[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010016051A - 半導体評価装置 - Google Patents

半導体評価装置 Download PDF

Info

Publication number
JP2010016051A
JP2010016051A JP2008172549A JP2008172549A JP2010016051A JP 2010016051 A JP2010016051 A JP 2010016051A JP 2008172549 A JP2008172549 A JP 2008172549A JP 2008172549 A JP2008172549 A JP 2008172549A JP 2010016051 A JP2010016051 A JP 2010016051A
Authority
JP
Japan
Prior art keywords
measured
sample
light
evaluation apparatus
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008172549A
Other languages
English (en)
Other versions
JP4757285B2 (ja
Inventor
Fumihiko Hirose
文彦 廣瀬
Kingo Itaya
謹悟 板谷
Michio Niwano
道夫 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008172549A priority Critical patent/JP4757285B2/ja
Publication of JP2010016051A publication Critical patent/JP2010016051A/ja
Application granted granted Critical
Publication of JP4757285B2 publication Critical patent/JP4757285B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】有機半導体材料のキャリア移動度を高精度に評価することができる半導体評価装置を提供する。
【解決手段】本発明の半導体評価装置100は、薄型平板状の被測定試料10にレーザ光17を照射し、被測定試料10に発生するキャリアを被測定試料10の表面方向に移動させることにより電流を生成し、その電流の持続時間から被測定試料10のキャリア移動度を評価する。半導体評価装置100は、被測定試料10を設置する被測定試料設置部30を備えており、被測定試料設置部30は、2つの透過性ガラス基板を有しており、一方の透過性ガラス基板に被測定試料10が配置され、他方の透過性ガラス基板に遮光膜である金属膜が形成されている。
【選択図】図1

Description

本発明は、半導体材料等のキャリア移動度を評価する半導体評価装置に関する。
有機半導体材料は、ユビキタス情報端末用途のフレキシブル薄膜トランジスタ(Thin Film Transistor:TFT)や発光ダイオードに利用されることから、その材料開発が盛んに行われている。有機半導体材料のキャリア移動度はデバイスの性能を直接決める特性であり、その評価はこれら材料開発にあたっての重要な指標とされている。これまでキャリア移動度は飛行時間計測法(Time‐of‐flight:TOF)から見積もられてきた。
図4に、従来のTOF法によるキャリア移動度の測定の様子を示す。この測定方法は膜厚方向のTOF法である。図4に示すように、被測定試料51として有機半導体材料膜を、透明導電膜基板52と、ITOガラス基板53で挟み込み、電圧源54を用いてこの両基板間に、被測定試料51の膜の厚み方向に直流電圧を印加する。透明導電膜基板52側からUV光56をパルスとして照射すると、透明導電膜基板52側の被測定試料51の表面にキャリア(電子とホール)が発生し、厚み方向の電界のクーロン力により電子あるいはホールのいずれかが、ITOガラス基板53側の電極に移動する。キャリア移動に伴い両基板間に変位電流が流れ、信号検出手段55を用いてその変位電流信号を検出することで、その変位電流の持続時間Tfを測定する。そして、その持続時間Tfと被測定試料51の厚さから、被測定試料51である有機半導体材料のキャリア移動度を評価することができる。
例えば、キャリアの移動度をμ、電界強度をE、キャリアの飛行距離、すなわち、膜厚をL、キャリアの速度をvとすると、v=L/Tfの関係から、μはμ=v/Eから求めることができる。
ところで、従来の測定方法では、変位電流の持続時間Tf、つまり、キャリア移動時間が測定に都合のよい長さになるように、被測定試料51の厚さを調整して測定が行なわれてきた。しかしながら、近年注目されているペンタセンやルブレン等の高移動度有機半導体材料において均一で膜厚の大きい試料を用意することは一般には難しい。つまり、膜厚を厚くするには高純度の試料が大量に必要であり、また、その厚みを均一に制御することも容易ではない。そのため、キャリア移動時間を長くすることは難しく、従来のTOF法ではキャリア移動度を高精度に測定できない問題点がある。
例えば、被測定試料51のキャリア移動度が1×10−2cm/V・sec以上になってくると、1mm以上の厚い膜厚の被測定試料51が必要になってくる。通常、有機半導体材料で十分にキャリアを走行させるには1000V/cm以上の電界強度が必要となるが、上記膜厚より小さくなると、変位電流の持続時間がサブマイクロ秒になり、信号検出手段55におけるS/N比の確保が難しく、信号記録が困難になってしまう。なぜなら、変位電流信号の検出信号の継続時間が雑音の継続時間と同程度、あるいは、それ以下となってしまうからである。
さらに、有機半導体は薄膜トランジスタなど膜の面内方向にキャリアを走行させて使われるため、有機半導体の膜厚方向のキャリア移動度ではなく、面内方向でのキャリア移動度の評価が求められている。また、多くの有機半導体は結晶質をとり、結晶構造が3次元的に異方性をもっており、薄膜トランジスタの増幅性能を向上させるには、面内方向の移動度の異方性をTOF法で評価する必要である。そのためには、従来技術である膜厚方向のTOF法では対応は困難であった。
例えば、非特許文献1には、被測定試料の厚さの調整が不要となるように、また、有機半導体膜の面内方向の移動度を測定する技術が開示されている。図5に、この測定に用いられる被測定試料の様子を示す。図5に示すように、透過性ガラス基板62上の遮光膜63にはスリットが形成されており、そのスリットを介してパルス光68が透過性ガラス基板62側から被測定試料61に入射される。その入射光は透過性ガラス基板62及びシリコン酸化膜64を透過し、被測定試料61に照射される。被測定試料61の横方向の両端には2つの電極65が形成されており、この2つの電極65間に電源66から電圧が印加される。パルス光68の入射に起因して発生するキャリアが2つの電極65間を移動し、その移動に伴う変位電流による抵抗67の両端間の電圧変動を検出することにより、その変位電流の持続時間を測定するものである。
非特許文献1に開示された測定方法では、キャリアの移動方向を被測定試料の横方向としているので、厚さの薄い被測定試料を用いた場合でも、測定されるキャリア移動時間を長くすることができる。このため、厚膜化が困難な有機半導体材料においても、そのキャリア移動度の測定が可能である。
Atsushi Kuwahara, et al., "Carrier mobility of organic thin films using lateral electrode structure with optical slits", Applied Physics Letters 89, 2006
しかしながら、非特許文献1に開示された評価方法では、パルス光68を被測定試料61に照射する際に、照射部位を電極65近傍にあわせるため、被測定試料61、電極65、遮光膜63の位置関係を調整して形成する必要がある。これら測定用の治具を構成するためには、リソグラフィや顕微鏡での組み立て操作が必要であり、また、透過性ガラス基板62、遮光膜63等を積層させて形成しているために、作製歩留まりが悪いという問題が生じていた。
さらに、非特許文献1の評価方法では、被測定試料61を交換して測定するには、透過性ガラス基板62、遮光膜63、シリコン酸化膜64、電極65から構成される積層構造を再作製しなければならない。また、遮光膜63はレーザ光によって損傷を受けやすく、このため、損傷を受けたときにはこれら全部品を再構成しなければならず、このような測定にかかわる手間と部品消耗のコストが大きくなる問題が生じていた。
上記問題点に鑑み、本発明の目的は、非常に簡便に消耗コストを抑えると共に、半導体材料のキャリア移動度を高精度に評価することができる半導体評価装置を提供することである。
上記目的を達成するために、本発明にかかる半導体評価装置は、薄型平板状の被測定試料にレーザ光を照射し、当該レーザ光の照射に起因して発生するキャリアを前記被測定試料の表面方向に移動させることにより電流を生成し、当該生成された電流の持続時間から前記被測定試料のキャリア移動度を評価する半導体評価装置であって、前記レーザ光が前記被測定試料に照射されるように前記被測定試料を設置する被測定試料設置部を備え、前記被測定試料設置部は、第1面及び当該第1面の反対側に形成された第2面を持つ第1の透過性基板と、前記第1の透過性基板の第2面に接触する第3面及び当該第3面の反対側に形成された第4面を持つ第2の透過性基板と、前記第1の透過性基板の第2面と前記第2の透過性基板の第3面とが接触するように前記第1の透過性基板及び前記第2の透過性基板を固定可能な固定部材と、を有し、前記第2の透過性基板の第3面には、前記レーザ光を通過させる開口部を持つ遮光膜が形成されており、前記第1の透過性基板の第1面上に前記被測定試料を配置し、前記第2の透過性基板の第4面から入射される前記レーザ光のうち前記遮光膜の開口部を通過するレーザ光を前記被測定試料に照射させることを特徴とする。
上記の半導体評価装置では、薄型平板状の被測定試料に発生するキャリアを被測定試料の横方向に移動させることにより電流を生成し、その電流の持続時間から被測定試料のキャリア移動度を評価する。このため、被測定試料の厚さの調整は不要であり、薄型の被測定試料を用いた場合でも、キャリア移動度を高精度に評価することができる。
そして、透過性基板を着脱が可能な2層の積層とし、第1の透過性基板に被測定試料を設置し、第2の透過性基板にレーザ光の照射部位を限定させるための遮光膜を形成し、固定部材により2つの透過性基板が接触するように固定する。この第1及び第2の透過性基板が固定部材により固定可能とすることで、被測定試料の交換の際は、第1の透過性基板だけを交換し、一方、遮光膜が損傷したときには第2の透過性基板だけを交換すればよい。このため、部品消耗を抑えることができる半導体評価装置を実現することができる。
また、固定部材により第1の透過性基板と第2の透過性基板とを固定可能とすることにより、被測定試料のレーザ光の照射部位と遮光膜の開口部との位置調整が、第1の透過性基板に被測定試料を取り付けた後であっても調整することができるため、被測定試料設置部の構成が容易になる。
さらに、第2の透過性基板の第3面に遮光膜を形成し、その形成後に第1の透過性基板を接着することになる。このため、レーザ光が照射されたときのスパッタ効果による遮光膜の散乱が機械的に押し付けられることになり、その結果、遮光膜の損傷が抑制されることになる。
前記第1の透過性基板の厚さと前記第2の透過性基板の厚さとの合計値は、1mm以下であることが好ましい。
通常、透過性基板の耐久性の観点から、被測定試料の厚さに合わせて透過性基板の厚さも厚くなるが、上記の半導体評価装置では、被測定試料の薄型化に合わせて、透過性基板の厚さも薄くすることが可能となる。本発明者らは、透過性基板の厚さについて鋭意検討を行った結果、透過性基板の厚さを1mm以下とすれば、レーザ光を透過させても、被測定試料に入射されるレーザ光の強度により、被測定試料内におけるキャリアの発生が十分に行われることがわかった。
すなわち、上記の半導体評価装置では、第1の透過性基板の厚さと第2の透過性基板の厚さとの合計値を1mm以下とすることにより、透過性基板を透過して被測定試料に達するレーザ光の強度の低下が抑制されるので、被測定試料内のキャリアの発生が十分に行われ、キャリア移動に伴う電流の検出精度を向上させることができる。
したがって、ペンタセンやルブレン等の高移動度有機半導体材料において均一で膜厚の大きい試料を用意することが困難な場合でも、そのキャリア移動度を高精度に評価することが可能となる。
前記遮光膜は、アルミニウム、チタン、鉄、ニッケル及び銅のいずれか1つを含む金属膜であることが好ましい。
この場合、被測定試料は透過性基板に遮光膜を形成した積層構造上に配置されるので、被測定試料の耐久性を向上させることができる。また、遮光膜をアルミニウム、チタン、鉄、ニッケル及び銅のいずれか1つを含む金属膜から構成することにより、被測定試料の耐久性をより向上させることができる。
前記被測定試料設置部はさらに、前記被測定試料上に形成された2つの対向する電極を有し、前記被測定試料に照射されるレーザ光を出射する光照射手段と、前記光照射手段によるレーザ光の照射に同期して、前記2つの対向する電極間に電圧を印加する電圧印加手段と、前記被測定試料の電極の一方に直列接続された負荷抵抗部の両端間の電圧を検出する信号検出手段と、をさらに備えるが好ましい。
この場合、被測定試料にレーザ光が照射される時期に同期して、被測定試料に設けられた2つの対向する電極間に電圧が印加されるので、被測定試料内のキャリア移動に合わせて、信号検出手段が被測定試料の電極の一方に直列接続された負荷抵抗部の両端間の電圧を検出することができる。このため、信号検出手段の電圧検出の精度を高めることができる。
前記負荷抵抗部の抵抗値は、50〜1000Ωであることが好ましく、前記信号検出手段は、500pF以下の入力容量を持ち、前記負荷抵抗部の両端間の電圧を増幅する前置増幅器を有することが好ましい。
この場合、有機半導体材料のように極めて絶縁性の高い被測定試料の場合でも、キャリア移動により発生する電流による電圧変位を精度良く検出することができる。
前記前置増幅器は、自身に固有の直流電圧成分及び利得を持ち、入力電圧から直流電圧成分を減算し、当該減算結果に利得を乗算した電圧を出力することが好ましい。
この場合、前置増幅器の直流電圧成分及び利得を用いて入力電圧が増幅されるので、前置増幅器により増幅を効率的に行うことができる。
前記前置増幅器は、前記被測定試料から25cm以内の距離に位置することが好ましい。
この場合、被測定試料と前置増幅器とを結ぶ電線から発生する電磁波に起因するノイズの影響を前置増幅器が受けてしまうことを抑制することができる。このノイズは、10〜100MHz程度の電磁波であり、波長は最大1m程度となる。通常、電線の長さがその波長の1/4以下、すなわち、25cm以下であれば、電線がアンテナとして機能することがなくなる。
前記被測定試料及び前記負荷抵抗部を収納する収納容器をさらに備えることが好ましい。
前記収納容器はさらに、前記前置増幅器を収納することが好ましい。
前記収納容器は、自身の内部を真空状態とする排気装置、及び、自身の内部を窒素雰囲気または不活性ガス雰囲気とするガス導入装置のうちのいずれかを有することが好ましい。
大気中でこの評価を行うと、大気中の湿度の影響で、被測定試料の周りで放電が起き易くなり、放電が起きると被測定試料の消耗や測定データにノイズが混入するという好ましくない問題が生じる。また、不活性ガスを用いる効果は、有機半導体試料との化学反応を抑えて、試料の劣化をおさえるのに効果がある。
前記光照射手段から前記被測定試料までのレーザ光の光路上に配置され、前記レーザ光の進行を遮断可能な光遮断部と、前記信号検出手段の検出結果を処理することにより、前記被測定試料のキャリア移動度を評価する信号処理手段とをさらに備え、前記信号処理手段は、前記光遮断部による前記レーザ光の透過時における前記信号検出手段の検出結果を複数回積算して透過時平均値を算出し、前記光遮断部による前記レーザ光の遮断時における前記信号検出手段の検出結果を複数回積算して遮断時平均値を算出し、前記透過時平均値と前記遮断時平均値との差分値から、前記被測定試料のキャリア移動度を評価することが好ましい。
この場合、信号検出手段のS/N比が向上し、且つ、信号処理手段が積算平均で信号を処理することにより、装置自体の振動の影響を受けにくくなり、除振装置を必要とせず、装置が小型化できる。
本発明の半導体評価装置は、以上のように、前記レーザ光が前記被測定試料に照射されるように前記被測定試料を設置する被測定試料設置部を備え、前記被測定試料設置部は、第1面及び当該第1面の反対側に形成された第2面を持つ第1の透過性基板と、前記第1の透過性基板の第2面に接触する第3面及び当該第3面の反対側に形成された第4面を持つ第2の透過性基板と、前記第1の透過性基板の第2面と前記第2の透過性基板の第3面とが接触するように前記第1の透過性基板及び前記第2の透過性基板を固定可能な固定部材と、を有し、前記第2の透過性基板の第3面には、前記レーザ光を通過させる開口部を持つ遮光膜が形成されており、前記第1の透過性基板の第1面上に前記被測定試料を配置し、前記第2の透過性基板の第4面から入射される前記レーザ光のうち前記遮光膜の開口部を通過するレーザ光を前記被測定試料に照射させる。
それゆえ、非常に簡便に消耗コストを抑えると共に、半導体材料のキャリア移動度を高精度に評価することができるという効果を奏する。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同一部分には同一符号を付し、図面で同一の符号が付いたものは、説明を省略する場合もある。
図1に、本発明の実施の形態にかかる半導体評価装置の概略構成図を示す。図1に示すように、本実施の形態にかかる半導体評価装置100は、被測定試料10を設置する被測定試料設置部30と、被測定試料10に照射されるパルス光を出射する光照射手段11と、被測定試料10に直流電圧を印加する電圧印加手段12と、被測定試料10を流れる電流信号を検出する信号検出手段13と、信号検出手段13の検出結果を処理する信号処理手段22と、半導体評価装置100内の各部を制御する制御手段21と、を備えている。
また、図2に、被測定試料設置部30の概略断面図を示す。図2(b)は、図2(a)の被測定試料10の周囲を説明するための図である。図2に示す被測定試料設置部30においては、透過性ガラス基板(第1の透過性基板)31aの表面(第1面)上に被測定試料10が配置されている。また、透過性ガラス基板31b(第2の透過性基板)の表面(第3面)上に金属膜(遮光膜)33が蒸着されている。
そして、図2(b)に示すように、透過性ガラス基板31aの裏面(第2面)と透過性ガラス基板31bの表面とが接触するように、透過性ガラス基板31aと透過性ガラス基板31bとは固定部材39により固定されている。固定部材39は、透過性ガラス基板31a及び透過性ガラス基板31bから着脱可能である。固定部材39としては、例えば、金属クランプを用いればよい。
したがって、固定部材39を透過性ガラス基板31a及び透過性ガラス基板31bから外すことにより、透過性ガラス基板31aと透過性ガラス基板31bとは互いに分離する。すなわち、透過性ガラス基板31a上への被測定試料10の配置工程と透過性ガラス基板31b上への金属膜33の蒸着工程とは、互いに独立して実行可能である。
金属膜33の材質としては、例えば、アルミニウム、チタン、鉄、ニッケル、銅等が挙げられる。要は、透過性ガラス基板31bの裏面(第4面)から入射されるレーザ光17が遮光される材質であればよい。
金属膜33の一部には、開口部34が設けられている。開口部34の形状としては、例えば、スリット、微細穴等が挙げられる。金属膜33に向かって入射されたレーザ光17のうち、開口部34を通過するレーザ光のみが透過性ガラス基板31aを通して被測定試料10に照射される。
被測定試料10は、薄型平板状の形状を有しており、透過性ガラス基板31aの表面と直接接触するように配置されている。被測定試料10は、自身のキャリアの移動度が評価されるべき測定試料である。被測定試料10としては、例えば、ペンタセン、ルブレン等の厚膜化が困難な有機半導体材料である。もちろん、被測定試料10として、従来のTOF法を用いて評価可能であるシリコン、ゲルマニウム等の無機半導体材料を用いてもよい。
被測定試料10の両端の各々には電極32が形成されており、これら電極32を用いて被測定試料10の両端間に電圧が印加される。より具体的には、これら電極32のうち、一方の電極32は端子Aに直接接続され、他方の電極32は所定の抵抗値を持つ負荷抵抗部35を介して端子Bに接続されている。端子A及び端子Bは電圧印加手段12と接続されており、電圧印加手段12から電圧が入力される。なお、この2つの電極32間の距離は被測定試料10に発生するキャリアの飛行距離Lに相当する。
被測定試料設置部30は端子A及び端子Bに加えて、負荷抵抗部35の両端の各々と接続する端子C及び端子Dを有している。端子C及び端子Dは信号検出手段13と接続されており、負荷抵抗部35の両端間の電圧を信号検出手段13に出力する。
被測定試料設置部30はさらに、被測定試料10、負荷抵抗部35等を収納する収納容器36を有している。収納容器36は、その内部を真空状態に保持できるように構成されており、例えば、被測定試料10の設置後に、収納容器36に設けられている真空ポンプ等の排気装置38によりその内部が排気される。
また、収納容器36は、その内部を真空状態に維持することに代えて、窒素や、アルゴン等の不活性ガスの雰囲気にできるように構成されていてもよい。この場合であれば、排気装置38に代えて、収納容器36の内部に窒素、あるいは、アルゴン等の不活性ガスを充填することができるガス導入装置を設ければよい。
また、収納容器36の材質としては、例えば、アルミニウム、チタン、鉄、ニッケル、銅等の金属で構成される。
また、収納容器36は、光照射手段11から出射されるレーザ光17を内部に導入するために、レーザ光17が透過可能な窓37を有している。
光照射手段11は、図1に示すように、可視光または紫外光であるレーザ光17を出射可能なレーザ光源を有している。そのレーザ光源は、レーザ光17をパルス状に出射可能である。レーザ光17の波長としては、被測定試料10が吸収しやすい波長を選択するのが好ましい。ここでは、光照射手段11は、337nmの波長を持つ窒素パルスレーザ光源を有するものとして説明する。
光照射手段11から出射されたレーザ光17は、第1の放物面鏡15及び第2の放物面鏡16の各々により反射された後、被測定試料設置部30に設置された被測定試料10に向かって直進し、被測定試料10に照射される。このレーザ光17の照射により、被測定試料10の照射位置には、キャリア(電子、ホール)が発生する。
光照射手段11から被測定試料10までのレーザ光17の光路上には、レーザ光17の進行を遮断可能な光遮断部14が配置されている。光遮断部14を動作させることにより、光照射手段11のレーザ光出射動作を停止することなく、被測定試料10へのレーザ光17の照射を中断することができる。また、光遮断部14は、光を検出する光検出部を有しており、光検出部の検出結果に基づき、レーザ光17が自身を通過しているか否かを検出する。
電圧印加手段12は、被測定試料設置部30の端子A及び端子Bに接続され、端子A及び端子Bを介して、被測定試料10の両端の電極32間に直流電圧を印加することができる電圧源を有している。電圧源は、好ましくは5kV以下、より好ましくは2.5kV以下の電圧を印加する。この電圧印加により、被測定試料10の2つの電極32に間に電界が生じる。この電界の方向に従って被測定試料10に発生したキャリアが移動する。
信号検出手段13は、被測定試料設置部30の端子C及び端子Dに接続され、端子C及び端子Dを介して、負荷抵抗部35の両端間の電圧を検出することができるデジタルオシロスコープを有している。上述したように、レーザ光17の照射により被測定試料10に発生したキャリアは、電圧印加手段12による電圧印加により生じた電界の方向に従って移動する。この移動が持続する期間においては、キャリアの移動に起因して、負荷抵抗部35の両端間の電圧が変位する。デジタルオシロスコープは、この負荷抵抗部35の両端間の電圧変位を検出する。
また、信号検出手段13はさらに、負荷抵抗部35の両端間の電圧が入力されると、その入力電圧を増幅して出力するプリアンプ(前置増幅器)を有するようにしてもよい。より具体的には、被測定試料設置部30の端子C及び端子Dと、デジタルオシロスコープとの間にプリアンプが接続されるようにすればよい。この場合、負荷抵抗部35の両端間の電圧をプリアンプにより増幅し、その増幅された電圧がデジタルオシロスコープに入力される。このため、デジタルオシロスコープは負荷抵抗部35の両端間の電圧を増幅して検出することができるので、より細かい電圧精度で負荷抵抗部35の両端間の電圧を検出することができる。
また、プリアンプは、自身に固有の直流電圧成分(DCオフセット成分)と利得(ゲイン)を持っており、入力電圧から直流電圧成分(DCオフセット成分)を減算し、その減算された入力電圧に利得(ゲイン)を乗算した結果を出力する。このため、プリアンプのダイナミックレンジが増大する。デジタルオシロスコープは、この出力電圧を検出することにより、負荷抵抗部35の両端間の電圧を、より細かい電圧精度で検出することができる。
信号処理手段22は、信号検出手段13から出力される検出結果を取得する。より具体的には、信号処理手段22は、この検出結果を処理することにより、被測定試料10に発生したキャリアが被測定試料10の2つの電極32間を飛行するキャリア移動時間Tfを算出する。そして、その算出結果により、被測定試料10に発生したキャリアの移動度を評価する。
制御手段21は、被測定試料10に発生するキャリアの移動度を評価する際における上記の各部間の動作タイミングの制御、及び、上記の各部から出力され、各部に入力される信号の記録、処理等を実行する。より具体低的には、制御手段21は、光照射手段11、電圧印加手段12、信号検出手段13の各々を制御する。
制御手段21及び信号処理手段22は、例えば、コンピュータ20で実現可能である。コンピュータ20は、入力手段23及び出力手段24を有している。出力手段24は、信号処理手段の出力結果を表示する。出力手段24は、液晶表示パネル等の表示装置を有し、出力結果を利用者が視認できるように表示する。入力手段23は、テンキー、キーボード等を備え、例えば、出力手段24の表示形式等が入力される。
次に、本発明の実施の形態にかかる半導体評価装置について、具体例を用いて説明する。
光照射手段11のレーザ光源として、USHO製の窒素パルスレーザ光源(波長:337nm)を用いる。光照射手段11は、制御手段21からの光照射開始を示す信号が入力されると、レーザ光源を駆動し、レーザ光源からレーザ光17を出射させる。
レーザ光源から出射されたレーザ光17は、第1の放物面鏡15及び第2の放物面鏡16を経由し、被測定試料設置部30に設置された被測定試料10に照射される。レーザ光源から出射されたレーザ光は、光路の途中に設置される光遮断部14内のフォトディテクター(光検出部)により検出される。光遮断部14は、その検出結果を制御手段21に出力する。
制御手段21は、その検出結果が入力されると、被測定試料10への電圧印加開始を示す信号を電圧印加手段12に出力する。電圧印加手段12は、その信号が入力されると、電圧源を駆動し、被測定試料10に電圧を印加する。
被測定試料10としては、薄型平板状の薄膜有機半導体単結晶を用いる。その材料としては、ルブレンを用いる。被測定試料10の面内方向に直流電界を印加するため、被測定試料10の両端(両端間の距離は2mm)に電極32を形成する。電極32の材質は銀である。
透過性ガラス基板31bの表面には、開口部34を形成した金属膜33が接着されている。開口部34はスリットであり、メタルマスク越しにアルミニウムを蒸着した金属膜33に形成される。開口部(スリット)34の幅は、150μmである。レーザ光17は、開口部(スリット)34を通過し、被測定試料10に照射される。
被測定試料10にレーザ光17が照射されると、被測定試料10の照射位置にキャリアが発生する。このキャリアが被測定試料10の両端の電極32間における電界方向に従って移動する。このキャリア移動に起因して発生した電流は負荷抵抗部35を流れ、結果として、負荷抵抗部35の両端間の電圧が変位する。
信号検出手段13は、プリアンプを用いて、この電圧変位を増幅し、デジタルオシロスコープで観察記録する。高移動度有機材料の測定をするためには、プリアンプの伝送帯域を十分に確保することが重要である。プリアンプとしては、カットオフ周波数100MHzで、40dBの増幅度を持つものが好ましい。
図3に、被測定試料10の評価結果を示す。この結果は、有機半導体の単結晶材料であるルブレンのTOF波形である。被測定試料10の電極32間の距離、つまり、キャリア(電子、ホール)の飛行距離は、1.85mmである。図3の右側にはキンクが現れているが、発生したホールの飛行時間に対応していると考えられる。この評価結果から求めたホールの移動度は13cm/V・secである。複数回、同様の評価を行った結果、ホール移動度は10〜20cm/V・secの範囲で記録されている。
このように、本実施の形態の半導体評価装置は、薄膜あるいは板状の被測定試料10の2箇所の異なる部位に電極32を接触させ、その2箇所の電極32に直流電圧を印加して、電極32間に電界を発生させる。
そして、一方の電極32の近傍において、被測定試料10の表面に可視光あるいは紫外光のレーザ光17を開口部(スリットあるいは微細孔)34のある金属膜33を通して照射し、レーザ光17の照射により発生するキャリアの移動に伴って、電極32間に流れる電流の持続時間から、被測定試料10のキャリア移動度を評価する装置である。
本実施の形態の半導体評価装置100においては、被測定試料10を透過性ガラス基板31a上に、遮光膜となる金属膜33を透過性ガラス基板31b上に、それぞれ固定する。その透過性ガラス基板31a、31bの厚さの合計値は、1mm以下、好ましくは200μm以下であることが好ましい。これは、本実施の形態では、被測定試料10を横向きにし、電極32を形成しているので、被測定試料10の厚さが薄くても、キャリアの走行距離を自由に設定できるからである。結果として、透過性ガラス基板31a、31bの厚さが薄くても被測定試料10の耐久性を維持できる。このため、透過性ガラス基板31aに被測定試料10を貼り付けて、透過性ガラス基板31bに金属膜33を形成し、それら透過性ガラス基板31a、31bを接触させることで、容易にレーザ光17を電極32近傍に照射させることができ、半導体評価装置100の簡便性が向上する。本発明者らの実験によれば、透過性ガラス基板31a、31bは厚くなるとレーザ光17の強度が低下し、検出感度が悪くなる。本発明者らの実験結果により、透過性ガラス基板31a、31bの厚さの合計値は、200μm以下の厚さが好ましい。
また、本実施の形態の半導体評価装置100では、透過性ガラス基板31a、金属膜33、透過性ガラス基板31bの3層積層構造である。このため、レーザ光照射による金属膜33の破損を効果的に防ぐことができる。
さらに、本実施の形態の半導体評価装置100では、負荷抵抗部35の抵抗値は、50〜1kΩ、好ましくは50〜300Ωであることが好ましい。また、負荷抵抗部35に発生する電圧を検出するプリアンプの入力容量は、500pF以下であることが好ましい。これは、被測定試料10はきわめて絶縁性が高い、すなわち、内部インピーダンスが高く、このため、低い入力抵抗で、且つ、付帯容量をできる限り抑えた形で電圧を検出しなければ、キャリア移動により発生する電流による電圧変位をはっきり検出することができないからである。
また、本実施の形態の半導体評価装置100では、信号検出手段13のプリアンプを絶縁性固体物質で封止し、それを金属で遮蔽し、被測定試料10から距離25cm以内に近接させることが好ましく、距離10cm以内に近接させることがより好ましい。この場合、プリアンプのS/N比の改善に効果がある。なぜなら、被測定試料10とプリアンプとを結ぶ電線が長ければ長いほど、被測定試料10とプリアンプ間の信号を伝搬する電線から発生する電磁波に起因するノイズの影響をプリアンプが受けやすくなってしまうからである。このノイズは、10〜100MHz程度の電磁波であり、波長は最大1m程度となる。通常、電線の長さがその波長の1/4以下、すなわち、25cm以下であれば、電線がアンテナとして機能することがなくなる。さらに、安全係数を2倍とし、10cm以下であれば、より効果的となる。
さらに、本実施の形態の半導体評価装置100では、レーザ光17が被測定試料10に照射されるまでの経路に、光遮断部14を設けている。レーザ光17の透過時に信号検出手段13の検出結果を複数回積算して平均値を算出し、レーザ光17の遮断時に信号検出手段13の検出結果を複数回積算して平均値を算出し、前者平均値と後者平均値の差分値から、被測定試料10のキャリア移動度を評価してもよい。この場合、信号検出手段13のプリアンプのS/N比が向上し、且つ、信号処理手段22が積算平均で信号を処理することで機械振動の影響を受けにくくなり、除振装置を必要とせず、装置が小型化できる。
なお、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
また、本発明は、以下のようにも表現することができる。すなわち、本発明にかかる半導体評価装置は、薄膜あるいは板状の被測定試料の2箇所の異なる部位に電極を接触させ、その2箇所の電極に直流の電圧をかけて電極間に電界を発生させ、一方の電極近傍の該試料表面に可視光あるいは紫外光のパルスをスリットあるいは微細孔のある遮光膜をとおして照射し、パルス照射終了後に2箇所の電極に流れる光電流の持続時間から被測定試料のキャリア移動度を評価する装置において、被測定試料を絶縁性透明基板の片面に固定し、遮光膜を該絶縁性透明基板の試料のついた面と反対の面に固定し、該絶縁性透明基板の厚さは1mm以下、望ましくは200μm以下とする。
遮光板はガラスと金属膜の2層の積層構造、好ましくはガラスと金属膜とガラスの3層積層構造であり、金属膜の材質はアルミニウム、チタン、鉄、ニッケル、銅のいずれか1種類を含有していることが好ましい。
電極と電圧源の間に50から1kΩの抵抗器、好ましくは50から300Ωの抵抗器を直列に接続し、該抵抗器に発生する電圧を入力容量として500pF以下の前置増幅器に入力し、その出力信号を記録し、その記録から被測定試料のキャリア移動度を算出することが好ましい。
入力信号から一定値の直流電圧を差し引く機能をもつ前置増幅器を具備したことが好ましい。
前置増幅器を絶縁性固体物質で封止し、それを金属で遮蔽し、被測定試料に距離10cm以内に近接させることが好ましい。
抵抗器と被測定試料を同一の金属容器に収めたことが好ましい。
抵抗器と被測定試料と前置増幅器に収めたことが好ましい。
被測定試料の周りを、真空、窒素、或は不活性ガス雰囲気にするために、被測定試料を収める金属製真空容器と、ガス導入装置或は真空排気装置を具備したことが好ましい。
可視光あるいは紫外光の試料に照射されるまでの経路に、光遮断器を設け、光の透過時に光電流信号を複数回積算し平均値を算出し、光の遮断時に光電流信号を複数回積算し平均値を算出し、前者平均値と後者平均値の差分値を元に被測定試料のキャリア移動度を評価することが好ましい。
本発明は、半導体のキャリア移動度、キャリア寿命等の特性を評価する半導体評価装置に適用できる。
本発明の実施の形態にかかる半導体評価装置の概略構成を示すブロック図である。 (a)は、図1の被測定試料設置部の概略構成を示す断面図、(b)は、(a)の被測定試料の周囲を説明するための図である。 図1の半導体評価装置の評価結果例を示すグラフである。 従来のTOF法を説明するための図である。 従来の他のTOF法を説明するための図である。
符号の説明
10 被測定試料
11 光照射手段
12 電圧印加手段
13 信号検出手段
14 光遮断部
15、16 放物面鏡
17 レーザ光
18、36 収納容器
20 コンピュータ
21 制御手段
22 信号処理手段
23 入力手段
24 出力手段
30 被測定試料設置部
31a、31b 透過性ガラス基板(第1の透過性基板、第2の透過性基板)
32 電極
33 金属膜(遮光膜)
34 開口部
35 負荷抵抗部
37 窓
38 排気装置
39 固定部材

Claims (12)

  1. 薄型平板状の被測定試料にレーザ光を照射し、当該レーザ光の照射に起因して発生するキャリアを前記被測定試料の表面方向に移動させることにより電流を生成し、当該生成された電流の持続時間から前記被測定試料のキャリア移動度を評価する半導体評価装置であって、
    前記レーザ光が前記被測定試料に照射されるように前記被測定試料を設置する被測定試料設置部を備え、
    前記被測定試料設置部は、
    第1面及び当該第1面の反対側に形成された第2面を持つ第1の透過性基板と、
    前記第1の透過性基板の第2面に接触する第3面及び当該第3面の反対側に形成された第4面を持つ第2の透過性基板と、
    前記第1の透過性基板の第2面と前記第2の透過性基板の第3面とが接触するように前記第1の透過性基板及び前記第2の透過性基板を固定可能な固定部材と、を有し、
    前記第2の透過性基板の第3面には、前記レーザ光を通過させる開口部を持つ遮光膜が形成されており、
    前記第1の透過性基板の第1面上に前記被測定試料を配置し、前記第2の透過性基板の第4面から入射される前記レーザ光のうち前記遮光膜の開口部を通過するレーザ光を前記被測定試料に照射させることを特徴とする半導体評価装置。
  2. 前記第1の透過性基板の厚さと前記第2の透過性基板の厚さとの合計値は、1mm以下であることを特徴とする請求項1に記載の半導体評価装置。
  3. 前記遮光膜は、アルミニウム、チタン、鉄、ニッケル及び銅のいずれか1つを含む金属膜であることを特徴とする請求項1または2に記載の半導体評価装置。
  4. 前記被測定試料設置部はさらに、前記被測定試料上に形成された2つの対向する電極を有し、
    前記被測定試料に照射されるレーザ光を出射する光照射手段と、
    前記光照射手段によるレーザ光の照射に同期して、前記2つの対向する電極間に電圧を印加する電圧印加手段と、
    前記被測定試料の電極の一方に直列接続された負荷抵抗部の両端間の電圧を検出する信号検出手段と、をさらに備えることを特徴とする請求項1〜3のいずれか1項に記載の半導体評価装置。
  5. 前記負荷抵抗部の抵抗値は、50〜1000Ωであることを特徴とする請求項4に記載の半導体評価装置。
  6. 前記信号検出手段は、500pF以下の入力容量を持ち、前記負荷抵抗部の両端間の電圧を増幅する前置増幅器を有することを特徴とする請求項4または5に記載の半導体評価装置。
  7. 前記前置増幅器は、自身に固有の直流電圧成分及び利得を持ち、入力電圧から直流電圧成分を減算し、当該減算結果に利得を乗算した電圧を出力することを特徴とする請求項6に記載の半導体評価装置。
  8. 前記前置増幅器は、前記被測定試料から25cm以内の距離に位置することを特徴とする請求項6または7に記載の半導体評価装置。
  9. 前記被測定試料及び前記負荷抵抗部を収納する収納容器をさらに備えることを特徴とする請求項4〜8のいずれか1項に記載の半導体評価装置。
  10. 前記収納容器はさらに、前記前置増幅器を収納することを特徴とする請求項9に記載の半導体評価装置。
  11. 前記収納容器は、自身の内部を真空状態とする排気装置、及び、自身の内部を窒素雰囲気または不活性ガス雰囲気とするガス導入装置のうちのいずれかを有することを特徴とする請求項9または10に記載の半導体評価装置。
  12. 前記光照射手段から前記被測定試料までのレーザ光の光路上に配置され、前記レーザ光の進行を遮断可能な光遮断部と、
    前記信号検出手段の検出結果を処理することにより、前記被測定試料のキャリア移動度を評価する信号処理手段と
    をさらに備え、
    前記信号処理手段は、前記光遮断部による前記レーザ光の透過時における前記信号検出手段の検出結果を複数回積算して透過時平均値を算出し、前記光遮断部による前記レーザ光の遮断時における前記信号検出手段の検出結果を複数回積算して遮断時平均値を算出し、前記透過時平均値と前記遮断時平均値との差分値から、前記被測定試料のキャリア移動度を評価することを特徴とする請求項4〜11のいずれか1項に記載の半導体評価装置。
JP2008172549A 2008-07-01 2008-07-01 半導体評価装置 Expired - Fee Related JP4757285B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172549A JP4757285B2 (ja) 2008-07-01 2008-07-01 半導体評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172549A JP4757285B2 (ja) 2008-07-01 2008-07-01 半導体評価装置

Publications (2)

Publication Number Publication Date
JP2010016051A true JP2010016051A (ja) 2010-01-21
JP4757285B2 JP4757285B2 (ja) 2011-08-24

Family

ID=41701923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172549A Expired - Fee Related JP4757285B2 (ja) 2008-07-01 2008-07-01 半導体評価装置

Country Status (1)

Country Link
JP (1) JP4757285B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255672A (ja) * 2011-06-08 2012-12-27 Institute Of Physical & Chemical Research キャリア挙動の測定方法および測定装置
CN107589360A (zh) * 2017-08-29 2018-01-16 中国科学院半导体研究所 半导体测试装置及方法
WO2019187927A1 (ja) * 2018-03-30 2019-10-03 国立研究開発法人産業技術総合研究所 キャリア移動度計測方法とキャリア移動度計測装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135125A (ja) * 2004-11-08 2006-05-25 Hokkaido Univ 高移動度測定装置
JP2006234738A (ja) * 2005-02-28 2006-09-07 Dainippon Printing Co Ltd 半導体薄膜のキャリア移動度の測定用基板、測定装置及び測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135125A (ja) * 2004-11-08 2006-05-25 Hokkaido Univ 高移動度測定装置
JP2006234738A (ja) * 2005-02-28 2006-09-07 Dainippon Printing Co Ltd 半導体薄膜のキャリア移動度の測定用基板、測定装置及び測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255672A (ja) * 2011-06-08 2012-12-27 Institute Of Physical & Chemical Research キャリア挙動の測定方法および測定装置
CN107589360A (zh) * 2017-08-29 2018-01-16 中国科学院半导体研究所 半导体测试装置及方法
CN107589360B (zh) * 2017-08-29 2020-01-31 中国科学院半导体研究所 半导体测试装置及方法
WO2019187927A1 (ja) * 2018-03-30 2019-10-03 国立研究開発法人産業技術総合研究所 キャリア移動度計測方法とキャリア移動度計測装置

Also Published As

Publication number Publication date
JP4757285B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
JP6068183B2 (ja) シリコン薄膜測定方法、シリコン薄膜欠陥検出方法、及びシリコン薄膜欠陥検出装置
KR101647618B1 (ko) 산화물 반도체 박막의 평가 방법 및 산화물 반도체 박막의 품질 관리 방법, 및 상기 평가 방법에 사용되는 평가 소자 및 평가 장치
Da Via et al. 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance
JP3793757B2 (ja) プラグイン式の光イオン化センサ
Bell et al. Fast beam conditions monitor BCM1F for the CMS experiment
JP4757285B2 (ja) 半導体評価装置
EP2732299A2 (en) Electrical inspection of electronic devices using electron-beam induced plasma probes
US20130153778A1 (en) Crystalline quality evaluation apparatus for thin-film semiconductors, using +82 -pcd technique
Komlenok et al. Diamond detectors with laser induced surface graphite electrodes
Bohon et al. Development of diamond-based X-ray detection for high-flux beamline diagnostics
JP5867046B2 (ja) 極紫外露光マスク用防塵装置及び極紫外露光装置
KR101923798B1 (ko) 산화물 반도체 박막의 표면에 보호막을 갖는 적층체의 품질 평가 방법 및 산화물 반도체 박막의 품질 관리 방법
Antonelli et al. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices
JP5948093B2 (ja) 半導体の欠陥評価方法
JP2017116550A (ja) 半導体検出器、放射線検出器及び放射線検出装置
JP2014240770A (ja) 放射線検出装置および放射線分析装置
TW201409015A (zh) 薄膜電晶體的半導體層用薄膜之形成所使用的靶材組合體之品質評估方法
JP2009206057A (ja) ガス電子増幅器及びこれを使用した放射線検出器
JP4184075B2 (ja) 電離放射線用の気体検出器及びその製造方法
US8536873B2 (en) Substance detection method and substance detection device
Bruhaug et al. Development of a hardened THz energy meter for use on the kilojoule-scale, short-pulse OMEGA EP laser
JP2013058742A (ja) 半導体の欠陥評価方法
JP3665207B2 (ja) 半導体評価装置
Kramberger LGADs for timing detectors at HL-LHC
JP2005268271A (ja) 光または放射線用二次元検出器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees