 and Comparative Example 1
Sample preparation methods of Examples 1 to 3 and Comparative Example 1 (Investigation of influence of sample temperature during rolling)
An AZ31B alloy (Mg-3.0 mass% Al-1.0 mass% Zn-0.5 mass% Mn) was used as a test material. The sample shape before rolling is 50 × 60 × 5.0 mm 3 . For rolling, a two-high rolling mill having a roll diameter of 152 mm and a roll width of 200 mm was used. The sample was heated using a muffle furnace previously maintained at 530 to 560 ° C.
実施例1〜3では、マッフル炉の温度を、所定の試料表面温度よりも20℃以上高く設定し、試料表面温度を熱電対により計測し、炉内の試料表面温度が所定値に到達次第、すかさず熱間圧延に供した。一方、比較例1では、マッフル炉の温度を、530℃に設定し、試料を、炉内に15分保持後、熱間圧延に供した。圧延時の1パス当たりの圧延率は、20%とし、厚み5.0mmから1.0mm(総圧延率80%)まで、熱間圧延を実施した。圧延パス毎の試料の向きは同じである。圧延後に、350℃、90分の条件で焼鈍を行った。 In Examples 1 to 3, the temperature of the muffle furnace is set to 20 ° C. or more higher than the predetermined sample surface temperature, the sample surface temperature is measured with a thermocouple, and as soon as the sample surface temperature in the furnace reaches a predetermined value, It was used for hot rolling. On the other hand, in Comparative Example 1, the temperature of the muffle furnace was set to 530 ° C., and the sample was held in the furnace for 15 minutes and then subjected to hot rolling. The rolling rate per pass during rolling was 20%, and hot rolling was performed from a thickness of 5.0 mm to 1.0 mm (total rolling rate of 80%). The direction of the sample for each rolling pass is the same. After rolling, annealing was performed at 350 ° C. for 90 minutes.
(2)実施例4〜6
実施例4〜6の試料作製方法(圧延時の圧延率の影響調査1)
AZ31B合金(Mg−3.0質量%Al−1.0質量%Zn−0.5質量%Mn)を供試材として利用した。圧延前の試料形状を、50×60×4.0mm3、50×60×3.0mm3、50×60×2.0mm3とし、厚みの異なる3種類の試料を用意した。圧延には、ロール直径152mm、ロール幅200mmの2段圧延機を利用した。
(2) Examples 4 to 6
Sample preparation methods of Examples 4 to 6 (Investigation 1 of influence of rolling rate during rolling)
An AZ31B alloy (Mg-3.0 mass% Al-1.0 mass% Zn-0.5 mass% Mn) was used as a test material. The sample shape before rolling was 50 × 60 × 4.0 mm 3 , 50 × 60 × 3.0 mm 3 , and 50 × 60 × 2.0 mm 3, and three types of samples having different thicknesses were prepared. For rolling, a two-high rolling mill having a roll diameter of 152 mm and a roll width of 200 mm was used.
予め、545℃に保持したマッフル炉を利用して、試料を加熱し、試料表面温度が525℃に到達次第、すかさず熱間圧延に供した。圧延時の1パス当たりの圧延率は、20%とし、1.0mm(総圧延率50〜75%)まで、熱間圧延を実施した。圧延パス毎の試料の向きは同じである。圧延後に、350℃、90分の条件で焼鈍を行った。 The sample was heated in advance using a muffle furnace maintained at 545 ° C., and as soon as the sample surface temperature reached 525 ° C., it was subjected to hot rolling. The rolling rate per pass at the time of rolling was 20%, and hot rolling was performed up to 1.0 mm (total rolling rate: 50 to 75%). The direction of the sample for each rolling pass is the same. After rolling, annealing was performed at 350 ° C. for 90 minutes.
(3)実施例7〜11
実施例7〜11の試料作製方法(圧延時の圧延率の影響調査2)
AZ31B合金(Mg−3.0質量%Al−1.0質量%Zn−0.5質量%Mn)を供試材として利用した。圧延前の試料形状は、50×60×5.0mm3である。熱間圧延には、ロール直径152mm、ロール幅200mmの2段圧延機を利用した。予め、430℃もしくは480℃に保持したマッフル炉を利用して、試料を加熱し、試料表面温度が420℃もしくは450℃に到達次第、すかさず熱間圧延に供した。
(3) Examples 7 to 11
Sample preparation methods of Examples 7 to 11 (Survey of influence of rolling rate during rolling 2)
An AZ31B alloy (Mg-3.0 mass% Al-1.0 mass% Zn-0.5 mass% Mn) was used as a test material. The sample shape before rolling is 50 × 60 × 5.0 mm 3 . For hot rolling, a two-high rolling mill having a roll diameter of 152 mm and a roll width of 200 mm was used. The sample was heated using a muffle furnace previously held at 430 ° C. or 480 ° C., and immediately subjected to hot rolling as soon as the sample surface temperature reached 420 ° C. or 450 ° C.
圧延時の1パス当たりの圧延率は、20%とし、1.3〜2.0mmまで、温間圧延を実施した。次に、545℃に保持したマッフル炉を利用して試料を加熱し、試料表面温度が525℃に到達次第、すかさず熱間圧延に供した。圧延時の1パス当たりの圧延率は、20%とし、1.0mm(総圧延率21〜50%)までの熱間圧延を実施した。圧延パス毎の試料の向きは同じである。圧延後に、350℃、90分の条件で焼鈍を行った。 The rolling rate per pass at the time of rolling was 20%, and warm rolling was performed from 1.3 to 2.0 mm. Next, the sample was heated using a muffle furnace maintained at 545 ° C., and as soon as the sample surface temperature reached 525 ° C., it was subjected to hot rolling. The rolling rate per pass at the time of rolling was 20%, and hot rolling up to 1.0 mm (total rolling rate of 21 to 50%) was performed. The direction of the sample for each rolling pass is the same. After rolling, annealing was performed at 350 ° C. for 90 minutes.
(4)実施例12
実施例12の試料作製方法(組成の影響調査1)
AZ61合金(Mg−5.8質量%Al−0.7質量%Zn−0.3質量%Mn)を供試材として利用した。圧延前の試料形状は、50×60×5.0mm3である。熱間圧延には、ロール直径152mm、ロール幅200mmの2段圧延機を利用した。予め、545℃に保持したマッフル炉を利用して、試料を短時間で加熱し、試料表面温度が525℃に到達次第、すかさず熱間圧延に供した。圧延時の1パス当たりの圧延率は、20%とし、1.0mmまで、熱間圧延に供した(総圧延率80%)。圧延パス毎の試料の向きは同じである。圧延後に、350℃、90分の条件で焼鈍を行った。
(4) Example 12
Sample preparation method of Example 12 (Composition effect investigation 1)
AZ61 alloy (Mg-5.8 mass% Al-0.7 mass% Zn-0.3 mass% Mn) was used as a test material. The sample shape before rolling is 50 × 60 × 5.0 mm 3 . For hot rolling, a two-high rolling mill having a roll diameter of 152 mm and a roll width of 200 mm was used. The sample was heated in a short time using a muffle furnace previously held at 545 ° C., and immediately subjected to hot rolling as soon as the sample surface temperature reached 525 ° C. The rolling rate per pass at the time of rolling was 20%, and it was subjected to hot rolling up to 1.0 mm (total rolling rate of 80%). The direction of the sample for each rolling pass is the same. After rolling, annealing was performed at 350 ° C. for 90 minutes.
(5)実施例13、14
実施例13、14の試料作製方法(組成の影響調査2)
AZ61合金(Mg−5.8質量%Al−0.7質量%Zn−0.3質量%Mn)を供試材として利用した。圧延前の試料形状は、50×60×5.0mm3である。熱間圧延には、ロール直径152mm、ロール幅200mmの2段圧延機を利用した。予め、480℃に保持したマッフル炉を利用して、試料を加熱し、試料表面温度が460℃に到達次第、すかさず熱間圧延に供した。
(5) Examples 13 and 14
Sample preparation method of Examples 13 and 14 (Investigation of composition influence 2)
AZ61 alloy (Mg-5.8 mass% Al-0.7 mass% Zn-0.3 mass% Mn) was used as a test material. The sample shape before rolling is 50 × 60 × 5.0 mm 3 . For hot rolling, a two-high rolling mill having a roll diameter of 152 mm and a roll width of 200 mm was used. The sample was heated in advance using a muffle furnace maintained at 480 ° C., and as soon as the sample surface temperature reached 460 ° C., it was subjected to hot rolling.
圧延時の1パス当たりの圧延率は、20%とし、1.6mmまで、温間圧延を実施した。次に、530℃もしくは545℃に保持したマッフル炉を利用して、試料を加熱し、試料表面温度が505℃もしくは525℃に到達次第、すかさず熱間圧延に供した。圧延時の1パス当たりの圧延率は、20%とし、1.0mm(総圧延率33%)までの熱間圧延を実施した。圧延パス毎の試料の向きは同じである。圧延後に、350℃、90分の条件で焼鈍を行った。 The rolling rate per pass at the time of rolling was 20%, and warm rolling was performed up to 1.6 mm. Next, the sample was heated using a muffle furnace maintained at 530 ° C. or 545 ° C., and immediately subjected to hot rolling as soon as the sample surface temperature reached 505 ° C. or 525 ° C. The rolling rate per pass during rolling was 20%, and hot rolling up to 1.0 mm (total rolling rate 33%) was performed. The direction of the sample for each rolling pass is the same. After rolling, annealing was performed at 350 ° C. for 90 minutes.
(6)実施例15〜17
実施例15〜17の試料作製方法(温間・冷間圧延の影響調査)
AZ31B合金(Mg−3.0質量%Al−1.0質量%Zn−0.5質量%Mn)を供試材として利用した。圧延前の試料形状は、50×60×5.0mm3である。熱間圧延には、ロール直径152mm、ロール幅200mmの2段圧延機を利用した。予め、545℃に保持したマッフル炉を利用して、試料を加熱し、試料表面温度が525℃に到達次第、すかさず熱間圧延に供した。
(6) Examples 15 to 17
Sample preparation methods of Examples 15 to 17 (investigation of influence of warm / cold rolling)
An AZ31B alloy (Mg-3.0 mass% Al-1.0 mass% Zn-0.5 mass% Mn) was used as a test material. The sample shape before rolling is 50 × 60 × 5.0 mm 3 . For hot rolling, a two-high rolling mill having a roll diameter of 152 mm and a roll width of 200 mm was used. The sample was heated in advance using a muffle furnace maintained at 545 ° C., and as soon as the sample surface temperature reached 525 ° C., it was subjected to hot rolling.
圧延時の1パス当たりの圧延率は、20%とし、1.3mmまで温間圧延を実施した。次に、210℃もしくは260℃に保持したマッフル炉を利用して、試料を加熱し、試料表面温度が200℃もしくは250℃に到達次第、すかさず温間圧延に供した。圧延時の1パス当たりの圧延率は、20%とし、1.0mm(総圧延率21%)までの温間圧延を実施した。圧延パス毎の試料の向きは同じである。圧延後に、350℃、90分の条件で焼鈍を行った。 The rolling rate per pass during rolling was 20%, and warm rolling was performed up to 1.3 mm. Next, the sample was heated using a muffle furnace maintained at 210 ° C. or 260 ° C., and as soon as the sample surface temperature reached 200 ° C. or 250 ° C., it was subjected to warm rolling. The rolling rate per pass during rolling was 20%, and warm rolling up to 1.0 mm (total rolling rate 21%) was performed. The direction of the sample for each rolling pass is the same. After rolling, annealing was performed at 350 ° C. for 90 minutes.
作製したマグネシウム合金板材の常温成形性を評価するために、エリクセン試験を実施した。エリクセン試験は、JIS B7729及びJIS Z2247に準拠する。なお、ブランク形状は、板材形状の都合上、φ60mm(厚み1mm)とした。金型(試料)温度は、30℃とし、成形速度は、5mm/minとし、しわ押さえ力は、10kNとした。潤滑剤には、グラファイトグリスを利用した。 In order to evaluate the room temperature formability of the produced magnesium alloy sheet, an Erichsen test was performed. The Eriksen test conforms to JIS B7729 and JIS Z2247. The blank shape was set to 60 mm (thickness 1 mm) for the convenience of the plate material shape. The mold (sample) temperature was 30 ° C., the molding speed was 5 mm / min, and the wrinkle holding force was 10 kN. Graphite grease was used as the lubricant.
上記マグネシウム合金板材の(0002)面集合組織を、XRD法(シュルツの反射法)により測定し、ランダムデータ(粉末データ)で規格化し、(0002)面の相対強度を調査した。測定に際しては、圧延材より、20mm×20mm×1mmの板材を切り出し、RD−TD面を、厚み0.5mmまで面削した上で、#4000のSiC研磨紙で表面研磨した試料を利用した。また、上記マグネシウム合金板材のRD−ND面の組織を、光学顕微鏡により観察し、切片法(A.W.Thompson:Metallography,Vol.28(1972),p.366)により、結晶粒径を算出した。 The (0002) plane texture of the magnesium alloy sheet was measured by the XRD method (Schulz reflection method), normalized by random data (powder data), and the relative strength of the (0002) plane was investigated. At the time of measurement, a 20 mm × 20 mm × 1 mm plate was cut out from the rolled material, the RD-TD surface was chamfered to a thickness of 0.5 mm, and a sample that was surface-polished with # 4000 SiC abrasive paper was used. Further, the structure of the RD-ND plane of the magnesium alloy sheet is observed with an optical microscope, and the crystal grain size is calculated by a section method (AW Thompson: Metallography, Vol. 28 (1972), p. 366). did.
(7)実施例1〜3及び比較例1の試験結果(圧延時の試料温度の影響調査)
各試料のエリクセン試験、集合組織測定、結晶粒径測定の結果を表1に示す。また、実施例1〜3、比較例1の圧延パス毎の試料加熱時間を表2に示す。実施例1〜3で作製された試料の加熱時間は、いずれも8分未満であり、試料厚みの減少と共に、圧延時間は減少し、最終圧延パスの試料加熱時間は、3〜4分であった。表1より、試料表面温度を所定の温度に短時間に加熱した上で、圧延を実施することにより、30μm未満の結晶粒径を有し、集合組織の相対強度が5.5未満であり、エリクセン値が7.0以上を示す、板材が作製できることが確認できる。
(7) Test results of Examples 1 to 3 and Comparative Example 1 (Investigation of influence of sample temperature during rolling)
Table 1 shows the results of the Erichsen test, texture measurement, and crystal grain size measurement of each sample. Table 2 shows the sample heating time for each rolling pass of Examples 1 to 3 and Comparative Example 1. The heating times of the samples prepared in Examples 1 to 3 were all less than 8 minutes, the rolling time decreased with decreasing sample thickness, and the heating time of the sample in the final rolling pass was 3 to 4 minutes. It was. From Table 1, by heating the sample surface temperature to a predetermined temperature in a short time and then rolling, it has a crystal grain size of less than 30 μm, and the relative strength of the texture is less than 5.5, It can be confirmed that a plate material having an Erichsen value of 7.0 or more can be produced.
(8)実施例4〜6の試験結果(圧延時の圧延率の影響調査1)
各試料のエリクセン試験、集合組織測定、結晶粒径測定の結果を表1にまとめて示す。試料の加熱時間は、いずれも8 分未満である。実施例4の試料加熱時間は、表2(実施例1)の圧延パス2〜7回目とおよそ同じである。実施例5の試料加熱時間は、表2(実施例1)の圧延パス3〜7回目とおよそ同じである。実施例6の試料加熱時間は、表2(実施例1)の圧延パス5〜7回目とおよそ同じである。
(8) Test results of Examples 4 to 6 (Investigation 1 of influence of rolling ratio during rolling)
Table 1 summarizes the results of the Erichsen test, texture measurement, and crystal grain size measurement of each sample. The sample heating time is less than 8 minutes. The sample heating time of Example 4 is approximately the same as the second to seventh rolling passes in Table 2 (Example 1). The sample heating time of Example 5 is approximately the same as the rolling passes 3 to 7 in Table 2 (Example 1). The sample heating time of Example 6 is approximately the same as the rolling passes 5 to 7 in Table 2 (Example 1).
実施例4〜6より、所定の試料表面温度及び所定の圧下率で熱間圧延を行うことにより、30μm未満の結晶粒径を有し、集合組織の相対強度が5.5未満であり、エリクセン値が7.0以上を示す板材が作製できることが確認できる。 From Examples 4 to 6, by hot rolling at a predetermined sample surface temperature and a predetermined reduction ratio, the crystal grain size is less than 30 μm, the relative strength of the texture is less than 5.5, and Erichsen It can be confirmed that a plate material having a value of 7.0 or more can be produced.
(9)実施例7〜11の試験結果(圧延時の圧延率の影響調査2)
各試料のエリクセン試験、集合組織測定、結晶粒径測定の結果を表1にまとめて示す。また、実施例7〜11の圧延パス毎に必要とした試料加熱時間をまとめて表3に示す。表3には、試料表面温度525℃で圧延を実施した際の試料加熱時間のみを示した。
(9) Test results of Examples 7 to 11 (Investigation of influence of rolling rate during rolling 2)
Table 1 summarizes the results of the Erichsen test, texture measurement, and crystal grain size measurement of each sample. Table 3 summarizes the sample heating time required for each rolling pass of Examples 7-11. Table 3 shows only the sample heating time when rolling was performed at a sample surface temperature of 525 ° C.
実施例7〜11より、温間圧延により所定の厚みまでの予め圧延し、その後に、所定の試料表面温度まで急速加熱した上で、熱間圧延を行うことにより、加熱時間を微細な結晶粒径を有し、低い相対強度の集合組織を有し、優れた常温成形性を有する板材を作製できることが確認できる。 From Examples 7 to 11, by pre-rolling to a predetermined thickness by warm rolling, and then rapidly heating to a predetermined sample surface temperature, hot rolling is performed to reduce the heating time to fine crystal grains. It can be confirmed that a plate material having a diameter, a texture having a low relative strength, and excellent room temperature formability can be produced.
(10)実施例12の試験結果(組成の影響調査1)
エリクセン試験、集合組織測定、結晶粒径測定の結果を表1に示す。また、実施例12の圧延パス毎の試料加熱時間を表4に示す。実施例12より、マグネシウム合金の組成を所定の組成に設定し、所定の試料表面温度まで急速加熱した上で、熱間圧延を行うことにより、微細な結晶粒径を有し、低い相対強度の集合組織を有し、優れた常温成形性を有する板材を作製できることが確認できる。
(10) Test result of Example 12 (Investigation effect 1)
Table 1 shows the results of the Erichsen test, texture measurement, and crystal grain size measurement. Table 4 shows the sample heating time for each rolling pass of Example 12. From Example 12, the composition of the magnesium alloy was set to a predetermined composition, rapidly heated to a predetermined sample surface temperature, and then hot-rolled to have a fine crystal grain size and a low relative strength. It can be confirmed that a plate material having a texture and excellent room temperature formability can be produced.
(11)実施例13、14の試験結果(組成の影響調査2)
エリクセン試験、集合組織測定、結晶粒径測定の結果を表1に示す。また、実施例13、14の圧延パス毎の試料加熱時間を表5に示す。表5には、試料表面温度505℃もしくは525℃で圧延を実施した際の試料加熱時間のみを示した。
(11) Test results of Examples 13 and 14 (Composition effect investigation 2)
Table 1 shows the results of the Erichsen test, texture measurement, and crystal grain size measurement. Table 5 shows the sample heating time for each rolling pass of Examples 13 and 14. Table 5 shows only the sample heating time when rolling was performed at a sample surface temperature of 505 ° C or 525 ° C.
実施例13、14より、マグネシウム合金の組成を所定の組成に設定し、所定の試料表面温度まで急速加熱した上で、熱間圧延を行うことにより、微細な結晶粒径を有し、低い相対強度の集合組織を有し、優れた常温成形性を有する板材を作製できることが確認できる。 From Examples 13 and 14, the magnesium alloy composition is set to a predetermined composition, rapidly heated to a predetermined sample surface temperature, and then hot-rolled to have a fine crystal grain size and a low relative It can be confirmed that a plate material having a strong texture and excellent room temperature formability can be produced.
(12)実施例15、16の試験結果施例(温間・冷間圧延の影響調査)
エリクセン試験、集合組織測定、結晶粒径測定の結果を表1に示す。また、実施例15、16の圧延パス毎の試料加熱時間を表6に示す。実施例15、16より、最終工程に冷間・温間圧延を実施しても、予め、所定の試料表面温度まで急速加熱した上で、熱間圧延を行っておけば、微細な結晶粒径を有し、低い相対強度の集合組織を有し、優れた常温成形性を有する板材を作製できることが確認できる。
(12) Examples of test results of Examples 15 and 16 (investigation of the effects of warm and cold rolling)
Table 1 shows the results of the Erichsen test, texture measurement, and crystal grain size measurement. Table 6 shows the sample heating time for each rolling pass of Examples 15 and 16. From Examples 15 and 16, even if cold / warm rolling is performed in the final process, if the hot rolling is performed after rapid heating to a predetermined sample surface temperature, the fine crystal grain size It can be confirmed that a plate material having a low-strength texture and excellent room temperature formability can be produced.
以上詳述したように、本発明は、常温成形性を改善した商用マグネシウム合金板材及びその作製方法に係るものであり、本発明により、商用マグネシウム合金(Mg−Al−Zn系合金)を、所定の試料温度(490℃〜566℃)まで短時間(8分未満:好ましくは5分未満)で昇温し、圧延率5%以上、好ましくは5〜50%の範囲で熱間圧延を行い、熱間圧延後に焼鈍を行うことにより、易成形性マグネシウム合金板材を作製することができる。作製された板材の結晶粒は、微細(30μm未満、好ましくは20μm未満)で、公知のマグネシウム合金と同様の(0002)面集合組織を示しつつ、その強度は5.5未満であり、アルミニウム合金に匹敵する常温成形性(エリクセン値で少なくとも7.0以上)を示す。本発明を利用することで、資源枯渇・価格高騰が懸念される希土類元素を利用せずに、アルミニウム合金に匹敵する成形性が付与されたマグネシウム合金板材を低コストで作製することが可能であり、更に、異方性と成形性を同時に改善したマグネシウム合金板材を作製することができる。また、本発明は、デジタルカメラ・ノートパソコン・PDA等、主に家電製品のプレス成形体を中心として積極的に適用することが可能であり、その産業的意義は大きいものと言える。 As described above in detail, the present invention relates to a commercial magnesium alloy sheet having improved room temperature formability and a method for producing the same, and according to the present invention, a commercial magnesium alloy (Mg—Al—Zn alloy) is used as a predetermined material. The sample temperature (490 ° C. to 566 ° C.) is raised in a short time (less than 8 minutes: preferably less than 5 minutes), hot rolling is performed in a range of 5% or more, preferably 5 to 50%, An easily formable magnesium alloy sheet can be produced by annealing after hot rolling. The produced plate material has fine (less than 30 μm, preferably less than 20 μm) crystal grains and exhibits a (0002) plane texture similar to that of a known magnesium alloy, and its strength is less than 5.5. Exhibits a room temperature formability (Erichsen value of at least 7.0 or more) comparable to By using the present invention, it is possible to produce a magnesium alloy sheet with formability comparable to that of an aluminum alloy at a low cost without using rare earth elements that are feared to be resource depleted and price increases. Furthermore, it is possible to produce a magnesium alloy sheet having improved anisotropy and formability at the same time. In addition, the present invention can be positively applied mainly to press-molded products of home appliances such as digital cameras, notebook computers, and PDAs, and it can be said that the industrial significance thereof is great.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009114038A JP5515167B2 (en) | 2008-10-28 | 2009-05-08 | Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008277499 | 2008-10-28 | ||
JP2008277499 | 2008-10-28 | ||
JP2009114038A JP5515167B2 (en) | 2008-10-28 | 2009-05-08 | Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010133005A true JP2010133005A (en) | 2010-06-17 |
JP5515167B2 JP5515167B2 (en) | 2014-06-11 |
Family
ID=42344552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009114038A Active JP5515167B2 (en) | 2008-10-28 | 2009-05-08 | Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5515167B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010202898A (en) * | 2009-02-27 | 2010-09-16 | National Institute Of Advanced Industrial Science & Technology | High-strength magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor |
JP2010202897A (en) * | 2009-02-27 | 2010-09-16 | National Institute Of Advanced Industrial Science & Technology | Magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor |
JP2011179075A (en) * | 2010-03-01 | 2011-09-15 | National Institute Of Advanced Industrial Science & Technology | Magnesium alloy sheet material having improved cold-formability and in-plane anisotropy, and method for manufacturing the same |
JP2012104558A (en) * | 2010-11-08 | 2012-05-31 | Hitachi Chem Co Ltd | THERMOELECTRIC MATERIAL COMPRISING Mg2Si GROUP COMPOUND AND MANUFACTURING METHOD THEREOF |
WO2012077758A1 (en) * | 2010-12-08 | 2012-06-14 | 独立行政法人産業技術総合研究所 | Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body |
WO2018117696A1 (en) * | 2016-12-23 | 2018-06-28 | 주식회사 포스코 | Magnesium alloy plate and method for manufacturing same |
CN113278857A (en) * | 2021-04-02 | 2021-08-20 | 中国兵器科学研究院宁波分院 | High-toughness magnesium alloy and preparation method thereof |
CN113373360A (en) * | 2021-07-19 | 2021-09-10 | 南昌航空大学 | Method for improving strength and corrosion resistance of AZ series wrought magnesium alloy |
WO2021215241A1 (en) | 2020-04-21 | 2021-10-28 | 国立研究開発法人産業技術総合研究所 | Magnesium alloy, magnesium alloy plate, magnesium alloy rod, methods for producing these, and magnesium alloy member |
CN113825850A (en) * | 2020-04-21 | 2021-12-21 | 住友电气工业株式会社 | Magnesium alloy sheet material, press-formed body, and method for producing magnesium alloy sheet material |
CN113825851A (en) * | 2020-04-21 | 2021-12-21 | 住友电气工业株式会社 | Magnesium alloy sheet material, press-formed body, and method for producing magnesium alloy sheet material |
JP7053404B2 (en) | 2012-06-26 | 2022-04-12 | バイオトロニック アクチェンゲゼルシャフト | Magnesium alloy, its manufacturing method and its use |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281848A (en) * | 2004-03-02 | 2005-10-13 | Toyo Kohan Co Ltd | Magnesium thin sheet for flattening having excellent formability, and its production method |
JP2007070686A (en) * | 2005-09-06 | 2007-03-22 | Daido Steel Co Ltd | Highly workable magnesium alloy, and method for producing the same |
JP2007083261A (en) * | 2005-09-20 | 2007-04-05 | National Institute Of Advanced Industrial & Technology | Press-formed body using magnesium alloy large cross-rolled material |
-
2009
- 2009-05-08 JP JP2009114038A patent/JP5515167B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281848A (en) * | 2004-03-02 | 2005-10-13 | Toyo Kohan Co Ltd | Magnesium thin sheet for flattening having excellent formability, and its production method |
JP2007070686A (en) * | 2005-09-06 | 2007-03-22 | Daido Steel Co Ltd | Highly workable magnesium alloy, and method for producing the same |
JP2007083261A (en) * | 2005-09-20 | 2007-04-05 | National Institute Of Advanced Industrial & Technology | Press-formed body using magnesium alloy large cross-rolled material |
Non-Patent Citations (1)
Title |
---|
JPN6013025730; 大年 和徳ら: 'AZ31マグネシウム合金板の圧延条件による常温成形性の変化' 軽金属 第53巻, 第6号, 200306, 239-244頁, 一般社団法人 軽金属学会 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010202898A (en) * | 2009-02-27 | 2010-09-16 | National Institute Of Advanced Industrial Science & Technology | High-strength magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor |
JP2010202897A (en) * | 2009-02-27 | 2010-09-16 | National Institute Of Advanced Industrial Science & Technology | Magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor |
JP2011179075A (en) * | 2010-03-01 | 2011-09-15 | National Institute Of Advanced Industrial Science & Technology | Magnesium alloy sheet material having improved cold-formability and in-plane anisotropy, and method for manufacturing the same |
JP2012104558A (en) * | 2010-11-08 | 2012-05-31 | Hitachi Chem Co Ltd | THERMOELECTRIC MATERIAL COMPRISING Mg2Si GROUP COMPOUND AND MANUFACTURING METHOD THEREOF |
WO2012077758A1 (en) * | 2010-12-08 | 2012-06-14 | 独立行政法人産業技術総合研究所 | Method for producing magnesium alloy rolled stock, magnesium alloy rolled stock, and press-molded body |
JP5700379B2 (en) * | 2010-12-08 | 2015-04-15 | 独立行政法人産業技術総合研究所 | Magnesium alloy rolled material manufacturing method, magnesium alloy rolled material, and press-formed body |
JP7053404B2 (en) | 2012-06-26 | 2022-04-12 | バイオトロニック アクチェンゲゼルシャフト | Magnesium alloy, its manufacturing method and its use |
KR101889019B1 (en) | 2016-12-23 | 2018-08-20 | 주식회사 포스코 | Magnesium alloy sheet, and method for manufacturing the same |
KR20180073921A (en) * | 2016-12-23 | 2018-07-03 | 주식회사 포스코 | Magnesium alloy sheet, and method for manufacturing the same |
CN110114487A (en) * | 2016-12-23 | 2019-08-09 | 株式会社Posco | Magnesium alloy plate and preparation method thereof |
EP3561096A4 (en) * | 2016-12-23 | 2019-10-30 | Posco | Magnesium alloy plate and method for manufacturing same |
US11149330B2 (en) | 2016-12-23 | 2021-10-19 | Posco | Magnesium alloy plate and method for manufacturing same |
WO2018117696A1 (en) * | 2016-12-23 | 2018-06-28 | 주식회사 포스코 | Magnesium alloy plate and method for manufacturing same |
WO2021215241A1 (en) | 2020-04-21 | 2021-10-28 | 国立研究開発法人産業技術総合研究所 | Magnesium alloy, magnesium alloy plate, magnesium alloy rod, methods for producing these, and magnesium alloy member |
CN113825850A (en) * | 2020-04-21 | 2021-12-21 | 住友电气工业株式会社 | Magnesium alloy sheet material, press-formed body, and method for producing magnesium alloy sheet material |
CN113825851A (en) * | 2020-04-21 | 2021-12-21 | 住友电气工业株式会社 | Magnesium alloy sheet material, press-formed body, and method for producing magnesium alloy sheet material |
KR20220162137A (en) | 2020-04-21 | 2022-12-07 | 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 | Magnesium alloy, magnesium alloy plate, magnesium alloy rod and manufacturing method thereof, magnesium alloy member |
CN113278857A (en) * | 2021-04-02 | 2021-08-20 | 中国兵器科学研究院宁波分院 | High-toughness magnesium alloy and preparation method thereof |
CN113373360A (en) * | 2021-07-19 | 2021-09-10 | 南昌航空大学 | Method for improving strength and corrosion resistance of AZ series wrought magnesium alloy |
Also Published As
Publication number | Publication date |
---|---|
JP5515167B2 (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5515167B2 (en) | Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same | |
JP5467294B2 (en) | Easy-formable magnesium alloy sheet and method for producing the same | |
JP6689291B2 (en) | High strength 5xxx aluminum alloy and method of making same | |
US10900103B2 (en) | Magnesium-lithium alloy, rolled material and shaped article | |
JP6278379B2 (en) | Magnesium alloy sheet manufacturing method, magnesium alloy sheet and press-molded body using the same | |
JP2012052219A (en) | α-β TITANIUM ALLOY EXTRUDED MATERIAL EXCELLENT IN FATIGUE STRENGTH, AND METHOD FOR PRODUCING THE α-β TITANIUM ALLOY EXTRUDED MATERIAL | |
KR101785121B1 (en) | Magnesium alloy sheet | |
JP5660525B2 (en) | General-purpose magnesium alloy sheet that exhibits formability similar to that of aluminum alloy and method for producing the same | |
JP5590660B2 (en) | Magnesium alloy sheet with improved cold formability and in-plane anisotropy and method for producing the same | |
Yan et al. | Microstructural evolution of Al–0.66 Mg–0.85 Si alloy during homogenization | |
JP5252363B2 (en) | Magnesium alloy press-molded body and method for producing the same | |
JP4189687B2 (en) | Magnesium alloy material | |
JP5692847B2 (en) | Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same | |
JP5215710B2 (en) | Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same | |
JP4856597B2 (en) | Magnesium alloy excellent in strength and elongation at high temperature and method for producing the same | |
KR20150017143A (en) | Magnesium alloy for extrusion with excellent plasticity―workability and method for producing the same | |
JP5700379B2 (en) | Magnesium alloy rolled material manufacturing method, magnesium alloy rolled material, and press-formed body | |
JP2010053386A (en) | Magnesium alloy sheet material which is excellent in formability, and producing method therefor | |
JP2009024219A (en) | High strength and formable aluminum alloy cold-rolled sheet | |
JP4599594B2 (en) | Press molded body made of magnesium alloy large cross rolled material | |
CN113474479A (en) | Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby | |
Wei et al. | Effect of heat treatment on microstructures and mechanical properties of extruded-rolled AZ31 Mg alloys | |
JP2012077319A (en) | Aluminum alloy sheet for forming excellent in bending workability and method for producing the same | |
JP2004124152A (en) | Rolled wire rod of magnesium based alloy, and its production method | |
JP2010155357A (en) | Magnesium alloy clad material and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131210 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5515167 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |