JP2010080535A - 磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置 - Google Patents
磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置 Download PDFInfo
- Publication number
- JP2010080535A JP2010080535A JP2008244759A JP2008244759A JP2010080535A JP 2010080535 A JP2010080535 A JP 2010080535A JP 2008244759 A JP2008244759 A JP 2008244759A JP 2008244759 A JP2008244759 A JP 2008244759A JP 2010080535 A JP2010080535 A JP 2010080535A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetization
- magnetic
- effect element
- free layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 88
- 230000000694 effects Effects 0.000 title claims abstract description 56
- 230000005415 magnetization Effects 0.000 claims abstract description 116
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 15
- 125000006850 spacer group Chemical group 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 230000005389 magnetism Effects 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 191
- 239000010408 film Substances 0.000 description 49
- 239000002772 conduction electron Substances 0.000 description 17
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 230000008878 coupling Effects 0.000 description 10
- 230000005290 antiferromagnetic effect Effects 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229910019041 PtMn Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910002546 FeCo Inorganic materials 0.000 description 2
- 229910002555 FeNi Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 230000005330 Barkhausen effect Effects 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- -1 oxynitrides Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
Abstract
【課題】スピントランスファートルクを低減し、比較的小さいMR比でも十分な再生出力を出力することが可能な新規な磁気抵抗効果素子、並びにこの磁気抵抗効果素子を用いた磁気ヘッド及び磁気記録再生装置を提供する。
【解決手段】磁化方向が実質的に一方向に固着された磁化固着層と、磁化方向が外部磁界に対応して変化する磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられ、絶縁層と前記絶縁層を貫通する強磁性金属層を含む複合スペーサ層を有する磁気抵抗効果膜と、前記磁気抵抗効果膜の厚さ方向に沿った上面及び下面に設けられた一対の電極層とを具え、前記一対の電極層を介し、前記磁気抵抗効果膜の前記磁化固着層から前記磁化自由層へ向けてセンス電流を流すようにして、磁気抵抗効果素子を構成する。
【選択図】図1
【解決手段】磁化方向が実質的に一方向に固着された磁化固着層と、磁化方向が外部磁界に対応して変化する磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられ、絶縁層と前記絶縁層を貫通する強磁性金属層を含む複合スペーサ層を有する磁気抵抗効果膜と、前記磁気抵抗効果膜の厚さ方向に沿った上面及び下面に設けられた一対の電極層とを具え、前記一対の電極層を介し、前記磁気抵抗効果膜の前記磁化固着層から前記磁化自由層へ向けてセンス電流を流すようにして、磁気抵抗効果素子を構成する。
【選択図】図1
Description
本発明は、磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置に関する。
磁気抵抗効果素子(Magnetoresistive effect element)は、磁場センサ、磁気ヘッド(MRヘッド)として用いられている。MRヘッドは、磁気記録再生装置に搭載され、ハードディスクドライブ等の磁気記録媒体からの情報を読み取る。このハードディスク等ではとくにスピンバルブ(spin valve)構造の膜を用いた再生素子が一般に使用されている。
スピンバルブ膜は、2層の強磁性層で非磁性層を挟んだサンドイッチ構造の多層膜である。強磁性層の一方は、反強磁性層からの交換バイアス磁場により、その磁化方向が固定され、「ピン層」あるいは「磁化固着層」と称される。強磁性層の他方は、外部磁場(信号磁場等)により、その磁化方向が回転可能であり、「フリー層」あるいは「磁化自由層」とも称される。非磁性層は、「スペーサ層」あるいは「中間層」と称される。
このようなスピンバルブ膜は、外部磁界により、これら2つの強磁性層の磁化方向の相対的な角度が変化することで、大きな磁気抵抗効果が得られる。
スピンバルブ膜を用いた磁気抵抗効果素子には、CIP(Current-in-Plane)型と、CPP(Current Perpendicular to Plane)型とがある。前者ではスピンバルブ膜の膜面の平行方向にセンス電流を流し、後者ではスピンバルブ膜の膜面の垂直方向にセンス電流を流す。以前にはCIP型が用いたれていたが、出力電圧の必要性や空間分解能の必要性から現在では、CPP型の磁気ヘッドが広く用いられるようになった。
現在、CPP型のTMR効果(tunneling magneto resistive effect)を用いた磁気ヘッドが一般的であるが、さらにハードディスクの性能(記録密度)を高めるためには高出力・低抵抗のヘッドが必要で、そういったCPP型のGMR効果(giant magneto resistive effect)を含む、CPP型のTMR効果以外のスピンバルブ膜も研究されている。その中で磁壁MR効果、磁性金属接合部をもったMR効果に関して、Ni細線同士の微少接合を用いて、高い磁気抵抗変化率の磁気抵抗効果が観測されている(非特許文献1参照)。実際のヘッドとして応用できる膜として、磁性金属接合部をもったスピンバルブ膜に関しても報告されている(非特許文献2参照)。
磁性金属接合部を有するスピンバルブ膜においては、例えば、前述の磁化自由層とピン層との間に微小な金属層を含む絶縁層を挿入することにより、前記磁化自由層と前記ピン層との間に磁気微小結合の三次元構造を設け、この磁気結合中の磁壁によるスピン依存散乱によるMR効果を利用する。
上述のような磁気微小結合を三次元構造に展開した磁気抵抗効果素子の開発が進められており、特許文献1には3次元方向のナノコンタクトの作製法、つまり穴あけ法として、EB(Electron Beam)照射プロセス、FIB(Focused Ion Beam)照射プロセス、AFM(Atomic Force Microscope)技術などが開示されている。
Phys. Rev. Lett. 82 2923 (1999)
IEEE Trans. Magn. 43 2848 (2007)
特開2003−204095号
スピンバルブ構造の磁気抵抗効果膜を再生素子として機能させるには、膜面に略垂直にバイアス電流(センス電流)を流す。この際、前記バイアス電流を流すことによって、伝導電子も前記バイアス電流と逆方向に流れるようになるが、その際、最初に通過した磁性膜のスピン角運動量は伝導電子のスピン角運動量を介して次に通過する磁性膜に流れ込み、その磁化にトルクを与える。
例えば、上記伝導電子が前記磁化固着層から前記磁化自由層に流れる場合は、前記磁化固着層を通過した際の角運動量が前記磁化自由層中の磁化にトルクを与えるようになる。また、上記伝導電子が前記磁化自由層から前記磁化固着層に流れる場合は、前記磁化自由層を通過した際の角運動量が前記磁化固着層中の磁化にトルクを与えるようになる。
上述のようにして発生するトルクは、いわゆるスピントランスファートルクと呼ばれるものである。このスピントランスファートルクはMRAM (Magnetic Random Access Memory)の様に、積極的にメモリの記録に用いることもあるが、上述したハードディスク等で用いる再生素子に対しては、上記磁化自由層の磁化に大きな影響を及ぼし、上記磁気抵抗効果膜において大きなノイズとなる場合がある。これを以下に説明する。
スピントルクの受け渡し効率は電流の向きと磁化自由層磁化と磁化固着層磁化の相対角度に大きく依存する。バイアス電流が磁化自由層から磁化固着層に(伝導電子が磁化固着層から磁化自由層)流れるときは両層の磁化の相対角度は180度に近いほうが、上記受け渡し効率が良くなる。一方、バイアス電流が磁化固着層から磁化自由層(伝導電子が磁化自由層から磁化固着層)に流れるときは、両層の磁化の相対角度は0度に近いほうが、上記受け渡し効率が良くなる。
前者の場合は、上記伝導電子のスピンが磁化固着層の磁化に平行で、磁化自由層の磁化に反平行であり、前記磁化固着層の磁化と平行なスピンを有する伝導電子が前記磁化固着層を透過して、前記磁化自由層に至るためである。後者の場合は、上記伝導電子のスピンは前記磁化固着層及び前記磁化自由層の磁化に平行であるが、前記磁化固着層の磁化に反平行なスピンを有する伝導電子が前記磁化固着層で反射されて、前記磁化自由層に入り込むためである。
このように前記磁化自由層の磁化は、上述のようにして上記磁化自由層中に取り込まれたスピンに起因したトルクを受けるようになるので、前記磁化自由層の磁化が乱雑に動いて不安定となり、これがノイズとなって再生出力が十分に出力されなくなってしまう場合がある。したがって、磁化自由層磁化と磁化固着層磁化の相対角度を考慮して、前記バイアス電流の流す方向を変え、上述したスピントルクの受け渡し効率を減少させれば、上述したスピントルクの受け渡し効率をある程度は減少させることができる。
しかしながら、上述したスピントランファートルクは、上記バイアス電流値にも依存し、バイアス電流値の増大とともに顕著になるので、上述のように単にバイアス電流の流す方向を変えたのみでは、前記スピントランファートルクの影響を十分に低減することはできない。
一方、前記バイアス電流値を小さくすれば、前記バイアス電流を流す方向を考慮することなく、前記スピントランスファートルクを低減することができる。具体的には、107(A/cm2)以下のオーダとすれば、前記スピントランスファートルクの影響を低減することができる。
しかしながら、上記バイアス電流値は磁気抵抗効果素子に要求される特性に大きく関わり、前記バイアス電流値が増大すれば、前記磁気抵抗効果素子のMR比が小さくても大きな再生出力を得ることができる。したがって、前記バイアス電流値が107(A/cm2)以下のオーダのような場合には、十分な再生出力を得るには前記磁気抵抗効果素子のMR比が十分高いことが要求され、現在のTMR及びGMRではかかるMR比を満足することができない。
本発明は、スピントランスファートルクを低減し、比較的小さいMR比でも十分な再生出力を出力することが可能な新規な磁気抵抗効果素子、並びにこの磁気抵抗効果素子を用いた磁気ヘッド及び磁気記録再生装置を提供することを目的とする。
上記目的を達成すべく、本発明の一態様は、磁化方向が実質的に一方向に固着された磁化固着層と、磁化方向が外部磁界に対応して変化する磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられ、絶縁層と前記絶縁層を貫通する強磁性金属層を含む複合スペーサ層を有する磁気抵抗効果膜と、前記磁気抵抗効果膜の厚さ方向に沿った上面及び下面に設けられた一対の電極層とを具え、前記一対の電極層を介し、前記磁気抵抗効果膜の前記磁化固着層から前記磁化自由層へ向けてセンス電流を流すように構成したことを特徴とする、磁気抵抗効果素子に関する。
また、本発明の他の態様は、上記磁気抵抗効果素子を具えることを特徴とする、磁気ヘッドに関する。
さらに、本発明のその他の態様は、磁気記録媒体と、上記磁気ヘッドとを具えることを特徴とする、磁気記録再生装置に関する。
上記態様によれば、スピントランスファートルクを低減し、比較的小さいMR比でも十分な再生出力を出力することが可能な新規な磁気抵抗効果素子を提供することができる。
以下、図面を参照して,本発明の実施の形態を詳細に説明する。
(磁気抵抗効果素子)
図1は、本発明の一実施形態にかかる磁気抵抗効果素子の概略構成を表す模式的断面図である。
図1は、本発明の一実施形態にかかる磁気抵抗効果素子の概略構成を表す模式的断面図である。
図1に示す磁気抵抗効果素子10は、下電極LE及び上電極UEを有し、これらの間に積層膜が配置されてなる。この積層膜は、下電極LE上に、下地層11、反強磁性層12、複合ピン層(磁化固着層)13(ピン層131、磁化反平行結合層132及びピン層133)、複合スペーサ層14、フリー層(磁化自由層)15、及び保護層16が順次に積層されてなる。ここで、複合ピン層13、複合スペーサ層14及びフリー層15がスピンバルブ膜を構成する。
下電極LE及び上電極UEは、スピンバルブ膜の略垂直方向にセンス電流を通電するためのものであり、磁気抵抗効果素子10は、センス電流を素子膜面に対して垂直方向に流すCPP(Current Perpendicular to Plane)型の磁気抵抗効果素子を構成する。
下地層11は、例えば、バッファ層11a、シード層11bの2層構造とすることができる。バッファ層11aは、下電極LE表面の荒れを緩和したりするための層であり、例えば、Ta,Ti,W,Zr,Hf,Crまたはこれらの合金を用いることができる。シード層11bは、スピンバルブ膜の結晶配向を制御するための層であり、例えば、Ru、(FexNi100−x)100−yXy(X=Cr,V,Nb,Hf,Zr,Mo,15<x<25,20<y<45)を用いることができる。
バッファ層11aの膜厚は2〜10nm程度が好ましく、3〜5nm程度がより好ましい。バッファ層11aの厚さが薄すぎるとバッファ効果が失われる。シード層12bの膜厚としては、結晶配向を向上させる機能を十分発揮するために、1〜5nmが好ましく、1.5〜3nmがより好ましい。
反強磁性層12は、複合ピン層13に一方向異方性(unidirectional anisotropy)を付与して磁化を固着する機能を有する反強磁性材料(例えば、PtMn,PdPtMn,IrMn,RuRhMn)が用いられる。
十分な強さの一方向異方性を付与するために、反強磁性層12の膜厚を適切に設定する。反強磁性層12の材料がPtMnやPdPtMnの場合には、膜厚として、8〜20nm程度が好ましく、10〜15nmがより好ましい。反強磁性層12の材料がIrMnの場合には、PtMnなどより薄い膜厚でも一方向異方性を付与可能であり、3〜12nmが好ましく、4〜10nmがより好ましい。
複合ピン層(磁化固着層)13は、磁化方向が実質的に固着された2つの強磁性体の膜(ここでは、ピン層131及び133)を有し、これらの間に配置される磁化反平行結合層132から構成される。なお、この複合ピン層13に換えて、単一のピン層を用いることもできる。磁化反平行結合層132の上下のピン層131及び133は、磁化反平行結合層132を介して、磁化の向きが互いに反平行になるように磁気結合している。
なお、ピン層131及び133には、強磁性体(例えば,Fe,Co,Ni,FeCo合金,FeNi合金)が用いられる。磁化反平行結合層132は、ピン層131及び133を反強磁性結合するものであり、例えば、Ru,Ir,Rhが用いられる。
ピン層131に用いられる磁性層の膜厚は1.5〜4nm程度が好ましい。これは、反反強磁性層12(例えば、IrMn)による一方向異方性磁界強度および磁気結合層132(例えば、Ru)を介したピン層133との反強磁性結合磁界強度の観点に基づく。ピン層131が薄すぎるとMR変化率が小さくなる。一方、ピン層131が厚すぎるとデバイス動作に必要な十分な一方向性異方性磁界を得ることが困難になる。なお、同様の理由から、ピン層133に用いられる磁性層の膜厚も1.5〜4nm程度が好ましい。
複合スペーサ層14は、絶縁層141及び強磁性金属層(強磁性金属部)142を有する。
絶縁層141は、電流を絶縁する機能を有する材料を適宜に利用できる。具体的には、Al,Mg,Li,Si,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Se,Sr,Y,Zr,Nb,Mo,Pd,Ag,Cd,In,Sn,Sb,Ba,Ka,Hf,Ta,W,Re,Pt,Hg,Pb,Bi,ランタノイド元素の少なくとも一種を含む酸化物、窒化物、酸窒化物、炭化物等から構成することができる。
絶縁層141は、ピン層133及びフリー層15のスペーサとしての機能も有するため、その厚さは1〜3.5nmが好ましく、1.5〜3nmの範囲がより好ましい。
強磁性金属層142は、複合スペーサ層14の層垂直方向に電流を流す通路(パス)であり、Fe,Co,Ni等の強磁性体または合金からなる金属層を用いることができる。
フリー層15は、上述したピン層131等と同様に、強磁性体(例えば,Fe,Co,Ni,FeCo合金,FeNi合金)が用いられる。
保護層16は、上記スピンバルブ膜を保護するためのものであり、複数の金属層、例えば、Cu層とRu層の2層構造(Cu[1nm]/Ru[10nm])とすることができる。保護層16として、Ruをフリー層15側に配置したRu/Cu層なども用いることができる。この場合、Ruの膜厚は0.5〜2nm程度が好ましい。この構成の保護層16は、特に、フリー層15がNiFeからなる場合に望ましい。RuはNiと非固溶な関係にあるので、フリー層15と保護層16との間に形成される界面ミキシング層の磁歪を低減できるからである。
なお、本態様の磁気抵抗効果素子は汎用の方法で製造することができる。特に、複合スペーサ層14を形成するに際しては、例えば、強磁性金属層142を構成する第1の金属層及び第2の金属層を順次形成した後、表面酸化処理あるいは表面窒化処理を実施して、前記第2の金属層中に前記第1の金属層の一部を侵入させるとともに、前記第2の金属層を絶縁層に変換して行う。具体的には、特開P2006−54257号公報に開示されたような手法に基づいて実施する。
(磁気抵抗効果素子の再生)
次に、上記態様における磁気抵抗化素子10の再生原理について説明する。図2及び3は、前記再生原理を説明するための図であり、ピン層133、複合スペーサ層14及びフリー層15を拡大して示している。
次に、上記態様における磁気抵抗化素子10の再生原理について説明する。図2及び3は、前記再生原理を説明するための図であり、ピン層133、複合スペーサ層14及びフリー層15を拡大して示している。
本態様では、図1に示すように、磁気抵抗効果素子10に対してピン層133からフリー層15に向けて電流を流す。したがって、伝導電子はフリー層15からピン層133に向けて流れることになる。
図2に示すように、ピン層133の磁化M1とフリー層15の磁化M2が互いに平行(本態様では互いに上向き)、すなわち磁化M1及びM2の相対角度が0度の場合、複合スペーサ層14の強磁性金属層142内に磁壁が生じることがない。したがって、フリー層15から流入した伝導電子E1及びE2は、そのまま強磁性金属層142を通過してピン層133に流入するようになるので、フリー層15におけるスピントルクの受け渡し効率は低くなる。
一方、ピン層133の磁化M1とフリー層15の磁化M2とが平行からずれてくると、複合スペーサ層14の強磁性金属層142内には磁壁DWが形成されるようになる。磁壁DWのピン層133側では磁化M1と同方向の磁化m1が生成し、磁壁DWのフリー層142側では磁化M2と同方向の磁化m2が生成するようになる。このため、磁壁DWは、伝導電子E1及びE2に対して反射層として機能するようになる。
例えば、フリー層15に導入された伝導電子E1及びE2のスピン方向は、それぞれ磁壁DWの、ピン層133側の磁化m1の方向と相異なるようになるので、伝導電子E1及びE2は磁壁DWにおいて反射されるようになる。したがって、フリー層15のスピントルクの受け渡し効率が増大するようになる。
しかしながら、図3に示すように、ピン層133の磁化M1とフリー層15の磁化M2とが反平行(本態様では、磁化M1が上向きで、磁化M2が下向き)になると、フリー層15に導入された伝導電子E1及びE2の内、磁壁DWのピン層133側の磁化m1の方向と同方向のスピンを有する伝導電子E1は磁壁DWで反射されることなく透過する。一方、磁化m1の方向と反対方向のスピンを有する伝導電子E2は磁壁DWで反射されるが、そのスピン方向はフリー層15の磁化M2の方向と同じである。
したがって、フリー層15における実質的なスピントルクの受け渡しは生じないようになる。したがって、スピントルクの受け渡し効率は小さくなる。
本態様に従って、磁気抵抗効果素子10に対してピン層133からフリー層15に向けて電流を流す、すなわち、伝導電子をフリー層15からピン層133に向けて流すことによって、ピン層133の磁化M1とフリー層15の磁化M2とが平行又は反平行の際はスピントルクの受け渡し効率が十分に小さくなる。
図4は、本態様におけるスピントルクの受け渡し効率(スピントルク起因のノイズ強度)と、フリー層15及びピン層133におけるそれぞれの磁化M2及びM1の相対角度依存性を示したものである。
図4から明らかなように、相対角度90度近傍でスピントルクの受け渡し効率(スピントルク起因のノイズ強度)が若干増大するものの、0度(平行)及び180度(反平行)に近づくにつれて、前記スピントルクの受け渡し効率(スピントルク起因のノイズ強度)が減少することが分かる。なお、このグラフはシミュレーションに基づくものである。
したがって、このように要件を満足する磁気抵抗効果素子10の出力波形は、例えば図5に示すような良好なサインカーブとなる。一方、上記スピントルクの受け渡し効率(スピントルク起因のノイズ強度)が大きい場合は、例えば図中の破線で示すようなカーブとなり、良好な出力電圧を得ることができない場合がある。
(磁気抵抗効果素子の応用)
以下、本発明の実施形態に係る磁気抵抗効果素子(CCP−CPP素子)の応用について説明する。
以下、本発明の実施形態に係る磁気抵抗効果素子(CCP−CPP素子)の応用について説明する。
(磁気ヘッド)
図6および図7は、本発明の実施形態に係る磁気抵抗効果素子を磁気ヘッドに組み込んだ状態を示している。図6は、磁気記録媒体(図示せず)に対向する媒体対向面に対してほぼ平行な方向に磁気抵抗効果素子を切断した断面図である。図7は、この磁気抵抗効果素子を媒体対向面ABSに対して垂直な方向に切断した断面図である。
図6および図7は、本発明の実施形態に係る磁気抵抗効果素子を磁気ヘッドに組み込んだ状態を示している。図6は、磁気記録媒体(図示せず)に対向する媒体対向面に対してほぼ平行な方向に磁気抵抗効果素子を切断した断面図である。図7は、この磁気抵抗効果素子を媒体対向面ABSに対して垂直な方向に切断した断面図である。
図6および図7に例示した磁気ヘッドは、いわゆるハード・アバッテッド(hard abutted)構造を有する。磁気抵抗効果膜10の上下には、下電極LEと上電極UEとがそれぞれ設けられている。図6において、磁気抵抗効果膜10の両側面には、バイアス磁界印加膜41と絶縁膜42とが積層して設けられている。図7に示すように、磁気抵抗効果膜10の媒体対向面には保護層43が設けられている。
磁気抵抗効果膜10に対するセンス電流は、その上下に配置された下電極LE、上電極UEによって矢印Aで示したように、膜面に対してほぼ垂直方向に通電される。また、左右に設けられた一対のバイアス磁界印加膜41、41により、磁気抵抗効果膜10にはバイアス磁界が印加される。このバイアス磁界により、磁気抵抗効果膜10のフリー層15の磁気異方性を制御して単磁区化することによりその磁区構造が安定化し、磁壁の移動に伴うバルクハウゼンノイズ(Barkhausen noise)を抑制することができる。磁気抵抗効果膜10のS/N比が向上しているので、磁気ヘッドに応用した場合に高感度の磁気再生が可能となる。
(ハードディスクおよびヘッドジンバルアセンブリー)
図6および図7に示した磁気ヘッドは、記録再生一体型の磁気ヘッドアセンブリに組み込んで、磁気記録再生装置に搭載することができる。
図6および図7に示した磁気ヘッドは、記録再生一体型の磁気ヘッドアセンブリに組み込んで、磁気記録再生装置に搭載することができる。
図8は、このような磁気記録再生装置の概略構成を例示する要部斜視図である。すなわち、本実施形態の磁気記録再生装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、磁気ディスク200は、スピンドル152に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。本実施形態の磁気記録再生装置150は、複数の磁気ディスク200を備えてもよい。
磁気ディスク200に格納する情報の記録再生を行うヘッドスライダ153は、薄膜状のサスペンション154の先端に取り付けられている。ヘッドスライダ153は、上述したいずれかの実施形態に係る磁気抵抗効果素子を含む磁気ヘッドをその先端付近に搭載している。
磁気ディスク200が回転すると、ヘッドスライダ153の媒体対向面(ABS)は磁気ディスク200の表面から所定の浮上量をもって保持される。あるいはスライダが磁気ディスク200と接触するいわゆる「接触走行型」でもよい。
サスペンション154はアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、ボビン部に巻かれた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路とから構成される。
アクチュエータアーム155は、スピンドル157の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。
図9は、アクチュエータアーム155から先のヘッドジンバルアセンブリーをディスク側から眺めた拡大斜視図である。すなわち、アセンブリ160は、アクチュエータアーム155を有し、アクチュエータアーム155の一端にはサスペンション154が接続されている。サスペンション154の先端には、上述したいずれかの実施形態に係る磁気抵抗効果素子を含む磁気ヘッドを具備するヘッドスライダ153が取り付けられている。サスペンション154は信号の書き込みおよび読み取り用のリード線164を有し、このリード線164とヘッドスライダ153に組み込まれた磁気ヘッドの各電極とが電気的に接続されている。図中165はアセンブリ160の電極パッドである。
本実施形態によれば、上述の磁気抵抗効果素子を含む磁気ヘッドを具備することにより、高い記録密度で磁気ディスク200に磁気的に記録された情報を確実に読み取ることが可能となる。
(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。磁気抵抗効果膜の具体的な構造や、その他、電極、バイアス印加膜、絶縁膜などの形状や材質に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる。例えば、磁気抵抗効果素子を再生用磁気ヘッドに適用する際に、素子の上下に磁気シールドを付与することにより、磁気ヘッドの検出分解能を規定することができる。
本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。磁気抵抗効果膜の具体的な構造や、その他、電極、バイアス印加膜、絶縁膜などの形状や材質に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる。例えば、磁気抵抗効果素子を再生用磁気ヘッドに適用する際に、素子の上下に磁気シールドを付与することにより、磁気ヘッドの検出分解能を規定することができる。
また、本発明の実施形態は、長手磁気記録方式のみならず、垂直磁気記録方式の磁気ヘッドあるいは磁気再生装置についても適用できる。さらに、本発明の磁気再生装置は、特定の記録媒体を定常的に備えたいわゆる固定式のものでも良く、一方、記録媒体が差し替え可能ないわゆる「リムーバブル」方式のものでも良い。
その他、本発明の実施形態として上述した磁気ヘッドおよび磁気記憶再生装置を基にして、当業者が適宜設計変更して実施しうるすべての磁気抵抗効果素子、磁気ヘッド、磁気記憶再生装置および磁気メモリも同様に本発明の範囲に属する。
10…磁気抵抗効果膜、LE…下電極、11…下地層、11a…バッファ層、11b…シード層、12…反強磁性層、13…複合ピン層、131,133…ピン層、132…磁化反平行結合層、15…フリー層、16…保護層
Claims (6)
- 磁化方向が実質的に一方向に固着された磁化固着層と、
磁化方向が外部磁界に対応して変化する磁化自由層と、
前記磁化固着層と前記磁化自由層との間に設けられ、絶縁層と前記絶縁層を貫通する強磁性金属層を含む複合スペーサ層を有する磁気抵抗効果膜と、
前記磁気抵抗効果膜の厚さ方向に沿った上面及び下面に設けられた一対の電極層とを具え、
前記一対の電極層を介し、前記磁気抵抗効果膜の前記磁化固着層から前記磁化自由層へ向けてセンス電流を流すように構成したことを特徴とする、磁気抵抗効果素子。 - 前記絶縁層が、酸素、窒素、及び炭素からなる群より選ばれる少なくとも1つを含むことを特徴とする、請求項1に記載の磁気抵抗効果素子。
- 前記金属部が、Fe及びCoの少なくとも1つを含むことを特徴とする、請求項1又は2に記載の磁気抵抗効果素子。
- 前記磁化固着層及び前記磁化自由層の少なくとも一方は、Fe、Co、及びNiからなる群より選ばれる少なくとも1つを含むことを特徴とする、請求項1〜3のいずれか一に記載の磁気抵抗効果素子。
- 請求項1〜4のいずれか一に記載の磁気抵抗効果素子を具えることを特徴とする、磁気ヘッド。
- 磁気記録媒体と、請求項5に記載の磁気ヘッドとを具えることを特徴とする、磁気記録再生装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008244759A JP2010080535A (ja) | 2008-09-24 | 2008-09-24 | 磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008244759A JP2010080535A (ja) | 2008-09-24 | 2008-09-24 | 磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010080535A true JP2010080535A (ja) | 2010-04-08 |
Family
ID=42210675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008244759A Withdrawn JP2010080535A (ja) | 2008-09-24 | 2008-09-24 | 磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010080535A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012169448A (ja) * | 2011-02-14 | 2012-09-06 | Toshiba Corp | 磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置 |
-
2008
- 2008-09-24 JP JP2008244759A patent/JP2010080535A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012169448A (ja) * | 2011-02-14 | 2012-09-06 | Toshiba Corp | 磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4975335B2 (ja) | 磁気抵抗効果素子,磁気ヘッド,および磁気記録再生装置 | |
JP5150284B2 (ja) | 磁気抵抗効果素子およびその製造方法 | |
JP4822680B2 (ja) | 磁気抵抗効果素子の製造方法 | |
JP5044157B2 (ja) | 磁気抵抗効果素子,磁気ヘッド,および磁気再生装置 | |
JP4594679B2 (ja) | 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置、および磁気メモリ | |
JP5361201B2 (ja) | 磁気抵抗効果素子の製造方法 | |
JP2007299880A (ja) | 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法 | |
JP4388093B2 (ja) | 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置 | |
US20060268470A1 (en) | Magnetoresistive element | |
US20070297098A1 (en) | Magnetoresistive element, magnetic head, magnetic recording apparatus, and magnetic memory | |
JP2010033689A (ja) | 薄膜磁気ヘッド | |
JP2008016740A (ja) | 磁気抵抗効果素子の製造方法、および磁気抵抗効果素子 | |
JP2002319112A (ja) | 磁気抵抗効果ヘッドおよび垂直磁気記録再生装置 | |
JP2008085220A (ja) | 磁気抵抗効果素子、磁気ヘッド、および磁気再生装置 | |
JP2008085202A (ja) | 磁気抵抗効果素子、磁気メモリ、磁気ヘッド、および磁気記録再生装置 | |
JP2008152818A (ja) | 磁気ヘッド、および磁気ディスク装置 | |
JP4469570B2 (ja) | 磁気抵抗効果素子、磁気ヘッドおよび磁気記録再生装置 | |
CN100367352C (zh) | 磁阻磁头以及磁记录-复制装置 | |
JP5162021B2 (ja) | 磁気抵抗効果素子、磁気メモリ、磁気抵抗効果ヘッド、および磁気記録再生装置 | |
JP2006080144A (ja) | 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、およびハードディスク装置 | |
JP2004355682A (ja) | 薄膜磁気ヘッド | |
JP4945606B2 (ja) | 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法 | |
JP4649433B2 (ja) | 磁気抵抗効果素子、磁気ヘッド、磁気記憶装置及び磁気メモリ | |
JP2008243327A (ja) | 垂直通電型gmr再生素子、並びにこのgmr再生素子を具えることを特徴とする磁気ヘッド及び磁気記録再生装置 | |
JP4764294B2 (ja) | 磁気抵抗効果素子、及び磁気ヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111206 |