[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010105863A - 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法 - Google Patents

炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法 Download PDF

Info

Publication number
JP2010105863A
JP2010105863A JP2008280364A JP2008280364A JP2010105863A JP 2010105863 A JP2010105863 A JP 2010105863A JP 2008280364 A JP2008280364 A JP 2008280364A JP 2008280364 A JP2008280364 A JP 2008280364A JP 2010105863 A JP2010105863 A JP 2010105863A
Authority
JP
Japan
Prior art keywords
crucible
silicon carbide
seed crystal
raw material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280364A
Other languages
English (en)
Inventor
Yoshinori Kobayashi
由則 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008280364A priority Critical patent/JP2010105863A/ja
Publication of JP2010105863A publication Critical patent/JP2010105863A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】昇華用原料と、種結晶とが収容された坩堝を用いる場合において、誘導加熱コイルなどの複雑な制御を回避しつつ、坩堝内を種結晶の成長に適正な温度条件に容易に維持することができる炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法を提供する。
【解決手段】炭化珪素単結晶の製造装置1は、黒鉛製坩堝10と、黒鉛製坩堝10の少なくとも側面を覆う石英管20と、石英管20の外周に配置された誘導加熱コイル30とを有する。黒鉛製坩堝10は、反応容器本体50と、蓋部60とを有する。種結晶70は四角柱であり、黒鉛製坩堝10の平面視において、黒鉛製坩堝10の中央部に配設される。昇華用原料80は、炭化珪素を含む炭化珪素原料であり、円筒形状を有し、種結晶70よりも黒鉛製坩堝10の外周部側に配設され、種結晶70の周囲を囲んでいる。これにより、坩堝内を種結晶の成長に適正な温度条件に容易に維持することができる。
【選択図】図1

Description

本発明は、種結晶と、種結晶の成長に用いられる昇華用原料とを収容する坩堝と、坩堝を加熱する誘導加熱コイルなどの加熱部とを備える炭化珪素単結晶の製造装置、及び炭化珪素単結晶の製造方法に関する。
従来、炭化珪素によって形成された種結晶と、昇華用原料とが収容された坩堝を用いて炭化珪素単結晶を製造する方法が知られている。例えば、粉体状の昇華用原料が坩堝の底部に載置される。また、坩堝の上部には種結晶が配設される(特許文献1参照)。また、坩堝の外周部には、坩堝を加熱する誘導加熱コイルが配設される。
誘導加熱コイルを用いて加熱された坩堝内において昇華した昇華用原料は、冷却されることによって種結晶上に再結晶化する。このように種結晶を成長させることによって、炭化珪素単結晶のインゴットが製造される。
特開2004−352590号公報(第17−18頁、第1−2図)
しかしながら、上述した従来の炭化珪素単結晶の製造方法には、次のような問題があった。すなわち、誘導加熱コイルを用いて加熱される坩堝内の温度は、坩堝内の位置によって異なるため、坩堝内を種結晶の成長に適正な温度条件に維持することが難しい問題があった。坩堝内を種結晶の成長に適正な温度分布に維持できないと、種結晶の順調な成長が妨げられ、炭化珪素単結晶の生産性が低下する。
具体的には、誘導加熱コイルに近い坩堝の外周部近傍は、坩堝の中央部よりも温度が高くなる。また、上述した従来の炭化珪素単結晶の製造方法は、坩堝の底部に載置された昇華用原料を加熱し、昇華させ、坩堝上部に配設された種結晶上に昇華蒸気を輸送し、種結晶上に再結晶化させる必要がある。
そのため、坩堝の下部は、原料が昇華するに十分な温度に加熱させられる。坩堝の上部は、坩堝の下部よりも若干低い温度に加熱させられる。このように坩堝内の温度が制御されることにより、坩堝の下部から上部に向けて一定の温度勾配で温度が低下する温度分布を実現する必要がある。このような坩堝内を種結晶の成長に適正な温度分布に維持するためには、坩堝形状の工夫と、誘導加熱コイルなどの複雑な制御が不可欠になる。
そこで、本発明は、このような状況に鑑みてなされたものであり、昇華用原料と、種結晶とが収容された坩堝を用いる場合において、誘導加熱コイルなどの複雑な制御を回避しつつ、坩堝内を種結晶の成長に適正な温度条件に容易に維持することができる炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法を提供することを目的とする。
上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴は、炭化珪素を含む種結晶(種結晶70)と、前記種結晶の成長に用いられる昇華用原料(昇華用原料80)とを収容する坩堝(黒鉛製坩堝10)と、前記坩堝の外周部に沿って配設され、前記坩堝を加熱する加熱部(誘導加熱コイル30)とを備える炭化珪素単結晶の製造装置(製造装置1)であって、前記種結晶は、前記坩堝の平面視において、前記坩堝の中央部に配設され、前記昇華用原料は、前記種結晶よりも前記坩堝の外周部側に配設され、前記種結晶の周囲の少なくとも一部を囲むことを要旨とする。
本発明の特徴によれば、坩堝の外周部に沿って配設された加熱部によって坩堝が加熱されると、坩堝の外周部側から坩堝の中央部に向かって温度が低下する温度勾配が自ずから生じる。すなわち、坩堝の中央部から坩堝の外周部側に向かう温度勾配と、坩堝の中央部から坩堝の外周部側に向かって結晶が成長するのに必要な温度条件とが略一致する。
これにより、種結晶よりも坩堝の外周部側に配設され、且つ種結晶の周囲の少なくとも一部を囲む昇華用原料から昇華された昇華用原料は、坩堝の中央部に配設された種結晶上に再結晶化する。再結晶化された炭化珪素単結晶は、種結晶を元に種結晶の周囲の少なくとも一部を囲む前記昇華用原料に向かって成長する。
従って、本発明の特徴によれば、外周部に誘導加熱コイルを配設した際に周方向の温度勾配が自ずと生じるため、従来のように、中心軸方向に沿う温度勾配を設ける制御を行う必要がない。そのため、加熱部などの複雑な制御を回避しつつ、坩堝内を種結晶の成長に適正な温度分布に容易に維持することができる。ひいては、種結晶の順調な成長を促進し、良質な炭化珪素単結晶の生産性を高めることができる。
本発明の第2の特徴は、本発明の第1の特徴に係り、前記昇華用原料は、前記炭化珪素を熱処理することによって生成された炭化珪素焼結体であることを要旨とする。
本発明の第3の特徴は、本発明の第2の特徴に係り、前記種結晶の側方は、前記炭化珪素焼結体によって囲まれることを要旨とする。
本発明の第4の特徴は、本発明の第3の特徴に係り、前記炭化珪素焼結体は、円筒状であることを要旨とする。
本発明の第5の特徴は、本発明の第1乃至第4の何れか一つの特徴に係り、前記種結晶は、柱状であり、前記坩堝の平面形状は、円形状であり、前記種結晶は、前記坩堝の中心を通る坩堝中心線(CL1)上に配設されることを要旨とする。
本発明の第6の特徴は、本発明の第5の特徴に係り、前記種結晶の中心を通る結晶中心線(CL2)は、前記坩堝中心線と重なることを要旨とする。
本発明の第7の特徴は、本発明の第5又は第6の特徴に係り、前記坩堝の内径(d1)は、前記坩堝中心線に沿った長さ(L1)よりも長いことを要旨とする。
本発明の第8の特徴は、炭化珪素を含む種結晶(種結晶70)と、前記種結晶の成長に用いられる昇華用原料(昇華用原料80)とを坩堝(黒鉛製坩堝10)に収容し、前記坩堝の外周部に沿って配設される前記坩堝を加熱する加熱部(誘導加熱コイル30)によって前記昇華用原料を加熱することによって昇華させ、昇華された昇華用原料を前記種結晶上に再結晶化させて炭化珪素単結晶を製造する炭化珪素単結晶の製造方法であって、前記坩堝の平面視において、前記坩堝の中央部に前記種結晶(種結晶70)が配設される工程(S21)と、前記種結晶よりも前記坩堝の外周部側、且つ前記種結晶の周囲の少なくとも一部を囲む位置に前記昇華用原料が配設される工程(S22)と、前記昇華用原料を加熱する工程(S3)と、加熱された前記昇華用原料が前記坩堝の中央部に配設された前記種結晶を元に再結晶化され、前記再結晶化された炭化珪素単結晶が前記種結晶を元に前記種結晶の周囲の少なくとも一部を囲む前記昇華用原料に向けて成長させられる工程(S4)とを有することを要旨とする。
本発明の特徴によれば、昇華用原料と、種結晶とが収容された坩堝を用いる場合において、坩堝の構造の変更や誘導加熱コイルなどの複雑な制御を回避しつつ、坩堝内を種結晶の成長に適正な温度条件に容易に維持することができる炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法を提供することができる。また、本発明の特徴によれば、種結晶を径方向に拡大させる成長を選択的に行うことができるため、結晶の口径を効率よく拡大することができる。
次に、本発明に係る炭化珪素粉体の製造方法の実施形態について、図面を参照しながら説明する。具体的には、(1)製造装置の概略構成、(2)炭化珪素単結晶の製造方法、(3)評価、(4)作用・効果、及び(5)その他の実施形態について説明する。
なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(1)製造装置の概略構成
図1,図2を用いて、本発明の実施形態として示す炭化珪素単結晶の製造装置1を説明する。図1は、炭化珪素単結晶の製造装置1を説明する構成図である。図2は、図1のA−A線に沿った断面図である。
図1に示すように、炭化珪素単結晶の製造装置1は、黒鉛製坩堝10と、黒鉛製坩堝10の少なくとも側面を覆う石英管20と、石英管20の外周に配置された誘導加熱コイル30とを有する。
黒鉛製坩堝10は、支持棒40により、石英管30の内部に固定される。黒鉛製坩堝10の周囲は断熱材90で覆われている。種結晶の径方向への成長を積極的に行うため、中心軸方向に温度勾配を付ける必要がない。製造装置1では、中心軸方向に対しては、均一な温度であることが好ましいため、坩堝の上下面の断熱材を側面の断熱材に比べて、十分に厚くすることが好ましい。
黒鉛製坩堝10は、反応容器本体50と、蓋部60とを有する。反応容器本体50は、炭化珪素を含む種結晶70と、種結晶70の成長に用いられる昇華用原料80とを収容する。
反応容器本体50は、少なくとも内部が円筒状である。反応容器本体50は、種結晶70が載置される種結晶載置部52を有する。種結晶載置部52は、黒鉛製坩堝10の底部、すなわち、反応容器本体50の底部51の中央部分に形成される。蓋部60は、反応容器本体50に螺合により着脱自在に設けられる。
図1に示すように、黒鉛製坩堝10の内径、すなわち反応容器本体50の内径d1は、反応容器本体50の底部51から蓋部60の内側までの反応容器本体50の中心を通る坩堝中心線CL1に沿った長さL1よりも長い。
種結晶70は、例えば、炭化珪素単結晶である。図2に示すように、種結晶70は、黒鉛製坩堝10の平面視において、黒鉛製坩堝10の中央部に配設される。本実施形態では、種結晶70は柱状である。具体的に、種結晶70は四角柱である。すなわち、炭化珪素単結晶は、4つの結晶成長面Sc1,Sc2,Sc3,Sc4を有する。全ての結晶成長面に鏡面研磨加工が施される。
種結晶70は、端部70aと端部70bを有する。種結晶70の端部70aは、種結晶載置部52に接している。種結晶70は、反応容器本体50の底部51の坩堝中心線CL1上に形成された種結晶載置部52に載置される。種結晶70の中心を通る結晶中心線CL2は、坩堝中心線CL1と重なる。
図1に示すように、種結晶70の坩堝中心線CL1に沿う方向の長さをL2とすると、この長さL2は、長さL1と略同一であることが好ましい。具体的には、L1−L2≦5mmであることが好ましい。
L1−L2が5mmを超えると、中心軸から径方向に向かう温度勾配が乱れ、良質な単結晶が得られなくなる可能性が高まる。
昇華用原料80は、炭化珪素を含む炭化珪素原料である。昇華用原料80は、炭化珪素粉末を熱処理することによって生成された炭化珪素焼結体である。炭化珪素焼結体は、粉体に比べて成形性がよいため、反応容器本体50における昇華用原料80の配置位置の自由度が増す。昇華用原料80と種結晶70とは、同一多形であることが好ましい。
昇華用原料80は、種結晶70よりも黒鉛製坩堝10の外周部側に配設され、種結晶70の周囲の少なくとも一部を囲んでいる。本実施形態では、昇華用原料80は、円筒形状を有する。
図3は、炭化珪素単結晶の製造装置1の黒鉛製坩堝10の内部における昇華用原料80と種結晶70との位置関係を説明する斜視図である。図3に示すように、種結晶70は、種結晶載置部52に載置された状態で、円筒形状を有する昇華用原料80によって取り囲まれている。すなわち、種結晶70の側方は、昇華用原料80により囲まれる。
昇華用原料80の筒の中心線CL4は、種結晶70の結晶中心線CL2と略一致する。
昇華用原料80が円筒形状である場合、昇華用原料80の内径D1と、種結晶70の径方向の長さD2との関係は、10mm≦(D1−D2)≦20mmであることが好ましい。D1−D2が20mmを超えると、昇華した炭化珪素が種結晶70と昇華用原料80との間と下面の黒鉛上で再結晶化し易くなるため、好ましくない。
一方、D1−D2が10mm以下の場合には、単結晶が径方向に拡大するスペースが不足するため、好ましくない。
誘導加熱コイル30は、石英管20の外周部に沿って配設されており、黒鉛製坩堝10を加熱する。誘導加熱コイル30のコイル径の中心を通る中心線CL3の位置は、坩堝中心線CL1と、種結晶70の中心を通る結晶中心線CL2と重なる。
また、誘導加熱コイル30の中心線CL3は、昇華用原料80の筒の中心線CL4と一致する。誘導加熱コイル30の中心線CL3と、坩堝中心線CL1と、昇華用原料80の筒の中心線CL4とを一致させると、昇華用原料80にも誘導電流が流れる。従って、昇華原料80が自己発熱する。これにより、昇華用原料80の加熱効率を向上させることができる。
反応容器本体50の内面53と円筒形状の昇華用原料80の外面81との間隔は、狭ければ狭いほど良く、具体的には、0.5mm以下であり、更には、反応容器本体50の内径と円筒形状の昇華用原料80の外径とは略同一であることが好ましい。間隔が0.5mm以下であると、後述する誘導加熱コイル30からの誘導電流が昇華用原料80に侵入し易くなり、昇華用原料80の加熱効率が向上するためである。
更に、誘導電流の流れ易さを考慮すると、昇華用原料80として、導電率の高いn型又はp型の炭化珪素を用いることが好ましい。
また、昇華用原料80における誘導電流の流れ易さを考慮すると、反応容器本体50の側壁の厚さは、より薄くすることが必要であるが、黒鉛製坩堝10の強度を勘案して、5mm以上10mm以下とすることが好ましい。
反応容器本体50の反応炉内の温度は、成長させたい炭化珪素単結晶の結晶多形に応じて適宜選択可能である。本実施形態では、誘導加熱コイル30によって黒鉛製坩堝10が加熱されると、黒鉛製坩堝10の外周部側から黒鉛製坩堝10の中央部に向かって温度が低下する温度勾配が自ずから生じる。
すなわち、黒鉛製坩堝10の中央部から黒鉛製坩堝10の外周部側に向かう温度勾配と、黒鉛製坩堝10の中央部から黒鉛製坩堝10の外周部側に向かって結晶が成長するのに必要な温度条件とが略一致する。
反応容器本体50の内部の温度勾配は、反応容器本体50の内壁から坩堝中心線CL1に向かって緩やかである程、良質な炭化珪素単結晶を得ることができる。具体的には、温度勾配は、反応容器本体50の内壁から坩堝中心線CL1に向かって、30℃/cm以下であることが好ましい。更に、10℃/cm以下であることが好ましい。
断熱材90は、黒鉛製坩堝10の全体を覆う。断熱材90としては、黒鉛製フェルトを使用することができる。種結晶に対して、径方向の成長を選択的に行うため、中心軸方向の温度分布はできるだけ小さいことが好ましい。そのため、坩堝の上下面に接する断熱材を無くすことが好ましい。
(2)炭化珪素単結晶の製造方法
(2−1)昇華用原料の作製
昇華用原料80について説明する。昇華用原料80としては、一例として、高純度の炭化珪素焼結体を使用することが好ましい。昇華用原料80は、珪素含有原料と炭素含有原料とから作製される。珪素含有原料と炭素含有原料とを混合し、混合された原料混合物を架橋又は重合させると、炭化珪素前駆体が得られる。得られた炭化珪素前駆体を非酸化性雰囲気の中で、乾燥させると、高純度の炭化珪素粉体(いわゆる、高純度プリカーサ法粉体という)が得られる。この高純度プリカーサ法粉体を円筒状に成形し、熱処理した焼結体を昇華用原料80とする。
珪素含有原料は、液状の珪素化合物、加水分解性珪素化合物より合成された珪素質固体とを含む群より選ばれる少なくとも1種の珪素含有原料である。
珪素含有原料としては、加水分解性珪酸化合物をトリメチル化して得られる1群のポリマー、加水分解性珪酸化合物と1価もしくは多価アルコール(例えば、ジオール、トリオール)とのエステル(例えば、四塩化珪素とエタノールとの反応で合成されるエチルシリケート)、加水分解性珪素化合物と有機化合物との反応で得られたエステル以外の反応生成物(例えば、テトラメチルシラン、ジメチルジフェニルシラン、ポリジメチルシラン)等の珪素化合物が挙げられる。
珪素化合物は、製造工程で不純物を含まない原料と、不純物を含まない触媒とを用いて合成された化合物である。この珪素化合物の不純物の含有量は、各1ppm以下であることが好ましい。
ここで、半導体製造に有害な元素(以下、不純物という)とは、ウェハーの熱処理工程でウェハーに不純物として取り込まれることにより、ウェハーの電気特性の低下を引き起こす元素のことである。
不純物の一例としては、1989年IUPAC無機化学命名法改訂版の周期律表における1族から17族元素に属しかつ原子番号3以上(但し、炭素原子、酸素原子及びケイ素原子を除く)である元素をいう。また、成長する炭化ケイ素単結晶にn型あるいはp型の導電性を付与するため故意にそれぞれ窒素、アルミニウムなどのドーパント元素を添加した場合はそれらも除くこととする。
加水分解性珪素化合物より合成された珪素質固体も同様に、不純物の含有量が各1ppm以下であることが好ましい。この珪素質固体は、高温の非酸化性雰囲気中で炭素と反応して炭化珪素を生成するものであればよい。珪素質固体の好ましい例は、四塩化珪素の加水分解により得られる無定型シリカ微粉末である。
炭素含有原料は、不純物を含まない触媒を用いて合成され、加熱及び/又は触媒、若しくは架橋剤により重合又は架橋して硬化しうる任意の1種もしくは2種以上の有機化合物から構成されるモノマー、オリゴマー及びポリマーである。
炭素含有原料の好適な具体例としては、不純物を含まない触媒を用いて合成されたフェノール樹脂、フラン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂などの硬化性樹脂が挙げられる。特に、残炭率が高く、作業性に優れているレゾール型またはノボラック型フェノール樹脂が好ましい。
本実施形態に有用なレゾール型フェノール樹脂は、不純物を含まない触媒(具体的には、アンモニアまたは有機アミン)の存在下において、フェノール、クレゾール、キシレノール、レゾルシン、ビスフェノールAなどの1価または2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等のアルデヒド類とを反応させて製造する。
触媒として用いる有機アミンは、第一級、第二級、および第三級アミンのいずれでもよい。有機アミンとしては、ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、N−メチルアニリン、ピリジン、モルホリン等を用いることができる。
フェノール類とアルデヒド類とをアンモニアまたは有機アミンの存在下に反応させてレゾール型フェノール樹脂を合成する方法は、使用触媒が異なる以外は、従来公知の方法を採用できる。
本実施形態に有用なノボラック型フェノール樹脂は、上記と同様の1価または2価フェノール類とアルデヒド類とを混合し、不純物を含まない酸類(具体的には、塩酸、硫酸、p−トルエンスルホン酸またはシュウ酸など)を触媒として反応させて製造することができる。
(2−2)炭化珪素単結晶の製造方法
次に、本実施形態に係る炭化珪素単結晶の製造方法について説明する。図4は、炭化珪素単結晶の製造方法を説明する図である。
図4に示すように、本実施形態に係る炭化珪素単結晶の製造方法は、工程S1乃至工程S4を有する。なお、図4に示す工程S5及び工程S6を続けて行うことにより、半導体ウェハを製造することができる。
工程S1は、上述した昇華用原料80を準備する工程である。昇華用原料80の作製は、上述した昇華用原料80の作製方法に基づく。
工程S2は、工程S1で作製された昇華用原料80、種結晶70等を製造装置1に配置する工程である。工程S2は、更に、黒鉛製坩堝10の平面視において、黒鉛製坩堝10の中央部に種結晶70が配設される工程S21と、種結晶70よりも黒鉛製坩堝10の外周部側、且つ種結晶70の周囲の少なくとも一部を囲む位置に昇華用原料80が配設される工程S22とを含む。
工程S2では、種結晶70は、反応容器本体50の底部51の坩堝中心線CL1上に形成された種結晶載置部52に載置される。このとき、種結晶70の中心を通る結晶中心線CL2は、坩堝中心線CL1と重ねた状態で種結晶載置部52上に載置される。
また、円筒形状を有する昇華用原料80の筒の中心線CL4は、坩堝中心線CL1及び結晶中心線CL2に重ねて配設される。坩堝中心線CL1、結晶中心線CL2、及び昇華用原料80の筒の中心線CL4は、誘導加熱コイル30のコイルの中心線CL3とも略一致される。
工程S3は、黒鉛製坩堝10を加熱し、昇華させる工程である。炭化珪素単結晶の製造装置1において、誘導加熱コイル30に電流を通電させて、昇華用原料80を加熱する。
昇華用原料80を加熱する工程では、誘導加熱コイル30によって、黒鉛製坩堝10が加熱されると、黒鉛製坩堝10の外周部側から黒鉛製坩堝10の中央部に向かって温度が低下する温度勾配が自ずから生じる。すなわち、黒鉛製坩堝10の中央部から黒鉛製坩堝10の外周部側に向かう温度勾配と、黒鉛製坩堝10の中央部から黒鉛製坩堝10の外周部側に向かって結晶が成長するのに必要な温度条件とが略一致する。
工程S4は、種結晶70を元に炭化珪素単結晶を成長させる工程である。工程S3において昇華した昇華用原料80は、黒鉛製坩堝10の中央部に配設された種結晶70を元に再結晶化する。再結晶化された炭化珪素単結晶は、種結晶70を元に種結晶70の周囲の少なくとも一部を囲む昇華用原料80に向けて成長する。
これにより、炭化珪素単結晶(単結晶インゴットという)が時間とともに、反応容器本体50の径方向に成長させることができる。上述の工程S1〜S4を行うことにより、単結晶インゴットを得ることができる。
工程S5は、所望とするサイズに成長した単結晶インゴットに外周研削加工等を施す工程である。工程S5では、単結晶インゴットに、結晶方位(例えば、Si面やC面)を示すオリフラを形成するオリフラ形成加工を行ってもよい。工程S6は、単結晶インゴットから半導体ウェハを切り出す(スライス)工程である。
図4に示す製造方法によれば、誘導加熱コイル30などの複雑な制御を回避しつつ、黒鉛製坩堝10内を種結晶70の成長に適正な温度条件に容易に維持することができる。
(3)評価
図1に示す炭化珪素単結晶の製造装置1により、単結晶インゴットを作製した。黒鉛製坩堝10の反応容器本体50の側壁の厚さは、5mmであった。
昇華用原料として、円筒形状の昇華用原料80を使用した。昇華用原料80は、具体的に、内径40mm、外径60mm(厚さ20mm)、反応容器本体50の底部からの長さ35mmであった。
種結晶70として、柱状の種結晶70を使用した。種結晶70は、具体的に、縦10mm×横10mm×高さ30mm(底部51から種結晶70の上面までの高さ)の四角柱であった。種結晶70の成長面は、炭化珪素単結晶のa軸方向とc軸方向を向くように、成長面Sc1〜Sc4には加工が施された。また、成長面Sc1〜Sc4には、鏡面研磨が施された。
反応容器本体50の底部51の一部に坩堝内部の温度を計測するための開口部を形成した。反応容器本体50の内部の温度を2200℃に設定し、圧力666.61Pa(5Torr)で40時間保持した。
この結果、紡錘型の単結晶インゴットが得られた。この単結晶インゴットの中心部付近の最大直径は、約35mmであった。また、上下方向の長さは、33mmであった。従って、上述した実施形態に係る炭化珪素単結晶の製造方法によれば、従来の製造方法によって製造された炭化珪素単結晶に比べて、上下方向の長さよりも径方向に選択的に結晶を成長させられることが判った。従来方法では、単結晶が坩堝の中心軸方向へ成長するとともに、径方向へ成長する。そのため、径方向への成長は、種結晶の直径の105〜120%程度に留まる。
(4)作用・効果
上述した炭化珪素単結晶の製造装置1では、種結晶70は、黒鉛製坩堝10の平面視において、黒鉛製坩堝10の中央部に配設される。また、昇華用原料80は、種結晶70よりも黒鉛製坩堝10の外周部側に配設され、種結晶70の周囲の少なくとも一部を囲んでいる。
上述した炭化珪素単結晶の製造装置1によれば、黒鉛製坩堝10の外周部に沿って配設された誘導加熱コイル30によって黒鉛製坩堝10が加熱されると、黒鉛製坩堝10の外周部側から黒鉛製坩堝10の中央部に向かって温度が低下する温度勾配が自ずから生じる。すなわち、黒鉛製坩堝10の中央部から黒鉛製坩堝10の外周部側に向かう温度勾配と、黒鉛製坩堝10の中央部から黒鉛製坩堝10の外周部側に向かって結晶が成長するのに必要な温度条件とが略一致する。
これにより、種結晶70よりも黒鉛製坩堝10の外周部側に配設され、且つ種結晶70の周囲の少なくとも一部を囲む昇華用原料80から昇華された原料ガスは、黒鉛製坩堝10の中央部に配設された種結晶70上に再結晶化する。再結晶化された炭化珪素単結晶は、種結晶70を元に種結晶70の周囲の少なくとも一部を囲む昇華用原料80に向かって成長する。
従って、炭化珪素単結晶の製造装置1によれば、黒鉛製坩堝10の形状の変更や、誘導加熱コイル30などの複雑な制御を回避しつつ、黒鉛製坩堝10内を種結晶70の成長に適正な温度分布に容易に維持することができる。ひいては、種結晶70の径方向への順調な成長を促進し、種結晶よりも径の大きい炭化ケイ素半導体を、効率よく得ることができる。
上述した実施形態において、昇華用原料80は、炭化珪素を焼成することによって生成された炭化珪素焼結体である。炭化珪素焼結体は、炭化珪素粉体に比べて、成形性が高いため、反応容器本体50における昇華用原料80の配置位置の自由度が増す。すなわち、昇華用原料80を反応容器本体50の下方以外に配置することができる。具体的に、昇華用原料80は、反応容器本体50の中央部に配設される種結晶70の側方を囲む円筒状に成形される。
昇華用原料80から昇華した原料ガスは、温度分布に依存して流れるため、従来の製造装置では、反応容器本体50の内部温度の温度勾配によって、反応容器本体50内部に原料ガスの複雑な流れができ、意図しない位置に炭化珪素が再結晶してしまうことがあった。
これに対して、炭化珪素単結晶の製造装置1では、円筒状の昇華用原料80から昇華された原料ガスは、反応容器本体50の中央部に向かって流れ、反応容器本体50の中央部に配設された種結晶70の上に再結晶化する。従って、意図しない位置に炭化珪素が再結晶化することを防止することができる。
上述した実施形態において、種結晶70は、柱状であり、黒鉛製坩堝10の平面形状は、円形状である。種結晶70は、黒鉛製坩堝10の中心を通る坩堝中心線CL1上に配設される。種結晶70の中心を通る結晶中心線CL2は、坩堝中心線CL1と重なる。
すなわち、黒鉛製坩堝10の内径に沿って配設された円筒状の昇華用原料80の内壁から種結晶70の結晶成長面までの距離が略均一になっている。これにより、昇華用原料80から昇華した原料ガスは、位置によるムラなく、種結晶70の上に再結晶化することができる。従って、良質の炭化珪素単結晶が得られる。
上述した実施形態では、図1に示すように、黒鉛製坩堝10の内径、すなわち反応容器本体50の内径d1は、反応容器本体50の底部51から蓋部60の内側までの反応容器本体50の中心を通る坩堝中心線CL1に沿った長さL1よりも長い。従って、単結晶インゴットを時間とともに、反応容器本体50の径方向に成長させることができる。
通常の製造装置では、坩堝の側壁に誘導電流が流れることにより、坩堝が発熱し、その熱が輻射等により昇華用原料に熱伝導していた。そのため、昇華用原料への熱伝導効率が悪く、エネルギー損失に繋がっていた。
これに対して、炭化珪素単結晶の製造装置1では、昇華用原料80自体に誘導電流を流して発熱させることができるため、昇華用原料80の加熱効率を向上させることができる。従って、炭化珪素単結晶の製造にかかる電力消費を抑えることができる。
(5)その他の実施形態
上述したように、本発明の一実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態が明らかとなろう。
上述した実施形態では、黒鉛製坩堝10を用いているが、坩堝は、黒鉛製に限定されない。昇華用原料又は種結晶の組成に応じて変更可能である。
上述した実施形態では、黒鉛製坩堝10の構造は、図1に示すものに限定されない。例えば、蓋部60が上方に設けられているが、種結晶載置部52を有する底部51が蓋部になっていてもよい。
上述した実施形態では、黒鉛製坩堝10の内径d1は、坩堝中心線CLに沿った長さL1よりも長い場合について説明したが、d1≦L1であってもよい。
上述した実施形態では、種結晶70は、4つの結晶成長面を有すると説明した。しかし、種結晶70の結晶成長面は、4つに限定されない。すなわち、六角柱としてもよい。また、種結晶70の結晶方位は、任意に選択できる。
例えば、種結晶70が四角柱の場合(4つの結晶成長面を有する場合)には、炭化珪素単結晶a面を含むc軸(結晶軸のうち最も長軸となる結晶軸)に対して垂直な結晶成長面で4面を構成することができる。また、4つの結晶成長面を、炭化珪素単結晶a面とc面とで構成することもできる。
また、種結晶70が六角柱の場合(6つの結晶成長面を有する場合)には、全結晶成長面を炭化珪素単結晶a面とすることもできる。また、種結晶表面の鏡面処理が可能であれば、円柱形状であってもよい。
上述した実施形態では、昇華用原料80は、高純度プリカーサ法粉体を円筒状に成形し、焼成した焼結体として説明した。しかし、昇華用原料80の形状及び原料は、これに限定されない。昇華用原料80は、炭化珪素であればよい。また、円筒状に限定されない。断面形状が四角形の筒状であってもよい。また、結晶の多形、使用量、純度、製造方法等は、適宜選択可能である。例えば、炭化珪素のホットプレス焼結体、反応焼結体、又は仮焼体から選択可能である。
昇華用原料80の径方向の厚さ及び底部51からの高さ(又は昇華用原料90のサイズ)は、成長させる単結晶の大きさに応じて適宜選択できる。
上述した実施形態では、坩堝上下面の断熱材90の厚さd2は、50mm以上であるとして説明したが、断熱材90は、坩堝中心線CL1方向の温度勾配を零に近づける効果を有するものであればよく、材質、厚さ等は特に限定されない。
上述した実施形態では、炭化珪素単結晶の製造装置1は、種結晶載置部52に炭化珪素単結晶の製造装置1の下方に向けて凹んだ凹状部分が形成されていてもよい。種結晶70は、凹状部分に載置される。
この場合、種結晶70を配置する工程S2における位置決め作業を厳密に行わなくても、種結晶70の載置位置を正確に定めることができる。従って、種結晶70を配置する工程S2において、位置決めを正確に行うことができるとともに、作業効率を高めることができる。
このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の実施形態に係る炭化珪素単結晶の製造装置を説明する構成図である。 図1のA−A線に沿った断面図である。 本発明の実施形態に係る炭化珪素単結晶の製造装置の黒鉛製坩堝内部の昇華用原料と種結晶との位置関係を説明する斜視図である。 本発明の実施形態に係る炭化珪素単結晶の製造方法を説明する図である。
符号の説明
1…炭化珪素単結晶の製造装置、10…黒鉛製坩堝、20…石英管、30…誘導加熱コイル、40…支持棒、50…反応容器本体、51…底部、52…種結晶載置部、60…蓋部、70…種結晶、80…昇華用原料、90…断熱材、70a,70b…端部

Claims (8)

  1. 炭化珪素を含む種結晶と、前記種結晶の成長に用いられる昇華用原料とを収容する坩堝と、
    前記坩堝の外周部に沿って配設され、前記坩堝を加熱する加熱部とを備える炭化珪素単結晶の製造装置であって、
    前記種結晶は、前記坩堝の平面視において、前記坩堝の中央部に配設され、
    前記昇華用原料は、前記種結晶よりも前記坩堝の外周部側に配設され、前記種結晶の周囲の少なくとも一部を囲む炭化珪素単結晶の製造装置。
  2. 前記昇華用原料は、前記炭化珪素を熱処理することによって生成された炭化珪素焼結体である請求項1に記載の炭化珪素単結晶の製造装置。
  3. 前記炭化珪素焼結体は筒状であり、
    前記種結晶の側方は、前記炭化珪素焼結体によって囲まれる請求項2に記載の炭化珪素単結晶の製造装置。
  4. 前記炭化珪素焼結体は、円筒状である請求項3に記載の炭化珪素単結晶の製造装置。
  5. 前記種結晶は、柱状であり、
    前記坩堝の平面形状は、円形状であり、
    前記種結晶は、前記坩堝の中心を通る坩堝中心線上に配設される請求項1乃至4の何れか一項に記載の炭化珪素単結晶の製造装置。
  6. 前記種結晶の中心を通る結晶中心線は、前記坩堝中心線と重なる請求項5に記載の炭化珪素単結晶の製造装置。
  7. 前記坩堝の内径は、前記坩堝中心線に沿った長さよりも長い請求項5または6に記載の炭化珪素単結晶の製造装置。
  8. 炭化珪素を含む種結晶と、前記種結晶の成長に用いられる昇華用原料とを坩堝に収容し、前記坩堝の外周部に沿って配設される前記坩堝を加熱する加熱部によって前記昇華用原料を加熱することによって昇華させ、昇華された昇華用原料を前記種結晶上に再結晶化させて炭化珪素単結晶を製造する炭化珪素単結晶の製造方法であって、
    前記坩堝の平面視において、前記坩堝の中央部に前記種結晶が配設される工程と、
    前記種結晶よりも前記坩堝の外周部側、且つ前記種結晶の周囲の少なくとも一部を囲む位置に前記昇華用原料が配設される工程と、
    前記昇華用原料を加熱する工程と、
    加熱された前記昇華用原料が前記坩堝の中央部に配設された前記種結晶を元に再結晶化され、前記再結晶化された炭化珪素単結晶が前記種結晶を元に前記種結晶の周囲の少なくとも一部を囲む前記昇華用原料に向けて成長させられる工程と
    を有する炭化珪素単結晶の製造方法。
JP2008280364A 2008-10-30 2008-10-30 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法 Pending JP2010105863A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280364A JP2010105863A (ja) 2008-10-30 2008-10-30 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280364A JP2010105863A (ja) 2008-10-30 2008-10-30 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法

Publications (1)

Publication Number Publication Date
JP2010105863A true JP2010105863A (ja) 2010-05-13

Family

ID=42295690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280364A Pending JP2010105863A (ja) 2008-10-30 2008-10-30 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法

Country Status (1)

Country Link
JP (1) JP2010105863A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179920A (ja) * 2015-03-24 2016-10-13 新日鐵住金株式会社 昇華再結晶法に用いるSiC原料の製造方法及びSiC原料
CN111793826A (zh) * 2020-07-27 2020-10-20 河北同光科技发展有限公司 一种高质量大直径SiC单晶的制备装置及方法
CN113149013A (zh) * 2021-04-30 2021-07-23 天津理工大学 一种制备碳化硅微米棒的方法
US20210301418A1 (en) * 2020-03-31 2021-09-30 Hunan Sanan Semiconductor Co., Ltd. Sic crystal growth device and method
CN115142132A (zh) * 2022-06-02 2022-10-04 江苏集芯半导体硅材料研究院有限公司 碳化硅晶体生长装置及大尺寸碳化硅晶体的生长方法
CN115233300A (zh) * 2022-07-29 2022-10-25 江苏集芯半导体硅材料研究院有限公司 一种非接触式碳化硅晶体的生长装置
CN116623284A (zh) * 2023-05-30 2023-08-22 江苏超芯星半导体有限公司 一种碳化硅及其生长装置和生长方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179920A (ja) * 2015-03-24 2016-10-13 新日鐵住金株式会社 昇華再結晶法に用いるSiC原料の製造方法及びSiC原料
US20210301418A1 (en) * 2020-03-31 2021-09-30 Hunan Sanan Semiconductor Co., Ltd. Sic crystal growth device and method
CN111793826A (zh) * 2020-07-27 2020-10-20 河北同光科技发展有限公司 一种高质量大直径SiC单晶的制备装置及方法
CN113149013A (zh) * 2021-04-30 2021-07-23 天津理工大学 一种制备碳化硅微米棒的方法
CN115142132A (zh) * 2022-06-02 2022-10-04 江苏集芯半导体硅材料研究院有限公司 碳化硅晶体生长装置及大尺寸碳化硅晶体的生长方法
CN115142132B (zh) * 2022-06-02 2024-03-19 江苏集芯先进材料有限公司 碳化硅晶体生长装置及大尺寸碳化硅晶体的生长方法
CN115233300A (zh) * 2022-07-29 2022-10-25 江苏集芯半导体硅材料研究院有限公司 一种非接触式碳化硅晶体的生长装置
CN115233300B (zh) * 2022-07-29 2023-12-26 江苏集芯先进材料有限公司 一种非接触式碳化硅晶体的生长装置
CN116623284A (zh) * 2023-05-30 2023-08-22 江苏超芯星半导体有限公司 一种碳化硅及其生长装置和生长方法
CN116623284B (zh) * 2023-05-30 2024-02-23 江苏超芯星半导体有限公司 一种碳化硅及其生长装置和生长方法

Similar Documents

Publication Publication Date Title
JP2010105863A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP5779171B2 (ja) SiC単結晶の昇華成長方法及び装置
JP4480349B2 (ja) 炭化ケイ素単結晶の製造方法及び製造装置
CN105658846B (zh) 碳化硅单晶晶片、和碳化硅单晶锭的制造方法
JP5346821B2 (ja) 炭化ケイ素単結晶の製造装置
KR20130137247A (ko) 탄화규소 단결정 기판 및 그 제조 방법
JP6489891B2 (ja) 昇華再結晶法に用いるSiC原料の製造方法
CN113120909B (zh) 一种高纯半绝缘碳化硅粉料的制备方法
JP2010111521A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP5293732B2 (ja) 炭化珪素単結晶の製造方法
JP2008001569A (ja) 単結晶SiC及びその製造方法並びに単結晶SiCの製造装置
JP5069657B2 (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP2012036035A (ja) 炭化ケイ素単結晶の製造方法
JP2010095420A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP2012171812A (ja) 4h型炭化珪素単結晶の製造方法
JP2010076990A (ja) 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP5171571B2 (ja) 炭化珪素単結晶の製造方法
JP4708746B2 (ja) 炭化ケイ素単結晶の製造方法及び製造装置
JP2002308699A (ja) 炭化ケイ素単結晶及びその製造方法
JP2009084071A (ja) 炭化ケイ素単結晶の製造方法
JP2010030828A (ja) 炭化ケイ素単結晶の製造方法および装置
JP2003095794A (ja) 炭化ケイ素単結晶及びその製造方法
JP2008260665A (ja) 炭化ケイ素単結晶の製造方法および製造装置
JP5162318B2 (ja) 単結晶成長装置及び単結晶成長方法