[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010097410A - Vehicle detection device - Google Patents

Vehicle detection device Download PDF

Info

Publication number
JP2010097410A
JP2010097410A JP2008267646A JP2008267646A JP2010097410A JP 2010097410 A JP2010097410 A JP 2010097410A JP 2008267646 A JP2008267646 A JP 2008267646A JP 2008267646 A JP2008267646 A JP 2008267646A JP 2010097410 A JP2010097410 A JP 2010097410A
Authority
JP
Japan
Prior art keywords
infrared
preceding vehicle
visible light
image
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267646A
Other languages
Japanese (ja)
Other versions
JP5077184B2 (en
Inventor
Masakazu Nishijima
征和 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008267646A priority Critical patent/JP5077184B2/en
Publication of JP2010097410A publication Critical patent/JP2010097410A/en
Application granted granted Critical
Publication of JP5077184B2 publication Critical patent/JP5077184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/255Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/08Detecting or categorising vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle detection device for detecting a preceding vehicle with high accuracy. <P>SOLUTION: The vehicle detection device 1 includes: a CCD camera 4 and a visible light image acquisition part 13a for acquiring a visible light image in front of a vehicle; a near-infrared light projector 5 for irradiating infrared light ahead of the vehicle; the CCD camera 4 and an near-infrared image acquisition part 15a for acquiring an infrared image in front of the vehicle irradiated with the infrared light by the near-infrared light projector 5; and a preceding vehicle detection part 16a for detecting the preceding vehicle based on the infrared image obtained by the CCD camera 4 and the near-infrared image acquisition part 15a, and the visible light image obtained by the CCD camera 4 and the visible light image acquisition part 13a. The vehicle detection device 1 compares the visible light image and the infrared image to distinguish between reflectors such as reflectors of the rear of the vehicle and light sources such as tail lamps, and recognizes shape thereof, and positional relation or the like to detect the preceding vehicle having the reflectors and the tail lamps with high accuracy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両の前方を撮像した画像情報から先行車両を検出する車両検出装置に関するものである。   The present invention relates to a vehicle detection device that detects a preceding vehicle from image information obtained by imaging the front of the vehicle.

従来、このような分野の技術として、特開2006−244331号公報がある。この公報に記載された夜間走行補助装置は、自車両の前方の画像をカメラによって撮像し、この画像における輝度情報に基づいて、所定値以上の輝度を有する輝度領域を検出し、画像内における輝度領域の位置関係などから車両のテールランプを検出することにより先行車両の検出を行っている。
特開2006−244331号公報
Conventionally, there is JP, 2006-244331, A as a technique of such a field. The night driving assistance device described in this publication takes an image in front of the host vehicle with a camera, detects a luminance region having a luminance equal to or higher than a predetermined value based on luminance information in the image, and luminance in the image The preceding vehicle is detected by detecting the tail lamp of the vehicle from the positional relationship of the areas.
JP 2006-244331 A

しかしながら、前述した夜間走行補助装置にあっては、次のような課題がある。すなわち、自車両の前方の画像の輝度情報のみでは、道路沿いの建物などの照明と先行車両のテールランプとを明確に区別することが難しいため、建物などの照明をテールランプと誤認する慮があり、先行車両の検出に関する信頼性が低いという問題があった。   However, the night driving assistance device described above has the following problems. In other words, it is difficult to clearly distinguish lighting such as buildings along the road from the tail lamp of the preceding vehicle only with the luminance information of the image in front of the host vehicle. There was a problem that the reliability of detection of the preceding vehicle was low.

本発明は、このような課題を解決するためになされたものであり、先行車両を高精度に検出することができる車両検出装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to provide a vehicle detection device capable of detecting a preceding vehicle with high accuracy.

本発明は、車両の前方を走行する先行車両を検出する車両検出装置であって、車両の前方における可視光画像を取得する可視光画像取得手段と、車両の前方に赤外線を照射する赤外線投光手段と、赤外線投光手段が赤外線を照射した車両前方における赤外線画像を取得する赤外線画像取得手段と、赤外線画像取得手段が取得した赤外線画像と可視光画像取得手段が取得した可視光画像とに基づいて、先行車両を検出する先行車両検出手段と、を備えることを特徴とする。   The present invention is a vehicle detection device that detects a preceding vehicle traveling in front of a vehicle, and includes visible light image acquisition means for acquiring a visible light image in front of the vehicle, and infrared projection that irradiates infrared light in front of the vehicle. Means, an infrared image acquisition means for acquiring an infrared image in front of the vehicle irradiated with infrared rays by the infrared projection means, an infrared image acquired by the infrared image acquisition means, and a visible light image acquired by the visible light image acquisition means And preceding vehicle detection means for detecting the preceding vehicle.

この車両検出装置では、車両前方における可視光画像が可視光画像取得手段によって取得され、赤外線投光手段から赤外線が照射された車両前方における赤外線画像が赤外線画像取得手段によって取得される。可視光画像には、路上に設置された路上反射器や先行車両背面のリフレクタが車両のヘッドライトなどを反射した光が写るが、道路沿いの建物に設けられた光源や先行車両のテールランプから放たれる光はリフレクタなどの反射光と比べて強く写る。そして、赤外線画像には、路上反射器や先行車両背面のリフレクタが赤外線を反射した光が強く写る一方、道路沿いの建物に設けられた光源や先行車両のテールランプは赤外線をあまり出さないため弱く写る。したがって、これらの可視光画像及び赤外線画像を比較してリフレクタなどの反射器とテールランプなどの光源とを区別し、その形状や位置関係などを認識することで、リフレクタとテールランプとを備える先行車両を高精度に検出することができる。   In this vehicle detection device, a visible light image in front of the vehicle is acquired by the visible light image acquisition unit, and an infrared image in front of the vehicle irradiated with infrared rays from the infrared projection unit is acquired by the infrared image acquisition unit. In the visible light image, the light reflected from the headlights of the vehicle by the road reflector installed on the road and the reflector on the back of the preceding vehicle is reflected, but it is emitted from the light source provided in the building along the road and the tail lamp of the preceding vehicle. The dripping light appears more intense than the reflected light from reflectors. In the infrared image, the light reflected by the road reflector and the reflector on the back of the preceding vehicle is reflected strongly. On the other hand, the light source provided in the building along the road and the tail lamp of the preceding vehicle do not emit much infrared light. . Therefore, by comparing the visible light image and the infrared image, the reflector such as the reflector is distinguished from the light source such as the tail lamp, and the shape and the positional relationship are recognized, so that the preceding vehicle including the reflector and the tail lamp can be obtained. It can be detected with high accuracy.

また、先行車両検出手段は、赤外線画像取得手段が取得した赤外線画像及び可視光画像取得手段が取得した可視光画像における画素間の輝度値の差が第1の閾値以上である場合に、先行車両を検出することが好ましい。先行車両検出手段は、赤外線画像の各画素の輝度と可視光画像の各画素の輝度との差が所定の閾値以上、すなわち赤外線画像において輝度が大きく、可視光画像において輝度の小さいリフレクタが検出されるか、又は赤外線画像において輝度が小さく、可視光画像において輝度の大きいテールランプが検出された画像内の領域を検出することで、可視光画像と赤外線画像とに基づくリフレクタとテールランプとを備える先行車両の検出が好適に実現される。   Further, the preceding vehicle detection means, when the difference in luminance value between the pixels in the infrared image acquired by the infrared image acquisition means and the visible light image acquired by the visible light image acquisition means is equal to or greater than the first threshold, Is preferably detected. The preceding vehicle detection means detects a reflector having a difference between the luminance of each pixel of the infrared image and the luminance of each pixel of the visible light image that is equal to or greater than a predetermined threshold, that is, a luminance that is high in the infrared image and low in the visible light image. Or a preceding vehicle having a reflector and a tail lamp based on a visible light image and an infrared image by detecting a region in the image in which a tail lamp having a low luminance in the infrared image and a high luminance in the visible light image is detected Is preferably realized.

また、可視光画像取得手段が取得した可視光画像及び赤外線画像取得手段が取得した赤外線画像のうち少なくとも一方に基づいて、先行車両候補領域を抽出する抽出手段を更に備え、先行車両検出手段は、抽出手段が抽出した先行車両候補領域に基づいて、先行車両を検出することが好ましい。   Further, the vehicle further includes an extraction unit that extracts a preceding vehicle candidate region based on at least one of the visible light image acquired by the visible light image acquisition unit and the infrared image acquired by the infrared image acquisition unit, and the preceding vehicle detection unit includes: It is preferable to detect the preceding vehicle based on the preceding vehicle candidate area extracted by the extracting means.

この車両検出装置では、抽出手段は、可視光画像において、例えば各画素における輝度(明るさ)を認識し、画像中で高い輝度を有する画素集合の形状や位置などからテールランプの候補となる画素集合を検出し、そのテールランプ候補の周辺の領域を先行車両候補領域として抽出する。或いは、抽出手段は、赤外線画像において、例えば各画素における輝度を認識し、画像中で高い輝度を有する画素集合の形状や位置などから先行車両背面のリフレクタの候補を検出し、そのリフレクタ候補の周辺の領域を先行車両候補領域として抽出する。このように先行車両候補領域を予め抽出することにより、先行車両検出手段は画像内で車両のテールランプやリフレクタの形状や位置関係と異なるもの(すなわち、車両以外の光源や反射器)を予め検出対象から外すことが可能となり、先行車両をより高精度に検出することができる。   In this vehicle detection device, the extraction means recognizes, for example, the luminance (brightness) of each pixel in the visible light image, and sets a pixel set as a tail lamp candidate from the shape and position of the pixel set having high luminance in the image. And the area around the tail lamp candidate is extracted as a preceding vehicle candidate area. Alternatively, the extracting means recognizes the brightness of each pixel in the infrared image, detects a reflector candidate on the back of the preceding vehicle from the shape and position of a pixel set having a high brightness in the image, and surrounds the reflector candidate Is extracted as a preceding vehicle candidate area. By previously extracting the preceding vehicle candidate area in this way, the preceding vehicle detection means detects in advance an object that is different from the shape and positional relationship of the tail lamp and reflector of the vehicle (that is, a light source and a reflector other than the vehicle) in the image. The preceding vehicle can be detected with higher accuracy.

また、赤外線投光手段は、抽出手段が先行車両候補領域を抽出した場合に消灯状態から点灯状態に切り換わることが好ましい。この場合、先行車両候補領域が抽出されるまでは、赤外線投光手段を消灯状態としておくことで、装置の省エネルギー化が図られる。   Moreover, it is preferable that an infrared light projection means switches from a light extinction state to a lighting state, when an extraction means extracts a preceding vehicle candidate area | region. In this case, until the preceding vehicle candidate area is extracted, the energy saving of the apparatus can be achieved by turning off the infrared light projecting unit.

また、赤外線投光手段は、抽出手段が先行車両候補領域を抽出した場合に点灯状態から消灯状態に切り換わることが好ましい。この場合、予め赤外線投光手段を点灯状態としておくことで、赤外線画像を取得した直後に赤外線投光手段を消灯して可視光画像を取得することが可能となる。その結果、赤外線投光手段の点灯後に赤外線の照射量が安定するまで待ってから赤外線画像を取得する必要がなく、赤外線画像と可視光画像との間における取得時間の差を少なくすることができるので、先行車両検出の速度の向上を図ることができる。   Moreover, it is preferable that an infrared light projection means switches from a lighting state to a light extinction state, when an extraction means extracts a preceding vehicle candidate area | region. In this case, it is possible to acquire the visible light image by turning off the infrared light projecting unit immediately after acquiring the infrared image by previously setting the infrared light projecting unit to the lighting state. As a result, there is no need to acquire an infrared image after waiting for the infrared irradiation amount to stabilize after the infrared light projecting means is turned on, and the difference in acquisition time between the infrared image and the visible light image can be reduced. Therefore, the speed of the preceding vehicle detection can be improved.

また、先行車両検出手段は、赤外線投光手段が点灯状態に切り換わった後、赤外線画像取得手段が取得した赤外線画像における所定時間毎の輝度変化量が第2の閾値以下である場合に、赤外線画像に基づいて先行車両を検出することが好ましい。このような構成によれば、赤外線投光手段が照射する赤外線の量が安定することで、赤外線画像における所定時間毎の輝度変化量が所定の閾値以下に落ち着くため、赤外線投光手段を点灯した直後の赤外線の量が不安定な状態で取得された赤外線画像が先行車両の検出に利用されることを防ぎ、先行車両をより高精度に検出することができる。   In addition, the preceding vehicle detection unit is configured to detect the infrared ray when the luminance change amount per predetermined time in the infrared image acquired by the infrared image acquisition unit is equal to or less than the second threshold after the infrared projection unit is switched to the lighting state. It is preferable to detect the preceding vehicle based on the image. According to such a configuration, since the amount of infrared light irradiated by the infrared light projecting unit is stabilized, the luminance change amount per predetermined time in the infrared image settles below a predetermined threshold value, the infrared light projecting unit is turned on. It is possible to prevent an infrared image acquired in a state where the amount of infrared rays immediately after is unstable from being used for detection of a preceding vehicle, and to detect the preceding vehicle with higher accuracy.

本発明によれば、先行車両をより高精度に検出することができる。   According to the present invention, the preceding vehicle can be detected with higher accuracy.

以下、図面を参照して、本発明に係る車両検出装置の実施の形態を説明する。   Hereinafter, an embodiment of a vehicle detection device according to the present invention will be described with reference to the drawings.

本実施の形態に係る車両検出装置は、自車両の前方に存在する先行車両を検出し、検出した先行車両情報をACC[Adaptive Cruise Control]装置などの運転支援装置に提供する。本実施の形態では、夜間において、路上障害物を検知するレーダセンサなどの検出範囲を超えた距離(例えば、自車両から600m〜700m前方の距離)に存在する四輪の先行車両の検出も可能である。   The vehicle detection device according to the present embodiment detects a preceding vehicle existing ahead of the host vehicle, and provides the detected preceding vehicle information to a driving support device such as an ACC [Adaptive Cruise Control] device. In the present embodiment, it is possible to detect a four-wheel preceding vehicle existing at a distance (for example, a distance 600 m to 700 m ahead of the host vehicle) that exceeds the detection range of a radar sensor or the like that detects an obstacle on the road at night. It is.

図1〜図8を参照して、第1の実施の形態に係る車両検出装置1について説明する。図1は、第1の実施の形態に係る車両検出装置を示す構成図である。図2は、図1に示すCCDカメラの撮像可能な波長領域を示すグラフである。図3は、自車両の前方における可視光画像の一例を示す図である。図4は、自車両の前方における近赤外線画像の一例を示す図である。図5は、図3の可視光画像と図4の近赤外線画像との先行車両候補領域内の差分を示す図である。図6は、自車両の前方における可視光画像の他の例を示す図である。図7は、自車両の前方における近赤外線画像の他の例を示す図である。図8は、図6の可視光画像と図7の近赤外線画像との先行車両候補領域内の差分を示す図である。なお、図3、図4、図6、及び図7において、実線は、画像に写っているもの(例えば、光を放つ先行車両のテールライトや光を反射しているリフレクタ)を示しており、破線は、画像に写っていないが、存在するもの(例えば、先行車両の車体や道路沿いの建物)を示す。また、図3〜図5と図6〜図8とは、先行車両のリフレクタの位置及び形状についてのみ異なっている。図3〜図5に示された先行車両20のリフレクタ22は、円形状をなし、テールランプ21の下方に備えられている。図6〜図8に示された先行車両30のリフレクタ32は、円環形状をなし、テールランプ31の周囲を囲むように備えられている。   With reference to FIGS. 1-8, the vehicle detection apparatus 1 which concerns on 1st Embodiment is demonstrated. FIG. 1 is a configuration diagram illustrating a vehicle detection device according to the first embodiment. FIG. 2 is a graph showing a wavelength region that can be imaged by the CCD camera shown in FIG. FIG. 3 is a diagram illustrating an example of a visible light image in front of the host vehicle. FIG. 4 is a diagram illustrating an example of a near-infrared image in front of the host vehicle. FIG. 5 is a diagram showing a difference in the preceding vehicle candidate region between the visible light image of FIG. 3 and the near-infrared image of FIG. FIG. 6 is a diagram illustrating another example of a visible light image in front of the host vehicle. FIG. 7 is a diagram illustrating another example of the near-infrared image in front of the host vehicle. FIG. 8 is a diagram showing a difference in the preceding vehicle candidate region between the visible light image of FIG. 6 and the near-infrared image of FIG. 3, 4, 6, and 7, the solid line indicates what is reflected in the image (for example, a taillight of a preceding vehicle that emits light or a reflector that reflects light). A broken line indicates what is present in the image (for example, a body of a preceding vehicle or a building along the road). 3 to 5 and FIGS. 6 to 8 differ only in the position and shape of the reflector of the preceding vehicle. The reflector 22 of the preceding vehicle 20 shown in FIGS. 3 to 5 has a circular shape and is provided below the tail lamp 21. The reflector 32 of the preceding vehicle 30 shown in FIGS. 6 to 8 has an annular shape and is provided to surround the tail lamp 31.

車両検出装置1は、可視光の波長領域から近赤外線の波長領域まで撮像できるカメラによって、自車両の前方の可視光画像及び近赤外線画像を取得し、可視光画像と近赤外線画像とにおける画素間の輝度(明るさ)の差分から、自車両の前方に存在する先行車両20を検出する。そのために、車両検出装置1は、CCDカメラ4、近赤外線投光器5、運転支援装置6、及び車両検出ECU[Electric Control Unit]10を備えており、車両検出ECU10に可視光画像取得部13a、先行車両候補領域抽出部14a、近赤外線画像取得部15a、先行車両検出部16aが構成される。   The vehicle detection device 1 obtains a visible light image and a near infrared image in front of the host vehicle with a camera capable of imaging from a visible light wavelength region to a near infrared wavelength region, and between pixels in the visible light image and the near infrared image. The preceding vehicle 20 existing in front of the host vehicle is detected from the difference in brightness (brightness). For this purpose, the vehicle detection device 1 includes a CCD camera 4, a near-infrared projector 5, a driving support device 6, and a vehicle detection ECU [Electric Control Unit] 10. The vehicle detection ECU 10 includes a visible light image acquisition unit 13 a, a preceding unit. A vehicle candidate region extraction unit 14a, a near infrared image acquisition unit 15a, and a preceding vehicle detection unit 16a are configured.

なお、第1の実施の形態では、近赤外線投光器5が特許請求の範囲に記載する赤外線投光手段に相当し、CCDカメラ4及び可視光画像取得部13aが特許請求の範囲に記載する可視光画像取得手段に相当し、CCDカメラ4及び近赤外線画像取得部15aが特許請求の範囲に記載する近赤外線画像取得手段に相当し、先行車両候補領域抽出部14aが特許請求の範囲に記載する抽出手段に相当し、先行車両検出部16aが先行車両検出手段に相当する。   In the first embodiment, the near-infrared projector 5 corresponds to the infrared projector described in the claims, and the visible light image acquisition unit 13a includes the visible light described in the claims. The CCD camera 4 and the near-infrared image acquisition unit 15a correspond to the image acquisition unit, the near-infrared image acquisition unit described in the claims, and the preceding vehicle candidate area extraction unit 14a the extraction described in the claims. The preceding vehicle detection unit 16a corresponds to the preceding vehicle detection means.

CCDカメラ4は、自車両の前方(例えば、ルームミラーのフロントガラス側)に備えられ、自車両の前方の画像を撮像する。CCDカメラ4には、光の波長領域を限定する光カットフィルタが取り付けられており、600nm〜1000nm(可視光の赤色領域から近赤外線領域)の光波長の画像を撮像する。CCDカメラ4は、撮像した自車両の前方の画像を画像信号として車両検出ECU10に送信する。   The CCD camera 4 is provided in front of the host vehicle (for example, on the windshield side of the rearview mirror) and captures an image in front of the host vehicle. The CCD camera 4 is provided with a light cut filter that limits the wavelength region of light, and picks up an image having a light wavelength of 600 nm to 1000 nm (from a visible red region to a near infrared region). The CCD camera 4 transmits the captured image ahead of the host vehicle to the vehicle detection ECU 10 as an image signal.

近赤外線投光器5は、自車両の前面(例えば、ヘッドライト収納部内)に備えられ、自車両の前方に近赤外線(800nm〜1000nmの波長領域の光)を照射する。近赤外線投光器5は、自車両の600m〜700m先まで近赤外線を照射するが、可視光を含まない近赤外線であるため対向車両などに眩惑などの影響を及ぼすことはない。このような近赤外線投光器5には、例えばハロゲン灯が用いられる。また、近赤外線投光器5は、車両検出ECU10から送信されるON信号によって点灯状態になると共に、車両検出ECU10から送信されるOFF信号によって消灯状態になる。   The near-infrared projector 5 is provided on the front surface of the host vehicle (for example, in the headlight housing), and irradiates the front of the host vehicle with near-infrared rays (light having a wavelength region of 800 nm to 1000 nm). The near-infrared projector 5 irradiates near-infrared rays up to 600 m to 700 m ahead of the host vehicle. However, since the near-infrared projector 5 does not include visible light, the near-infrared projector 5 does not affect oncoming vehicles or the like. For the near infrared projector 5, for example, a halogen lamp is used. The near-infrared projector 5 is turned on by an ON signal transmitted from the vehicle detection ECU 10 and is turned off by an OFF signal transmitted from the vehicle detection ECU 10.

運転支援装置6は、自車両に備えられて、運転者による自車両の運転を支援する。このような運転支援装置6としては、例えば認識した先行車両に追従して自車両の走行制御を行うACC[Adaptive Cruise Control]装置や車内のディスプレイに先行車両を強調表示するなどにより運転者に対して注意喚起を行う注意喚起装置がある。   The driving support device 6 is provided in the host vehicle and supports driving of the host vehicle by the driver. As such a driving support device 6, for example, an ACC [Adaptive Cruise Control] device that performs traveling control of the host vehicle following the recognized preceding vehicle, or highlighting the preceding vehicle on the display in the vehicle, is provided to the driver. There is a warning device that calls attention.

車両検出ECU10は、演算処理を行うCPU[Central Processing Unit]、記憶部となるROM[Read Only Memory]及びRAM[Random Access Memory]、画像処理チップなどから構成される電子制御ユニットであり、CCDカメラ4、近赤外線投光器5、及び運転支援装置6と電気的に接続されて車両検出装置1を統括制御する。車両検出ECU10は、ROMに格納されるアプリケーションプログラムをRAMにロードしてCPUで実行することにより、可視光画像取得部13a、先行車両候補領域抽出部14a、近赤外線画像取得部15a、先行車両検出部16aを構成する。   The vehicle detection ECU 10 is an electronic control unit including a CPU [Central Processing Unit] that performs arithmetic processing, a ROM [Read Only Memory] and a RAM [Random Access Memory] that serve as a storage unit, an image processing chip, and the like. 4. It is electrically connected to the near-infrared projector 5 and the driving support device 6 to control the vehicle detection device 1 in an integrated manner. The vehicle detection ECU 10 loads an application program stored in the ROM into the RAM and executes it by the CPU, whereby the visible light image acquisition unit 13a, the preceding vehicle candidate region extraction unit 14a, the near infrared image acquisition unit 15a, the preceding vehicle detection The part 16a is configured.

可視光画像取得部13aは、近赤外線投光器5が消灯の状態でCCDカメラ4から送信された画像信号に基づいて、自車両の前方における可視光の赤色領域(600nm〜800nm)の画像(以下、可視光画像Aと呼ぶ)を取得する(図3及び図6参照)。この可視光画像Aには、先行車両20,30の円形のテールランプ21,31や道路沿いの建物(例えば、コンビニエンスストアなどの店舗や住宅)25の照明26などの光源から出る赤色領域の光が明確に写る。なお、図3及び図6に示す先行車両20,30及び建物25は、いずれも自車両のヘッドライトの有効照射距離(例えば、100m)以上離れており、例えば先行車両20,30のリフレクタ22,32や建物25自体は可視光画像Aに写り込んでいないものとする。   Based on the image signal transmitted from the CCD camera 4 with the near-infrared projector 5 turned off, the visible light image acquisition unit 13a is an image (hereinafter, referred to as a red region (600 nm to 800 nm) of visible light in front of the host vehicle. (Referred to as a visible light image A) (see FIGS. 3 and 6). In the visible light image A, light in a red region emitted from a light source such as the circular tail lamps 21 and 31 of the preceding vehicles 20 and 30 and the illumination 26 of a building (for example, a store or a house such as a convenience store) 25 along the road. It is clearly visible. The preceding vehicles 20, 30 and the building 25 shown in FIGS. 3 and 6 are all separated by an effective irradiation distance (for example, 100 m) of the headlight of the own vehicle, for example, the reflectors 22, 32 and the building 25 itself are not reflected in the visible light image A.

先行車両候補領域抽出部14aは、可視光画像取得部13aが取得した可視光画像Aに基づいて、画像中において先行車両が存在すると推定される領域である先行車両候補領域Tを抽出する。具体的には、先行車両候補領域抽出部14aは、可視光画像A中の各画素について、各画素の輝度(明るさ)が所定の輝度閾値よりも明るいか否かによって区別する二値化処理(輝度が輝度閾値以上の画素を1、輝度が輝度閾値以下の画素を0とする処理)を行う。そして、画像内においては先行車両20,30のテールランプ21,31が略水平方向に並ぶ左右一対で面積の等しい光源として写ることから、二値化処理後の画像内で輝度が1の画素の集合領域に対し、その形状、画像内における水平位置及び垂直位置、複数の画素集合領域間における水平距離や面積比などに関してラベリング処理を行う。その後、ラベリング処理の結果に基づき先行車両20,30のテールランプ21,31と推定される2つの画素集合をテールランプ候補として検出し、画像中においてテールランプ候補の画素集合とその周辺を囲む矩形領域を先行車両候補領域Tとして抽出する。この先行車両候補領域Tの大きさは、一定であってもよいが、例えばテールランプ候補として検出された画素集合の面積の大きさに応じて変化する態様であってもよく、またテールランプ候補として検出された2つの画素集合間の水平距離(すなわち左右一対のテールランプ21,31の間隔)に応じて変化する態様であってもよい。   Based on the visible light image A acquired by the visible light image acquisition unit 13a, the preceding vehicle candidate area extraction unit 14a extracts a preceding vehicle candidate area T, which is an area where it is estimated that a preceding vehicle exists in the image. Specifically, the preceding vehicle candidate area extraction unit 14a performs binarization processing for distinguishing each pixel in the visible light image A based on whether or not the luminance (brightness) of each pixel is brighter than a predetermined luminance threshold. (Processing in which a pixel whose luminance is equal to or higher than the luminance threshold is 1 and a pixel whose luminance is equal to or lower than the luminance threshold is 0) In the image, the tail lamps 21 and 31 of the preceding vehicles 20 and 30 appear as a pair of left and right light sources having the same area arranged in a substantially horizontal direction, so that a set of pixels having a luminance of 1 in the binarized image. A labeling process is performed on the area with respect to its shape, horizontal position and vertical position in the image, horizontal distance and area ratio between a plurality of pixel collection areas, and the like. Thereafter, two pixel sets estimated as the tail lamps 21 and 31 of the preceding vehicles 20 and 30 based on the result of the labeling process are detected as tail lamp candidates, and the pixel area of the tail lamp candidate and the rectangular area surrounding the periphery are preceded in the image. Extracted as a vehicle candidate area T. The size of the preceding vehicle candidate region T may be constant, but may be changed depending on the size of the area of the pixel set detected as a tail lamp candidate, or detected as a tail lamp candidate. The aspect may be changed in accordance with the horizontal distance between the two pixel sets (that is, the distance between the pair of left and right tail lamps 21 and 31).

近赤外線画像取得部15aは、先行車両候補領域抽出部14aが先行車両候補領域Tを抽出した場合に、近赤外線投光器5にON信号を送信する。近赤外線画像取得部15aは、近赤外線投光器5が点灯した状態でCCDカメラ4から送信された画像信号に基づき、自車両の前方における可視光の赤色領域から近赤外線領域の画像(以下、近赤外線画像Bと呼ぶ)を取得する。この近赤外線画像Bには、先行車両20,30のテールランプ21,31や道路沿いの建物25の照明26に加えて、先行車両20,30においてテールランプ21,31の下方に備えられたリフレクタ22,32や道路沿いのガードレール27に設けられた路上反射器28が近赤外線を反射して明確に写る(図4及び図7参照)。   The near-infrared image acquisition unit 15a transmits an ON signal to the near-infrared projector 5 when the preceding vehicle candidate region extraction unit 14a extracts the preceding vehicle candidate region T. The near-infrared image acquisition unit 15a, based on the image signal transmitted from the CCD camera 4 in a state where the near-infrared projector 5 is turned on, an image from the red region of visible light to the near-infrared region in front of the host vehicle (hereinafter referred to as near-infrared region). (Referred to as image B). In this near-infrared image B, in addition to the tail lamps 21 and 31 of the preceding vehicles 20 and 30 and the illumination 26 of the building 25 along the road, the reflectors 22 and 30 provided below the tail lamps 21 and 31 in the preceding vehicles 20 and 30 are provided. The on-road reflector 28 provided on the guard rail 27 along the road 32 and the road reflects the near infrared rays and clearly appears (see FIGS. 4 and 7).

ここで、近赤外線投光器5がON状態になった直後は、照射する近赤外線の量が安定しないため、先行車両20,30のリフレクタ22,32やガードレール27の路上反射器28における反射光も安定せず、近赤外線画像Bに明確に写りこまない慮がある。そこで、先行車両検出部16aは、近赤外線画像取得部15aが近赤外線画像Bを取得した場合、近赤外線画像Bの各画素の輝度の単位時間変化量(例えば、1秒当たりの輝度の変化量)が所定の輝度変化閾値(第2の閾値)以下であるか否かを判定する。この輝度変化閾値は、時間経過に伴う近赤外線画像Bの各画素の輝度の単位時間変化量の減少、すなわち近赤外線投光器5の照射する近赤外線の反射光の単位時間変化量の減少から近赤外線投光器5が照射する近赤外線の量が安定したか否かを判断するために用いられ、実験等によりその値が決定される。   Here, immediately after the near-infrared projector 5 is turned on, the amount of near-infrared rays to be irradiated is not stable, so that the reflected light from the reflectors 22 and 32 of the preceding vehicles 20 and 30 and the road reflector 28 of the guardrail 27 is also stable. Without being clearly reflected in the near-infrared image B. Therefore, when the near-infrared image acquisition unit 15a acquires the near-infrared image B, the preceding vehicle detection unit 16a has a unit time change amount of luminance of each pixel of the near-infrared image B (for example, a change amount of luminance per second). ) Is less than or equal to a predetermined luminance change threshold value (second threshold value). This luminance change threshold value is obtained by reducing the unit time change amount of the luminance of each pixel of the near infrared image B with time, that is, by reducing the unit time change amount of the near infrared reflected light irradiated by the near infrared projector 5. This value is used to determine whether or not the amount of near-infrared rays emitted by the projector 5 is stable, and the value is determined by experiments or the like.

先行車両検出部16aは、近赤外線画像Bの各画素の輝度の単位時間変化量が輝度変化閾値以下であると判定した場合、近赤外線投光器5の照射する近赤外線の量が安定した状態の近赤外線画像Bを取得できたと判断して近赤外線投光器5にOFF信号を送信する。   When the preceding vehicle detection unit 16a determines that the unit time change amount of the luminance of each pixel of the near-infrared image B is equal to or less than the luminance change threshold, the near-infrared light emitted by the near-infrared projector 5 is in a stable state. It is determined that the infrared image B has been acquired, and an OFF signal is transmitted to the near-infrared projector 5.

先行車両検出部16aは、近赤外線投光器5にOFF信号を送信した場合、先行車両候補領域抽出部14aが抽出した先行車両候補領域T内において、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分を算出する、すなわち近赤外線を照射することによって画像内に現れたリフレクタ22の輝度を認識する(図5及び図8参照)。具体的には、図5に示される図3の可視光画像Aと図4の近赤外線画像Bとの先行車両候補領域T内の差分として、先行車両20においてテールランプ21の下方に備えられた円形状のリフレクタ22の反射光及び路上反射器28の反射光の一部が算出される。また、図8に示される図6の可視光画像Aと図7の近赤外線画像Bとの先行車両候補領域T内の差分として、先行車両30においてテールランプ31の周囲に備えられた円環形状のリフレクタ32の反射光及び路上反射器28の反射光の一部が算出される。   When the preceding vehicle detection unit 16a transmits an OFF signal to the near-infrared projector 5, the luminance and near-infrared image in each pixel of the visible light image A within the preceding vehicle candidate region T extracted by the preceding vehicle candidate region extraction unit 14a. The difference with the brightness | luminance in each pixel of B is calculated, ie, the brightness | luminance of the reflector 22 which appeared in the image by irradiating a near infrared ray is recognized (refer FIG.5 and FIG.8). Specifically, as a difference in the preceding vehicle candidate area T between the visible light image A in FIG. 3 and the near infrared image B in FIG. 4 shown in FIG. 5, a circle provided below the tail lamp 21 in the preceding vehicle 20. A part of the reflected light of the shaped reflector 22 and the reflected light of the road reflector 28 is calculated. Further, as a difference in the preceding vehicle candidate area T between the visible light image A of FIG. 6 shown in FIG. 8 and the near-infrared image B of FIG. 7, an annular shape provided around the tail lamp 31 in the preceding vehicle 30. A part of the reflected light of the reflector 32 and the reflected light of the road reflector 28 is calculated.

先行車両検出部16aは、先行車両候補領域T内において、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が所定の差分閾値(第1の閾値)より大きいものが有るか否かを判定する。この差分閾値は、リフレクタ22,32以外のもの(例えば、ガードレール27の表面)による近赤外線の反射光をノイズとして除去するために用いられ、実験によりその値が決定される。   In the preceding vehicle candidate region T, the preceding vehicle detection unit 16a has a difference between the luminance in each pixel of the visible light image A and the luminance in each pixel of the near-infrared image B greater than a predetermined difference threshold (first threshold). Determine if there is something. This difference threshold value is used to remove the near-infrared reflected light other than the reflectors 22 and 32 (for example, the surface of the guard rail 27) as noise, and the value is determined by experiment.

先行車両検出部16aは、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が所定の差分閾値より大きい先行車両候補領域Tが有ると判定した場合、当該先行車両候補領域Tにはテールランプ21,31及びリフレクタ22,32を備えた先行車両20が存在するとして先行車両20を検出する。先行車両検出部16aは、検出した先行車両20,30の情報を先行車両情報として運転支援装置6に送信する。   When the preceding vehicle detection unit 16a determines that there is a preceding vehicle candidate region T in which the difference between the luminance in each pixel of the visible light image A and the luminance in each pixel of the near-infrared image B is greater than a predetermined difference threshold, In the vehicle candidate region T, the preceding vehicle 20 is detected on the assumption that the preceding vehicle 20 including the tail lamps 21 and 31 and the reflectors 22 and 32 exists. The preceding vehicle detection unit 16a transmits the detected information of the preceding vehicles 20 and 30 to the driving support device 6 as preceding vehicle information.

次に、図1〜図5及び図9を参照して、車両検出装置1における動作の流れについて詳細に説明する。図9は、第1の実施形態に係る車両検出装置の動作の流れを示すフローチャートである。   Next, with reference to FIG. 1 to FIG. 5 and FIG. 9, an operation flow in the vehicle detection device 1 will be described in detail. FIG. 9 is a flowchart showing a flow of operations of the vehicle detection device according to the first embodiment.

この車両検出装置1では、先行車両の検出開始時において近赤外線投光器5は消灯状態となっている。まずCCDカメラ4は、近赤外線投光器5が消灯された状態で自車両前方の画像を撮像し、画像信号を車両検出ECU10に送信する。そして、車両検出ECU10における可視光画像取得部13aは、近赤外線投光器5が消灯した状態でCCDカメラ4から送信された画像信号に基づいて、自車両の前方における可視光画像Aを取得する(S1)。   In this vehicle detection device 1, the near-infrared projector 5 is turned off at the start of detection of the preceding vehicle. First, the CCD camera 4 captures an image in front of the host vehicle with the near-infrared projector 5 turned off, and transmits an image signal to the vehicle detection ECU 10. And the visible light image acquisition part 13a in vehicle detection ECU10 acquires the visible light image A ahead of the own vehicle based on the image signal transmitted from the CCD camera 4 in the state where the near-infrared projector 5 is turned off (S1). ).

先行車両候補領域抽出部14aは、可視光画像取得部13aが取得した可視光画像Aに基づいて、画像中において先行車両が存在すると推定される領域である先行車両候補領域Tを抽出する(S2)。   Based on the visible light image A acquired by the visible light image acquisition unit 13a, the preceding vehicle candidate area extraction unit 14a extracts a preceding vehicle candidate area T, which is an area where it is estimated that a preceding vehicle exists in the image (S2). ).

ステップS3において、先行車両候補領域抽出部14aは、先行車両候補領域Tが抽出できない場合、先行車両は存在しないと判断してステップS11に移行する。一方、先行車両候補領域抽出部14aによって先行車両候補領域Tが抽出できた場合、近赤外線画像取得部15aは、近赤外線投光器5にON信号を送信する(S4)。   In step S3, when the preceding vehicle candidate area T cannot be extracted, the preceding vehicle candidate area extraction unit 14a determines that there is no preceding vehicle and proceeds to step S11. On the other hand, when the preceding vehicle candidate area extraction unit 14a can extract the preceding vehicle candidate area T, the near infrared image acquisition unit 15a transmits an ON signal to the near infrared projector 5 (S4).

ON信号を送信された近赤外線投光器5は、点灯状態となり、自車両の前方に近赤外線を照射する。CCDカメラ4は、近赤外線投光器5が点灯した状態で自車両前方の画像を撮像し、画像信号を車両検出ECU10に送信する。車両検出ECU10における近赤外線画像取得部15aは、CCDカメラ4から送信された画像信号に基づき、自車両の前方における近赤外線画像Bを取得する(S5)。   The near-infrared projector 5 to which the ON signal has been transmitted is turned on and irradiates near-infrared rays in front of the host vehicle. The CCD camera 4 captures an image in front of the host vehicle with the near-infrared projector 5 turned on, and transmits an image signal to the vehicle detection ECU 10. The near infrared image acquisition unit 15a in the vehicle detection ECU 10 acquires a near infrared image B in front of the host vehicle based on the image signal transmitted from the CCD camera 4 (S5).

続いて、先行車両検出部16aは、近赤外線画像Bの各画素の輝度の単位時間変化量が所定の輝度変化閾値以下であるか否かを判定する(S6)。先行車両検出部16aは、近赤外線画像Bの各画素における輝度の単位時間変化量が輝度変化閾値以下ではないと判定した場合、輝度の単位時間変化量が輝度変化閾値以下であると判定するまで上記輝度の単位時間変化量に関する判定を繰り返す。   Subsequently, the preceding vehicle detection unit 16a determines whether or not the unit time change amount of the luminance of each pixel of the near-infrared image B is equal to or less than a predetermined luminance change threshold value (S6). If the preceding vehicle detection unit 16a determines that the unit time change amount of luminance in each pixel of the near-infrared image B is not less than or equal to the luminance change threshold value, it determines that the unit time change amount of luminance is equal to or less than the luminance change threshold value. The above determination on the amount of change in luminance per unit time is repeated.

先行車両検出部16aは、近赤外線画像Bの各画素の輝度の単位時間変化量が輝度変化閾値以下であると判定した場合、近赤外線投光器5にOFF信号を送信する(S7)。OFF信号を送信された近赤外線投光器5は、消灯状態になる。その後、先行車両検出部16aは、先行車両候補領域抽出部14aが抽出した先行車両候補領域T内において、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分を算出する(S8)。   When the preceding vehicle detection unit 16a determines that the unit time change amount of the luminance of each pixel of the near-infrared image B is equal to or less than the luminance change threshold value, the preceding vehicle detection unit 16a transmits an OFF signal to the near-infrared projector 5 (S7). The near-infrared projector 5 to which the OFF signal is transmitted is turned off. Thereafter, the preceding vehicle detection unit 16a calculates the difference between the luminance at each pixel of the visible light image A and the luminance at each pixel of the near-infrared image B in the preceding vehicle candidate region T extracted by the preceding vehicle candidate region extraction unit 14a. Calculate (S8).

先行車両検出部16aは、先行車両候補領域T内において、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が所定の差分閾値より大きいものが有るか否かを判定する(S9)。先行車両検出部16aは、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が差分閾値より大きい先行車両候補領域Tがないと判定した場合、先行車両は存在しないと判断して、ステップS11に移行する。   In the preceding vehicle candidate area T, the preceding vehicle detection unit 16a determines whether or not the difference between the luminance in each pixel of the visible light image A and the luminance in each pixel of the near-infrared image B is larger than a predetermined difference threshold value. Is determined (S9). When the preceding vehicle detection unit 16a determines that there is no preceding vehicle candidate region T in which the difference between the luminance at each pixel of the visible light image A and the luminance at each pixel of the near-infrared image B is greater than the difference threshold, there is a preceding vehicle. It judges that it does not carry out, and transfers to step S11.

先行車両検出部16aは、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が差分閾値より大きい先行車両候補領域Tが有ると判定した場合、当該先行車両候補領域Tにはテールランプ21及びリフレクタ22を備えた先行車両20が存在するとして先行車両20を検出する。ステップS11において、先行車両検出部16aは、検出した先行車両20に関する情報又は先行車両が存在しないとの判断を先行車両情報として運転支援装置6に送信する。   When the preceding vehicle detection unit 16a determines that there is a preceding vehicle candidate region T in which the difference between the luminance in each pixel of the visible light image A and the luminance in each pixel of the near-infrared image B is greater than the difference threshold, the preceding vehicle candidate In the region T, the preceding vehicle 20 is detected on the assumption that the preceding vehicle 20 including the tail lamp 21 and the reflector 22 exists. In step S <b> 11, the preceding vehicle detection unit 16 a transmits information regarding the detected preceding vehicle 20 or a determination that there is no preceding vehicle to the driving support device 6 as preceding vehicle information.

以上説明した車両検出装置1によれば、近赤外線投光器5から近赤外線が照射されない状態の自車両前方における可視光画像Aと、近赤外線投光器5から近赤外線が照射された状態の自車両前方における近赤外線画像Bとが取得される。可視光画像Aには、先行車両20の背面のリフレクタ22や道路沿いのガードレール27に設けられた路上反射器28が自車両のヘッドライトなどを反射した光が写る場合があるが、道路沿いの建物25の照明26や先行車両20のテールランプ21から放たれる光はリフレクタ22などの反射光と比べて強く写る。そして、近赤外線画像Bには、先行車両20のリフレクタ22や路上反射器28が近赤外線を反射した光が強く写る一方、先行車両20のテールランプ21や道路沿いの建物25の照明26は近赤外線をあまり出さないため可視光画像Aと比べて写り方にあまり差が生じない。したがって、これらの可視光画像A及び近赤外線画像Bを比較してテールランプ21などの光源とリフレクタ22などの反射器とを区別し、その形状や位置関係などを認識することで、リフレクタ22とテールランプ21とを備える先行車両20を高精度に検出することができる。このような車両検出装置1は、画像情報のみに基づく先行車両の検出を可能にするので、路上障害物を検知するレーダセンサなどの検出範囲を超えて自車両から離れた距離に存在する先行車両も検出できる。   According to the vehicle detection device 1 described above, the visible light image A in front of the own vehicle in a state where no near infrared light is irradiated from the near infrared light projector 5 and the front of the own vehicle in a state where the near infrared light is irradiated from the near infrared light projector 5. A near-infrared image B is acquired. In the visible light image A, there may be a case where the light reflected by the headlight of the own vehicle is reflected by the reflector 22 on the rear surface of the preceding vehicle 20 or the road reflector 28 provided on the guard rail 27 along the road. The light emitted from the illumination 26 of the building 25 and the tail lamp 21 of the preceding vehicle 20 appears stronger than the reflected light from the reflector 22 and the like. In the near-infrared image B, the light reflected by the reflector 22 and the road reflector 28 of the preceding vehicle 20 is reflected strongly, while the tail lamp 21 of the preceding vehicle 20 and the illumination 26 of the building 25 along the road are near-infrared. Therefore, there is not much difference in how the image is captured compared to the visible light image A. Therefore, the light source such as the tail lamp 21 and the reflector such as the reflector 22 are distinguished from each other by comparing the visible light image A and the near-infrared image B, and the reflector 22 and the tail lamp are recognized by recognizing the shape and positional relationship thereof. Therefore, it is possible to detect the preceding vehicle 20 provided with 21 with high accuracy. Since such a vehicle detection device 1 enables detection of a preceding vehicle based only on image information, the preceding vehicle existing at a distance away from the host vehicle beyond a detection range such as a radar sensor that detects an obstacle on the road. Can also be detected.

また、車両検出ECU10における先行車両候補領域抽出部14aでは、可視光画像Aの各画素における輝度を認識し、画像中で高い輝度を有する画素集合の形状や位置などから先行車両のテールランプの候補となる画素集合を検出し、そのテールランプ候補を含む周辺の領域を先行車両候補領域Tとして抽出する。このように先行車両候補領域Tを予め抽出することにより、画像内で車両のテールランプの形状や位置関係と大きく異なるものを予め検出対象から外すことが可能となり、先行車両20をより高精度に検出することができる。更に、画像中の先行車両候補領域T以外の領域における各画素の輝度の差分算出が不要になるので、車両検出ECU10における演算処理の負荷を軽減することができる。   Further, the preceding vehicle candidate area extraction unit 14a in the vehicle detection ECU 10 recognizes the luminance of each pixel of the visible light image A, and determines the tail lamp candidate of the preceding vehicle from the shape and position of a pixel set having high luminance in the image. And a peripheral region including the tail lamp candidate is extracted as a preceding vehicle candidate region T. By previously extracting the preceding vehicle candidate region T in this way, it is possible to exclude from the detection target in advance an object that greatly differs from the shape and positional relationship of the tail lamp of the vehicle in the image, and the preceding vehicle 20 is detected with higher accuracy. can do. Furthermore, since it is not necessary to calculate the difference in luminance of each pixel in a region other than the preceding vehicle candidate region T in the image, it is possible to reduce the processing load on the vehicle detection ECU 10.

また、車両検出ECU10における先行車両検出部16aでは、可視光画像取得部13aが取得した可視光画像A及び近赤外線画像取得部15aが取得した近赤外線画像Bにおける画素間の輝度の差分が所定の差分閾値以上である場合に、先行車両を検出する。これにより、先行車両検出部16aは、近赤外線画像Bの輝度と可視光画像Aの輝度との差が差分閾値以上、すなわち近赤外線画像Bにおいて輝度の大きく、可視光画像Aにおいて輝度の小さいリフレクタ22を検出することができる。更に、近赤外線画像Bの輝度と可視光画像Aの輝度との差が差分閾値以下、すなわちリフレクタ22以外のガードレール27の表面などによる近赤外線の反射光をノイズとして除去することができるので、可視光画像Aと近赤外線画像Bとに基づきリフレクタ22とテールランプ21とを備える先行車両20の検出が好適に実現される。   Further, in the preceding vehicle detection unit 16a in the vehicle detection ECU 10, the difference in luminance between pixels in the visible light image A acquired by the visible light image acquisition unit 13a and the near infrared image B acquired by the near infrared image acquisition unit 15a is predetermined. If it is equal to or greater than the difference threshold, the preceding vehicle is detected. Thereby, the preceding vehicle detection unit 16a is a reflector in which the difference between the luminance of the near-infrared image B and the luminance of the visible light image A is equal to or greater than the difference threshold, that is, the luminance is high in the near-infrared image B and low in the visible light image A. 22 can be detected. Furthermore, since the difference between the luminance of the near-infrared image B and the luminance of the visible light image A is equal to or less than the difference threshold, that is, the near-infrared reflected light from the surface of the guard rail 27 other than the reflector 22 can be removed as noise. Based on the light image A and the near-infrared image B, detection of the preceding vehicle 20 including the reflector 22 and the tail lamp 21 is suitably realized.

また、車両検出ECU10における近赤外線画像取得部15aでは、先行車両候補領域抽出部14aが可視光画像Aに基づいて先行車両候補領域を抽出した場合に、近赤外線投光器5にON信号を送信して、近赤外線投光器5を消灯状態から点灯状態に切り換える。このように、先行車両候補領域Tが抽出されるまでの間、近赤外線投光器5を消灯状態としておくことで、車両検出装置1の省エネルギー化が図られる。   Further, the near-infrared image acquisition unit 15a in the vehicle detection ECU 10 transmits an ON signal to the near-infrared projector 5 when the preceding vehicle candidate region extraction unit 14a extracts a preceding vehicle candidate region based on the visible light image A. The near-infrared projector 5 is switched from the unlit state to the lit state. Thus, the energy saving of the vehicle detection device 1 can be achieved by keeping the near-infrared projector 5 in the extinguished state until the preceding vehicle candidate region T is extracted.

また、車両検出ECU10における先行車両候補領域抽出部14aでは、近赤外線投光器5が点灯状態に切り換わった後、近赤外線画像取得部15aが取得した近赤外線画像Bの各画素における輝度の単位時間変化量が所定の輝度変化閾値以下である場合に、近赤外線画像Bに基づいて先行車両を検出する。このような構成によれば、近赤外線投光器5を点灯状態にした直後の近赤外線の量が不安定な状態で取得された近赤外線画像Bが先行車両の検出に利用されることを防ぎ、先行車両20をより高精度に検出することができる。   Further, in the preceding vehicle candidate area extraction unit 14a in the vehicle detection ECU 10, the unit time change in luminance in each pixel of the near-infrared image B acquired by the near-infrared image acquisition unit 15a after the near-infrared projector 5 is switched to the lighting state. When the amount is equal to or less than a predetermined luminance change threshold, the preceding vehicle is detected based on the near-infrared image B. According to such a configuration, the near-infrared image B acquired in an unstable state of the amount of near-infrared light immediately after the near-infrared projector 5 is turned on is prevented from being used for detection of the preceding vehicle. The vehicle 20 can be detected with higher accuracy.

図1〜図8を参照して、第2の実施の形態に係る車両検出装置2について説明する。車両検出装置2では、第1の実施の形態に係る車両検出装置1の構成と同様の構成について、同一の符号を付与し、その説明を省略する。   With reference to FIGS. 1-8, the vehicle detection apparatus 2 which concerns on 2nd Embodiment is demonstrated. In the vehicle detection apparatus 2, the same code | symbol is provided about the structure similar to the structure of the vehicle detection apparatus 1 which concerns on 1st Embodiment, and the description is abbreviate | omitted.

車両検出装置2は、第1の実施の形態に係る車両検出装置1と比較すると、その動作の流れ及び車両検出ECU11の構成が異なり、可視光画像より先に近赤外線画像を取得し、この近赤外線画像に基づいて先行車両候補領域の抽出を行う。そのために、車両検出装置2は、CCDカメラ4、近赤外線投光器5、運転支援装置6、及び車両検出ECU11を備えており、車両検出ECU11に可視光画像取得部13b、先行車両候補領域抽出部14b、近赤外線画像取得部15b、先行車両検出部16bが構成される。   The vehicle detection device 2 differs from the vehicle detection device 1 according to the first embodiment in the flow of operation and the configuration of the vehicle detection ECU 11, and acquires a near-infrared image before the visible light image. The preceding vehicle candidate area is extracted based on the infrared image. For this purpose, the vehicle detection device 2 includes a CCD camera 4, a near-infrared projector 5, a driving support device 6, and a vehicle detection ECU 11. The vehicle detection ECU 11 includes a visible light image acquisition unit 13b and a preceding vehicle candidate region extraction unit 14b. The near-infrared image acquisition part 15b and the preceding vehicle detection part 16b are comprised.

なお、第2の実施の形態では、近赤外線投光器5が特許請求の範囲に記載する赤外線投光手段に相当し、CCDカメラ4及び可視光画像取得部13bが特許請求の範囲に記載する可視光画像取得手段に相当し、CCDカメラ4及び近赤外線画像取得部15bが特許請求の範囲に記載する近赤外線画像取得手段に相当し、先行車両候補領域抽出部14bが特許請求の範囲に記載する抽出手段に相当し、先行車両検出部16bが先行車両検出手段に相当する。   In the second embodiment, the near-infrared projector 5 corresponds to the infrared projector described in the claims, and the CCD camera 4 and the visible light image acquisition unit 13b include the visible light described in the claims. The CCD camera 4 and the near-infrared image acquisition unit 15b correspond to the image acquisition means, the near-infrared image acquisition means described in the claims, and the preceding vehicle candidate area extraction unit 14b the extraction described in the claims. The preceding vehicle detection unit 16b corresponds to the preceding vehicle detection means.

可視光画像取得部13bは、近赤外線投光器5が消灯された状態でCCDカメラ4から送信された画像信号に基づいて、可視光画像Aを取得する。この可視光画像Aには、先行車両20,30のテールランプ21,31や道路沿いの建物25の照明26などの光源から出る赤色領域の光が明確に写る(図3及び図6参照)。   The visible light image acquisition unit 13b acquires the visible light image A based on the image signal transmitted from the CCD camera 4 with the near-infrared projector 5 turned off. In the visible light image A, light in a red region emitted from a light source such as the tail lamps 21 and 31 of the preceding vehicles 20 and 30 and the illumination 26 of the building 25 along the road is clearly shown (see FIGS. 3 and 6).

近赤外線画像取得部15bは、先行車両の検出の開始時に、近赤外線投光器5にON信号を送信する。近赤外線画像取得部15bは、近赤外線投光器5にON信号を送信した場合、近赤外線投光器5が点灯した状態でCCDカメラ4から送信された画像信号に基づき、近赤外線画像Bを取得する。この近赤外線画像Bには、建物25の照明26及びガードレール27の路上反射器28に加えて、先行車両20,30のテールランプ21,31及びリフレクタ22,32が写る(図4及び図7参照)。   The near-infrared image acquisition unit 15b transmits an ON signal to the near-infrared projector 5 at the start of detection of the preceding vehicle. When the near-infrared image acquisition unit 15 b transmits an ON signal to the near-infrared projector 5, the near-infrared image acquisition unit 15 b acquires the near-infrared image B based on the image signal transmitted from the CCD camera 4 with the near-infrared projector 5 turned on. In this near-infrared image B, in addition to the illumination 26 of the building 25 and the road reflector 28 of the guardrail 27, the tail lamps 21, 31 and the reflectors 22, 32 of the preceding vehicles 20, 30 are reflected (see FIGS. 4 and 7). .

近赤外線画像取得部15bは、取得した近赤外線画像Bについて、近赤外線画像Bの各画素の輝度の単位時間変化量が所定の輝度変化閾値(第2の閾値)以下であるか否かを判定する。近赤外線画像取得部15bは、近赤外線画像Bの各画素の輝度の単位時間変化量が輝度変化閾値以下であると判定した場合、近赤外線投光器5の照射する近赤外線の量が安定した状態の近赤外線画像Bを取得できたと判断する。   The near-infrared image acquisition unit 15b determines, for the acquired near-infrared image B, whether the unit time change amount of the luminance of each pixel of the near-infrared image B is equal to or less than a predetermined luminance change threshold (second threshold). To do. When the near-infrared image acquisition unit 15b determines that the unit-time change amount of the luminance of each pixel of the near-infrared image B is equal to or less than the luminance change threshold value, the near-infrared light amount emitted by the near-infrared projector 5 is stable. It is determined that the near-infrared image B has been acquired.

先行車両候補領域抽出部14bは、近赤外線画像取得部15bが安定した状態の近赤外線画像Bを取得できたと判断した場合、近赤外線画像取得部15bが取得した近赤外線画像Bに基づいて、先行車両候補領域Tを抽出する。具体的には、先行車両候補領域抽出部14bは、近赤外線画像B中の各画素について、各画素の輝度が所定の輝度閾値よりも明るいか否かによって二値化処理(輝度が輝度閾値以上の画素を1、輝度が輝度閾値以下の画素を0とする処理)を行う。そして、画像中において先行車両20,30のテールランプ21,31やリフレクタ22,32が略水平方向に並ぶ左右一対で面積の等しい反射器であることから、二値化処理後の画像内で輝度が1の画素の集合領域に対し、その形状、画像内における水平位置及び垂直位置、複数の画素集合領域間における水平距離や面積比などに関してラベリング処理を行う。その後、ラベリング処理の結果に基づき先行車両20,30のテールランプ21,31と推定される2つの画素集合をテールランプ候補として検出し、リフレクタ22と推定される2つの画素集合をリフレクタ候補として検出する。そして、画像中でテールランプ候補の画素集合やリフレクタ候補の画素集合とその周辺を囲む矩形領域を先行車両候補領域Tとして抽出する。この先行車両候補領域Tの大きさは、一定であってもよいが、例えばテールランプ候補やリフレクタ候補として検出された画素集合の面積の大きさに応じて変化する態様であってもよい。先行車両候補領域抽出部14bは、先行車両候補領域Tを抽出した場合、近赤外線投光器5にOFF信号を送信する。   If the preceding vehicle candidate region extraction unit 14b determines that the near infrared image acquisition unit 15b has acquired the stable near infrared image B, the preceding vehicle candidate region extraction unit 14b performs a preceding operation based on the near infrared image B acquired by the near infrared image acquisition unit 15b. A candidate vehicle region T is extracted. Specifically, the preceding vehicle candidate region extraction unit 14b performs binarization processing (luminance is equal to or greater than the luminance threshold value) for each pixel in the near-infrared image B depending on whether the luminance of each pixel is brighter than a predetermined luminance threshold value. 1) and a pixel whose luminance is equal to or lower than the luminance threshold value is 0). Since the tail lamps 21 and 31 and the reflectors 22 and 32 of the preceding vehicles 20 and 30 in the image are a pair of left and right reflectors having the same area, the luminance is increased in the image after the binarization process. A labeling process is performed on the collection area of one pixel with respect to its shape, horizontal position and vertical position in the image, horizontal distance and area ratio between a plurality of pixel collection areas, and the like. Thereafter, two pixel sets estimated as the tail lamps 21 and 31 of the preceding vehicles 20 and 30 based on the result of the labeling process are detected as tail lamp candidates, and two pixel sets estimated as the reflector 22 are detected as reflector candidates. Then, a tail lamp candidate pixel set or reflector candidate pixel set and a rectangular area surrounding the periphery are extracted as a preceding vehicle candidate area T in the image. The size of the preceding vehicle candidate region T may be constant, but may be changed depending on the size of the area of the pixel set detected as a tail lamp candidate or a reflector candidate, for example. The preceding vehicle candidate area extraction unit 14b transmits an OFF signal to the near-infrared projector 5 when the preceding vehicle candidate area T is extracted.

先行車両検出部16bは、先行車両候補領域抽出部14bが抽出した先行車両候補領域T内において、近赤外線画像Bの各画素における輝度と可視光画像Aの各画素における輝度との差分を算出する、すなわち近赤外線投光器5をOFF状態にすることによって画像に写らなくなったリフレクタ22,32の輝度を認識する(図5及び図8参照)。   The preceding vehicle detection unit 16b calculates a difference between the luminance at each pixel of the near-infrared image B and the luminance at each pixel of the visible light image A in the preceding vehicle candidate region T extracted by the preceding vehicle candidate region extraction unit 14b. That is, the brightness of the reflectors 22 and 32 that are no longer visible in the image is recognized by turning off the near-infrared projector 5 (see FIGS. 5 and 8).

先行車両検出部16bは、先行車両候補領域T内において、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が所定の差分閾値(第1の閾値)より大きいものが有るか否かを判定する。   In the preceding vehicle candidate region T, the preceding vehicle detection unit 16b has a difference between the luminance at each pixel of the visible light image A and the luminance at each pixel of the near-infrared image B larger than a predetermined difference threshold (first threshold). Determine if there is something.

先行車両検出部16bは、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が差分閾値より大きい先行車両候補領域Tが有ると判定した場合、当該先行車両候補領域Tにはテールランプ21,31及びリフレクタ22,32を備えた先行車両20,30が存在するとして先行車両20,30を検出する。先行車両検出部16bは、先行車両に関する情報を先行車両情報として運転支援装置6に送信する。   When the preceding vehicle detection unit 16b determines that there is a preceding vehicle candidate region T in which the difference between the luminance at each pixel of the visible light image A and the luminance at each pixel of the near-infrared image B is greater than the difference threshold, the preceding vehicle candidate In the region T, the preceding vehicles 20 and 30 are detected on the assumption that the preceding vehicles 20 and 30 having the tail lamps 21 and 31 and the reflectors 22 and 32 exist. The preceding vehicle detection unit 16b transmits information on the preceding vehicle to the driving support device 6 as preceding vehicle information.

次に、図1〜図5及び図10を参照して、車両検出装置2における動作の流れについて詳細に説明する。図10は、第2の実施の形態に係る車両検出装置における動作の流れを示すフローチャートである。   Next, with reference to FIG. 1 to FIG. 5 and FIG. 10, the operation flow in the vehicle detection device 2 will be described in detail. FIG. 10 is a flowchart showing an operation flow in the vehicle detection device according to the second embodiment.

車両検出ECU11における近赤外線画像取得部15bは、先行車両の検出の開始時において、近赤外線投光器5にON信号を送信する(S21)。ON信号を送信された近赤外線投光器5は、点灯状態になり、自車両の前方に近赤外線を照射する。CCDカメラ4は、近赤外線投光器5が点灯した状態で自車両の前方を撮像する。近赤外線画像取得部15bは、CCDカメラ4から送信された画像信号に基づき、自車両の前方における近赤外線画像Bを取得する(S22)。   The near-infrared image acquisition unit 15b in the vehicle detection ECU 11 transmits an ON signal to the near-infrared projector 5 at the start of detection of the preceding vehicle (S21). The near-infrared projector 5 to which the ON signal is transmitted enters a lighting state and irradiates near-infrared rays in front of the host vehicle. The CCD camera 4 images the front of the host vehicle with the near-infrared projector 5 turned on. The near infrared image acquisition unit 15b acquires a near infrared image B in front of the host vehicle based on the image signal transmitted from the CCD camera 4 (S22).

次に、近赤外線画像取得部15bは、近赤外線画像Bの各画素の輝度の単位時間変化量が輝度変化閾値以下であるか否かを判定する(S23)。近赤外線画像取得部15bは、近赤外線画像Bの各画素の輝度の単位時間変化量が輝度変化閾値以下ではないと判定した場合、輝度の単位時間変化量が輝度変化閾値以下であると判定するまで上記輝度の単位時間変化量に関する判定を繰り返す。   Next, the near-infrared image acquisition part 15b determines whether the unit time variation | change_quantity of the brightness | luminance of each pixel of the near-infrared image B is below a brightness | luminance change threshold value (S23). If the near-infrared image acquisition unit 15b determines that the unit time change amount of the luminance of each pixel of the near-infrared image B is not less than the luminance change threshold value, the near-infrared image acquisition unit 15b determines that the unit time change amount of the luminance is less than the luminance change threshold value. The determination regarding the unit time variation of the luminance is repeated until the above.

近赤外線画像取得部15bは、近赤外線画像Bの各画素の輝度の単位時間変化量が輝度変化閾値以下であると判定した場合、近赤外線投光器5の照射する近赤外線の量が安定した状態の近赤外線画像Bを取得できたと判断する。先行車両候補領域抽出部14bは、近赤外線画像取得部15bが安定した状態の近赤外線画像Bを取得できたと判断した場合、近赤外線画像取得部15bが取得した近赤外線画像Bに基づいて、先行車両候補領域Tを抽出する(S24)。   When the near-infrared image acquisition unit 15b determines that the unit-time change amount of the luminance of each pixel of the near-infrared image B is equal to or less than the luminance change threshold value, the near-infrared light amount emitted by the near-infrared projector 5 is stable. It is determined that the near-infrared image B has been acquired. If the preceding vehicle candidate region extraction unit 14b determines that the near infrared image acquisition unit 15b has acquired the stable near infrared image B, the preceding vehicle candidate region extraction unit 14b performs a preceding operation based on the near infrared image B acquired by the near infrared image acquisition unit 15b. A candidate vehicle region T is extracted (S24).

ステップS25において、先行車両候補領域抽出部14bは、先行車両候補領域Tを抽出できない場合、先行車両は存在しないと判断してステップS31に移行する。先行車両候補領域抽出部14bは、先行車両候補領域Tを抽出できた場合、近赤外線投光器5にOFF信号を送信する(S26)。OFF信号を送信された近赤外線投光器5は、消灯状態になる。CCDカメラ4は、近赤外線投光器5が消灯の状態で自車両の前方を撮像する。可視光画像取得部13bは、近赤外線投光器5が消灯の状態でCCDカメラ4から送信された画像信号に基づいて、自車両の前方における可視光画像Aを取得する(S27)。   In step S25, when the preceding vehicle candidate area extraction unit 14b cannot extract the preceding vehicle candidate area T, the preceding vehicle candidate area extracting unit 14b determines that there is no preceding vehicle and proceeds to step S31. If the preceding vehicle candidate area extraction unit 14b can extract the preceding vehicle candidate area T, it transmits an OFF signal to the near-infrared projector 5 (S26). The near-infrared projector 5 to which the OFF signal is transmitted is turned off. The CCD camera 4 images the front of the host vehicle with the near-infrared projector 5 turned off. The visible light image acquisition unit 13b acquires the visible light image A in front of the host vehicle based on the image signal transmitted from the CCD camera 4 with the near-infrared projector 5 turned off (S27).

続いて、先行車両検出部16bは、先行車両候補領域抽出部14bが抽出した先行車両候補領域T内において、近赤外線画像Bの各画素における輝度と可視光画像Aの各画素における輝度との差分を算出する(S28)。   Subsequently, the preceding vehicle detection unit 16b determines the difference between the luminance at each pixel of the near-infrared image B and the luminance at each pixel of the visible light image A in the preceding vehicle candidate region T extracted by the preceding vehicle candidate region extraction unit 14b. Is calculated (S28).

その後、先行車両検出部16bは、先行車両候補領域T内において、近赤外線画像Bの各画素における輝度と可視光画像Aの各画素における輝度との差分が所定の差分閾値より大きいものが有るか否かを判定する(S29)。先行車両検出部16bは、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が差分閾値より大きい先行車両候補領域Tが無いと判定した場合、先行車両は存在しないと判断してステップS31に移行する。   Thereafter, in the preceding vehicle candidate area T, the preceding vehicle detection unit 16b has a difference between the luminance at each pixel of the near-infrared image B and the luminance at each pixel of the visible light image A greater than a predetermined difference threshold value. It is determined whether or not (S29). When the preceding vehicle detection unit 16b determines that there is no preceding vehicle candidate region T in which the difference between the luminance at each pixel of the visible light image A and the luminance at each pixel of the near-infrared image B is greater than the difference threshold, there is a preceding vehicle. It judges that it does not carry out, and transfers to step S31.

先行車両検出部16bは、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分が差分閾値より大きい先行車両候補領域Tが有ると判定した場合、当該先行車両候補領域Tにはテールランプ21及びリフレクタ22を備えた先行車両20が存在するとして先行車両20を検出する(S30)。ステップS31において、先行車両検出部16bは、検出した先行車両20に関する情報又は先行車両が存在しないとの判断を先行車両情報として運転支援装置6に送信する。   When the preceding vehicle detection unit 16b determines that there is a preceding vehicle candidate region T in which the difference between the luminance at each pixel of the visible light image A and the luminance at each pixel of the near-infrared image B is greater than the difference threshold, the preceding vehicle candidate The preceding vehicle 20 is detected as the preceding vehicle 20 including the tail lamp 21 and the reflector 22 exists in the region T (S30). In step S <b> 31, the preceding vehicle detection unit 16 b transmits information regarding the detected preceding vehicle 20 or a determination that there is no preceding vehicle to the driving support device 6 as preceding vehicle information.

以上説明した第2の実施の形態に係る車両検出装置2も第1の実施の形態の車両検出装置1と同様の効果を奏するが以下の点について異なる効果を有する。すなわち、この車両検出装置2によれば、先に近赤外線画像を取得し、その近赤外線画像から先行車両候補領域Tが抽出された後、近赤外線投光器5が消灯されて可視光画像を取得する構成であるため、先行車両候補領域Tが抽出された後において近赤外線投光器5が照射する近赤外線の量が安定することを待つ必要がない。その結果、先行車両候補領域Tを抽出してから先行車両を検出するまでの時間を短くすることが可能となり、先行車両検出の速度の向上を図ることができる。   The vehicle detection device 2 according to the second embodiment described above has the same effects as the vehicle detection device 1 according to the first embodiment, but has the following effects. That is, according to the vehicle detection device 2, a near-infrared image is acquired first, and after the preceding vehicle candidate area T is extracted from the near-infrared image, the near-infrared projector 5 is turned off and a visible light image is acquired. Since it is a structure, it is not necessary to wait for the near-infrared light quantity which the near-infrared light projector 5 irradiates after the preceding vehicle candidate area | region T is extracted to be stabilized. As a result, it is possible to shorten the time from when the preceding vehicle candidate area T is extracted until the preceding vehicle is detected, and the speed of detecting the preceding vehicle can be improved.

図3、図4、図6、図7、及び図11〜図14を参照して、第3の実施の形態に係る車両検出装置3について説明する。車両検出装置3では、第1の実施の形態に係る車両検出装置1の構成と同様の構成について、同一の符号を付与し、その説明を省略する。図11は、第3の実施の形態に係る車両検出装置を示す構成図である。図12(a)は、図11に示す可視光カメラの撮像可能な波長領域を示すグラフであり、図12(b)は、図11に示す近赤外線カメラの撮像可能な波長領域を示すグラフである。図13は、第3の実施の形態に係る図3の可視光画像と図4の近赤外線画像との先行車両候補領域内の差分を示す図である。図14は、第3の実施形態に係る図6の可視光画像と図7の近赤外線画像との先行車両候補領域内の差分を示す図である。   A vehicle detection device 3 according to a third embodiment will be described with reference to FIGS. 3, 4, 6, 7, and 11 to 14. In the vehicle detection apparatus 3, the same code | symbol is provided about the structure similar to the structure of the vehicle detection apparatus 1 which concerns on 1st Embodiment, and the description is abbreviate | omitted. FIG. 11 is a configuration diagram illustrating a vehicle detection device according to the third embodiment. 12A is a graph showing the wavelength region that can be imaged by the visible light camera shown in FIG. 11, and FIG. 12B is a graph showing the wavelength region that can be imaged by the near-infrared camera shown in FIG. is there. FIG. 13 is a diagram illustrating a difference in the preceding vehicle candidate region between the visible light image of FIG. 3 and the near-infrared image of FIG. 4 according to the third embodiment. FIG. 14 is a diagram illustrating a difference in the preceding vehicle candidate region between the visible light image of FIG. 6 and the near-infrared image of FIG. 7 according to the third embodiment.

車両検出装置3は、第1の実施の形態に係る車両検出装置1と比較すると、CCDカメラ4に代えて可視光カメラ7と近赤外線カメラ8とを有している点と、車両検出ECU12における先行車両検出部17の機能とが異なる。車両検出装置3では、可視光カメラ7によって自車両前方の可視光画像を撮像すると共に、近赤外線カメラ8によって自車両前方の近赤外線画像を撮像し、先行車両検出部17において可視光画像及び近赤外線画像から先行車両を検出する。そのために、車両検出装置3は、近赤外線投光器5、運転支援装置6、可視光カメラ7、近赤外線カメラ8、及び車両検出ECU12を備えており、車両検出ECU12に可視光画像取得部13a、先行車両候補領域抽出部14a、近赤外線画像取得部15a、先行車両検出部17が構成される。   Compared to the vehicle detection device 1 according to the first embodiment, the vehicle detection device 3 includes a visible light camera 7 and a near-infrared camera 8 instead of the CCD camera 4, and a vehicle detection ECU 12. The function of the preceding vehicle detection unit 17 is different. In the vehicle detection device 3, the visible light camera 7 captures a visible light image in front of the host vehicle, and the near-infrared camera 8 captures a near-infrared image in front of the host vehicle. A preceding vehicle is detected from the infrared image. For this purpose, the vehicle detection device 3 includes a near-infrared projector 5, a driving support device 6, a visible light camera 7, a near-infrared camera 8, and a vehicle detection ECU 12. The vehicle detection ECU 12 includes a visible light image acquisition unit 13a, a preceding unit. A vehicle candidate area extraction unit 14a, a near infrared image acquisition unit 15a, and a preceding vehicle detection unit 17 are configured.

なお、第3の実施の形態では、近赤外線投光器5が特許請求の範囲に記載する赤外線投光手段に相当し、可視光カメラ7及び可視光画像取得部13aが特許請求の範囲に記載する可視光画像取得手段に相当し、近赤外線カメラ8及び近赤外線画像取得部15aが特許請求の範囲に記載する近赤外線画像取得手段に相当し、先行車両候補領域抽出部14aが特許請求の範囲に記載する抽出手段に相当し、先行車両検出部16aが先行車両検出手段に相当する。   In the third embodiment, the near-infrared projector 5 corresponds to the infrared projector described in the claims, and the visible light camera 7 and the visible light image acquisition unit 13a are visible in the claims. The near-infrared camera 8 and the near-infrared image acquisition unit 15a correspond to the optical image acquisition unit, the near-infrared image acquisition unit described in the claims, and the preceding vehicle candidate area extraction unit 14a described in the claims. The preceding vehicle detection unit 16a corresponds to the preceding vehicle detection means.

以下、第1の実施の形態と異なる可視光カメラ7、近赤外線カメラ8、及び車両検出ECU12における先行車両検出部17について詳細に説明する。   Hereinafter, the visible light camera 7, the near infrared camera 8, and the preceding vehicle detection unit 17 in the vehicle detection ECU 12 different from the first embodiment will be described in detail.

可視光カメラ7は、自車両の前方に備えられ、自車両の前方の画像を撮像するCCDカメラである。可視光カメラ7は、400nm〜1000nm(可視光の波長領域)の光波長の画像を撮像する(図12(a)参照)。可視光カメラ7は、撮像した自車両の前方の画像を可視光画像信号として車両検出ECU12に送信する。車両検出ECU12における可視光画像取得部13aは、可視光カメラ7が送信した可視光画像信号から可視光画像Aを取得する。この可視光カメラ7から取得された可視光画像Aには、先行車両20,30のテールランプ21,31や道路沿いの建物25の照明26などの光源から出る光が明確に写る(図3及び図6参照)。   The visible light camera 7 is a CCD camera that is provided in front of the host vehicle and captures an image in front of the host vehicle. The visible light camera 7 captures an image having a light wavelength of 400 nm to 1000 nm (visible light wavelength region) (see FIG. 12A). The visible light camera 7 transmits the captured image ahead of the host vehicle to the vehicle detection ECU 12 as a visible light image signal. The visible light image acquisition unit 13 a in the vehicle detection ECU 12 acquires the visible light image A from the visible light image signal transmitted by the visible light camera 7. In the visible light image A acquired from the visible light camera 7, light emitted from a light source such as the tail lamps 21 and 31 of the preceding vehicles 20 and 30 and the illumination 26 of the building 25 along the road is clearly shown (FIGS. 3 and 3). 6).

近赤外線カメラ8は、自車両の前方に備えられ、自車両の前方の画像を撮像するCCDカメラである。近赤外線カメラ8には、光の波長領域を限定する光カットフィルタが取り付けられており、800nm〜1000nm(近赤外線の波長領域)の光波長の画像を撮像する(図12(b)参照)。近赤外線カメラ8は、近赤外線投光器5が点灯した状態で撮像した自車両の前方の画像を近赤外線画像信号として車両検出ECU12に送信する。車両検出ECU12における近赤外線画像取得部15aは、近赤外線カメラ8が送信した近赤外線画像信号から近赤外線画像Bを取得する。この近赤外線カメラ8から取得された近赤外線画像Bには、先行車両20,30のテールランプ21,31や道路沿いの建物25の照明26などの光源はほとんど近赤外線の波長領域の光を出さないため弱く写る一方、先行車両20,30のリフレクタ22,32や道路沿いのガードレール27に設けられた路上反射器28は近赤外線を反射して明確に写る(図4及び図7参照)。なお、この近赤外線画像Bにおいては、可視光が写らないため、近赤外線をほとんど出さないテールランプ21,31や照明26は第1及び第2の実施の形態と比べて輝度が小さくなる。   The near-infrared camera 8 is a CCD camera that is provided in front of the host vehicle and captures an image in front of the host vehicle. The near-infrared camera 8 is provided with a light cut filter that limits the wavelength region of light, and captures an image with a light wavelength of 800 nm to 1000 nm (near-infrared wavelength region) (see FIG. 12B). The near-infrared camera 8 transmits, to the vehicle detection ECU 12, a front image of the host vehicle imaged with the near-infrared projector 5 turned on as a near-infrared image signal. The near infrared image acquisition unit 15a in the vehicle detection ECU 12 acquires the near infrared image B from the near infrared image signal transmitted by the near infrared camera 8. In the near-infrared image B acquired from the near-infrared camera 8, light sources such as the tail lamps 21 and 31 of the preceding vehicles 20 and 30 and the illumination 26 of the building 25 along the road hardly emit light in the near-infrared wavelength region. Therefore, while it appears weak, the on-road reflector 28 provided on the reflectors 22 and 32 of the preceding vehicles 20 and 30 and the guard rail 27 along the road reflects near infrared rays and clearly appears (see FIGS. 4 and 7). In the near-infrared image B, since visible light is not captured, the brightness of the tail lamps 21 and 31 and the illumination 26 that hardly emit near-infrared light are lower than those in the first and second embodiments.

先行車両検出部17は、第1の実施の形態又は第2の実施の形態と同様に抽出された先行車両候補領域T内において、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分を算出する。ここで、先行車両20,30のテールランプ21,31や建物25の照明26から出る光は、可視光画像Aにおいて強く写る一方、近赤外線画像Bにおいては近赤外線をあまり含まないため弱く写る。また、先行車両20,30のリフレクタ22,32やガードレール27の路上反射器28は、自車両のヘッドライトの有効照射距離以上離れているため可視光画像Aにはほとんど写らないが、近赤外線画像Bにおいては、近赤外線投光器5の近赤外線を反射した光が強く写る。   In the preceding vehicle candidate region T extracted in the same manner as in the first embodiment or the second embodiment, the preceding vehicle detection unit 17 determines the luminance in each pixel of the visible light image A and each of the near infrared images B. The difference with the luminance at the pixel is calculated. Here, the light emitted from the tail lamps 21 and 31 of the preceding vehicles 20 and 30 and the illumination 26 of the building 25 appears strong in the visible light image A, but weakly appears in the near-infrared image B because it does not contain much near-infrared light. Further, the reflectors 22 and 32 of the preceding vehicles 20 and 30 and the road reflector 28 of the guard rail 27 are hardly reflected in the visible light image A because they are more than the effective irradiation distance of the headlight of the own vehicle, but the near infrared image. In B, the light reflected by the near-infrared projector 5 is reflected strongly.

そこで、先行車両検出部17は、先行車両候補領域T内における可視光画像Aの各画素の輝度と近赤外線画像Bの各画素の輝度との差分を算出することにより、先行車両20,30のテールランプ21,31とリフレクタ22,32とを認識する(図13及び図14参照)。具体的には、図13に示される図3の可視光画像Aと図4の近赤外線画像Bとの先行車両候補領域T内の差分として、先行車両20のテールランプ21の光、テールランプ21の下方に備えられた円形状のリフレクタ22の反射光及び路上反射器28の反射光の一部が算出され、図14に示される図6の可視光画像Aと図7の近赤外線画像Bとの先行車両候補領域T内の差分として、先行車両30のテールランプ31の光、テールランプ31の周囲に備えられた円環形状のリフレクタ32の反射光、及び路上反射器28の反射光の一部が算出される。   Therefore, the preceding vehicle detection unit 17 calculates the difference between the luminance of each pixel of the visible light image A and the luminance of each pixel of the near-infrared image B in the preceding vehicle candidate area T, thereby calculating the preceding vehicles 20 and 30. The tail lamps 21 and 31 and the reflectors 22 and 32 are recognized (see FIGS. 13 and 14). Specifically, as the difference in the preceding vehicle candidate area T between the visible light image A of FIG. 3 and the near infrared image B of FIG. 4 shown in FIG. A part of the reflected light of the circular reflector 22 and the reflected light of the road reflector 28 is calculated, and the visible light image A of FIG. 6 and the near-infrared image B of FIG. 7 shown in FIG. As the difference in the vehicle candidate region T, the light of the tail lamp 31 of the preceding vehicle 30, the reflected light of the annular reflector 32 provided around the tail lamp 31, and a part of the reflected light of the road reflector 28 are calculated. The

その後、先行車両検出部17では、先行車両候補領域T内における可視光画像Aの各画素の輝度と近赤外線画像Bの各画素の輝度との差分が所定の差分閾値より大きいものが有ると判定した場合に、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分の正負を認識し、テールランプ21,31とリフレクタ22,32とを区別する。具体的には、可視光画像Aの各画素の輝度から近赤外線画像Bにおける各画素の輝度を差し引いた場合に、正の差分値を有する画素集合(すなわち可視光画像Aにおいて輝度が高く近赤外線画像Bにおいて輝度の小さい画素集合)をテールランプ21,31などの光源と判断し、負の差分値を有する画素集合(すなわち可視光画像Aにおいて輝度が小さく近赤外線画像Bにおいて輝度の高い画素集合)をリフレクタ22,32などの反射器と判断する。このようにして、先行車両検出部17では、テールランプ21,31及びリフレクタ22,32を有する先行車両20,30が検出される。   Thereafter, the preceding vehicle detection unit 17 determines that there is a difference between the luminance of each pixel of the visible light image A and the luminance of each pixel of the near-infrared image B in the preceding vehicle candidate region T being larger than a predetermined difference threshold. In this case, the difference between the luminance of each pixel of the visible light image A and the luminance of each pixel of the near-infrared image B is recognized, and the tail lamps 21 and 31 and the reflectors 22 and 32 are distinguished. Specifically, when the luminance of each pixel in the near-infrared image B is subtracted from the luminance of each pixel in the visible light image A, a pixel set having a positive difference value (that is, the visible light image A has a high luminance and a near infrared ray). A pixel set having a low luminance in the image B) is determined as a light source such as the tail lamps 21 and 31, and a pixel set having a negative difference value (that is, a pixel set having a low luminance in the visible light image A and a high luminance in the near-infrared image B). Is a reflector such as the reflectors 22 and 32. In this manner, the preceding vehicle detection unit 17 detects the preceding vehicles 20 and 30 having the tail lamps 21 and 31 and the reflectors 22 and 32.

この車両検出装置3における動作の流れは、第1の実施の形態における動作の流れと同じでもよく、また第2の実施の形態における動作の流れと同じであってもよい。   The operation flow in the vehicle detection device 3 may be the same as the operation flow in the first embodiment, or may be the same as the operation flow in the second embodiment.

この車両検出装置3によれば、第1の実施の形態に係る車両検出装置1又は第2の実施の形態に係る車両検出装置2と同様の効果を有する。   The vehicle detection device 3 has the same effects as the vehicle detection device 1 according to the first embodiment or the vehicle detection device 2 according to the second embodiment.

本発明は、上述した実施形態に限定されるものではない。例えば、車両検出装置1,2,3は、四輪だけでなく二輪の先行車両を検出することができる。この場合、先行車両候補領域抽出部14a,14bは、二値化処理後の画像内で輝度が1の画素の集合領域に対し、二輪車のテールランプの形状などから画素集合をテールランプ候補として検出し、そのテールランプ候補を含む周囲の矩形領域を先行車両候補領域Tとして抽出する。その後、可視光画像Aの各画素における輝度と近赤外線画像Bの各画素における輝度との差分からテールランプ及びリフレクタを有する二輪の先行車両を検出する。   The present invention is not limited to the embodiment described above. For example, the vehicle detection devices 1, 2, and 3 can detect not only four wheels but also two-wheel preceding vehicles. In this case, the preceding vehicle candidate area extraction units 14a and 14b detect a pixel set as a tail lamp candidate from the shape of the tail lamp of the two-wheeled vehicle for a set area of pixels having a luminance of 1 in the binarized image, A surrounding rectangular area including the tail lamp candidate is extracted as a preceding vehicle candidate area T. Thereafter, a two-wheel preceding vehicle having a tail lamp and a reflector is detected from the difference between the luminance at each pixel of the visible light image A and the luminance at each pixel of the near-infrared image B.

また、可視光画像Aの各画素における輝度と近赤外線画像の各画素Bにおける輝度との差分を取るにあたり、予め各画像を二値化処理した後、差分を取る態様であってもよい。この場合、車両検出ECU10,11,12における演算処理の負荷を軽減することができる。   In addition, in obtaining the difference between the luminance in each pixel of the visible light image A and the luminance in each pixel B of the near-infrared image, an aspect may be adopted in which the difference is obtained after binarizing each image in advance. In this case, the calculation processing load in the vehicle detection ECUs 10, 11, and 12 can be reduced.

また、先行車両候補領域Tは、矩形領域に限られず、楕円形や長円形の領域であってもよく、領域の形状は特に限定されない。   The preceding vehicle candidate area T is not limited to a rectangular area, and may be an elliptical or oval area, and the shape of the area is not particularly limited.

第1の実施の形態に係る車両検出装置を示す構成図である。It is a lineblock diagram showing the vehicle detection device concerning a 1st embodiment. 図1に示すCCDカメラの撮像可能な波長領域を示すグラフである。It is a graph which shows the wavelength range which can be imaged with the CCD camera shown in FIG. 自車両の前方における可視光画像の一例を示す図である。It is a figure which shows an example of the visible light image in front of the own vehicle. 自車両の前方における近赤外線画像の一例を示す図である。It is a figure which shows an example of the near-infrared image in front of the own vehicle. 図3の可視光画像と図4の近赤外線画像との先行車両候補領域内の差分を示す図である。It is a figure which shows the difference in the preceding vehicle candidate area | region of the visible light image of FIG. 3, and the near-infrared image of FIG. 自車両の前方における可視光画像の他の例を示す図である。It is a figure which shows the other example of the visible light image in front of the own vehicle. 自車両の前方における近赤外線画像の他の例を示す図である。It is a figure which shows the other example of the near-infrared image in front of the own vehicle. 図6の可視光画像と図7の近赤外線画像との先行車両候補領域内の差分を示す図である。It is a figure which shows the difference in the preceding vehicle candidate area | region of the visible light image of FIG. 6, and the near-infrared image of FIG. 第1の実施の形態に係る車両検出装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the vehicle detection apparatus which concerns on 1st Embodiment. 第2の実施の形態に係る車両検出装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the vehicle detection apparatus which concerns on 2nd Embodiment. 第3の実施の形態に係る車両検出装置を示す構成図である。It is a block diagram which shows the vehicle detection apparatus which concerns on 3rd Embodiment. (a)は、図11に示す可視光カメラの撮像可能な波長領域を示すグラフである。(b)は、図11に示す近赤外線カメラの撮像可能な波長領域を示すグラフである。(A) is a graph which shows the wavelength area | region which can be imaged with the visible light camera shown in FIG. (B) is a graph which shows the wavelength range which can be imaged with the near-infrared camera shown in FIG. 第3の実施の形態に係る図3の可視光画像と図4の近赤外線画像との先行車両候補領域内の差分を示す図である。It is a figure which shows the difference in the preceding vehicle candidate area | region of the visible light image of FIG. 3, and the near-infrared image of FIG. 4 which concern on 3rd Embodiment. 第3の実施の形態に係る図6の可視光画像と図7の近赤外線画像との先行車両候補領域内の差分を示す図である。It is a figure which shows the difference in the preceding vehicle candidate area | region of the visible light image of FIG. 6, and the near-infrared image of FIG. 7 which concern on 3rd Embodiment.

符号の説明Explanation of symbols

1,2,3…車両検出装置、4…CCDカメラ(可視光画像取得手段,近赤外線画像取得手段)、5…近赤外線投光器(赤外線投光手段)、6…運転支援装置、7…可視光カメラ(可視光画像取得手段)、8…近赤外線カメラ(赤外線画像取得手段)、10,11,12…車両検出ECU、13a,13b…可視光画像取得部(可視光画像取得手段)、14a,14b…先行車両候補領域抽出部(抽出手段)、15a,15b…近赤外線画像取得部(赤外線画像取得手段)、16a,16b,17…先行車両検出部(先行車両検出手段)、20,30…先行車両、21,31…テールランプ、22,32…リフレクタ、照明…26、路上反射器…28。   DESCRIPTION OF SYMBOLS 1, 2, 3 ... Vehicle detection apparatus, 4 ... CCD camera (visible light image acquisition means, near-infrared image acquisition means), 5 ... Near-infrared light projector (infrared light projection means), 6 ... Driving support device, 7 ... Visible light Camera (visible light image acquisition means), 8 ... Near infrared camera (infrared image acquisition means), 10, 11, 12 ... Vehicle detection ECU, 13a, 13b ... Visible light image acquisition unit (visible light image acquisition means), 14a, 14b ... preceding vehicle candidate area extraction unit (extraction means), 15a, 15b ... near infrared image acquisition unit (infrared image acquisition means), 16a, 16b, 17 ... preceding vehicle detection unit (preceding vehicle detection means), 20, 30 ... A preceding vehicle, 21, 31 ... tail lamp, 22, 32 ... reflector, illumination ... 26, road reflector ... 28.

Claims (6)

車両の前方を走行する先行車両を検出する車両検出装置であって、
前記車両の前方における可視光画像を取得する可視光画像取得手段と、
前記車両の前方に赤外線を照射する赤外線投光手段と、
前記赤外線投光手段が赤外線を照射した前記車両前方における赤外線画像を取得する赤外線画像取得手段と、
前記赤外線画像取得手段が取得した前記赤外線画像と前記可視光画像取得手段が取得した前記可視光画像とに基づいて、先行車両を検出する先行車両検出手段と、を備えることを特徴とする車両検出装置。
A vehicle detection device for detecting a preceding vehicle traveling in front of a vehicle,
Visible light image acquisition means for acquiring a visible light image in front of the vehicle;
Infrared light projecting means for irradiating infrared light in front of the vehicle;
Infrared image acquisition means for acquiring an infrared image in front of the vehicle irradiated with infrared rays by the infrared projection means;
Vehicle detection comprising: preceding vehicle detection means for detecting a preceding vehicle based on the infrared image acquired by the infrared image acquisition means and the visible light image acquired by the visible light image acquisition means apparatus.
前記先行車両検出手段は、前記赤外線画像取得手段が取得した前記赤外線画像及び前記可視光画像取得手段が取得した前記可視光画像における画素間の輝度値の差が第1の閾値以上であることに基づいて、前記先行車両を検出することを特徴とする請求項1に記載の車両検出装置。   In the preceding vehicle detection means, a difference in luminance value between pixels in the infrared image acquired by the infrared image acquisition means and the visible light image acquired by the visible light image acquisition means is greater than or equal to a first threshold value. The vehicle detection device according to claim 1, wherein the preceding vehicle is detected based on the vehicle. 前記可視光画像取得手段が取得した前記可視光画像及び前記赤外線画像取得手段が取得した前記赤外線画像のうち少なくとも一方に基づいて、先行車両候補領域を抽出する抽出手段を更に備え、
前記先行車両検出手段は、前記抽出手段が抽出した先行車両候補領域に基づいて、前記先行車両を検出することを特徴とする請求項1又は2に記載の車両検出装置。
An extraction means for extracting a preceding vehicle candidate area based on at least one of the visible light image acquired by the visible light image acquisition means and the infrared image acquired by the infrared image acquisition means;
The vehicle detection device according to claim 1, wherein the preceding vehicle detection unit detects the preceding vehicle based on a preceding vehicle candidate area extracted by the extraction unit.
前記赤外線投光手段は、前記抽出手段が前記可視光画像取得手段の取得した前記可視光画像に基づいて前記先行車両候補領域を抽出した場合に消灯状態から点灯状態に切り換わることを特徴とする請求項3に記載の車両検出装置。   The infrared light projecting unit switches from a light-off state to a light-up state when the extraction unit extracts the preceding vehicle candidate area based on the visible light image acquired by the visible light image acquisition unit. The vehicle detection device according to claim 3. 前記赤外線投光手段は、前記抽出手段が前記赤外線画像取得手段の取得した前記赤外線画像に基づいて前記先行車両候補領域を抽出した場合に点灯状態から消灯状態に切り換わることを特徴とする請求項3に記載の車両検出装置。   The infrared light projecting unit switches from a lighting state to a non-lighting state when the extraction unit extracts the preceding vehicle candidate region based on the infrared image acquired by the infrared image acquisition unit. 4. The vehicle detection device according to 3. 前記先行車両検出手段は、前記赤外線投光手段が点灯状態に切り換わった後、前記赤外線画像取得手段が取得した前記赤外線画像における所定時間毎の輝度変化量が第2の閾値以下である場合に、前記赤外線画像に基づいて前記先行車両を検出することを特徴とする請求項1〜請求項4のうちいずれか一項に記載の車両検出装置。   The preceding vehicle detection unit is configured such that, after the infrared light projecting unit is switched to a lighting state, a luminance change amount per predetermined time in the infrared image acquired by the infrared image acquisition unit is equal to or less than a second threshold value. The vehicle detection apparatus according to claim 1, wherein the preceding vehicle is detected based on the infrared image.
JP2008267646A 2008-10-16 2008-10-16 Vehicle detection device Expired - Fee Related JP5077184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267646A JP5077184B2 (en) 2008-10-16 2008-10-16 Vehicle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267646A JP5077184B2 (en) 2008-10-16 2008-10-16 Vehicle detection device

Publications (2)

Publication Number Publication Date
JP2010097410A true JP2010097410A (en) 2010-04-30
JP5077184B2 JP5077184B2 (en) 2012-11-21

Family

ID=42259045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267646A Expired - Fee Related JP5077184B2 (en) 2008-10-16 2008-10-16 Vehicle detection device

Country Status (1)

Country Link
JP (1) JP5077184B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252746A (en) * 2010-06-01 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Device, method and program for detecting cable position
JP2013016981A (en) * 2011-07-01 2013-01-24 Denso Corp Imaging display control system
WO2013118337A1 (en) * 2012-02-06 2013-08-15 日立コンシューマエレクトロニクス株式会社 Imaging device
US8970357B2 (en) 2011-04-13 2015-03-03 Toyota Jidosha Kabushiki Kaisha Vehicle-mounted surrounding object recognizing apparatus and drive support apparatus using the same
KR20160101513A (en) * 2015-02-17 2016-08-25 현대자동차주식회사 Method for recognizing front vehicle or vehicle in front of front vehicle
KR101936131B1 (en) * 2012-09-03 2019-01-08 현대모비스 주식회사 Apparatus for detecting inter-vehicle distance improving recognition of lamp image and Method for detecting inter-vehicle distance using the same
WO2019180948A1 (en) * 2018-03-23 2019-09-26 本田技研工業株式会社 Object recognition device, vehicle, and object recognition method
CN111830518A (en) * 2019-04-22 2020-10-27 苏州翼搏特智能科技有限公司 Relative pose measurement system and method based on near-infrared beacon
JP2021005162A (en) * 2019-06-25 2021-01-14 株式会社リコー Image processing device, image forming apparatus and image processing method
WO2021049239A1 (en) * 2019-09-11 2021-03-18 株式会社小糸製作所 Vehicle lamp system
JP2021043633A (en) * 2019-09-10 2021-03-18 株式会社豊田中央研究所 Object identification device and object identification program
CN114423991A (en) * 2019-09-19 2022-04-29 株式会社小糸制作所 Infrared lamp system for vehicle, infrared sensor built-in lamp for vehicle, and optical sensor built-in lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255019A (en) * 1997-03-07 1998-09-25 Toyota Motor Corp Vehicle recognizing device
JP2004104646A (en) * 2002-09-12 2004-04-02 Hitachi Ltd On-vehicle image processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255019A (en) * 1997-03-07 1998-09-25 Toyota Motor Corp Vehicle recognizing device
JP2004104646A (en) * 2002-09-12 2004-04-02 Hitachi Ltd On-vehicle image processor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252746A (en) * 2010-06-01 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Device, method and program for detecting cable position
US8970357B2 (en) 2011-04-13 2015-03-03 Toyota Jidosha Kabushiki Kaisha Vehicle-mounted surrounding object recognizing apparatus and drive support apparatus using the same
JP2013016981A (en) * 2011-07-01 2013-01-24 Denso Corp Imaging display control system
WO2013118337A1 (en) * 2012-02-06 2013-08-15 日立コンシューマエレクトロニクス株式会社 Imaging device
KR101936131B1 (en) * 2012-09-03 2019-01-08 현대모비스 주식회사 Apparatus for detecting inter-vehicle distance improving recognition of lamp image and Method for detecting inter-vehicle distance using the same
KR102262577B1 (en) * 2015-02-17 2021-06-09 현대자동차주식회사 Method for recognizing front vehicle or vehicle in front of front vehicle
KR20160101513A (en) * 2015-02-17 2016-08-25 현대자동차주식회사 Method for recognizing front vehicle or vehicle in front of front vehicle
WO2019180948A1 (en) * 2018-03-23 2019-09-26 本田技研工業株式会社 Object recognition device, vehicle, and object recognition method
JPWO2019180948A1 (en) * 2018-03-23 2021-01-14 本田技研工業株式会社 Object recognition device, vehicle and object recognition method
JP7060676B2 (en) 2018-03-23 2022-04-26 本田技研工業株式会社 Object recognition device, vehicle and object recognition method
US11935308B2 (en) 2018-03-23 2024-03-19 Honda Motor Co., Ltd. Object recognition apparatus, vehicle, and object recognition method
CN111830518A (en) * 2019-04-22 2020-10-27 苏州翼搏特智能科技有限公司 Relative pose measurement system and method based on near-infrared beacon
JP2021005162A (en) * 2019-06-25 2021-01-14 株式会社リコー Image processing device, image forming apparatus and image processing method
JP7392302B2 (en) 2019-06-25 2023-12-06 株式会社リコー Image processing device, image forming device, and image processing method
JP2021043633A (en) * 2019-09-10 2021-03-18 株式会社豊田中央研究所 Object identification device and object identification program
JP7235308B2 (en) 2019-09-10 2023-03-08 株式会社豊田中央研究所 Object identification device and object identification program
WO2021049239A1 (en) * 2019-09-11 2021-03-18 株式会社小糸製作所 Vehicle lamp system
JP7538805B2 (en) 2019-09-11 2024-08-22 株式会社小糸製作所 Vehicle Lamp System
US12083947B2 (en) 2019-09-11 2024-09-10 Koito Manufacturing Co., Ltd. Vehicle lamp system
EP4032751A4 (en) * 2019-09-19 2022-10-26 Koito Manufacturing Co., Ltd. Infrared lighting unit system for vehicle, infrared sensor system for vehicle, and lighting unit with built-in infrared sensor and lighting unit with built-in optical sensor for vehicle
CN114423991A (en) * 2019-09-19 2022-04-29 株式会社小糸制作所 Infrared lamp system for vehicle, infrared sensor built-in lamp for vehicle, and optical sensor built-in lamp
US12096534B2 (en) 2019-09-19 2024-09-17 Koito Manufacturing Co., Ltd. Vehicle infrared lamp system, vehicle infrared sensor system, vehicle infrared-sensor-equipped lamp, and optical-sensor-equipped lamp

Also Published As

Publication number Publication date
JP5077184B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5077184B2 (en) Vehicle detection device
JP5617999B2 (en) On-vehicle peripheral object recognition device and driving support device using the same
JP4253271B2 (en) Image processing system and vehicle control system
US10442343B2 (en) Vehicle exterior environment recognition apparatus
JP4544233B2 (en) Vehicle detection device and headlamp control device
JP4253275B2 (en) Vehicle control system
JP4538468B2 (en) Image processing apparatus, image processing method, and image processing system
JP6075331B2 (en) Vehicle lighting device
US20090046894A1 (en) System for the detection by a motor vehicle of a phenomenon that interferes with visibility
JP2008040615A (en) Vehicle detection device and head lamp controller
JP2008033872A (en) Visibility condition determining device for vehicle
JP2006193068A (en) Vehicular tunnel detector and vehicular light controller
JP2015009570A (en) Headlight lamp control device
JP2008110723A (en) Vehicular lighting system, vehicular lighting control method, and vehicular lighting control program
JP2008070979A (en) Onboard fog decision unit
JP2008211410A (en) Image recognition device for vehicle, and light distribution control unit and light distribution control method
JP2011103070A (en) Nighttime vehicle detector
JP2009065360A (en) Image processor, image processor for vehicle, image display device for vehicle and vehicle controller
CN109501667B (en) Road surface determination device for vehicle
JP2012240530A (en) Image processing apparatus
JP2006011671A (en) Vehicle-mounted surrounding circumstance detection device
JP2010140171A (en) Headlight system, and fault detection method
JP4735090B2 (en) Infrared imaging device
JP2008134916A (en) Vehicle forward recognition apparatus mounted on vehicle
WO2013137324A1 (en) Vehicle-mounted illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees