[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016211053A - Copper alloy excellent in heat resistance - Google Patents

Copper alloy excellent in heat resistance Download PDF

Info

Publication number
JP2016211053A
JP2016211053A JP2015097305A JP2015097305A JP2016211053A JP 2016211053 A JP2016211053 A JP 2016211053A JP 2015097305 A JP2015097305 A JP 2015097305A JP 2015097305 A JP2015097305 A JP 2015097305A JP 2016211053 A JP2016211053 A JP 2016211053A
Authority
JP
Japan
Prior art keywords
copper alloy
compound
heat resistance
circle diameter
equivalent circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015097305A
Other languages
Japanese (ja)
Inventor
久郎 宍戸
Hisao Shishido
久郎 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015097305A priority Critical patent/JP2016211053A/en
Priority to TW105102885A priority patent/TWI593814B/en
Priority to CN201610220526.XA priority patent/CN106148754B/en
Priority to KR1020160057283A priority patent/KR20160133371A/en
Publication of JP2016211053A publication Critical patent/JP2016211053A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Fe-P-based copper alloy having high strength, high conductivity and further excellent in heat resistance.SOLUTION: There is provided a copper alloy containing, by mass%, Fe:1.8 to 2.7%, P:0.01 to 0.20%, Zn:0.01 to 0.30%, Sn:0.01 to 0.2% and the balance copper with inevitable impurities, having a compound with circle equivalent diameter of over 1 μm of 0 to 5.0×10per observation visual field of 1 mmand a compound with circle equivalent diameter of 100 to 200 nm of 1.0×10to 1.0×10per observation visual field of 1 mm.SELECTED DRAWING: None

Description

本発明は、銅合金に関し、詳細には、高強度、高導電性で、耐熱性に優れた銅合金に関する。   The present invention relates to a copper alloy, and in particular, to a copper alloy having high strength, high conductivity, and excellent heat resistance.

半導体リードフレームの素材には、銅合金が用いられる。銅合金としては、従来からFeとPとを含有するCu−Fe−P系の銅合金が一般に用いられる。Cu−Fe−P系の銅合金としては、CDA194合金が例示でき、具体的には、Fe:2.1〜2.6質量%、P:0.015〜0.15質量%、Zn:0.05〜0.20質量%を含有し、残部がCuおよび不可避不純物からなる銅合金である。Cu−Fe−P系の銅合金は、母相中にFeまたはFe−P等の金属間化合物を析出させることにより、高強度で、良好な導電性を有し、熱伝導性に優れたものとなる。そのため、国際標準合金として汎用されている。   A copper alloy is used as the material of the semiconductor lead frame. As a copper alloy, a Cu—Fe—P-based copper alloy containing Fe and P is generally used. As the Cu-Fe-P-based copper alloy, CDA194 alloy can be exemplified. Specifically, Fe: 2.1 to 2.6 mass%, P: 0.015 to 0.15 mass%, Zn: 0 A copper alloy containing 0.05 to 0.20 mass% with the balance being Cu and inevitable impurities. Cu-Fe-P-based copper alloys have high strength, good conductivity, and excellent thermal conductivity by precipitating intermetallic compounds such as Fe or Fe-P in the matrix It becomes. Therefore, it is widely used as an international standard alloy.

近年、電子機器に用いられる半導体装置の大容量化、小型化、薄肉軽量化、高機能化に伴い、半導体装置に使用されるリードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されている。これに伴い、これら半導体装置に使用されるリードフレームに用いられる銅合金板にも、より一層の高強度化、高導電率化、良好な熱伝導性が求められる。   In recent years, as the capacity, size, thickness, weight, and functionality of semiconductor devices used in electronic devices have increased, lead frames used in semiconductor devices have become smaller in cross-sectional area, resulting in greater strength and conductivity. Thermal conductivity is required. Accordingly, copper alloy plates used for lead frames used in these semiconductor devices are also required to have higher strength, higher conductivity, and better thermal conductivity.

電気電子部品用銅合金板の強度、導電性、曲げ加工性、および耐応力緩和特性を高める技術が、例えば、特許文献1に開示されている。この技術によれば、Feを比較的多く、2.5〜3.5質量%含有すると共に、Cu母相中に第二相粒子が析出した二相組織とすることにより、銅合金板の強度および導電性を高めている。   For example, Patent Document 1 discloses a technique for improving the strength, conductivity, bending workability, and stress relaxation resistance of a copper alloy plate for electrical and electronic parts. According to this technique, the strength of the copper alloy plate is obtained by forming a two-phase structure in which a relatively large amount of Fe is contained and 2.5 to 3.5% by mass and second phase particles are precipitated in the Cu matrix. And the conductivity is increased.

ところが、Feの含有量が多くなり過ぎると、導電性が却って劣化することがある。導電性を改善するには、例えば、FeまたはFe−P等の析出粒子の析出量を増加させればよい。しかし、析出粒子の析出量を増加させると、析出粒子の成長、粗大化を招き、強度や耐熱性が低下することが知られている。   However, if the Fe content is too high, the conductivity may deteriorate instead. In order to improve the electrical conductivity, for example, the precipitation amount of precipitated particles such as Fe or Fe—P may be increased. However, it is known that increasing the amount of precipitated particles causes growth and coarsening of the precipitated particles, resulting in a decrease in strength and heat resistance.

上記Cu−Fe−P系銅合金板を、リードフレーム等へ加工する際は、スタンピング加工(プレス打ち抜き加工と呼ばれることもある)により多ピン形状にするのが一般的である。最近では、前述したように電子機器に用いられる半導体装置の小型化、薄肉軽量化に対応するため、原材料として用いる銅合金板の薄肉化や、リードフレーム等の多ピン化が進んでいる。これに伴って、上記スタンピング加工後の加工品に歪み応力が残留し易く、ピンが不揃いになる傾向がある。そこでスタンピング加工して得られる多ピン形状の銅合金板には、通常、歪取り焼鈍等の熱処理を施して歪を除去する。しかしこうした熱処理を行なうと材料が軟化し易く、熱処理前の強度を維持できない。また、生産性を向上させるために、上記熱処理はより高温、短時間で行なうことが求められており、高温での熱処理後も高強度を維持できる耐熱性が強く求められている。   When the Cu—Fe—P copper alloy plate is processed into a lead frame or the like, it is generally formed into a multi-pin shape by stamping (sometimes referred to as press punching). Recently, as described above, in order to cope with the reduction in size and thickness and weight of semiconductor devices used in electronic equipment, the thickness of copper alloy plates used as raw materials and the increase in the number of pins of lead frames and the like are progressing. Along with this, strain stress tends to remain in the processed product after the stamping process, and the pins tend to be uneven. Therefore, the multi-pin copper alloy plate obtained by stamping is usually subjected to heat treatment such as strain relief annealing to remove the strain. However, when such heat treatment is performed, the material is easily softened, and the strength before the heat treatment cannot be maintained. Further, in order to improve productivity, the heat treatment is required to be performed at a higher temperature and in a shorter time, and heat resistance capable of maintaining high strength after the heat treatment at a high temperature is strongly required.

また、銅合金の強度、導電性、および耐熱性を向上させる技術が、特許文献2〜4に開示されている。   Moreover, the technique which improves the intensity | strength, electroconductivity, and heat resistance of a copper alloy is disclosed by patent documents 2-4.

特許文献2には、Cu母相中に分散したFe析出物の中で、面積が20nm2以上200nm2未満である析出物の合計の面積がCu母相全体に占める割合である面積率S1が0.4%以上であり、面積が200nm2以上である析出物の合計の面積がCu母相全体に占める割合である面積率S2が、0.4≦S1/S2≦1.4の関係を満たすことによって、強度、導電性、および耐熱性を高める技術が開示されている。 Patent Document 2, Cu in the Fe precipitates dispersed in the matrix phase, the area ratio S 1 total area of the deposit area is less than 20 nm 2 or more 200 nm 2 is a percentage of the total Cu matrix Is 0.4% or more, and the area ratio S 2, which is the ratio of the total area of precipitates having an area of 200 nm 2 or more to the entire Cu matrix, is 0.4 ≦ S 1 / S 2 ≦ 1. A technique for improving strength, conductivity, and heat resistance by satisfying the relationship 4 is disclosed.

特許文献3には、抽出残渣法により目開きサイズ0.1μmのフィルターによって分離された0.1μm以上の粗大なFe系化合物を抑制して、強度の向上に有効に寄与する微細なFe系化合物の割合を多くすることにより、強度、導電性、および耐熱性を高める技術が開示されている。   Patent Document 3 discloses a fine Fe-based compound that effectively suppresses coarse Fe-based compounds of 0.1 μm or more separated by a filter having an aperture size of 0.1 μm by the extraction residue method and effectively contributes to improvement in strength. A technique for increasing the strength, conductivity, and heat resistance by increasing the ratio is disclosed.

特許文献4には、粒径1μm以上のFe−P粒子の密度を30個/mm2以下とすることにより、γFe粒子およびαFe粒子の密度を増大させて強度、導電性、および耐熱性を高める技術が開示されている。 Patent Document 4 discloses that the density of Fe-P particles having a particle size of 1 μm or more is 30 particles / mm 2 or less, thereby increasing the density of γFe particles and αFe particles to increase strength, conductivity, and heat resistance. Technology is disclosed.

なお、銅合金の強度、導電性、および耐熱性を向上させる技術ではないが、特許文献5には、連続鋳造を経た後の鋳造方向に垂直な断面において、結晶粒内および結晶粒界に存在する初晶鉄粒子の長径の平均値を5μm以下とすることにより、製品となった銅合金板における表面欠陥数や内部割れ等を低減する技術が開示されている。   Although it is not a technique for improving the strength, electrical conductivity, and heat resistance of a copper alloy, Patent Document 5 describes the presence in crystal grains and in grain boundaries in a cross section perpendicular to the casting direction after continuous casting. A technique for reducing the number of surface defects, internal cracks, and the like in a copper alloy sheet as a product by setting the average value of the major axis of primary iron particles to 5 μm or less is disclosed.

特開2012−207261号公報JP 2012-207261 A 特許第5555154号公報Japanese Patent No. 5555154 特許第4950584号公報Japanese Patent No. 4950584 特開2014−55341号公報JP 2014-55341 A 特開2013−71155号公報JP 2013-71155 A

上記特許文献1の技術では、銅合金板の強度および導電性を高めているが、耐熱性については考慮されていない。   In the technique of Patent Document 1, the strength and conductivity of the copper alloy plate are increased, but heat resistance is not considered.

また、上記特許文献2の技術では、直径が数nm〜数十nmの非常に微細な析出物を析出させており、上記特許文献3〜5の技術では、0.1μm以上のFe系化合物に着目してその存在割合や大きさを制御している。しかし、本発明者が検討したところ、上記特許文献2〜5では、円相当直径で100〜200nmの化合物の個数密度と、強度、導電性、および耐熱性の関係については検討されていなかった。   In the technique of Patent Document 2, very fine precipitates having a diameter of several nm to several tens of nm are deposited. In the techniques of Patent Documents 3 to 5, an Fe-based compound having a diameter of 0.1 μm or more is formed. Its presence ratio and size are controlled with attention. However, as a result of studies by the present inventors, in Patent Documents 2 to 5, the relationship between the number density of compounds having an equivalent circle diameter of 100 to 200 nm, strength, conductivity, and heat resistance has not been studied.

本発明は上記の様な事情に着目してなされたものであって、その目的は、高強度、高導電性で、更に耐熱性にも優れたCu−Fe−P系の銅合金を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and its object is to provide a Cu—Fe—P-based copper alloy having high strength, high conductivity, and excellent heat resistance. There is.

上記課題を解決することのできた本発明に係る耐熱性に優れた銅合金は、質量%で、Fe:1.8〜2.7%、P:0.01〜0.20%、Zn:0.01〜0.30%、Sn:0.01〜0.2%を含有し、残部が銅および不可避不純物からなる銅合金である。そして、円相当直径で1μm超の化合物が観察視野面積1mm2あたり0個以上5.0×103個以下で、円相当直径で100〜200nmの化合物が観察視野面積1mm2あたり1.0×105〜1.0×107個である点に要旨を有する。なお、以下、化学成分について、%は質量%を意味する。 The copper alloy excellent in heat resistance according to the present invention that has solved the above problems is mass%, Fe: 1.8 to 2.7%, P: 0.01 to 0.20%, Zn: 0. A copper alloy containing 0.01 to 0.30%, Sn: 0.01 to 0.2%, with the balance being copper and inevitable impurities. The circle-equivalent compound of 1μm than the observation field area 1 mm 2 per zero or more 5.0 × 10 3 or less in diameter, the compounds of 100~200nm equivalent circle diameter observed field area 1 mm 2 per 1.0 × The point is that it is 10 5 to 1.0 × 10 7 . Hereinafter, for chemical components,% means mass%.

上記銅合金は、更に、質量%で、Si、Ni、およびCoよりなる群から選ばれる一種または二種以上:合計で0.01〜0.1%を含有してもよい。   The copper alloy may further contain, in mass%, one or more selected from the group consisting of Si, Ni, and Co: 0.01 to 0.1% in total.

本発明によれば、成分組成および所定の大きさの化合物の個数密度を適切に制御しているため、高強度、高導電性で、更に耐熱性にも優れたCu−Fe−P系の銅合金を提供できる。   According to the present invention, since the component composition and the number density of the compound of a predetermined size are appropriately controlled, Cu—Fe—P-based copper having high strength, high conductivity, and excellent heat resistance. Can provide alloys.

本発明者は、高強度、高導電性で、耐熱性にも優れたCu−Fe−P系の銅合金を提供するために、鋭意検討を重ねてきた。その結果、銅合金の成分組成を適切に制御すると共に、銅合金に含まれる化合物のうち、(A)円相当直径で1μm超の化合物を、観察視野面積1mm2あたり0個以上5.0×103個以下とし、(B)円相当直径で100〜200nmの化合物を、観察視野面積1mm2あたり1.0×105〜1.0×107個とすれば、強度、導電性、および耐熱性の全てに優れた銅合金を実現できることを見出し、本発明を完成した。 The present inventor has intensively studied to provide a Cu—Fe—P-based copper alloy having high strength, high conductivity, and excellent heat resistance. As a result, the component composition of the copper alloy is appropriately controlled, and among the compounds contained in the copper alloy, (A) 0 or more 5.0 × compounds per 1 mm 2 of the observation visual field area of an equivalent circle diameter of more than 1 μm. 10 3 or less, and (B) a compound having an equivalent circle diameter of 100 to 200 nm of 1.0 × 10 5 to 1.0 × 10 7 per 1 mm 2 of the viewing field area, the strength, conductivity, and The present invention has been completed by finding that a copper alloy having excellent heat resistance can be realized.

また、本発明に係る銅合金は、成分組成を調整した銅合金を溶解、鋳造し、得られた鋳塊を均熱処理した後、熱間圧延でき、特に、化合物の個数密度を上記範囲に制御するには、均熱処理条件および熱間圧延条件を適切に調整すれば良いことが明らかになった。   In addition, the copper alloy according to the present invention can be hot-rolled after melting and casting the copper alloy with adjusted component composition, soaking the obtained ingot, and in particular, controlling the number density of the compound within the above range. In order to achieve this, it has become clear that the conditions for soaking and hot rolling should be adjusted appropriately.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

(A)円相当直径で1μm超の化合物の個数密度
本発明の銅合金は、円相当直径で1μm超の化合物が、観察視野面積1mm2あたり0個以上5.0×103個以下である。円相当直径で1μm超の化合物の個数密度が5.0×103個/mm2を超えると、後述する円相当直径で100〜200nmの化合物、および一次焼鈍または二次焼鈍で生成する円相当直径で数nm〜数十nmの化合物の生成量が低減する。その結果、強度、導電性、耐熱性が劣化する。また、プレス打ち抜き加工時に割れが発生する原因となる。従って本発明では、円相当直径で1μm超の化合物の個数密度を5.0×103個/mm2以下とする。円相当直径で1μm超の化合物の個数密度は、好ましくは4.5×103個/mm2以下、より好ましくは4.0×103個/mm2以下とする。円相当直径で1μm超の化合物の個数密度は、できるだけ少ない方が良く、最も好ましくは0個/mm2である。
(A) Number density of compounds with equivalent circle diameter of more than 1 μm In the copper alloy of the present invention, the number of compounds with equivalent circle diameter of more than 1 μm is 0 or more and 5.0 × 10 3 or less per 1 mm 2 of the viewing field area. . When the number density of the compound having an equivalent circle diameter of more than 1 μm exceeds 5.0 × 10 3 pieces / mm 2 , the equivalent of a circle having an equivalent circle diameter of 100 to 200 nm, which will be described later, and a circle formed by primary annealing or secondary annealing The production amount of a compound having a diameter of several nm to several tens nm is reduced. As a result, strength, conductivity, and heat resistance deteriorate. Moreover, it becomes a cause which a crack generate | occur | produces at the time of press punching. Therefore, in the present invention, the number density of compounds having an equivalent circle diameter of more than 1 μm is set to 5.0 × 10 3 pieces / mm 2 or less. The number density of compounds having an equivalent circle diameter of more than 1 μm is preferably 4.5 × 10 3 pieces / mm 2 or less, more preferably 4.0 × 10 3 pieces / mm 2 or less. The number density of compounds having an equivalent circle diameter of more than 1 μm is preferably as small as possible, and most preferably 0 / mm 2 .

(B)円相当直径で100〜200nmの化合物の個数密度
本発明の銅合金は、円相当直径で100〜200nmの化合物が、観察視野面積1mm2あたり1.0×105個以上1.0×107個以下である。即ち、円相当直径で100〜200nmの化合物を0.10×106個以上10×106個以下とする。円相当直径で100〜200nmの化合物は、従来では特段注目されていなかったが、本発明者が検討したところ、銅合金の導電性および耐熱性向上に寄与することが初めて明らかになった。こうした作用を発揮させるには、円相当直径で100〜200nmの化合物の個数密度を1.0×105個以上とする。円相当直径で100〜200nmの化合物の個数密度は、好ましくは5.0×105個/mm2以上である。しかし、円相当直径で100〜200nmの化合物の個数密度が大きくなり過ぎると、一次焼鈍および二次焼鈍で生成する数nm〜数十nmの化合物量が低減し、銅合金の強度が低下し、耐熱性も却って劣化する。従って円相当直径で100〜200nmの化合物の個数密度は1.0×107個以下とする必要がある。円相当直径で100〜200nmの化合物の個数密度は、好ましくは8.0×106個/mm2以下、より好ましくは5.0×106個/mm2以下である。
(B) Number density of compound having an equivalent circle diameter of 100 to 200 nm In the copper alloy of the present invention, a compound having an equivalent circle diameter of 100 to 200 nm is 1.0 × 10 5 or more per 1 mm 2 of the observation visual field area. × 10 7 or less. That is, the number of compounds having an equivalent circle diameter of 100 to 200 nm is 0.10 × 10 6 or more and 10 × 10 6 or less. A compound having an equivalent circle diameter of 100 to 200 nm has not been particularly noticed in the past, but the present inventors have examined it for the first time and contributed to improving the conductivity and heat resistance of the copper alloy. In order to exert such an effect, the number density of the compound having a circle equivalent diameter of 100 to 200 nm is set to 1.0 × 10 5 or more. The number density of compounds having an equivalent circle diameter of 100 to 200 nm is preferably 5.0 × 10 5 pieces / mm 2 or more. However, when the number density of the compound having a circle equivalent diameter of 100 to 200 nm becomes too large, the amount of the compound of several nm to several tens of nm generated by the primary annealing and the secondary annealing is reduced, and the strength of the copper alloy is reduced. The heat resistance also deteriorates. Therefore, the number density of a compound having an equivalent circle diameter of 100 to 200 nm needs to be 1.0 × 10 7 or less. The number density of the compound having an equivalent circle diameter of 100 to 200 nm is preferably 8.0 × 10 6 pieces / mm 2 or less, more preferably 5.0 × 10 6 pieces / mm 2 or less.

円相当直径で1μm超の化合物、および100〜200nmの化合物の個数密度は、次の手順で測定すればよい。即ち、円相当直径で1μm超の化合物の個数密度は、試験片の幅方向における横断面において、例えば、板厚中心部の厚み方向90μm×断面方向125μmの領域を走査型電子顕微鏡で、倍率1000倍で観察し、各化合物の円相当直径を、画像解析ソフトを用いて算出し、円相当直径が1μm超の化合物の個数を求め、観察視野面積で除することにより算出すればよい。   The number density of a compound having a circle equivalent diameter of more than 1 μm and a compound having a diameter of 100 to 200 nm may be measured by the following procedure. That is, the number density of the compound having an equivalent circle diameter of more than 1 μm is, for example, in the cross section in the width direction of the test piece, for example, a region of 90 μm in the thickness direction at the center of the plate thickness × 125 μm in the cross section direction with a scanning electron microscope. The circle equivalent diameter of each compound is calculated using image analysis software, and the number of compounds having an equivalent circle diameter of more than 1 μm is obtained and divided by the observation visual field area.

円相当直径で100〜200nmの化合物の個数密度は、上記横断面において、例えば、板厚中心部の厚み方向9.0μm×断面方向12.5μmの領域を走査型電子顕微鏡で、倍率10000倍で観察し、各化合物の円相当直径を、上記と同様、画像解析ソフトを用いて算出し、円相当直径が100〜200nm化合物の個数を求め、観察視野面積で除することにより算出すればよい。なお、分析対象とする化合物の種類は特に限定されない。   The number density of a compound having an equivalent circle diameter of 100 to 200 nm is, for example, a region of 9.0 μm in the thickness direction at the center of the plate thickness × 12.5 μm in the cross-sectional direction in the cross section, at a magnification of 10,000. Observe and calculate the equivalent circle diameter of each compound using image analysis software in the same manner as described above, obtain the number of compounds having an equivalent circle diameter of 100 to 200 nm, and divide by the observation visual field area. The type of compound to be analyzed is not particularly limited.

上記画像解析ソフトとしては、例えば、Macromedia社製のImage−Pro Plusを用いることができる。   As the image analysis software, for example, Image-Pro Plus manufactured by Macromedia can be used.

なお、上記特許文献3に開示されている技術では、上述したように、抽出残渣法により目開きサイズ0.1μmのフィルターによって分離された0.1μm以上の粗大なFe系化合物を抑制している。しかし、この技術では、本発明のように、円相当直径で1μm超の化合物と100〜200nmの化合物の個数密度を別々に算出できない。また、上記特許文献5には、初晶鉄粒子の長径の平均値を5μm以下に抑えることが記載されており、上記特許文献4には、粒径1μm以上のFe−P粒子の密度を30個/mm2以下とすることが記載されている。しかし、特許文献4、5においては、円相当直径で100〜200nmの化合物の個数密度は全く考慮されていない。 In the technique disclosed in Patent Document 3, as described above, coarse Fe-based compounds of 0.1 μm or more separated by a filter having an aperture size of 0.1 μm are suppressed by the extraction residue method. . However, with this technique, as in the present invention, the number density of a compound having a circle equivalent diameter of more than 1 μm and a compound having a diameter of 100 to 200 nm cannot be calculated separately. Patent Document 5 describes that the average value of the major axis of primary iron particles is suppressed to 5 μm or less, and Patent Document 4 describes that the density of Fe—P particles having a particle diameter of 1 μm or more is 30. It is described that the number is not more than pieces / mm 2 . However, in Patent Documents 4 and 5, the number density of a compound having a circle equivalent diameter of 100 to 200 nm is not considered at all.

本発明に係る銅合金は、円相当直径で1μm超の化合物の個数密度と、100〜200nmの化合物の個数密度が、上記範囲を満足することが重要であり、更に、成分組成は、質量%で、Fe:1.8〜2.7%、P:0.01〜0.20%、Zn:0.01〜0.30%、Sn:0.01〜0.2%を満足する必要がある。   In the copper alloy according to the present invention, it is important that the number density of the compound having an equivalent circle diameter of more than 1 μm and the number density of the compound having a diameter of 100 to 200 nm satisfy the above range. And Fe: 1.8 to 2.7%, P: 0.01 to 0.20%, Zn: 0.01 to 0.30%, Sn: 0.01 to 0.2% must be satisfied. is there.

Feは、銅合金の母相中に固溶させるか、Fe系の化合物を生成させることによって、強度と耐熱性を向上させるために必要な元素である。Fe量が1.8%未満では、Feの固溶量または析出量が不足し、強度および耐熱性が得られない。従って本発明では、Fe量は1.8%以上とする。Fe量は、好ましくは2.1%以上である。しかし、Fe量が過剰になると、粗大なFe化合物が生成し、打ち抜き加工時に割れが発生する原因になる。従って本発明では、Fe量は2.7%以下とする。Fe量は、好ましくは2.6%以下、より好ましくは2.4%以下である。   Fe is an element necessary for improving strength and heat resistance by forming a solid solution in a parent phase of a copper alloy or generating an Fe-based compound. If the amount of Fe is less than 1.8%, the amount of solid solution or precipitation of Fe is insufficient, and strength and heat resistance cannot be obtained. Therefore, in the present invention, the amount of Fe is 1.8% or more. The amount of Fe is preferably 2.1% or more. However, when the amount of Fe is excessive, a coarse Fe compound is generated, which causes cracks during punching. Therefore, in the present invention, the amount of Fe is set to 2.7% or less. The amount of Fe is preferably 2.6% or less, more preferably 2.4% or less.

Pは、溶湯に混入する酸素を脱酸する作用を有する元素であり、またFeとの化合物を形成して銅合金の強度および耐熱性を向上させる元素である。こうした作用を発揮させるには、P量は0.01%以上とする必要がある。P量は、好ましくは0.02%以上である。しかし、P量が過剰になると導電率が低下する。また、熱間加工性が低下する。従って本発明では、P量は0.20%以下とする。P量は、好ましくは0.15%以下である。   P is an element having an action of deoxidizing oxygen mixed in the molten metal, and is an element that forms a compound with Fe to improve the strength and heat resistance of the copper alloy. In order to exert such an effect, the amount of P needs to be 0.01% or more. The amount of P is preferably 0.02% or more. However, when the amount of P becomes excessive, the conductivity decreases. Moreover, hot workability falls. Therefore, in the present invention, the P content is 0.20% or less. The amount of P is preferably 0.15% or less.

Znは、銅合金に対するはんだの耐熱剥離性を改善したり、銅合金に対するSnめっきの耐熱剥離性を改善するために必要な元素である。こうした耐熱剥離性は、例えば、銅合金をリードフレームなどに用いるときに要求される特性である。こうした作用を発揮させるには、Zn量は0.01%以上とする必要がある。Zn量は、好ましくは0.05%以上である。しかしZn量が過剰になると、導電率が低下する。また、銅合金に対するはんだの濡れ性が低下する。従って本発明では、Zn量は0.30%以下とする。Zn量は、好ましくは0.20%以下である。   Zn is an element necessary for improving the heat-resistant peelability of the solder with respect to the copper alloy or for improving the heat-resistant peelability of the Sn plating with respect to the copper alloy. Such heat peelability is a characteristic required when, for example, a copper alloy is used for a lead frame or the like. In order to exert such an effect, the Zn content needs to be 0.01% or more. The amount of Zn is preferably 0.05% or more. However, when the amount of Zn becomes excessive, the conductivity decreases. Moreover, the wettability of the solder with respect to a copper alloy falls. Therefore, in the present invention, the Zn content is set to 0.30% or less. The amount of Zn is preferably 0.20% or less.

Snは、銅合金の強度および耐熱性を向上させるために必要な元素である。こうした作用を発揮させるために、Sn量は0.01%以上とする。Sn量は、好ましくは0.02%以上である。しかしSn量が過剰になると、導電率が低下する。また、熱間加工性も低下する。従って本発明では、Sn量は0.2%以下とする。Sn量は、好ましくは0.10%以下であり、より好ましくは0.05%以下である。   Sn is an element necessary for improving the strength and heat resistance of the copper alloy. In order to exert such an effect, the Sn amount is set to 0.01% or more. The amount of Sn is preferably 0.02% or more. However, when the amount of Sn becomes excessive, the conductivity decreases. Moreover, hot workability also falls. Therefore, in the present invention, the Sn amount is 0.2% or less. Sn amount becomes like this. Preferably it is 0.10% or less, More preferably, it is 0.05% or less.

本発明に係る銅合金の残部は、銅および不可避不純物である。   The balance of the copper alloy according to the present invention is copper and inevitable impurities.

本発明の銅合金は、更に、質量%で、Si、Ni、およびCoよりなる群から選ばれる一種または二種以上を、合計で0.01〜0.1%含有してもよい。   The copper alloy of the present invention may further contain 0.01 to 0.1% in total of one or more selected from the group consisting of Si, Ni, and Co in mass%.

Si、Ni、およびCoは、FeまたはPと化合物を形成し、銅合金の強度および耐熱性を向上させる元素である。こうした作用を有効に発揮させるには、Si、Ni、およびCoを一種または任意に選ばれる二種以上を合計で0.01%以上とすることが好ましく、より好ましくは0.03%以上である。しかし、Si等の元素を過剰に含有すると、化合物が粗大化し、プレス打ち抜き加工時に割れを発生させる原因となる。従って本発明では、Si、Ni、およびCoを一種または任意に選ばれる二種以上を合計で0.1%以下とすることが好ましく、より好ましくは0.08%以下である。   Si, Ni, and Co are elements that form a compound with Fe or P and improve the strength and heat resistance of the copper alloy. In order to effectively exert such an action, it is preferable that Si, Ni, and Co be selected from one or more of two or more kinds in total to 0.01% or more, and more preferably 0.03% or more. . However, when an element such as Si is excessively contained, the compound becomes coarse and causes cracks during press punching. Therefore, in the present invention, it is preferable that Si, Ni, and Co are selected from one or two or more, and the total is preferably 0.1% or less, and more preferably 0.08% or less.

本発明に係る銅合金は、引張強度が530MPa以上、導電率が60%IACS以上となり、ビッカース硬さは155Hv以上となる。また、475℃で1分間焼鈍した後におけるビッカース硬さは140Hv以上となり、耐熱性に優れた銅合金となる。   The copper alloy according to the present invention has a tensile strength of 530 MPa or more, an electrical conductivity of 60% IACS or more, and a Vickers hardness of 155 Hv or more. Further, after annealing at 475 ° C. for 1 minute, the Vickers hardness is 140 Hv or more, and a copper alloy having excellent heat resistance is obtained.

次に、本発明に係る銅合金の好ましい製造条件について説明する。   Next, preferable production conditions for the copper alloy according to the present invention will be described.

まず、成分組成を調整した銅合金を溶解、鋳造し、得られた鋳塊を均熱処理した後、熱間圧延する。化合物の個数密度を上記範囲に制御するには、均熱処理条件および熱間圧延条件を適切に調整すればよい。銅合金の溶解、鋳造は常法に従って行なえばよい。   First, a copper alloy with an adjusted component composition is melted and cast, and the resulting ingot is soaked and then hot rolled. In order to control the number density of the compound within the above range, the soaking condition and the hot rolling condition may be adjusted appropriately. The melting and casting of the copper alloy may be performed according to a conventional method.

均熱処理は、上記鋳塊を800℃以上950℃未満に加熱し、必要に応じて一定時間保持すればよい。保持時間は、例えば、10〜120分間である。均熱処理の温度が800℃を下回ると、円相当直径で100〜200nmの化合物が多く生成し、個数密度が高くなりやすい。従って本発明では、均熱処理の温度は、800℃以上とすることが好ましい。均熱処理の温度は、より好ましくは830℃以上、更に好ましくは850℃以上である。しかし均熱処理の温度が950℃以上になると、円相当直径で1μm超の化合物が多く生成し、個数密度が高くなりやすい。従って本発明では、均熱処理の温度は、950℃未満とすることが好ましい。均熱処理の温度は、より好ましくは940℃以下、更に好ましくは920℃以下である。例えば、上記特許文献4では、鋳塊を1020〜1080℃まで加熱して2時間以上保持しているため、円相当直径で1μm超の化合物が多く生成し過ぎていると考えられる。従って上記特許文献4では、強度が低くなっていると考えられる。   The soaking may be performed by heating the ingot to 800 ° C. or more and less than 950 ° C. and holding it for a certain time as necessary. The holding time is, for example, 10 to 120 minutes. When the temperature of the soaking is below 800 ° C., a large number of compounds having an equivalent circle diameter of 100 to 200 nm are generated, and the number density tends to be high. Therefore, in the present invention, the temperature of soaking is preferably 800 ° C. or higher. The temperature of soaking is more preferably 830 ° C. or higher, further preferably 850 ° C. or higher. However, when the temperature of soaking is 950 ° C. or higher, a large number of compounds having an equivalent circle diameter of more than 1 μm are formed, and the number density tends to increase. Therefore, in the present invention, the temperature of soaking is preferably less than 950 ° C. The temperature of soaking is more preferably 940 ° C. or lower, and further preferably 920 ° C. or lower. For example, in Patent Document 4, since the ingot is heated to 1020 to 1080 ° C. and held for 2 hours or more, it is considered that too many compounds having an equivalent circle diameter of more than 1 μm are generated. Therefore, in the said patent document 4, it is thought that intensity | strength is low.

均熱処理した後は、熱間圧延を行なう。熱間圧延の圧下率は特に限定されず、目的とする板厚および後工程の冷間圧延における冷延率との関係で決定すればよい。なお、熱間圧延は、1回、或いは複数回行なうことができる。   After soaking, hot rolling is performed. The rolling reduction of the hot rolling is not particularly limited, and may be determined based on the relationship between the target plate thickness and the cold rolling rate in the subsequent cold rolling. The hot rolling can be performed once or a plurality of times.

本発明の銅合金を製造する際には、熱間圧延の終了温度を700℃以上850℃未満とすることが特に推奨される。熱間圧延の終了温度が700℃を下回ると、円相当直径で100〜200nmの化合物が多く生成し、個数密度が高くなりやすい。従って本発明では、熱間圧延の終了温度は、700℃以上とすることが好ましい。熱間圧延の終了温度は、より好ましくは730℃以上、更に好ましくは750℃以上である。しかし熱間圧延の終了温度が850℃以上になると、円相当直径で1μm超の化合物が多く生成し、個数密度が高くなりやすい。従って本発明では、熱間圧延の終了温度は850℃未満とすることが好ましい。熱間圧延の終了温度は、より好ましくは840℃以下、更に好ましくは830℃以下である。   When producing the copper alloy of the present invention, it is particularly recommended that the end temperature of hot rolling be 700 ° C. or more and less than 850 ° C. When the end temperature of hot rolling is lower than 700 ° C., a large number of compounds having an equivalent circle diameter of 100 to 200 nm are generated, and the number density tends to increase. Therefore, in the present invention, the end temperature of hot rolling is preferably 700 ° C. or higher. The end temperature of hot rolling is more preferably 730 ° C. or higher, and further preferably 750 ° C. or higher. However, when the end temperature of hot rolling is 850 ° C. or more, a large number of compounds having an equivalent circle diameter of more than 1 μm are generated, and the number density tends to increase. Therefore, in the present invention, the end temperature of hot rolling is preferably less than 850 ° C. The end temperature of hot rolling is more preferably 840 ° C. or lower, and further preferably 830 ° C. or lower.

熱間圧延後は、室温まで急冷すればよい。熱間圧延後の冷却速度が小さいと、冷却過程で円相当直径が1μm超の粗大な化合物が多く析出し、円相当直径で100〜200nmの微細な化合物を所定量生成させにくくなる。本発明で急冷とは、空冷を超える平均冷却速度での冷却であり、好ましくは20℃/秒以上である。平均冷却速度の上限は特に限定されないが、実操業などを考慮すると、おおむね500℃/秒以下が好ましい。   After hot rolling, it may be cooled rapidly to room temperature. When the cooling rate after hot rolling is low, a large amount of coarse compounds having an equivalent circle diameter of more than 1 μm are precipitated in the cooling process, and it becomes difficult to produce a predetermined amount of a fine compound having an equivalent circle diameter of 100 to 200 nm. In the present invention, the rapid cooling is cooling at an average cooling rate exceeding air cooling, and is preferably 20 ° C./second or more. The upper limit of the average cooling rate is not particularly limited, but is preferably about 500 ° C./second or less in consideration of actual operation and the like.

急冷手段は特に限定されず、例えば、水冷など公知の冷却手段を採用できる。   The rapid cooling means is not particularly limited, and for example, a known cooling means such as water cooling can be adopted.

急冷した後は、1回目の冷間圧延(以下、1次冷間圧延という)を施した板材に1次焼鈍による熱処理を施した後、2回目の冷間圧延(以下、2次冷間圧延という)により、所定形状に成形し、その後、2次焼鈍による熱処理を施すことにより、銅合金組織内の歪みを除去すればよい。   After the rapid cooling, the first cold rolling (hereinafter referred to as primary cold rolling) is subjected to heat treatment by primary annealing and then the second cold rolling (hereinafter secondary cold rolling). Therefore, the strain in the copper alloy structure may be removed by forming into a predetermined shape and then performing heat treatment by secondary annealing.

1次冷間圧延における圧延加工率は任意であるが、最終的な板材の板厚および後述する2次冷間圧延における圧延加工率に合わせて調節すればよい。   Although the rolling processing rate in primary cold rolling is arbitrary, what is necessary is just to adjust according to the plate | board thickness of a final board | plate material, and the rolling processing rate in the secondary cold rolling mentioned later.

1次冷間圧延後は、例えば、450〜650℃で30分間〜24時間の1次焼鈍を施すことにより、円相当直径で100〜200nmの化合物の個数密度を適正な範囲に制御できる。1次焼鈍温度が450℃未満または1次焼鈍時間が30分間未満では、加熱処理不足により、円相当直径で100〜200nmの化合物の個数密度が低くなりやすく、導電率が低くなりやすい。一方、1次焼鈍温度が650℃を超えると、円相当直径で100〜200nmの化合物の個数密度が高くなりやすく、強度が低くなりやすい。また、1次焼鈍時間が24時間を超えると、エネルギーロスとなり、経済的に非効率である。   After the primary cold rolling, for example, by performing primary annealing at 450 to 650 ° C. for 30 minutes to 24 hours, the number density of compounds having an equivalent circle diameter of 100 to 200 nm can be controlled within an appropriate range. When the primary annealing temperature is less than 450 ° C. or the primary annealing time is less than 30 minutes, due to insufficient heat treatment, the number density of compounds having an equivalent circle diameter of 100 to 200 nm tends to be low, and the conductivity tends to be low. On the other hand, when the primary annealing temperature exceeds 650 ° C., the number density of compounds having an equivalent circle diameter of 100 to 200 nm tends to be high, and the strength tends to be low. On the other hand, when the primary annealing time exceeds 24 hours, energy loss occurs and it is economically inefficient.

次に、1次焼鈍後は、2次冷間圧延を施す。2次冷間圧延により、金属組織内に加工歪みを導入し、銅合金板の強度を向上できる。2次冷間圧延における圧延加工率は、例えば25〜70%とすればよい。2次冷間圧延における圧延加工率が25%未満では、圧延により金属組織内に蓄積される歪み量が低下し、充分な強度が得にくくなる。一方、2次冷間圧延における圧延加工率が70%を超えると、金属組織内に蓄積される歪み量は飽和して、強度の向上が得にくくなる。   Next, after the primary annealing, secondary cold rolling is performed. By secondary cold rolling, processing strain can be introduced into the metal structure and the strength of the copper alloy sheet can be improved. The rolling rate in secondary cold rolling may be, for example, 25 to 70%. When the rolling ratio in secondary cold rolling is less than 25%, the amount of strain accumulated in the metal structure by rolling is reduced, and it becomes difficult to obtain sufficient strength. On the other hand, if the rolling rate in secondary cold rolling exceeds 70%, the strain amount accumulated in the metal structure is saturated, and it is difficult to obtain an improvement in strength.

次に、2次冷間圧延後は、250〜450℃で、20〜1000秒間の2次焼鈍を行なうことが好ましい。2次焼鈍は、2次冷間圧延で導入された歪を取るための焼鈍であり、250〜450℃の低温域で可動する歪の除去を行なえば良い。2次焼鈍温度が250℃未満または2次焼鈍時間が20秒間未満では、可動歪の除去が不充分となり、導電率が低下しやすくなる。一方、2次焼鈍温度が450℃を超えるか、2次焼鈍時間が1000秒間を超えると、歪の除去が過剰となり強度が低下しやすくなる。   Next, after secondary cold rolling, it is preferable to perform secondary annealing at 250 to 450 ° C. for 20 to 1000 seconds. The secondary annealing is annealing for removing the strain introduced by the secondary cold rolling, and it is sufficient to remove the strain that moves in a low temperature range of 250 to 450 ° C. When the secondary annealing temperature is less than 250 ° C. or the secondary annealing time is less than 20 seconds, the removal of the movable strain becomes insufficient, and the conductivity tends to decrease. On the other hand, when the secondary annealing temperature exceeds 450 ° C. or the secondary annealing time exceeds 1000 seconds, the removal of strain becomes excessive and the strength tends to decrease.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with modifications within a range that can meet the above and the gist described below. Of course, these are all possible and are included in the technical scope of the present invention.

下記表1に示す成分組成を有し、残部が銅および不可避不純物からなる銅合金をコアレス炉にて溶製した後、半連続鋳造法で造塊して、厚さ70mm×幅200mm×長さ500mmの鋳塊を製造した。なお、下記表1には、Si、Ni、およびCoの合計量を算出した結果も併せて示した。   A copper alloy having the composition shown in Table 1 below, with the balance being copper and inevitable impurities, is melted in a coreless furnace, and then ingoted by a semi-continuous casting method, and is 70 mm thick × 200 mm wide × length long. A 500 mm ingot was produced. Table 1 below also shows the result of calculating the total amount of Si, Ni, and Co.

得られた鋳塊の表面を面削した後、750〜1050℃の温度で1時間保持する均熱処理を行ってから熱間圧延を行ない、厚さ15mmの熱延板を得た。下記表2に均熱処理の温度を示す。熱間圧延開始温度は、熱間圧延終了温度が600〜800℃となるように調整し、熱間圧延終了後は、直ちに水冷により急冷した。下記表2に熱間圧延終了温度を示す。   After chamfering the surface of the obtained ingot, hot rolling was performed after carrying out soaking treatment that was held at a temperature of 750 to 1050 ° C. for 1 hour to obtain a hot-rolled sheet having a thickness of 15 mm. Table 2 below shows the temperature for soaking. The hot rolling start temperature was adjusted so that the hot rolling end temperature was 600 to 800 ° C., and immediately after the hot rolling was finished, it was rapidly cooled by water cooling. Table 2 below shows the hot rolling end temperature.

次に、酸化スケールを除去した後、1次冷間圧延、1次焼鈍、2次冷間圧延、および2次焼鈍を行ない、厚さ0.25mmの冷延板を得た。1次焼鈍は、550℃に加熱し、この温度で4時間保持して行なった。2次焼鈍は、350℃に加熱し、この温度で60秒間保持して行なった。   Next, after removing the oxide scale, primary cold rolling, primary annealing, secondary cold rolling, and secondary annealing were performed to obtain a cold-rolled sheet having a thickness of 0.25 mm. The primary annealing was performed by heating to 550 ° C. and holding at this temperature for 4 hours. The secondary annealing was performed by heating to 350 ° C. and holding at this temperature for 60 seconds.

得られた冷延板について、化合物の個数密度、引張強度、導電率、硬さ、および耐熱性を測定した。   About the obtained cold-rolled sheet, the number density, tensile strength, electrical conductivity, hardness, and heat resistance of the compound were measured.

化合物の個数密度は、円相当直径が1μm超の化合物と、円相当直径が100〜200nmの化合物について測定した。   The number density of the compounds was measured for a compound having an equivalent circle diameter of more than 1 μm and a compound having an equivalent circle diameter of 100 to 200 nm.

円相当直径が1μm超の化合物の個数密度は、上記冷延板の幅方向の横断面において、板厚中心部の厚み方向90μm×断面方向125μmの領域を走査型電子顕微鏡で、観察倍率1000倍で観察し、観察視野内の化合物の円相当直径を画像解析ソフト(Macromedica社製のImage−Pro Plus)を用いて測定した。測定結果を下記表2に示す。   The number density of the compound having an equivalent circle diameter of more than 1 μm was measured with a scanning electron microscope at an observation magnification of 1000 × in a cross section in the width direction of the cold-rolled sheet in a thickness direction of 90 μm × 125 μm in the cross-sectional direction. The circle equivalent diameter of the compound in the observation field was measured using image analysis software (Image-Pro Plus manufactured by Macromedica). The measurement results are shown in Table 2 below.

円相当直径が100〜200nmの化合物の個数密度は、上記冷延板の幅方向の横断面において、板厚中心部の厚み方向9.0μm×断面方向12.5μmの領域を走査型電子顕微鏡で、観察倍率10000倍で観察し、観察視野内の化合物の円相当直径を上記画像解析ソフトを用いて測定した。測定結果を下記表2に示す。   The number density of the compound having a circle-equivalent diameter of 100 to 200 nm is determined by using a scanning electron microscope in a cross section in the width direction of the cold-rolled sheet in an area of 9.0 μm in the thickness direction and 12.5 μm in the cross-sectional direction. The observation was performed at an observation magnification of 10,000 times, and the equivalent circle diameter of the compound in the observation field was measured using the image analysis software. The measurement results are shown in Table 2 below.

引張強度は、上記冷延板から切り出したJIS 13号B試験片を用い、5882型インストロン社製万能試験機で測定した。引張強度は室温、試験速度を10.0mm/分、標線間距離GLを50mmとして測定した。測定結果を下記表2に示す。本実施例では、引張強度が530MPa以上を合格とした。   Tensile strength was measured with a universal tester manufactured by Instron of Model 5882 using a JIS No. 13 B test piece cut out from the cold rolled sheet. The tensile strength was measured at room temperature, the test speed was 10.0 mm / min, and the distance between marked lines GL was 50 mm. The measurement results are shown in Table 2 below. In this example, the tensile strength of 530 MPa or more was regarded as acceptable.

導電率は、上記冷延板をミーリングにより幅10mm×長さ300mmの短冊状に加工した試験片を用い、ダブルブリッジ式抵抗測定装置により電気抵抗を測定し、平均断面積法により算出した。算出結果を下記表2に示す。本発明では、60%IACS以上を合格とし、導電性が良好と評価した。   The electrical conductivity was calculated by an average cross-sectional area method using a test piece obtained by processing the cold-rolled sheet into a strip shape having a width of 10 mm and a length of 300 mm by milling, measuring the electrical resistance with a double bridge resistance measuring device. The calculation results are shown in Table 2 below. In the present invention, 60% IACS or higher was regarded as acceptable, and the electrical conductivity was evaluated as good.

硬さは、松沢精機製作所製のマイクロビッカース硬度計(商品名「微小硬度計」)を用い、0.5kgの荷重を加えて3箇所で測定し、平均値を求めた。算出結果を下記表2に示す。本実施例では、硬さが155Hvを合格とした。   The hardness was measured at three locations by applying a load of 0.5 kg using a micro Vickers hardness meter (trade name “micro hardness meter”) manufactured by Matsuzawa Seiki Seisakusho, and the average value was obtained. The calculation results are shown in Table 2 below. In this example, the hardness was 155 Hv.

引張強度が530MPa以上で、且つ硬さが155Hv以上の場合を高強度と評価し、発明例とした。一方、引張強度または硬さの少なくとも一方が合格基準に達しない場合を比較例とした。   A case where the tensile strength was 530 MPa or more and the hardness was 155 Hv or more was evaluated as high strength, and an invention example was obtained. On the other hand, the case where at least one of the tensile strength and the hardness did not reach the acceptance standard was taken as a comparative example.

耐熱性は、上記冷延板を、焼鈍を模擬して475℃で1分間加熱保持した後に、松沢精機製作所製のマイクロビッカース硬度計(商品名「微小硬度計」)を用い、0.5kgの荷重を加えて硬さを測定した。測定結果を下記表2に示す。本発明では、140Hv以上を合格とし、耐熱性に優れると評価した。   For heat resistance, the cold-rolled sheet was simulated by annealing and heated at 475 ° C. for 1 minute, and then a micro Vickers hardness meter (trade name “micro hardness meter”) manufactured by Matsuzawa Seiki Seisakusho was used. A load was applied to measure the hardness. The measurement results are shown in Table 2 below. In the present invention, 140Hv or more was regarded as acceptable and evaluated as having excellent heat resistance.

下記表2から次のように考察できる。   It can be considered as follows from Table 2 below.

No.1〜8は、本発明で規定する要件を満足する例であり、成分組成が適切に制御されていると共に、円相当直径が1μm超の化合物および円相当直径が100〜200nmの化合物の個数密度が所定の条件を満足しているため、高強度で、しかも導電性が良好で、耐熱性にも優れた銅合金が得られた。   No. Nos. 1 to 8 are examples satisfying the requirements defined in the present invention, and the number density of a compound whose component composition is appropriately controlled and whose equivalent circle diameter exceeds 1 μm and whose equivalent circle diameter is 100 to 200 nm. Satisfying the predetermined conditions, a copper alloy having high strength, good conductivity and excellent heat resistance was obtained.

No.11〜18は、本発明で規定するいずれかの要件を満足しない例である。   No. 11 to 18 are examples that do not satisfy any of the requirements defined in the present invention.

詳細には、No.11は、Fe量が過剰で、円相当直径が1μm超の化合物の個数密度が高くなり過ぎた例である。その結果、導電率が低下した。   Specifically, no. No. 11 is an example in which the number density of the compound having an excessive amount of Fe and an equivalent circle diameter of more than 1 μm is too high. As a result, the conductivity decreased.

No.12は、Fe量が少なすぎる例であり、引張強度および硬さが低く、耐熱性も改善できなかった。   No. No. 12 is an example in which the amount of Fe is too small, the tensile strength and hardness are low, and the heat resistance cannot be improved.

No.13は、P量が過剰な例であり、円相当直径が1μm超の化合物の個数密度が高くなり過ぎた。その結果、引張強度、硬さ、導電率が低く、耐熱性も改善できなかった。   No. No. 13 is an example in which the amount of P is excessive, and the number density of the compound having an equivalent circle diameter of more than 1 μm is too high. As a result, the tensile strength, hardness and electrical conductivity were low, and the heat resistance could not be improved.

No.14は、Sn量が過剰な例であり、導電率が低下した。   No. No. 14 is an example in which the amount of Sn is excessive, and the electrical conductivity decreased.

No.15は、本発明で推奨する温度域より高い980℃で均熱処理した。その結果、円相当直径が1μm超の化合物の個数密度が高くなり過ぎ、耐熱性を改善できなかった。   No. No. 15 was soaked at 980 ° C. higher than the temperature range recommended in the present invention. As a result, the number density of the compound having an equivalent circle diameter of more than 1 μm became too high, and the heat resistance could not be improved.

No.16は、本発明で推奨する温度域より高い1050℃で均熱処理し、本発明で推奨する温度域より低い600℃で熱間圧延を終了した。その結果、円相当直径が100〜200nmの個数密度が高くなり過ぎ、引張強度および硬さが低くなった。   No. No. 16 was soaked at 1050 ° C. higher than the temperature range recommended in the present invention, and hot rolling was finished at 600 ° C. lower than the temperature range recommended in the present invention. As a result, the number density with an equivalent circle diameter of 100 to 200 nm was too high, and the tensile strength and hardness were low.

No.17は、本発明で推奨する温度域より低い670℃で熱間圧延を終了した。その結果、円相当直径が100〜200nmの個数密度が高くなり過ぎ、引張強度および硬さが低くなった。   No. No. 17 finished hot rolling at 670 ° C. lower than the temperature range recommended in the present invention. As a result, the number density with an equivalent circle diameter of 100 to 200 nm was too high, and the tensile strength and hardness were low.

No.18は、本発明で推奨する温度域より低い750℃で均熱処理を行ない、本発明で推奨する温度域より低い650℃で熱間圧延を終了した。その結果、円相当直径が100〜200nmの個数密度が高くなり過ぎ、引張強度および硬さが低くなり、耐熱性も改善できなかった。   No. No. 18 performed soaking at 750 ° C. lower than the temperature range recommended in the present invention, and finished hot rolling at 650 ° C. lower than the temperature range recommended in the present invention. As a result, the number density with an equivalent circle diameter of 100 to 200 nm was too high, the tensile strength and hardness were lowered, and the heat resistance could not be improved.

Figure 2016211053
Figure 2016211053

Figure 2016211053
Figure 2016211053

Claims (2)

質量%で、
Fe:1.8〜2.7%、
P :0.01〜0.20%、
Zn:0.01〜0.30%、
Sn:0.01〜0.2%を含有し、
残部が銅および不可避不純物からなる銅合金であって、
円相当直径で1μm超の化合物が観察視野面積1mm2あたり0個以上5.0×103個以下で、
円相当直径で100〜200nmの化合物が観察視野面積1mm2あたり1.0×105〜1.0×107個であることを特徴とする耐熱性に優れた銅合金。
% By mass
Fe: 1.8 to 2.7%,
P: 0.01-0.20%,
Zn: 0.01-0.30%
Sn: contains 0.01 to 0.2%,
The balance is a copper alloy consisting of copper and inevitable impurities,
The number of compounds with an equivalent circle diameter of more than 1 μm is 0 or more and 5.0 × 10 3 or less per 1 mm 2 of the viewing field area.
A copper alloy excellent in heat resistance, characterized in that the number of compounds having an equivalent circle diameter of 100 to 200 nm is 1.0 × 10 5 to 1.0 × 10 7 per 1 mm 2 of the observation visual field area.
更に、質量%で、
Si、Ni、およびCoよりなる群から選ばれる一種または二種以上:合計で0.01〜0.1%を含有する請求項1に記載の銅合金。
Furthermore, in mass%,
The copper alloy according to claim 1, comprising one or more selected from the group consisting of Si, Ni, and Co: 0.01 to 0.1% in total.
JP2015097305A 2015-05-12 2015-05-12 Copper alloy excellent in heat resistance Ceased JP2016211053A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015097305A JP2016211053A (en) 2015-05-12 2015-05-12 Copper alloy excellent in heat resistance
TW105102885A TWI593814B (en) 2015-05-12 2016-01-29 Copper alloy with excellent heat resistance
CN201610220526.XA CN106148754B (en) 2015-05-12 2016-04-11 The copper alloy of excellent heat resistance
KR1020160057283A KR20160133371A (en) 2015-05-12 2016-05-11 Copper alloy having excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015097305A JP2016211053A (en) 2015-05-12 2015-05-12 Copper alloy excellent in heat resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018158220A Division JP2018204115A (en) 2018-08-27 2018-08-27 Copper alloy having excellent heat resistance

Publications (1)

Publication Number Publication Date
JP2016211053A true JP2016211053A (en) 2016-12-15

Family

ID=57353667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015097305A Ceased JP2016211053A (en) 2015-05-12 2015-05-12 Copper alloy excellent in heat resistance

Country Status (4)

Country Link
JP (1) JP2016211053A (en)
KR (1) KR20160133371A (en)
CN (1) CN106148754B (en)
TW (1) TWI593814B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204115A (en) * 2018-08-27 2018-12-27 株式会社神戸製鋼所 Copper alloy having excellent heat resistance
JP2019173091A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Copper alloy
WO2024204150A1 (en) * 2023-03-29 2024-10-03 三菱マテリアル株式会社 Copper alloy and component for electronic/electric devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267456A (en) * 1986-05-13 1987-11-20 Kobe Steel Ltd Manufacture of high strength copper alloy for lead frame having high electric conductivity
JP2000144284A (en) * 1998-11-13 2000-05-26 Kobe Steel Ltd High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JP2010095749A (en) * 2008-10-15 2010-04-30 Mitsubishi Shindoh Co Ltd Copper alloy for electronic device and lead frame material
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
JP2012207261A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy sheet for electric and electronic part
JP2014055341A (en) * 2012-09-14 2014-03-27 Dowa Metaltech Kk Copper alloy sheet material and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017354A (en) * 1998-06-25 2000-01-18 Hitachi Cable Ltd High-tensile copper alloy excellent in hot workability
US8715431B2 (en) * 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
JP4950584B2 (en) 2006-07-28 2012-06-13 株式会社神戸製鋼所 Copper alloy with high strength and heat resistance
JP5297855B2 (en) * 2009-03-26 2013-09-25 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
WO2011021245A1 (en) * 2009-08-20 2011-02-24 三菱伸銅株式会社 Copper alloy and lead frame material for electronic equipment
JP5555154B2 (en) 2010-12-27 2014-07-23 株式会社Shカッパープロダクツ Copper alloy for electrical and electronic parts and method for producing the same
JP2013071155A (en) 2011-09-28 2013-04-22 Hitachi Cable Ltd Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267456A (en) * 1986-05-13 1987-11-20 Kobe Steel Ltd Manufacture of high strength copper alloy for lead frame having high electric conductivity
JP2000144284A (en) * 1998-11-13 2000-05-26 Kobe Steel Ltd High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JP2010095749A (en) * 2008-10-15 2010-04-30 Mitsubishi Shindoh Co Ltd Copper alloy for electronic device and lead frame material
JP2011174142A (en) * 2010-02-25 2011-09-08 Dowa Metaltech Kk Copper alloy plate, and method for producing copper alloy plate
JP2012207261A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy sheet for electric and electronic part
JP2014055341A (en) * 2012-09-14 2014-03-27 Dowa Metaltech Kk Copper alloy sheet material and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173091A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Copper alloy
JP7234501B2 (en) 2018-03-28 2023-03-08 三菱マテリアル株式会社 Copper alloy
JP2018204115A (en) * 2018-08-27 2018-12-27 株式会社神戸製鋼所 Copper alloy having excellent heat resistance
WO2024204150A1 (en) * 2023-03-29 2024-10-03 三菱マテリアル株式会社 Copper alloy and component for electronic/electric devices

Also Published As

Publication number Publication date
TWI593814B (en) 2017-08-01
KR20160133371A (en) 2016-11-22
CN106148754B (en) 2018-05-25
TW201639974A (en) 2016-11-16
CN106148754A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
TWI387657B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6155405B2 (en) Copper alloy material and method for producing the same
WO2012026488A1 (en) Copper-cobalt-silicon alloy for electrode material
JP5802150B2 (en) Copper alloy
KR101688300B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP2016211053A (en) Copper alloy excellent in heat resistance
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP5988794B2 (en) Copper alloy sheet and manufacturing method thereof
JP5981866B2 (en) Copper alloy
JP2018204115A (en) Copper alloy having excellent heat resistance
JP5638357B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2018070916A (en) Copper alloy
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP2021046589A (en) Copper alloy, drawn copper article and electronic apparatus component
JP2015224356A (en) Copper alloy metal plate and production method thereof
JP2013067849A (en) Cu-Co-Si-BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180629

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20181030