[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010007159A - Copper alloy material and electrode member of welding equipment - Google Patents

Copper alloy material and electrode member of welding equipment Download PDF

Info

Publication number
JP2010007159A
JP2010007159A JP2008170593A JP2008170593A JP2010007159A JP 2010007159 A JP2010007159 A JP 2010007159A JP 2008170593 A JP2008170593 A JP 2008170593A JP 2008170593 A JP2008170593 A JP 2008170593A JP 2010007159 A JP2010007159 A JP 2010007159A
Authority
JP
Japan
Prior art keywords
warm
working
processing
copper alloy
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008170593A
Other languages
Japanese (ja)
Inventor
Tetsuya Ando
哲也 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2008170593A priority Critical patent/JP2010007159A/en
Publication of JP2010007159A publication Critical patent/JP2010007159A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

【課題】高強度且つ高導電性の銅合金材料を提供すること。更に具体的には、導電率が20%IACS以上であって且つ硬度が高い銅合金材料を提供する。
【解決手段】Tiを2.7〜3.1質量%を含有し、残部Cu及び不可避的不純物からなる銅合金材料であり、該銅合金材料は、熱間加工を行った後、温間加工、又は冷間加工及び温間加工を行い、次いで、時効処理を行うことにより得られる銅合金材料であり、該温間加工での加工温度が400〜600℃であり、溶体化処理以降の該冷間加工及び該温間加工の総加工度が20〜90%であること、を特徴とする銅合金材料。
【選択図】なし
To provide a copper alloy material having high strength and high conductivity. More specifically, a copper alloy material having a conductivity of 20% IACS or higher and high hardness is provided.
A copper alloy material containing 2.7 to 3.1% by mass of Ti, the balance being Cu and inevitable impurities, the copper alloy material being hot worked after hot working. Or a copper alloy material obtained by performing cold working and warm working, and then performing an aging treatment, the working temperature in the warm working is 400 to 600 ° C., and after the solution treatment, A copper alloy material characterized in that the total degree of cold working and warm working is 20 to 90%.
[Selection figure] None

Description

本発明は、高強度であり且つ高導電性である銅合金材料に関する。以下、高強度であり且つ高導電性である銅合金材料を、高強度且つ高導電性の銅合金材料とも記載する。   The present invention relates to a copper alloy material having high strength and high conductivity. Hereinafter, a copper alloy material having high strength and high conductivity is also referred to as a copper alloy material having high strength and high conductivity.

例えば、溶接機器の電極部材に使用される銅合金材料には、高強度であり且つ高導電性であることが要求される。   For example, copper alloy materials used for electrode members of welding equipment are required to have high strength and high conductivity.

この要求を満たす銅合金材料としては、JIS Z 3234に規定されている銅合金材料が挙げられる。これらのうち、特に、JIS Z 3234のクラス4(以下、単にクラス4とも記載する。)に適合する銅合金材料、すなわち、引張強さが970MPa以上、ビッカース硬さが310以上且つ導電率が20%IACS以上である銅合金材料としては、析出硬化元素としてBeを添加したCu−Be系銅合金材料が挙げられるが、このCu−Be系銅合金材料以外には、クラス4に適合する有力な材料がない。   An example of a copper alloy material that satisfies this requirement is a copper alloy material defined in JIS Z 3234. Among these, in particular, a copper alloy material conforming to JIS Z 3234 class 4 (hereinafter also simply referred to as class 4), that is, a tensile strength of 970 MPa or more, a Vickers hardness of 310 or more, and an electrical conductivity of 20 As the copper alloy material having a% IACS or higher, a Cu—Be based copper alloy material to which Be is added as a precipitation hardening element may be mentioned. There is no material.

ところが、添加元素であるBeは、リサイクル時の溶解等で発生するヒュームが環境に対して有害な元素である。そして、近年の環境保護の高まりから、有害物質の使用を規制する動きがあり、Beが規制対象となる可能性がある。そこで、Beを含有しない高強度且つ高導電性の銅合金材料の開発が望まれている。   However, Be, which is an additive element, is an element in which fumes generated by melting during recycling are harmful to the environment. And with the recent increase in environmental protection, there is a movement to regulate the use of harmful substances, and Be may be subject to regulation. Therefore, development of a high-strength and high-conductivity copper alloy material that does not contain Be is desired.

CDA C17200に匹敵する強度を有する材料として、Tiを2.9〜3.5%添加したCu−Ti銅合金材料(JIS H3130 C1990)があるが、これは、バネ用板材及び条材に適用される板厚が薄いものが対象である。   As a material having a strength comparable to that of CDA C17200, there is a Cu-Ti copper alloy material (JIS H3130 C1990) to which 2.9 to 3.5% of Ti is added. This is applied to a spring plate material and a strip material. The target is thin.

また、下記特許文献1〜4には、高強度と高導電率であるCu−Ti系銅合金材料が開示されている。   Patent Documents 1 to 4 listed below disclose Cu-Ti-based copper alloy materials having high strength and high conductivity.

特開平6−248375号公報(特許請求の範囲)JP-A-6-248375 (Claims) 特開平7−258803号公報(特許請求の範囲)JP-A-7-258803 (Claims) 特開2004−285408号公報(特許請求の範囲)JP 2004-285408 A (Claims) 特開2005−344143号公報(特許請求の範囲)JP-A-2005-344143 (Claims)

ところが、上記Cu−Ti銅合金材料(JIS H3130 C1990)は、溶接機器の電極部材用のような、少なくとも厚さ2mm以上の厚肉の材料に適用されるものとはなっていない。   However, the Cu—Ti copper alloy material (JIS H3130 C1990) is not applied to a thick material having a thickness of at least 2 mm, such as for electrode members of welding equipment.

また、上記特許文献1〜4は、いずれも薄板材に関するものであり、溶接機器の電極部材のような厚肉の材料に適用には、適用できないという問題があった。   Moreover, all of the above Patent Documents 1 to 4 relate to thin plate materials, and there is a problem that they cannot be applied to thick materials such as electrode members of welding equipment.

上記特許文献1〜4にように、薄板材では、熱間及び冷間の圧延加工で加工されるため、加工度を大きくすることができるので、該薄板材の強度と導電率を共に高くすることできる。   As described in Patent Documents 1 to 4, since the thin plate material is processed by hot and cold rolling, the degree of work can be increased, so both the strength and conductivity of the thin plate material are increased. I can.

それに対し、溶接機器の電極部材の加工には、熱間での押出加工、鍛造加工、冷間での鍛造加工など、圧延加工に比べ加工度の小さな加工工程が必要となるのが一般的である。また、鍛造加工を行わず圧延加工を行う場合でも、加工後の板厚は、上記特許文献1〜4に比べ非常に大きいため、加工度が小さい圧延加工が必要となる。   On the other hand, the processing of electrode members of welding equipment generally requires processing steps with a smaller degree of processing than rolling, such as hot extrusion, forging, and cold forging. is there. Moreover, even when performing a rolling process without performing a forging process, since the plate | board thickness after a process is very large compared with the said patent documents 1-4, the rolling process with a small work degree is required.

つまり、Cu−Ti系銅合金材料における高強度化の主工程である時効処理工程の前に、加工度の大きな工程を用いることができない。そのため、溶接機器の電極部材のような加工度が小さい材料では、高強度と高導電性とのバランスが良い材料を得ることは困難であった。   That is, a process with a high degree of work cannot be used before the aging treatment process, which is the main process for increasing the strength of the Cu—Ti-based copper alloy material. For this reason, it is difficult to obtain a material having a good balance between high strength and high conductivity with a material having a small degree of processing such as an electrode member of a welding machine.

従って、本発明の課題は、高強度且つ高導電性の銅合金材料を提供することにある。更に具体的には、導電率が20%IACS以上であって且つ硬さが高い銅合金材料を提供することにある。   Accordingly, an object of the present invention is to provide a copper alloy material having high strength and high conductivity. More specifically, an object of the present invention is to provide a copper alloy material having a conductivity of 20% IACS or higher and high hardness.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、Tiの含有量を2.7〜3.1質量%とし、且つ、熱間加工後に、時効処理する前に、400〜600℃の加工温度で温間加工を行うこと、あるいは、冷間加工と400〜600℃の加工温度で温間加工とを行うことにより、加工度が20〜90%であっても、導電率が20%IACS以上と高く且つ硬さが高い銅合金材料が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the inventors set the Ti content to 2.7 to 3.1% by mass, and after hot working, before aging treatment. Furthermore, by performing warm processing at a processing temperature of 400 to 600 ° C., or performing cold processing and warm processing at a processing temperature of 400 to 600 ° C., the processing degree is 20 to 90%. However, the present inventors have found that a copper alloy material having a conductivity as high as 20% IACS or higher and a high hardness can be obtained, thereby completing the present invention.

すなわち、本発明(1)は、Tiを2.7〜3.1質量%を含有し、残部Cu及び不可避的不純物からなる銅合金材料であり、
該銅合金材料は、熱間加工を行った後、温間加工、又は冷間加工及び温間加工を行い、次いで、時効処理を行うことにより得られる銅合金材料であり、
該温間加工での加工温度が400〜600℃であり、
溶体化処理以降の該冷間加工及び該温間加工の総加工度が20〜90%であること、
を特徴とする銅合金材料を提供するものである。
That is, the present invention (1) is a copper alloy material containing 2.7 to 3.1% by mass of Ti, the balance being Cu and inevitable impurities,
The copper alloy material is a copper alloy material obtained by performing hot working, then performing warm working, or cold working and warm working, and then performing an aging treatment,
The processing temperature in the warm processing is 400 to 600 ° C.,
The total processing degree of the cold processing and the warm processing after the solution treatment is 20 to 90%,
A copper alloy material characterized by the above is provided.

また、本発明(2)は、前記本発明(1)の銅合金材料からなることを特徴とする溶接機器の電極部材を提供するものである。   Moreover, this invention (2) provides the electrode member of the welding equipment characterized by consisting of the copper alloy material of the said invention (1).

本発明によれば、高強度且つ高導電性の銅合金材料を提供すること、更に具体的には、導電率が20%IACS以上であって且つ硬さが高い銅合金材料を提供することができる。   According to the present invention, it is possible to provide a copper alloy material having high strength and high conductivity, and more specifically, to provide a copper alloy material having a conductivity of 20% IACS or higher and high hardness. it can.

本発明の銅合金材料は、Tiを2.7〜3.1質量%を含有し、残部Cu及び不可避的不純物からなる銅合金材料であり、
該銅合金材料は、熱間加工を行った後、温間加工、又は冷間加工及び温間加工を行い、次いで、時効処理を行うことにより得られる銅合金材料であり、
該温間加工での加工温度が400〜600℃であり、
溶体化処理以降の該冷間加工及び該温間加工の総加工度が20〜90%の銅合金材料である。
The copper alloy material of the present invention is a copper alloy material containing 2.7 to 3.1% by mass of Ti and composed of the balance Cu and inevitable impurities,
The copper alloy material is a copper alloy material obtained by performing hot working, then performing warm working, or cold working and warm working, and then performing an aging treatment,
The processing temperature in the warm processing is 400 to 600 ° C.,
It is a copper alloy material having a total work degree of 20 to 90% in the cold work and the warm work after the solution treatment.

本発明の銅合金材料は、Tiを含有し、残部Cu及び不可避的不純物からなるTi−銅合金材料である。本発明の銅合金材料のTiの含有量は、2.7〜3.1質量%、好ましくは2.8〜3.0質量%である。Tiの含有量が上記範囲内にあることにより、高強度且つ高導電性の銅合金材料となる。一方、Tiの含有量が上記範囲未満だと、銅合金材料の強度が低くなり、また、上記範囲を超えると、銅合金材料の導電率が低くなる。   The copper alloy material of the present invention is a Ti-copper alloy material that contains Ti and consists of the remainder Cu and inevitable impurities. The content of Ti in the copper alloy material of the present invention is 2.7 to 3.1% by mass, preferably 2.8 to 3.0% by mass. When the Ti content is within the above range, the copper alloy material has high strength and high conductivity. On the other hand, when the Ti content is less than the above range, the strength of the copper alloy material is low, and when it exceeds the above range, the conductivity of the copper alloy material is low.

本発明の銅合金材料は、熱間加工後に、温間加工及び時効処理を順次行い得られる銅合金材料、又は熱間加工後に、冷間加工、温間加工及び時効処理を順次行い得られる銅合金材料である。なお、本発明の銅合金材料では、該熱間加工後に、該温間加工及び該時効処理を行うが、これは、該熱間加工を行った直後に、該温間加工を行うということではなく、該熱間加工を行った後の工程で、該温間加工及び該時効処理を順次に行うということを指す。あるいは、本発明の銅合金材料では、該熱間加工後に、該冷間加工、該温間加工及び該時効処理を行うが、これは、該熱間加工を行った直後に、該冷間加工を行うということではなく、該熱間加工を行った後の工程で、該冷間加工、該温間加工及び該時効処理を順次に行うということを指す。   The copper alloy material of the present invention is a copper alloy material obtained by sequentially performing hot working and aging treatment after hot working, or copper obtained by sequentially carrying out cold working, warm working and aging treatment after hot working. Alloy material. In the copper alloy material of the present invention, the hot working and the aging treatment are performed after the hot working, which means that the hot working is performed immediately after the hot working. Rather, it means that the warm working and the aging treatment are sequentially performed in the step after the hot working. Alternatively, in the copper alloy material of the present invention, the cold working, the warm working, and the aging treatment are performed after the hot working, which is performed immediately after the hot working. It does not mean that the cold working, the warm working and the aging treatment are sequentially carried out in the step after the hot working.

本発明の銅合金材料を得るためには、先ず、所定の成分含有量に調節された銅合金の鋳塊を、熱間加工し、熱間加工材を得る。   In order to obtain the copper alloy material of the present invention, first, a copper alloy ingot adjusted to a predetermined component content is hot-worked to obtain a hot-worked material.

該熱間加工としては、熱間鍛造、熱間押出、熱間圧延等が挙げられる。該熱間加工の加工温度は、通常700〜950℃、好ましくは850〜900℃である。該熱間加工で加工される該鋳塊を得る方法は、特に制限されない。該鋳塊中のTiの含有量は、2.7〜3.1質量%、好ましくは2.8〜3.0質量%である。   Examples of the hot working include hot forging, hot extrusion, hot rolling and the like. The processing temperature of the hot processing is usually 700 to 950 ° C, preferably 850 to 900 ° C. A method for obtaining the ingot processed by the hot working is not particularly limited. The Ti content in the ingot is 2.7 to 3.1% by mass, preferably 2.8 to 3.0% by mass.

次いで、以下の(1)〜(4)により、本発明の銅合金材料を得る。
(1)該熱間加工後に直に、該熱間加工により得られる該熱間加工材の焼き入れを行い、次いで、該温間加工及び該時効処理を行う。
(2)該熱間加工後、該熱間加工により得られる該熱間加工材の温度を一旦下げてから、再び温度を上げて溶体化処理及び該熱間加工材の焼き入れを行い、次いで、該温間加工及び該時効処理を行う。
(3)該熱間加工後に直に、該熱間加工により得られる該熱間加工材の焼き入れを行い、次いで、該冷間加工、該温間加工及び該時効処理を行う。
(4)該熱間加工後、該熱間加工により得られる該熱間加工材の温度を一旦下げてから、再び温度を上げて溶体化処理及び該熱間加工材の焼き入れを行い、次いで、該冷間加工、該温間加工及び該時効処理を行う。
該(1)及び該(3)の場合、焼き入れ直前の温度を700℃以上とするために、材料のハンドリング時間等を考慮すると、該熱間加工の加工温度は、該熱間加工直後の材料の温度が750℃となる温度が好ましい。また、該(1)の場合、該熱間加工材の焼き入れを行った後、該温間加工前に、面削を行うこともでき、また、該(3)の場合、該熱間加工材の焼き入れを行った後、該冷間加工前に、面削を行うこともできる。なお、該(1)及び該(3)の場合、該熱間加工が溶体化処理を兼ねる。
該(2)及び該(4)の場合、該熱間加工材の温度を一旦下げた後、該溶体処理前に、面削や冷間加工等の処理又は加工を行うこともできる。
Next, the copper alloy material of the present invention is obtained by the following (1) to (4).
(1) Immediately after the hot working, the hot working material obtained by the hot working is quenched, and then the warm working and the aging treatment are performed.
(2) After the hot working, once the temperature of the hot worked material obtained by the hot working is lowered, the temperature is raised again to perform solution treatment and quenching of the hot worked material, The warm working and the aging treatment are performed.
(3) Immediately after the hot working, the hot worked material obtained by the hot working is quenched, and then the cold working, the warm working and the aging treatment are performed.
(4) After the hot working, once the temperature of the hot work material obtained by the hot work is lowered, the temperature is raised again to perform solution treatment and quenching of the hot work material, The cold working, the warm working and the aging treatment are performed.
In the case of (1) and (3), in order to set the temperature immediately before quenching to 700 ° C. or higher, considering the handling time of the material, the processing temperature of the hot processing is just after the hot processing. A temperature at which the temperature of the material is 750 ° C. is preferred. Further, in the case of (1), after the hot working material is quenched, it can be chamfered before the hot working, and in the case of (3), the hot working After quenching the material, it can be chamfered before the cold working. In the case of (1) and (3), the hot working also serves as a solution treatment.
In the case of (2) and (4), after the temperature of the hot-worked material is once lowered, treatment or processing such as chamfering or cold working can be performed before the solution treatment.

つまり、該(1)の場合及び該(2)の場合、該焼き入れを行った後の焼き入れ材を、温間加工し、温間加工材を得る。また、該(3)の場合及び該(4)の場合、該焼き入れを行った後の焼き入れ材を、冷間加工し、冷間加工材を得、次いで、該冷間加工を行った後の該冷間加工材を、温間加工し、温間加工材を得る。   That is, in the case of (1) and (2), the quenched material after the quenching is warm processed to obtain a warm processed material. In the case of (3) and (4), the quenched material after the quenching was cold worked to obtain a cold worked material, and then the cold worked was performed. The subsequent cold-worked material is warm-worked to obtain a warm-worked material.

該(3)の場合及び該(4)の場合、該温間加工を行う前に、該冷間加工を行うが、該冷間加工としては、冷間鍛造、冷間圧延等が挙げられる。該冷間加工を行う回数は、1回であっても、2回以上に分けて行ってもよい。   In the case of (3) and (4), the cold working is performed before the warm working. Examples of the cold working include cold forging and cold rolling. The number of times of cold working may be one time or may be divided into two or more times.

そして、該(1)の場合及び該(2)の場合、該焼き入れを行い得られる該焼き入れ材を、温間加工して、また、該(3)の場合及び該(4)の場合、該冷間加工を行い得られる該冷間加工材を、温間加工して、該温間加工材を得るが、該温間加工とは、室温以上、再結晶温度未満の温度域で行う加工を言う。本発明の銅合金材料に係る該温間加工では、該時効処理における時効硬化の起こりうる温度範囲、特に、該時効処理の初期において強度上昇(硬化)が生じる温度範囲で加工を行う。該温間加工の加工温度は、400〜600℃である。該温間加工の加工温度が、上記範囲内にあることにより、高強度且つ高導電性の銅合金材料となる。一方、該温間加工の加工温度が上記範囲未満だと、銅合金材料の導電率が低くなり、また、上記範囲を超えると、銅合金材料の強度が低くなる。該温間加工を行う回数は、1回であっても、2回以上に分けて行ってもよい。   In the case of (1) and (2), the quenching material obtained by performing the quenching is warm-worked, and in the case of (3) and the case of (4) The cold-worked material obtained by performing the cold work is warm-worked to obtain the warm-worked material. The warm work is performed in a temperature range of room temperature or higher and lower than the recrystallization temperature. Say processing. In the warm working related to the copper alloy material of the present invention, the working is performed in a temperature range in which age hardening can occur in the aging treatment, particularly in a temperature range in which strength increase (hardening) occurs in the initial stage of the aging treatment. The processing temperature of the warm processing is 400 to 600 ° C. When the processing temperature of the warm processing is within the above range, the copper alloy material has high strength and high conductivity. On the other hand, when the processing temperature of the warm processing is less than the above range, the conductivity of the copper alloy material is low, and when it exceeds the above range, the strength of the copper alloy material is low. The number of times of performing the warm working may be one time or may be divided into two or more times.

該温間加工としては、温間鍛造、温間圧延等が挙げられる。1次加工における仕上げ形状を板材とする場合は、該温間圧延が選択されることが多く、棒材や形材、部品形状とする場合は、通常、該温間鍛造が選択される。なお、本発明の銅合金材料では、該温間加工を行わないと、高強度且つ高導電率の銅合金材料が得られない。   Examples of the warm working include warm forging and warm rolling. When the finished shape in the primary processing is a plate material, the warm rolling is often selected, and when the shape is a bar, a shape, or a part shape, the warm forging is usually selected. In the copper alloy material of the present invention, a copper alloy material having high strength and high conductivity cannot be obtained unless the warm working is performed.

次いで、該温間加工材を、時効処理し、本発明の銅合金材料を得る。該時効処理の処理温度は、300〜500℃であり、該時効処理の処理時間は、0.5〜12時間である。   Next, the warm-worked material is aged to obtain the copper alloy material of the present invention. The treatment temperature of the aging treatment is 300 to 500 ° C., and the treatment time of the aging treatment is 0.5 to 12 hours.

該(1)及び該(2)の場合、該溶体化処理及び該焼き入れを行った後の該焼き入れ材に対して、該温間加工を行う際、該焼き入れ材に対する該温間加工の総加工度は、20〜90%である。つまり、該(1)の場合には、該熱間加工が溶体化処理も兼ねているので、該熱間加工後に直ちに行う焼き入れ後の該焼き入れ材に対する該焼き入れ後に行う該温間加工の総加工度が、20〜90%である。また、該(2)の場合には、該溶体化処理後に行う焼き入れ後の該焼き入れ材に対する該焼き入れ後に行う該温間加工の総加工度が、20〜90%である。
該(3)及び該(4)の場合、該溶体化処理及び該焼き入れを行った後の該焼き入れ材に対して、該冷間加工及び該温間加工を順に行う際、該焼き入れ材に対する該冷間加工及び該温間加工の総加工度は、20〜90%である。つまり、該(3)の場合には、該熱間加工が溶体化処理も兼ねているので、該熱間加工後に直ちに行う焼き入れ後の該焼き入れ材に対する該焼き入れ後に行う該冷間加工及び該温間加工の総加工度が、20〜90%である。また、該(4)の場合には、該溶体化処理後に行う焼き入れ後の該焼き入れ材に対する該焼き入れ後に行う該冷間加工及び該温間加工の総加工度が、20〜90%である。
なお、本発明において、該(1)及び該(2)の場合、該焼き入れ材に対する該温間加工の総加工度Cは、該温間加工される前の該焼き入れ材の断面積をA(cm)、該温間加工後の該温間加工材の断面積をB(cm)とすると、次式:
総加工度C(%)={(A−B)/A}×100 (5)
で求められる値である。
また、本発明において、該(3)及び該(4)の場合、該焼き入れ材に対する該冷間加工及び該温間加工の総加工度Cは、該冷間加工される前の該焼き入れ材の断面積をA(cm)、該温間加工後の該温間加工材の断面積をB(cm)とすると、次式:
総加工度C(%)={(A−B)/A}×100 (5)
で求められる値である。
また、該(2)及び該(4)の場合、該溶体化処理の前にも、冷間加工を行うことができるが、該溶体化処理の前に行った冷間加工でのひずみは、その後の該溶体化処理によってとれる。そして、本発明は、溶体化処理を行った後のひずみがとれない状態での総加工度を、特定の範囲にするものである。よって、該(2)及び該(4)の場合、該溶体化処理を行う前に行った冷間加工での加工度は、上記総加工度(C)には算入しない。
In the case of (1) and (2), when performing the warm processing on the quenching material after the solution treatment and the quenching, the warm processing on the quenching material is performed. The total degree of processing is 20-90%. That is, in the case of (1), since the hot working also serves as a solution treatment, the warm working performed after the quenching on the quenched material immediately after the hot working is performed. The total processing degree is 20 to 90%. In the case of (2), the total degree of processing of the warm processing performed after the quenching on the quenched material after quenching performed after the solution treatment is 20 to 90%.
In the cases of (3) and (4), the quenching is performed when the cold working and the warm working are sequentially performed on the quenching material after the solution treatment and the quenching. The total degree of cold working and warm working on the material is 20-90%. That is, in the case of (3), since the hot working also serves as a solution treatment, the cold working performed after the quenching on the quenched material immediately after the hot working is performed. And the total degree of processing of this warm processing is 20 to 90%. In the case of (4), the total degree of processing of the cold processing and the warm processing performed after the quenching on the quenched material after the quenching performed after the solution treatment is 20 to 90%. It is.
In the present invention, in the case of (1) and (2), the total degree C of warm working on the quenching material is the sectional area of the quenching material before the warm working. When A (cm 2 ) and the cross-sectional area of the warm-worked material after the warm working are B (cm 2 ), the following formula:
Total processing degree C (%) = {(A−B) / A} × 100 (5)
This is the value obtained by.
In the present invention, in the case of (3) and (4), the total degree C of cold working and warm working on the quenching material is the quenching before cold working. When the cross-sectional area of the material is A (cm 2 ) and the cross-sectional area of the warm-worked material after the warm working is B (cm 2 ), the following formula:
Total processing degree C (%) = {(A−B) / A} × 100 (5)
This is the value obtained by.
In the case of (2) and (4), cold work can be performed before the solution treatment, but the strain in the cold work performed before the solution treatment is It can be taken by the subsequent solution treatment. And this invention makes the total process degree in the state which cannot take the distortion after performing solution treatment into a specific range. Therefore, in the cases of (2) and (4), the degree of work in the cold work performed before the solution treatment is not included in the total degree of work (C).

該(3)及び該(4)の該冷間加工及び該温間加工を行う場合を例に、該焼き入れ材の断面積A、該温間加工後の該温間加工材の断面積Bについて、図1〜図3を参照して説明する。図1〜図3は、該冷間加工及び該温間加工を行う前後の様子を示す模式的な斜視図である。なお、図1の加工としては、圧延が、図2の加工としては、自由鍛造が、図3の加工としては、型鍛造が、例として挙げられる。図1中、焼き入れ材1に対して、加工方向2で加工(該冷間加工及び該温間加工)を加えることにより、温間加工材3が得られる。ここで、該加工方向2に平行な面で、該焼き入れ材1を切ったときの断面4の面積を、該冷間加工される前の該焼き入れ材の断面積Aとし、該加工方向2に平行な面で、該温間加工材3を切ったときの断面5の面積を、温間加工後の該温間加工材の断面積Bとする。また、図2中、焼き入れ材11に対して、加工方向12で加工(該冷間加工及び温間加工)を加えることにより、温間加工材13が得られる。ここで、該加工方向12に平行な面で、該焼き入れ材11を切ったときの断面14の面積を、該冷間加工される前の該焼き入れ材の断面積Aとし、該加工方向12に平行な面で、該温間加工材13を切ったときの断面15の面積を、温間加工後の該温間加工材の断面積Bとする。   Taking the case of performing the cold working and the warm working of (3) and (4) as an example, the cross-sectional area A of the quenched material, and the cross-sectional area B of the warm worked material after the warm working Will be described with reference to FIGS. 1 to 3 are schematic perspective views showing the state before and after performing the cold working and the warm working. In addition, as a process of FIG. 1, a rolling is given as an example, As a process of FIG. 2, free forging is mentioned as an example, and a die forge is mentioned as a process of FIG. In FIG. 1, a warm processed material 3 is obtained by applying processing (the cold processing and the warm processing) in the processing direction 2 to the quenching material 1. Here, the area of the cross-section 4 when the quenching material 1 is cut in a plane parallel to the processing direction 2 is defined as the cross-sectional area A of the quenching material before cold working, and the processing direction 2, the area of the cross section 5 when the warm processed material 3 is cut is defined as a cross-sectional area B of the warm processed material after the warm processing. Further, in FIG. 2, a warm processed material 13 is obtained by applying processing (the cold processing and warm processing) in the processing direction 12 to the quenching material 11. Here, the area of the cross-section 14 when the quenching material 11 is cut in a plane parallel to the processing direction 12 is defined as a cross-sectional area A of the quenching material before the cold processing, and the processing direction 12, the area of the cross section 15 when the warm processed material 13 is cut is a cross-sectional area B of the warm processed material after the warm processing.

また、図3中、焼き入れ材21に対して、加工方向22で加工(該冷間加工及び温間加工)を加えることにより、温間加工材23が得られる。なお、符号211が、該加工方向22に平行な面で切った時の該焼き入れ材21の断面であり、符号231が、該加工方向22に平行な面で切った時の該温間加工材23の断面である。図3に示す加工では、該温間加工材23の位置により、該総加工度Cが異なる。図4は、該焼き入れ材21の断面と、該温間加工材23の断面とを、それぞれの中心24で重ね合わせた図であり、点線29が該焼き入れ材21の輪郭を示し、実線30が該温間加工材23の輪郭を示す。該温間加工材23のうちの符号25で示す位置と、符号27で示す位置を比べると、符号27の位置の方が内側にあるので、符号25の位置に比べ、符号27の位置の方が、該総加工度Cが高くなる。本発明では、このように、該温間加工材の位置により該総加工度Cが異なるような場合は、最も総加工度Cが低くなる位置の総加工度Cも、最も総加工度Cが高くなる位置の総加工度Cも、いずれも、20〜90%の範囲内にある。なお、該温間加工材の位置により、該総加工度Cが異なる場合の該総加工度Cは、該温間加工材の中心を該焼き入れ材の中心と重ねた時に、各位置毎に、輪郭が該温間加工材の各位置に重なり且つ中心が該焼き入れ材及び該温間加工材の中心と重なる該焼き入れ材と相似形の面積を、該温間加工後の該温間加工材の断面積Bとして、上記式(5)により各位置の該総加工度Cを求める。例えば、図4では、該焼き入れ材21及び該温間加工材の中心を符号24で重ね、符号24及び符号25の延長線と輪郭29が重なる点を符号26すると、輪郭が符号25に重なり且つ中心が符号24と重なる円の面積を求め、これを該温間加工後の該温間加工材の断面積Bとする。そして、輪郭が符号25に重なり且つ中心が符号24と重なる円の半径は、符号24と符号25の距離、すなわち、符号aであり、該焼き入れ材21の半径は、符号24と符号26の距離、すなわち、符号bである。そうすると、A=πa 、B=πb 、となるので、符号25の位置の総加工度C={(πa −πb )/πb }×100={(a −b )/b }×100となる。また、該焼き入れ材の断面形状が円形でなく、長方形やその他の形状であったとしても、該温間加工材の中心を該焼き入れ材の中心と重ねた時に、輪郭が該温間加工材の位置に重なり且つ中心が該焼き入れ材及び該温間加工材の中心と重なる該焼き入れ材と相似形の面積を、該温間加工後の該温間加工材の断面積Bとして、上記式(5)により温間加工材の各位置の該総加工度C求める。例えば、断面形状が長方形の場合には、輪郭が温間加工材の位置に重なり且つ中心が焼き入れ材及び該温間加工材の中心と重なる該焼き入れ材と相似形の長方形の面積を、該温間加工後の該温間加工材の断面積Bとして、上記式(5)により各位置の該総加工度Cを求める。 Further, in FIG. 3, a warm processed material 23 is obtained by performing processing (the cold processing and warm processing) in the processing direction 22 on the quenching material 21. Reference numeral 211 denotes a cross section of the quenching material 21 when cut along a plane parallel to the machining direction 22, and reference numeral 231 denotes the warm machining when cut along a plane parallel to the machining direction 22. 3 is a cross section of the material 23; In the processing shown in FIG. 3, the total processing degree C varies depending on the position of the warm processed material 23. FIG. 4 is a diagram in which the cross-section of the quenching material 21 and the cross-section of the warm-working material 23 are overlapped at the respective centers 24, and a dotted line 29 indicates the contour of the quenching material 21, and a solid line Reference numeral 30 denotes an outline of the warm processed material 23. When the position indicated by reference numeral 25 in the warm processed material 23 is compared with the position indicated by reference numeral 27, the position of reference numeral 27 is on the inner side. However, the total processing degree C becomes high. In the present invention, when the total work degree C differs depending on the position of the warm work material, the total work degree C at the position where the total work degree C is the lowest is the highest. The total degree of processing C at the higher position is also in the range of 20 to 90%. The total degree of processing C when the total degree of processing C differs depending on the position of the warm processed material is determined for each position when the center of the warm processed material is overlapped with the center of the quenched material. An area similar in shape to the quenching material whose outline overlaps with each position of the warm-working material and whose center overlaps with the quenching material and the center of the warm-working material, As the cross-sectional area B of the work material, the total work degree C at each position is obtained by the above equation (5). For example, in FIG. 4, the centers of the quenching material 21 and the warm-worked material are overlapped by reference numeral 24, and the point where the extension line 24 and reference numeral 25 overlaps the outline 29 is indicated by reference numeral 26. The area of the circle whose center overlaps with the reference numeral 24 is obtained, and this is defined as the cross-sectional area B of the warm-worked material after the warm-working. The radius of the circle and the center contour overlaps the code 25 overlaps the code 24, the distance of the code 24 and code 25, i.e., the sign a 1, the radius of the hardened material 21, reference numeral 24 and reference numeral 26 , That is, the code b 1 . Then, since A = πa 1 2 and B = πb 1 2 , the total processing degree C 1 = {(πa 1 2 −πb 1 2 ) / πb 1 2 } × 100 = {(a 1 2 −b 1 2 ) / b 1 2 } × 100. Further, even if the cross-sectional shape of the quenching material is not circular, but is a rectangle or other shapes, when the center of the warm processing material is overlapped with the center of the quenching material, the contour is warm processing. The area of the shape similar to that of the quenched material that overlaps the position of the material and the center overlaps the center of the quenched material and the warm processed material is defined as a cross-sectional area B of the warm processed material after the warm working. The total degree C of processing of each position of the warm work material is obtained by the above formula (5). For example, when the cross-sectional shape is rectangular, the area of the rectangular shape similar to the quenching material whose outline overlaps with the position of the warm processing material and the center overlaps with the quenching material and the center of the warm processing material, As the cross-sectional area B of the warm-worked material after the warm working, the total working degree C at each position is obtained by the above formula (5).

該(1)及び該(2)の場合で、該温間加工を2回以上行う場合は、全ての該温間加工を行った後の該温間加工材と、該焼き入れ材との対比で、該焼き入れ材に対する該温間加工の総加工度を求める。   In the cases of (1) and (2), when the warm working is performed twice or more, the warm worked material after all the warm working is compared with the quenching material. Then, the total working degree of the warm working on the quenching material is obtained.

該(3)及び該(4)の場合、該冷間加工及び該温間加工の両方を経た後の該温間加工材と、該焼き入れ材との対比で、該焼き入れ材に対する該冷間加工及び該温間加工の総加工度を求める。また、該冷間加工を2回以上行う場合、該温間加工を2回以上行う場合は、全ての該冷間加工及び該温間加工を行った後の該温間加工材と、該焼き入れ材との対比で、該焼き入れ材に対する該冷間加工及び該温間加工の総加工度を求める。このとき、該冷間加工及び該温間加工のそれぞれの工程での加工量は、該冷間加工を行う前の該焼き入れ材と、該冷間加工及び該温間加工を行った後の該温間加工材と、の間で、加工度が20〜90%となる範囲で、それぞれ適宜選択される。好ましくは、該温間加工での加工度、すなわち、該温間加工を行う前の該冷間加工材に対する該温間加工での加工度は、10%以上である。なお、本発明において、該冷間加工材に対する該温間加工での加工度Fは、該温間加工前の該冷間加工材の断面積をD(cm)、該温間加工後の該温間加工材の断面積をE(cm)とすると、次式:
加工度F(%)={(D−E)/D}×100
で求められる値である。
In the case of (3) and (4), the cold work material is compared with the hardened material after both the cold work and the warm work and the hardened material. The total working degree of the hot working and the warm working is obtained. Further, when the cold working is performed twice or more, or when the warm working is performed twice or more, all the cold working and the warm working material after the warm working is performed, and the baking The total degree of processing of the cold working and the warm working on the quenching material is obtained in comparison with the filling material. At this time, the amount of processing in each step of the cold processing and the warm processing is the quenching material before the cold processing, and after the cold processing and the warm processing. The degree of workability is appropriately selected between the warm processed material and the range of 20 to 90%. Preferably, the degree of processing in the warm processing, that is, the degree of processing in the warm processing on the cold-worked material before the warm processing is 10% or more. In the present invention, the degree of work F in the warm working with respect to the cold work material is defined as D (cm 2 ), the cross-sectional area of the cold work material before the warm work, When the cross-sectional area of the warm processed material is E (cm 2 ), the following formula:
Degree of processing F (%) = {(DE) / D} × 100
This is the value obtained by.

以下に、本発明の銅合金材料が得られるまでの加工及び処理の形態例を示す。ただし、本発明がこれに限定されるものではない。
(i)熱間加工→焼き入れ→温間加工→時効処理
(ii)熱間加工→冷却→溶体化処理及び焼き入れ→温間加工→時効処理
(iii)熱間加工→冷却→冷間加工→溶体化処理及び焼き入れ→温間加工→時効処理
(iv)熱間加工→焼き入れ→冷間加工(1回又は2回以上)→温間加工→時効処理
(v)熱間加工→冷却→溶体化処理及び焼き入れ→冷間加工(1回又は2回以上)→温間加工→時効処理
(vi)熱間加工→冷却→冷間加工(1回目)→溶体化処理及び焼き入れ→冷間加工(2回目)→温間加工→時効処理
なお、該(iii)の場合であるが、上述したように、溶体化処理前の冷間加工のひずみはその後の溶体化処理でとれるので、該(iii)の冷間加工の加工度は、該総加工度Cには算入せず、該温間加工での総加工度を、該総加工度Cとする。同様に、該(vi)の場合であるが、溶体化処理前の冷間加工のひずみはその後の溶体化処理でとれるので、該(vi)の冷間加工(1回目)の加工度は、該総加工度Cには算入せず、該冷間加工(2回目)及び該温間加工を経た後の総加工度を、該総加工度Cとする。
また、該(i)、(ii)及び(iii)の場合、熱間加工から温間加工までの間に、面削を行うことができる。また、該(iv)、(v)及び(vi)の場合、熱間加工から冷間加工までの間に、面削を行うことができる。
Below, the form example of a process and a process until the copper alloy material of this invention is obtained is shown. However, the present invention is not limited to this.
(I) Hot working → quenching → warm working → aging treatment (ii) Hot working → cooling → solution treatment and quenching → warm working → aging treatment (iii) hot working → cooling → cold working → Solution treatment and quenching → Warm processing → Aging treatment (iv) Hot processing → Quenching → Cold processing (one or more times) → Warm processing → Aging treatment (v) Hot processing → Cooling → Solution treatment and quenching → Cold processing (one or more times) → Warm processing → Aging treatment (vi) Hot processing → Cooling → Cold processing (first time) → Solution treatment and quenching → Cold work (second time) → Warm work → Aging treatment Although it is the case of (iii), as described above, the strain of the cold work before the solution treatment can be taken by the subsequent solution treatment. The degree of cold work in (iii) is not included in the total degree of work C, and the total degree of work in the warm work is The total processing degree is C. Similarly, in the case of (vi), since the strain of cold working before the solution treatment can be taken by the subsequent solution treatment, the degree of work of the cold work (first time) of (vi) is The total work degree C is not included in the total work degree C, and the total work degree after the cold work (second time) and the warm work is defined as the total work degree C.
In the cases (i), (ii), and (iii), chamfering can be performed between hot working and warm working. In the case of (iv), (v) and (vi), chamfering can be performed between hot working and cold working.

本発明の銅合金材料は、銅合金材料中のTiの含有量を2.7〜3.1質量%、好ましくは2.8〜3.0質量%とすることと、該焼き入れ材に対して、又は該焼き入れ後の該冷間加工により得られる該冷間加工材に対して、400〜600℃の加工温度で該温間加工を行うことにより、高強度且つ高導電性の銅合金材料となる。つまり、本発明では、Ti含有量を特定範囲とすることと、該焼き入れ材に対して、又は該焼き入れ後の該冷間加工により得られる該冷間加工材に対して、特定加工温度で該温間加工を行うことと、の両方を組み合わせることにより、銅合金材料を高強度且つ高導電性にするという効果が発揮される。   The copper alloy material of the present invention has a Ti content in the copper alloy material of 2.7 to 3.1% by mass, preferably 2.8 to 3.0% by mass, and the quenching material. Or by performing the warm working at a working temperature of 400 to 600 ° C. on the cold-worked material obtained by the cold working after quenching. Become a material. That is, in the present invention, a specific processing temperature for the Ti content within a specific range and for the quenched material or for the cold worked material obtained by the cold working after the quenching. By combining both the warm working and the copper alloy material, the effect of making the copper alloy material high strength and high conductivity is exhibited.

このことにより、本発明の銅合金材料は、該焼き入れ材に対する該冷間加工及び該温間加工の総加工度が20〜90%と低くても、導電率が20%IACS以上と高く、且つ、硬さが高い、好ましくは、ビッカース硬さが285以上と高い、高強度と高導電率をバランス良く合わせもった材料となる。   As a result, the copper alloy material of the present invention has a high conductivity of 20% IACS or more even when the total degree of cold working and warm working of the quenching material is as low as 20 to 90%. In addition, the material has high hardness, preferably high Vickers hardness of 285 or more, and has a high balance between high strength and high conductivity.

よって、本発明の銅合金材料は、従来のCu−Be系銅合金材料(CDA C17200)に代わる溶接機器の電極部材等用の銅合金材料として、好適に用いられる。   Therefore, the copper alloy material of the present invention is suitably used as a copper alloy material for electrode members of welding equipment, which replaces the conventional Cu—Be based copper alloy material (CDA C17200).

本発明の銅合金材料は、該時効処理を行って得られるもので、1次加工材である。本発明の銅合金材料の形状としては、例えば、厚さ2mm以上の板材、棒材、型材、鍛造材である。そして、本発明の銅合金材料を用いて、溶接機器の電極部材が製造される。   The copper alloy material of the present invention is obtained by performing the aging treatment and is a primary processed material. Examples of the shape of the copper alloy material of the present invention include a plate material, a bar material, a die material, and a forging material having a thickness of 2 mm or more. And the electrode member of a welding apparatus is manufactured using the copper alloy material of this invention.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例及び比較例)
<製造方法>
以下に示す鋳造及び熱間加工を行った後、工程1、工程2、工程3、工程4又は工程5のうちのいずれかを行い、次いで、時効処理1、時効処理2又は時効処理3のうちのいずれかの時効処理を行った。
鋳造→熱間加工→工程1、工程2、工程3、工程4又は工程5→時効処理1、時効処理2又は時効処理3
工程1、工程2、工程3、工程4又は工程5のうちのいずれを行ったか、及び時効処理1、時効処理2又は時効処理3のうちのいずれを行ったかを、表1に示す。
(Examples and Comparative Examples)
<Manufacturing method>
After performing the casting and hot working shown below, perform any one of Step 1, Step 2, Step 3, Step 4 or Step 5, and then, among aging treatment 1, aging treatment 2 or aging treatment 3 The aging treatment of either of was performed.
Casting-> hot working-> step 1, step 2, step 3, step 4 or step 5-> aging treatment 1, aging treatment 2 or aging treatment 3
Table 1 shows which of Step 1, Step 2, Step 3, Step 4 or Step 5 was performed and which of Ageing Treatment 1, Ageing Treatment 2 or Ageing Treatment 3 was performed.

(鋳造)
Cu及びTiの地金を用いて、表1に示すTi含有量で合金成分を配合し、高周波溶解炉を用いてφ100mmの鋳塊を製造後、φ90mmに皮剥きし、長さ90mmに切断して、鋳塊Aを得た。
(熱間加工)
得られた90mmの該鋳塊Aを、850±50℃で、長さ30mmに鍛造し、熱間鍛造材B(熱間加工材)を得た。
(工程1)
該熱間鍛造材Bを厚さ20mmに面削した。次いで、厚さ20mmにした該熱間鍛造材Bを、850℃で1時間溶体化処理した後、水中に焼き入れして、焼き入れ材C1を得た。
次いで、焼き入れ材C1を、表1に示す加工度で、表1に示す厚さに冷間圧延し、冷間圧延材D1(冷間加工材)を得た。
次いで、該冷間圧延材D1を、550℃で表1に示す加工度で、表1に示す最終厚さに温間鍛造し、温間鍛造材E1(温間加工材)を得た。
(工程2)
熱間鍛造後、直ちに該熱間鍛造材Bを、水中に焼き入れして、焼き入れ材C2を得た。次いで、該焼き入れ材C2を厚さ20mmに面削した。
次いで、該焼き入れ材C2を、表1に示す加工度で、表1に示す厚さに冷間圧延し、冷間圧延材D2(冷間加工材)を得た。
次いで、該冷間圧延材D2を、550℃で表1に示す加工度で、表1に示す最終厚さに温間鍛造し、温間鍛造材E2(温間加工材)を得た。
(工程3)
該熱間鍛造材Bを厚さ20mmに面削した。次いで、厚さ20mmにした該熱間鍛造材Bを、850℃で1時間溶体化処理した後、水中に焼き入れして、焼き入れ材C3を得た。
次いで、該焼き入れ材C3を、表1に示す加工度で、表1に示す厚さに冷間圧延し、冷間圧延材D3を得た。
(工程4)
該熱間鍛造材Bを厚さ20mmに面削した。次いで、厚さ20mmにした該熱間鍛造材Bを、850℃で1時間溶体化処理した後、水中に焼き入れして、焼き入れ材C4を得た。
次いで、焼き入れ材C4を、550℃で表1に示す加工度で、表1に示す最終厚さに温間鍛造し、温間鍛造材E4(温間加工材)を得た。
(工程5)
熱間鍛造後、直ちに該熱間鍛造材Bを、水中に焼き入れして、焼き入れ材C5を得た。次いで、該焼き入れ材C5を厚さ20mmに面削した。
次いで、該焼き入れ材C5を、550℃で表1に示す加工度で、表1に示す最終厚さに温間鍛造し、温間鍛造材E5(温間加工材)を得た。
(時効処理)
工程1で得た該温間鍛造材E1、工程2で得た該温間鍛造材E2、工程3で得た該冷間圧延材D3、工程4で得た該温間鍛造材E4、又は工程5で得た該温間鍛造材E5を、表1に示すNo.の条件で時効処理し、銅合金材料Fを得た。
時効処理1:400℃、4時間
時効処理2:300℃、8時間
時効処理3:500℃、2時間
(casting)
Using Cu and Ti ingots, alloy components with the Ti content shown in Table 1 were blended, and after manufacturing a φ100 mm ingot using a high frequency melting furnace, it was peeled to φ90 mm and cut to 90 mm in length. Ingot A was obtained.
(Hot processing)
The obtained 90 mm ingot A was forged at 850 ± 50 ° C. to a length of 30 mm to obtain a hot forged material B (hot work material).
(Process 1)
The hot forging material B was chamfered to a thickness of 20 mm. Next, the hot forged material B having a thickness of 20 mm was subjected to a solution treatment at 850 ° C. for 1 hour, and then quenched in water to obtain a quenched material C1.
Subsequently, the quenching material C1 was cold-rolled to the thickness shown in Table 1 with the workability shown in Table 1 to obtain a cold-rolled material D1 (cold-working material).
Next, the cold-rolled material D1 was warm forged to a final thickness shown in Table 1 at a working degree shown in Table 1 at 550 ° C. to obtain a warm-forged material E1 (warm-worked material).
(Process 2)
Immediately after hot forging, the hot forged material B was quenched in water to obtain a quenched material C2. Next, the quenching material C2 was chamfered to a thickness of 20 mm.
Subsequently, this quenching material C2 was cold-rolled to the thickness shown in Table 1 with the workability shown in Table 1, and cold-rolled material D2 (cold-working material) was obtained.
Next, the cold-rolled material D2 was warm-forged to a final thickness shown in Table 1 at a working degree shown in Table 1 at 550 ° C. to obtain a warm-forged material E2 (warm-worked material).
(Process 3)
The hot forging material B was chamfered to a thickness of 20 mm. Next, the hot forged material B having a thickness of 20 mm was subjected to a solution treatment at 850 ° C. for 1 hour, and then quenched in water to obtain a quenched material C3.
Next, the quenching material C3 was cold-rolled to the thickness shown in Table 1 with the workability shown in Table 1 to obtain a cold-rolled material D3.
(Process 4)
The hot forging material B was chamfered to a thickness of 20 mm. Next, the hot forged material B having a thickness of 20 mm was subjected to a solution treatment at 850 ° C. for 1 hour, and then quenched in water to obtain a quenched material C4.
Next, the quenching material C4 was warm forged to a final thickness shown in Table 1 at a working degree shown in Table 1 at 550 ° C. to obtain a warm forged material E4 (warm processed material).
(Process 5)
Immediately after hot forging, the hot forged material B was quenched in water to obtain a quenched material C5. Next, the quenched material C5 was chamfered to a thickness of 20 mm.
Next, the quenched material C5 was warm forged to a final thickness shown in Table 1 at a working degree shown in Table 1 at 550 ° C. to obtain a warm forged material E5 (warm processed material).
(Aging treatment)
The warm forged material E1 obtained in step 1, the warm forged material E2 obtained in step 2, the cold rolled material D3 obtained in step 3, the warm forged material E4 obtained in step 4, or the step No. 5 shown in Table 1 shows the warm forged material E5 obtained in No. 5. A copper alloy material F was obtained by aging treatment under the following conditions.
Aging treatment 1: 400 ° C., 4 hours Aging treatment 2: 300 ° C., 8 hours Aging treatment 3: 500 ° C., 2 hours

<銅合金材料の評価>
時効処理後に得られた銅合金材料F(1次加工材)について、下記の評価を行った。その結果を表2に示す。
(1)硬さ試験
ビッカース硬さ測定を、JIS Z 2244に準拠して行った。
ビッカース硬さが、285以上のものを「○」、285未満のものを「×」とした。
(2)導電率の測定
導電率をシグマテスターにより測定した。
導電率が、20%IACS以上のものを「○」、20%IACS未満のものを「×」とした。
<Evaluation of copper alloy material>
The following evaluation was performed on the copper alloy material F (primary processed material) obtained after the aging treatment. The results are shown in Table 2.
(1) Hardness test Vickers hardness was measured according to JIS Z 2244.
A sample having a Vickers hardness of 285 or more was designated as “◯”, and a sample having a Vickers hardness of less than 285 was designated as “x”.
(2) Measurement of conductivity The conductivity was measured with a sigma tester.
A sample having a conductivity of 20% IACS or higher was indicated by “◯”, and a value of less than 20% IACS was indicated by “x”.

Figure 2010007159
Figure 2010007159

Figure 2010007159
1)総加工度:工程1又は工程2の冷間加工及び温間加工の全工程の合計加工度、あるいは、工程3の冷間加工の加工度、あるいは、工程3又は工程4の温間加工の加工度
Figure 2010007159
1) Total working degree: Total working degree of all processes of cold working and warm working in step 1 or step 2, or working degree of cold working in step 3, or warm working in step 3 or step 4. Processing degree

<評価結果>
試験No.1〜8は、硬さ及び導電率のいずれも高かった。
試験No.9は、Ti含有量が低過ぎるため、硬さが低かった。
試験No.10は、Ti含有量が高過ぎるため、導電率が低かった。
試験No.11は、硬さ及び導電率をともに低く、時効処理条件を変えて、硬さを高くしても、導電率が20%IACSより低くなることは明らかなので、試験No.11からは、総加工度が低過ぎると、硬さ及び導電率をともに高くすることができないことが分かった。
試験No.12は、導電率は20%IACSであるものの硬さが低く、時効処理条件を変えて、硬さを高くしようとすると、導電率が20%IACSより低くなることは明らかなので、試験No.12からは、総加工度が高過ぎると、硬さ及び導電率をともに高くすることができないことが分かった。
試験No.13は、温間加工がないため、導電率が低かった。
<Evaluation results>
Test No. As for 1-8, both hardness and electrical conductivity were high.
Test No. No. 9 had a low hardness because the Ti content was too low.
Test No. No. 10 had a low electrical conductivity because the Ti content was too high.
Test No. No. 11 has low hardness and electrical conductivity, and it is clear that even when the aging treatment conditions are changed and the hardness is increased, the electrical conductivity is lower than 20% IACS. 11, it was found that if the total workability is too low, both hardness and conductivity cannot be increased.
Test No. No. 12, although the conductivity is 20% IACS, the hardness is low, and it is clear that when the aging treatment conditions are changed and the hardness is increased, the conductivity becomes lower than 20% IACS. From No. 12, it was found that both the hardness and the electrical conductivity cannot be increased if the total workability is too high.
Test No. No. 13 had low electrical conductivity because there was no warm working.

本発明によれば、高強度且つ高導電率の銅合金材量を製造できるので、Cu−Be系銅合金材料からの代替が求められている溶接機器の電極部材用の銅合金材料を提供することができる。   According to the present invention, a copper alloy material having high strength and high conductivity can be produced, and therefore a copper alloy material for an electrode member of a welding apparatus that is required to be replaced with a Cu-Be based copper alloy material is provided. be able to.

該冷間加工及び該温間加工を行う前後の様子を示す模式的な斜視図である。It is a typical perspective view which shows the mode before and after performing this cold working and this warm working. 該冷間加工及び該温間加工を行う前後の様子を示す模式的な斜視図である。It is a typical perspective view which shows the mode before and after performing this cold working and this warm working. 該冷間加工及び該温間加工を行う前後の様子を示す模式的な斜視図である。It is a typical perspective view which shows the mode before and after performing this cold working and this warm working. 図3に示す該焼き入れ材21の断面と、該温間加工材23の断面とを、それぞれの中心24で重ね合わせた図である。FIG. 4 is a diagram in which the cross section of the quenching material 21 shown in FIG.

符号の説明Explanation of symbols

1 焼き入れ材
2 加工方向
3 温間加工材
4 焼き入れ材の断面
5 温間加工材の断面
11 焼き入れ材
12 加工方向
13 温間加工材
14 焼き入れ材の断面
15 温間加工材の断面
21 焼き入れ材
22 加工方向
23 温間加工材
24 中心
25、27 温間加工材の位置
29 焼き入れ材の断面の輪郭
30 温間加工材の断面の輪郭
211 焼き入れ材の断面
231 温間加工材の断面
DESCRIPTION OF SYMBOLS 1 Hardening material 2 Processing direction 3 Warm processing material 4 Cross section of hardening material 5 Cross section of warm processing material 11 Hardening material 12 Processing direction 13 Warm processing material 14 Cross section of hardening material 15 Cross section of warm processing material 21 Hardening material 22 Processing direction 23 Warm processing material 24 Center 25, 27 Position of warm processing material 29 Contour outline of quenching material 30 Contour outline of warm processing material 211 Cross section 231 of quenching material Warm processing Cross section of material

Claims (3)

Tiを2.7〜3.1質量%を含有し、残部Cu及び不可避的不純物からなる銅合金材料であり、
該銅合金材料は、熱間加工を行った後、温間加工、又は冷間加工及び温間加工を行い、次いで、時効処理を行うことにより得られる銅合金材料であり、
該温間加工での加工温度が400〜600℃であり、
溶体化処理以降の該冷間加工及び該温間加工の総加工度が20〜90%であること、
を特徴とする銅合金材料。
It is a copper alloy material containing 2.7 to 3.1% by mass of Ti and composed of the balance Cu and inevitable impurities,
The copper alloy material is a copper alloy material obtained by performing hot working, then performing warm working, or cold working and warm working, and then performing an aging treatment,
The processing temperature in the warm processing is 400 to 600 ° C.,
The total processing degree of the cold processing and the warm processing after the solution treatment is 20 to 90%,
Features copper alloy material.
ビッカース硬さが285以上且つ電気伝導度が20%IACS以上であることを特徴とする請求項1記載の銅合金材料。   2. The copper alloy material according to claim 1, wherein the Vickers hardness is 285 or more and the electric conductivity is 20% IACS or more. 請求項1又は2いずれか1項記載の銅合金材料からなることを特徴とする溶接機器の電極部材。   An electrode member for welding equipment, comprising the copper alloy material according to claim 1.
JP2008170593A 2008-06-30 2008-06-30 Copper alloy material and electrode member of welding equipment Pending JP2010007159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170593A JP2010007159A (en) 2008-06-30 2008-06-30 Copper alloy material and electrode member of welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170593A JP2010007159A (en) 2008-06-30 2008-06-30 Copper alloy material and electrode member of welding equipment

Publications (1)

Publication Number Publication Date
JP2010007159A true JP2010007159A (en) 2010-01-14

Family

ID=41587970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170593A Pending JP2010007159A (en) 2008-06-30 2008-06-30 Copper alloy material and electrode member of welding equipment

Country Status (1)

Country Link
JP (1) JP2010007159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202261A (en) * 2010-03-26 2011-10-13 Osaka Prefecture Univ Copper-titanium-hydrogen alloy and method for producing the same
WO2014064962A1 (en) * 2012-10-24 2014-05-01 Jx日鉱日石金属株式会社 Camera module and titanium-copper foil
CN110983098A (en) * 2019-12-18 2020-04-10 苏州金江铜业有限公司 Easy-turning copper-titanium-tellurium alloy and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170934A (en) * 1988-12-24 1990-07-02 Nippon Mining Co Ltd Copper alloy with good direct bonding properties
JP2001303222A (en) * 2000-04-27 2001-10-31 Nippon Mining & Metals Co Ltd Titanium copper alloy material and heat treatment method for titanium copper alloy
JP2002356726A (en) * 2001-02-20 2002-12-13 Nippon Mining & Metals Co Ltd High-strength titanium-copper alloy, method for producing the same, and terminals and connectors using the same
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2004100042A (en) * 2002-07-18 2004-04-02 Honda Motor Co Ltd Method for producing copper alloy stock
JP2004285408A (en) * 2003-03-20 2004-10-14 Nikko Metal Manufacturing Co Ltd Titanium copper having excellent electroconductivity, and its production method
JP2006265611A (en) * 2005-03-23 2006-10-05 Nikko Kinzoku Kk Titanium copper and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170934A (en) * 1988-12-24 1990-07-02 Nippon Mining Co Ltd Copper alloy with good direct bonding properties
JP2001303222A (en) * 2000-04-27 2001-10-31 Nippon Mining & Metals Co Ltd Titanium copper alloy material and heat treatment method for titanium copper alloy
JP2002356726A (en) * 2001-02-20 2002-12-13 Nippon Mining & Metals Co Ltd High-strength titanium-copper alloy, method for producing the same, and terminals and connectors using the same
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2004100042A (en) * 2002-07-18 2004-04-02 Honda Motor Co Ltd Method for producing copper alloy stock
JP2004285408A (en) * 2003-03-20 2004-10-14 Nikko Metal Manufacturing Co Ltd Titanium copper having excellent electroconductivity, and its production method
JP2006265611A (en) * 2005-03-23 2006-10-05 Nikko Kinzoku Kk Titanium copper and its production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202261A (en) * 2010-03-26 2011-10-13 Osaka Prefecture Univ Copper-titanium-hydrogen alloy and method for producing the same
WO2014064962A1 (en) * 2012-10-24 2014-05-01 Jx日鉱日石金属株式会社 Camera module and titanium-copper foil
JP2014102294A (en) * 2012-10-24 2014-06-05 Jx Nippon Mining & Metals Corp Camera module and titanium copper foil
TWI480618B (en) * 2012-10-24 2015-04-11 Jx Nippon Mining & Metals Corp Camera module and titanium copper foil
KR20150060868A (en) * 2012-10-24 2015-06-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Camera module and titanium-copper foil
CN104755979A (en) * 2012-10-24 2015-07-01 Jx日矿日石金属株式会社 Camera module and titanium-copper foil
US9575286B2 (en) 2012-10-24 2017-02-21 Jx Nippon Mining & Metals Corporation Camera module and titanium-copper foil
KR101719080B1 (en) 2012-10-24 2017-03-22 제이엑스금속주식회사 Camera module and titanium-copper foil
CN110983098A (en) * 2019-12-18 2020-04-10 苏州金江铜业有限公司 Easy-turning copper-titanium-tellurium alloy and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4118832B2 (en) Copper alloy and manufacturing method thereof
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5847987B2 (en) Copper alloy containing silver
EP2258882B1 (en) High-strength and high-electroconductivity copper alloy pipe, bar, and wire rod
CN106164306B (en) Copper alloy wire and method for producing same
EP2971199B1 (en) Method for producing ultra high strength copper-nickel-tin alloys
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
TW201708554A (en) Copper alloy sheet material and production method therefor
JP2017179553A (en) Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD
KR101788497B1 (en) Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP2019178366A (en) Copper alloy sheet material and manufacturing method therefor
KR20230090332A (en) Improved 7XXX aluminum alloy
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
JP4171735B2 (en) Chromium-containing copper alloy manufacturing method, chromium-containing copper alloy and copper products
EP2971215B1 (en) Process for improving formability of wrought copper-nickel-tin alloys
JP2010007159A (en) Copper alloy material and electrode member of welding equipment
JPWO2013069800A1 (en) Rolled copper foil
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP2019157153A (en) Cu-Ni-Si-BASED COPPER ALLOY
JP6670277B2 (en) Cu-Ni-Si based copper alloy with excellent mold wear
JP2016211053A (en) Copper alloy excellent in heat resistance
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP2005017284A (en) Method of evaluating bending workability and spring characteristics of metallic material, and metallic material
KR102648370B1 (en) Copper-nickel-tin alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130313