JP2010078035A - 作業機械の油圧シリンダ制御回路 - Google Patents
作業機械の油圧シリンダ制御回路 Download PDFInfo
- Publication number
- JP2010078035A JP2010078035A JP2008246040A JP2008246040A JP2010078035A JP 2010078035 A JP2010078035 A JP 2010078035A JP 2008246040 A JP2008246040 A JP 2008246040A JP 2008246040 A JP2008246040 A JP 2008246040A JP 2010078035 A JP2010078035 A JP 2010078035A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- circuit
- hydraulic
- control
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2217—Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
【課題】作業機械の油圧シリンダ制御回路に関し、油圧シリンダの伸縮作動に伴う作動油の再生に際し、油圧シリンダの作動速度を一定に保ちつつ油圧回路の圧力変動を安定化させる。
【解決手段】 油圧シリンダ38の一方の油室38aから他方の油室38bへの作動油再生に係る油圧回路において、一方の油室38a側の負荷圧力を検出する圧力センサ1を設けるとともに、各油室38a,38b間を接続する再生回路L2上に電磁比例減圧弁2を設ける。
電磁比例減圧弁2の開度制御において、一方の油室38a側の目標圧力と該負荷圧力との差圧を演算し、差圧が小さいほど開度を絞り、差圧が大きいほど開度を開放する。これにより、一方の油室38aの圧力を該目標圧力に収束させる。
【選択図】図2
【解決手段】 油圧シリンダ38の一方の油室38aから他方の油室38bへの作動油再生に係る油圧回路において、一方の油室38a側の負荷圧力を検出する圧力センサ1を設けるとともに、各油室38a,38b間を接続する再生回路L2上に電磁比例減圧弁2を設ける。
電磁比例減圧弁2の開度制御において、一方の油室38a側の目標圧力と該負荷圧力との差圧を演算し、差圧が小さいほど開度を絞り、差圧が大きいほど開度を開放する。これにより、一方の油室38aの圧力を該目標圧力に収束させる。
【選択図】図2
Description
本発明は、油圧シリンダの伸縮動作時に流出する作動油を流入側へ供給して再生利用する作業機械の油圧シリンダ制御回路に関する。
油圧ショベルに代表される作業機械の油圧回路には、油圧シリンダの伸縮動作時に流出する作動油を流入側へ供給して再生利用するいわゆる再生回路が設けられたものがある。引用文献1には、ブーム下げ時にブームボトム(ブームヘッド)側からの戻り油をブームロッド側へ再生させる再生油路を備えた油圧回路が記載されている。
この技術では、作動油ポンプから油圧シリンダへの作動油供給路上に介装された方向制御弁(コントロール弁)のブーム下げ位置のセンターバイパス上に可変絞り弁を介装し、その可変絞り弁をブームボトム圧やブームロッド圧に応じて制御している。このような制御により、作動油の再生時における作動油ポンプ側の吐出流量を減少させて燃費を向上させることができるとされている。
特開平10−89317号公報
この技術では、作動油ポンプから油圧シリンダへの作動油供給路上に介装された方向制御弁(コントロール弁)のブーム下げ位置のセンターバイパス上に可変絞り弁を介装し、その可変絞り弁をブームボトム圧やブームロッド圧に応じて制御している。このような制御により、作動油の再生時における作動油ポンプ側の吐出流量を減少させて燃費を向上させることができるとされている。
ところで、上述のような再生回路では、例えばアーム先端に装着されるアタッチメントを交換すると、油圧シリンダのボトム圧が増減変化する。そのため、たとえ交換前と同じレバー操作を行ったとしても油圧シリンダの作動速度が変化してしまい、操作性も変化することになる。したがって、従来の再生回路で油圧シリンダのレバー操作量と作動速度との対応関係を一定に保つには、アタッチメントの交換時に再生回路の流量特性を変更する必要があり、そのような設定作業が煩雑であるという課題がある。
また、アタッチメントの交換だけでなく、フロント作業機に作用する負荷変動によって油圧シリンダの作動速度が変化してしまうこともある。この場合、作動油の流出側から流入側へ再生される作動油量を一定に保つことにより、油圧シリンダの作動速度を制御することも考えられる。しかしながら、そのような再生回路上の流量制御では、負荷によって与えられる作動油流出側の圧力を制御することができない。したがって、たとえ負荷変動に関わらず油圧シリンダの作動速度を一定にすることができたとしても、油圧シリンダ内の作動油圧の変動を抑制することができない。特に、作動油の流出側の回路圧を他の油圧回路の制御パイロット圧として利用しているような場合には、このような圧力変動によって良好な制御性が得られない場合がある。
本発明はこのような課題に鑑みてなされたもので、油圧シリンダの伸縮作動に伴う作動油の再生に際し、油圧シリンダの作動速度を一定に保ちつつ油圧回路の圧力変動を安定化させることができるようにした、作業機械の油圧シリンダ制御回路を提供することを目的とする。
上記目的を達成するため、請求項1記載の本発明の作業機械の油圧シリンダ制御回路は、油圧ショベルに搭載されコントロール弁によって作動油流量を制御される油圧シリンダ(例えば、ブームシリンダやアームシリンダ)の伸縮時に、該コントロール弁を介することなく一方の油室から排出される作動油を駆動側の他方の油室へ供給して再生させる油圧シリンダ制御回路であって、該一方の油室側の負荷圧力を検出する圧力センサと、該一方の油室と該他方の油室とを接続する再生回路と、該再生回路上に介装され、該油圧シリンダの再生に係る操作(例えば、ブームシリンダに対するブーム下げ操作やアームシリンダに対するアームイン操作)が検出された時に該再生回路を開放するとともに該操作が検出されないときに該再生回路を遮断する切換弁と、該再生回路における該切換弁よりも該他方の油室側に介装され、開度を変更可能に形成された電磁比例減圧弁と、該再生回路における該電磁比例減圧弁よりも該他方の油室側に介装され、パイロット制御により該他方の油室側からの作動油流入を遮断する状態及び該再生回路を開放する状態を切り換えるパイロットチェック弁と、該再生回路における該パイロットチェック弁の下流側と該コントロール弁とを接続する回路上に介装され、パイロット制御により該回路を開放する状態及び該他方の油室側から該コントロール弁側への作動油流出を遮断する状態を切り換えるパイロット切換弁と、該切換弁の二次圧を制御パイロット圧として該パイロットチェック弁及び該パイロット切換弁へと導入するパイロット回路と、該一方の油室側から該他方の油室への作動油の供給時における該一方の油室側の目標圧力としての所定設定圧を設定する所定圧設定手段と、該圧力センサで検出された該負荷圧力と該所定圧設定手段で設定された該所定設定圧との差圧に応じて該電磁比例減圧弁の開度を制御する制御手段とを備えたことを特徴としている。
また、請求項2記載の本発明の作業機械の油圧シリンダ制御回路は、請求項1記載の構成に加え、該制御手段が、該差圧が小さいほど該電磁比例減圧弁の開度を絞り、該差圧が大きいほど該電磁比例減圧弁の開度を開放する制御を実施することを特徴としている。
また、請求項3記載の本発明の作業機械の油圧シリンダ制御回路は、請求項1又は2記載の構成に加え、該コントロール弁のセンターバイパスを介してブリードオフされる作動油を油圧ポンプへと導くネガコン回路と、該センターバイパス上に介装され、該パイロット回路から導入される該制御パイロット圧に応じて該ネガコン回路の作動油圧を制御するパイロット絞り弁とをさらに備えたことを特徴としている。
また、請求項3記載の本発明の作業機械の油圧シリンダ制御回路は、請求項1又は2記載の構成に加え、該コントロール弁のセンターバイパスを介してブリードオフされる作動油を油圧ポンプへと導くネガコン回路と、該センターバイパス上に介装され、該パイロット回路から導入される該制御パイロット圧に応じて該ネガコン回路の作動油圧を制御するパイロット絞り弁とをさらに備えたことを特徴としている。
請求項4記載の本発明の作業機械の油圧シリンダ制御回路は、油圧ショベルに搭載されコントロール弁によって作動油流量を制御される油圧シリンダの伸縮時に、該コントロール弁を介することなく一方の油室から排出される作動油を駆動側の他方の油室へ供給して再生させる油圧シリンダ制御回路であって、該一方の油室側の負荷圧力を検出する圧力センサと、該一方の油室と該他方の油室とを接続する再生回路と、該再生回路上に介装され、開度を変更可能に形成された電磁比例減圧弁と、該一方の油室側から該他方の油室への作動油の供給時における該一方の油室側の目標圧力としての所定設定圧を設定する所定圧設定手段と、該所定圧設定手段で設定された該所定設定圧と該圧力センサで検出された該負荷圧力との差圧を演算する差圧演算手段と、該差圧演算手段で演算された該差圧が小さいほど該電磁比例減圧弁の開度を絞り、該差圧が大きいほど該電磁比例減圧弁の開度を開放する開度制御手段とを備えたことを特徴としている。
本発明の作業機械の油圧シリンダ制御回路(請求項1)によれば、再生回路の流量を調節することにより、油圧シリンダの一方の油室に作用する負荷圧力の大きさを一定値(すなわち予め設定された所定設定圧)に収束させることができ、油圧シリンダの作動速度を適切に制御しながら油圧回路を作動油圧の変動を安定化させることができる。
また、本発明の作業機械の油圧シリンダ制御回路(請求項2)によれば、油圧シリンダに作用する負荷の影響を受けにくい速度制御を実施することが可能になり、例えば作業負荷によって再生中に負荷圧力が変動したとしても、あるいはアタッチメントの交換により定常的に負荷が増減したとしても、油圧シリンダの作動速度を一定にすることができる。
また、本発明の作業機械の油圧シリンダ制御回路(請求項2)によれば、油圧シリンダに作用する負荷の影響を受けにくい速度制御を実施することが可能になり、例えば作業負荷によって再生中に負荷圧力が変動したとしても、あるいはアタッチメントの交換により定常的に負荷が増減したとしても、油圧シリンダの作動速度を一定にすることができる。
また、本発明の作業機械の油圧シリンダ制御回路(請求項3)によれば、油圧シリンダの縮小操作時に油圧シリンダの一方の油室側の負荷圧力が高い場合には、パイロット絞り弁の開度が開放されてネガコン圧が高く設定されるため、油圧ポンプの吐出流量を減少させることができる。これにより、作動油のエネルギーロスを抑えることができる。
また、油圧ショベルのバケットが接地状態となり油圧シリンダのヘッド圧が低下した場合には、パイロット絞り弁の開度が閉鎖されるため、ネガコン圧が低下し、油圧ポンプから油圧シリンダのロッド側への作動油流量が増加する。したがって、たとえ自重の作用しない状況であっても油圧シリンダを適切な速度で縮小させることができる。
また、油圧ショベルのバケットが接地状態となり油圧シリンダのヘッド圧が低下した場合には、パイロット絞り弁の開度が閉鎖されるため、ネガコン圧が低下し、油圧ポンプから油圧シリンダのロッド側への作動油流量が増加する。したがって、たとえ自重の作用しない状況であっても油圧シリンダを適切な速度で縮小させることができる。
また、本発明の作業機械の油圧シリンダ制御回路(請求項4)によれば、負荷圧力が大きいほど電磁比例減圧弁の開度が開放されるため、一方の油室側の作動油圧を一定にすることが可能となる。またこれにより、作動油の再生時における負荷圧力の変動に関わらず、常に一定速度で油圧シリンダを駆動することができる。
以下、図面により、本発明の実施の形態について説明する。
図1〜図3は、本発明の一実施形態に係る作業機械の油圧シリンダ制御回路を説明するためのものであり、図1は本油圧シリンダ制御回路を搭載した油圧ショベルの全体構成を示す斜視図、図2(a),(b)は本油圧シリンダ制御回路の全体構成を示す油圧回路図、図3は本油圧シリンダ制御回路に係るコントローラの制御ブロック図である。
図1〜図3は、本発明の一実施形態に係る作業機械の油圧シリンダ制御回路を説明するためのものであり、図1は本油圧シリンダ制御回路を搭載した油圧ショベルの全体構成を示す斜視図、図2(a),(b)は本油圧シリンダ制御回路の全体構成を示す油圧回路図、図3は本油圧シリンダ制御回路に係るコントローラの制御ブロック図である。
[1.全体構成]
本発明に係る油圧シリンダ制御回路は、図1に示す油圧ショベル30に適用されている。この油圧ショベル30は、クローラ式の走行装置を装備した下部走行体31と、下部走行体31の上に旋回自在に搭載された上部旋回体32とを備えて構成される。上部旋回体32における前方側には、ブーム35,アーム36,バケット37等のフロント作業機34及びオペレータが搭乗するキャブ41が設けられている。また、フロント作業機34及びキャブ41の後方には、エンジンルーム33が設けられている。
本発明に係る油圧シリンダ制御回路は、図1に示す油圧ショベル30に適用されている。この油圧ショベル30は、クローラ式の走行装置を装備した下部走行体31と、下部走行体31の上に旋回自在に搭載された上部旋回体32とを備えて構成される。上部旋回体32における前方側には、ブーム35,アーム36,バケット37等のフロント作業機34及びオペレータが搭乗するキャブ41が設けられている。また、フロント作業機34及びキャブ41の後方には、エンジンルーム33が設けられている。
キャブ41は、フロント作業機34を駆動するための操作レバー類や、オペレータが着座するシートが設けられるものである。また、エンジンルーム33の内部には、油圧ショベル30の駆動源であるエンジン12や、エンジン駆動の油圧ポンプ10,クーリングパッケージ等が配置されている。
上部旋回体32のフレームとブーム35との間には、ブーム35を上下方向へ揺動する油圧駆動式のブームシリンダ38が介装されている。このブーム35は、ブームシリンダ38の伸縮によって上部旋回体32に対して起伏自在に設けられている。同様に、図1中に示されたアームシリンダ39,バケットシリンダ40はそれぞれ、アーム36,バケット37の姿勢を動かすための油圧アクチュエータである。
上部旋回体32のフレームとブーム35との間には、ブーム35を上下方向へ揺動する油圧駆動式のブームシリンダ38が介装されている。このブーム35は、ブームシリンダ38の伸縮によって上部旋回体32に対して起伏自在に設けられている。同様に、図1中に示されたアームシリンダ39,バケットシリンダ40はそれぞれ、アーム36,バケット37の姿勢を動かすための油圧アクチュエータである。
本油圧シリンダ制御回路は、ブームシリンダ38の縮小時に作動油を再生する回路として設けられている。すなわち、ブーム下げ操作時にブームシリンダ38のヘッド室38aから排出される作動油をロッド室38bへと供給して再生利用する回路である。
[2.回路構成]
図2(a),(b)に、本油圧シリンダ制御回路が適用された油圧回路を模式的に示す。この図2(a),(b)では、ブームシリンダ38の駆動に係る油圧回路の概略構成が示されており、他のアクチュエータに係る油圧回路に関しては記載を省略している。
図2(a),(b)に、本油圧シリンダ制御回路が適用された油圧回路を模式的に示す。この図2(a),(b)では、ブームシリンダ38の駆動に係る油圧回路の概略構成が示されており、他のアクチュエータに係る油圧回路に関しては記載を省略している。
図2(a)は、ブーム35の操作レバー42とこれに接続されたリモコン弁13を示すものである。リモコン弁13にはパイロットポンプ14及びタンク15が接続されており、操作レバー42へ入力された操作量及び操作方向に応じた制御パイロット圧を二次圧として生成する。ブーム下げ操作がなされると下げ側リモコン弁13aの下流側となる図2(a)中の符号A方向へ制御パイロット圧が伝達され、ブーム上げ操作がなされると上げ側リモコン弁13bの下流側となる図2(a)中の符号B方向へ制御パイロット圧が伝達される。なお、これらの制御パイロット圧は、それぞれ図2(b)中の符号A,Bへ伝達されている。
また、図2(b)は、ブームシリンダ38の駆動に係る回路を示すものである。この回路は、メイン油圧回路L1,再生回路L2,パイロット回路L3及びネガコン回路L4を備えて構成される。また、再生回路L2上に介装された電磁比例減圧弁3の開度制御に係る電子制御装置として、コントローラ20が設けられている。
[2−1.メイン油圧回路]
メイン油圧回路L1は、ブームシリンダ38を伸縮駆動する作動油が流通する油圧回路である。このメイン油圧回路L1上には、図2(b)に示すように、油圧ポンプ10,コントロール弁8,ブームシリンダ38及びタンク15が介装されている。
メイン油圧回路L1は、ブームシリンダ38を伸縮駆動する作動油が流通する油圧回路である。このメイン油圧回路L1上には、図2(b)に示すように、油圧ポンプ10,コントロール弁8,ブームシリンダ38及びタンク15が介装されている。
エンジン12によって駆動される油圧ポンプ10は、レギュレータ11を併設された容量可変型のポンプである。レギュレータ11は公知のポンプ容量可変手段であり、導入されるネガコン圧が高いほど油圧ポンプ10の吐出流量を減少させるように、また、ネガコン圧が低いほど吐出流量を増加させるように、油圧ポンプ10の斜板制御を実施する。
ブームシリンダ38の内部には、ピストンを介してヘッド室38a及びロッド室38bが形成されている。このピストンにはピストンロッドが固設されており、ピストンロッドの上端がブーム35に枢支されている。一方、ブームシリンダ38の下端が上部旋回体32のフレームに枢支されている。
ブームシリンダ38の内部には、ピストンを介してヘッド室38a及びロッド室38bが形成されている。このピストンにはピストンロッドが固設されており、ピストンロッドの上端がブーム35に枢支されている。一方、ブームシリンダ38の下端が上部旋回体32のフレームに枢支されている。
コントロール弁8は、ブームシリンダ38に対する作動油の流量及び流通方向を調整する弁であり、流量制御スプール(ステム)位置をS1〜S3の三位置に切り替えて作動油の流量及び流通方向を可変制御できる電磁流量制御弁として構成されている。
例えば、操作レバー42が何も操作されていない状態ではスプールがS2位置に制御されて、作動油がセンターバイパスL5を介してタンク15へ戻るようになっている。一方、ブーム下げ操作がなされると下げ側リモコン弁13aの下流に二次圧が生じ、スプールが徐々にS1位置に切り換えられて、ブームシリンダ38のロッド室38b側へと作動油が供給される。また、ブーム上げ操作がなされると上げ側リモコン弁13bの下流に二次圧が生じ、スプールが徐々にS3位置に切り換えられて、ブームシリンダ38のヘッド室38a側へと作動油が供給される。下げ側リモコン弁13aの下流には、圧力センサ1a(圧力スイッチ)が介装されている。この圧力センサ1aは、ブーム下げ操作の有無を検出してその情報をコントローラ20へ出力している。
例えば、操作レバー42が何も操作されていない状態ではスプールがS2位置に制御されて、作動油がセンターバイパスL5を介してタンク15へ戻るようになっている。一方、ブーム下げ操作がなされると下げ側リモコン弁13aの下流に二次圧が生じ、スプールが徐々にS1位置に切り換えられて、ブームシリンダ38のロッド室38b側へと作動油が供給される。また、ブーム上げ操作がなされると上げ側リモコン弁13bの下流に二次圧が生じ、スプールが徐々にS3位置に切り換えられて、ブームシリンダ38のヘッド室38a側へと作動油が供給される。下げ側リモコン弁13aの下流には、圧力センサ1a(圧力スイッチ)が介装されている。この圧力センサ1aは、ブーム下げ操作の有無を検出してその情報をコントローラ20へ出力している。
メイン油圧回路L1におけるコントロール弁8とブームシリンダ38との間の二本の回路L1a,L1bのうち、コントロール弁8とヘッド室38aとを接続する回路L1a上には、落下防止弁7が介装されている。
落下防止弁7は、自重によってブーム35が落下しないようにヘッド室38aの作動油を封じ込める逆止弁機構を備えた弁である。図2(b)に示すように、リモコン弁13における符号A方向への制御パイロット圧が入力されるとその圧力の大きさに応じた開度で回路L1aを開放し、制御パイロット圧を受けていない状態ではヘッド室38aからコントロール弁8への作動油流通のみを遮断するチェック弁として機能する。これにより、ブーム上げ操作時及びブーム停止時には、ブーム35の落下を防止している。
落下防止弁7は、自重によってブーム35が落下しないようにヘッド室38aの作動油を封じ込める逆止弁機構を備えた弁である。図2(b)に示すように、リモコン弁13における符号A方向への制御パイロット圧が入力されるとその圧力の大きさに応じた開度で回路L1aを開放し、制御パイロット圧を受けていない状態ではヘッド室38aからコントロール弁8への作動油流通のみを遮断するチェック弁として機能する。これにより、ブーム上げ操作時及びブーム停止時には、ブーム35の落下を防止している。
この回路L1aにおける落下防止弁7の下流側には、再生回路L2,リリーフ回路L6及びヘッド室38aのそれぞれに通じる分岐点BPが形成されている。リリーフ回路L6上には、圧力センサ1及びリリーフ弁16が設けられている。圧力センサ1はシリンダヘッド圧PH、すなわち、ブームシリンダ38のヘッド室38a側の作動油圧を検出し、コントローラ20へ出力している。
また、コントロール弁8とロッド室38bとを接続する回路L1b上には、パイロット切換弁5が介装されている。このパイロット切換弁5の動作については後述する。
また、コントロール弁8とロッド室38bとを接続する回路L1b上には、パイロット切換弁5が介装されている。このパイロット切換弁5の動作については後述する。
[2−2.ネガコン回路]
コントロール弁8のセンターバイパスL5上には、パイロット絞り弁6及びネガコン用リリーフ弁9が介装されており、さらに、これらのパイロット絞り弁6及びネガコン用リリーフ弁9間からネガコン回路L4が分岐形成されている。
コントロール弁8のセンターバイパスL5上には、パイロット絞り弁6及びネガコン用リリーフ弁9が介装されており、さらに、これらのパイロット絞り弁6及びネガコン用リリーフ弁9間からネガコン回路L4が分岐形成されている。
ネガコン用リリーフ弁9は、油圧ポンプ10のレギュレータ11でのいわゆるネガコン制御に係るネガコン圧を取り出すためのリリーフ弁であり、センターバイパスL5の作動油圧を保持するように機能している。また、パイロット絞り弁6は、パイロット制御によりネガコン回路L4の作動油圧を変動させるための絞り弁である。図2(b)に示すように、制御パイロット圧の非導入時にはパイロット絞り弁6の開度が予め設定された大きさに絞られた状態となっており、制御パイロット圧を導入されると開度を開放するようになっている。なお、パイロット絞り弁6のパイロットポートには後述するパイロット回路L3が接続されて、後述する再生回路L2における切換弁2の下流側の作動油圧が制御パイロット圧として導入されている。
[2−3.再生回路,パイロット回路]
再生回路L2は、回路L1b上におけるパイロット切換弁5の下流側(ロッド室38b側)と分岐点BPとを接続して、ブームシリンダ38のヘッド室38aから流出する作動油をロッド室38b方向へ供給する回路である。再生回路L2上には、図2(b)に示すように、切換弁2,電磁比例減圧弁3及びパイロットチェック弁4が介装されている。
再生回路L2は、回路L1b上におけるパイロット切換弁5の下流側(ロッド室38b側)と分岐点BPとを接続して、ブームシリンダ38のヘッド室38aから流出する作動油をロッド室38b方向へ供給する回路である。再生回路L2上には、図2(b)に示すように、切換弁2,電磁比例減圧弁3及びパイロットチェック弁4が介装されている。
切換弁2は、再生回路L2を介した作動油の再生方向への流量を制御する弁である。図2(b)に示すように、リモコン弁13の二次圧を制御パイロット圧として入力されるとその圧力の大きさに応じた開度で回路を開放し、制御パイロット圧を受けていない状態ではヘッド室38aからロッド室38bへの作動油流通のみを遮断するチェック弁として機能する。これにより、ブーム下げ操作時には、操作量が大きいほど再生流量を増加させることが可能となっている。
再生回路L2上における切換弁2の下流側からは、パイロット回路L3が分岐形成されている。このパイロット回路L3は、パイロットチェック弁4,パイロット切換弁5及びパイロット絞り弁6へ制御用パイロット圧を導入するための回路である。なお、パイロット回路L3は、再生回路L2を介した作動油の再生がなされているか否かを示すフラグの伝達回路として機能している。
電磁比例減圧弁3は、コントローラ20によって制御される比例減圧弁であり、再生回路L2を流通する作動油流量を調整してシリンダヘッド圧PHが予め設定された所定圧となるように制御する弁である。具体的な制御内容に関しては後述する。
パイロットチェック弁4は、パイロット制御により逆止弁機構の働きをオン又はオフにすることのできるチェック弁であり、一般的なチェック弁のように再生回路L2におけるロッド室38b側からヘッド室38a側への作動油流通を遮断する状態と、逆流を許容して双方向への作動油流通を許可する状態とを切り換え可能な弁である。パイロットチェック弁4のパイロットポートには、パイロット回路L3が接続されており、再生回路L2を介した作動油の再生がなされている場合にのみ、双方向への作動油流通が許可されている。
パイロットチェック弁4は、パイロット制御により逆止弁機構の働きをオン又はオフにすることのできるチェック弁であり、一般的なチェック弁のように再生回路L2におけるロッド室38b側からヘッド室38a側への作動油流通を遮断する状態と、逆流を許容して双方向への作動油流通を許可する状態とを切り換え可能な弁である。パイロットチェック弁4のパイロットポートには、パイロット回路L3が接続されており、再生回路L2を介した作動油の再生がなされている場合にのみ、双方向への作動油流通が許可されている。
パイロット切換弁5は、パイロット回路L3からの制御パイロット圧が導入されていない状態では回路L1bを開放し、制御パイロット圧が導入されると回路L1b上におけるロッド室38b側からコントロール弁8側への作動油流通を遮断するチェック弁として機能する弁である。これにより、再生回路L2を介した作動油の再生がなされている場合には、回路L1bを介した作動油のブリードオフが禁止されるようになっている。
パイロット絞り弁6は、パイロット回路L3の制御パイロット圧が導入されていない状態ではネガコン回路L4を予め設定された開度に絞り、制御パイロット圧が導入されるとその大きさに応じた開度でネガコン回路L4を開放する弁である。再生回路L2を介した作動油の再生がなされているときにレギュレータ11へ導入されるネガコン圧を非再生時よりも高圧にして、油圧ポンプ10から吐出される作動油流量を抑制している。
[3.コントローラ構成]
図2(b)に示すように、本油圧ショベル30には、再生回路L2の電磁比例減圧弁3の開度を制御するコントローラ(制御手段)20が設けられている。コントローラ20は、マイクロコンピュータで構成された電子制御装置であり、周知のマイクロプロセッサやROM,RAM等を集積したLSIデバイスとして提供されている。図3に示すように、コントローラ20は所定圧設定器(所定圧設定手段)21,減算器(差圧演算手段)22,PI制御演算器23(開度制御手段の一つ)及び電磁比例減圧弁ドライバ24(開度制御手段の一つ)を備えて構成されている。なお、これらの構成を電子回路として、あるいはソフトウェアとして設けてもよい。
図2(b)に示すように、本油圧ショベル30には、再生回路L2の電磁比例減圧弁3の開度を制御するコントローラ(制御手段)20が設けられている。コントローラ20は、マイクロコンピュータで構成された電子制御装置であり、周知のマイクロプロセッサやROM,RAM等を集積したLSIデバイスとして提供されている。図3に示すように、コントローラ20は所定圧設定器(所定圧設定手段)21,減算器(差圧演算手段)22,PI制御演算器23(開度制御手段の一つ)及び電磁比例減圧弁ドライバ24(開度制御手段の一つ)を備えて構成されている。なお、これらの構成を電子回路として、あるいはソフトウェアとして設けてもよい。
コントローラ20は、圧力センサ1aでブーム下げ操作が検出されたときに、圧力センサ1で検出されたシリンダヘッド圧PHに基づいて電磁比例減圧弁3を制御する。一方、ブーム下げ操作が検出されないときには制御を実施しない。圧力センサ1aの検出情報は、以下に詳述する制御を開始するためのトリガとして用いられている。
所定圧設定器21は、ヘッド室38a側からロッド室38b側への作動油再生時におけるシリンダヘッド圧PHの目標圧力としての所定設定圧PPを設定するものである。本実施形態では、20[MPa]程度に設定されている。本発明の油圧シリンダ制御回路では、再生回路L2を介した作動油の再生時において、単に作動油流量を一定に制御するだけでなく、シリンダヘッド圧PHを所定設定圧PPに収束させるように制御する。ここで設定された所定設定圧PPは、減算器22の加算側に入力されている。
所定圧設定器21は、ヘッド室38a側からロッド室38b側への作動油再生時におけるシリンダヘッド圧PHの目標圧力としての所定設定圧PPを設定するものである。本実施形態では、20[MPa]程度に設定されている。本発明の油圧シリンダ制御回路では、再生回路L2を介した作動油の再生時において、単に作動油流量を一定に制御するだけでなく、シリンダヘッド圧PHを所定設定圧PPに収束させるように制御する。ここで設定された所定設定圧PPは、減算器22の加算側に入力されている。
前述の通り、コントローラ20には、圧力センサ1で検出されたシリンダヘッド圧PHが入力されている。シリンダヘッド圧PHは、減算器22の減算側に入力されている。一方減算器22は、入力された所定設定圧PPからシリンダヘッド圧PHを減算した差圧をPI制御演算器23へ出力している。
PI制御演算器23は、減算器22から入力された差圧をゼロに収束させる(すなわち、シリンダヘッド圧PHを所定設定圧PPに収束させる)ための電磁比例減圧弁3の開度を演算し、電磁比例減圧弁ドライバ24へ出力するものである。なお、ここで出力される制御量には、差圧に比例して設定される成分(P動作成分)と、差圧の積分に比例して設定される成分(I動作成分)とが含まれている。
PI制御演算器23は、減算器22から入力された差圧をゼロに収束させる(すなわち、シリンダヘッド圧PHを所定設定圧PPに収束させる)ための電磁比例減圧弁3の開度を演算し、電磁比例減圧弁ドライバ24へ出力するものである。なお、ここで出力される制御量には、差圧に比例して設定される成分(P動作成分)と、差圧の積分に比例して設定される成分(I動作成分)とが含まれている。
例えば、シリンダヘッド圧PHが所定設定圧PPに達していない場合には減算器22から出力される差圧が大きい(PP-PHが正の値となる)ため、電磁比例減圧弁3の開度を絞って再生流量を減少させる。これによりシリンダヘッド圧PHが上昇すると、差圧が徐々にゼロに近づくことになる。また、シリンダヘッド圧PHが所定設定圧PPを超えている場合には差圧が小さい(PP-PHが負の値となる)ため、電磁比例減圧弁3の開度を広げて再生流量を増加させる。これによりシリンダヘッド圧PHが低下すると、差圧が徐々にゼロに近づくことになる。
電磁比例減圧弁ドライバ24は、PI制御演算器23から入力された制御量を電磁比例減圧弁3の開度指令値に変換し、電磁比例減圧弁3に出力するものである。
電磁比例減圧弁ドライバ24は、PI制御演算器23から入力された制御量を電磁比例減圧弁3の開度指令値に変換し、電磁比例減圧弁3に出力するものである。
[4.作用]
[4−1.ブーム上げ操作]
操作レバー42がブーム上げ方向に操作されると、図2(a)中のB方向へ制御パイロット圧が伝達され、コントロール弁8の流量制御スプールがS3位置に切り換えられる。油圧ポンプ10から吐出された作動油は、コントロール弁8を介して回路L1a側へと流通し、落下防止弁7を通ってブームシリンダ38のヘッド室38aへ供給される。このとき、切換弁2は制御パイロット圧を受けていないためチェック弁として機能し、ロッド室38bへの作動油流通が遮断される。したがって、油圧ポンプ10からの作動油が再生回路L2へ流入することはない。なお、圧力センサ1aにおいてブーム下げ操作が検出されないため、電磁比例減圧弁3は制御されない。
[4−1.ブーム上げ操作]
操作レバー42がブーム上げ方向に操作されると、図2(a)中のB方向へ制御パイロット圧が伝達され、コントロール弁8の流量制御スプールがS3位置に切り換えられる。油圧ポンプ10から吐出された作動油は、コントロール弁8を介して回路L1a側へと流通し、落下防止弁7を通ってブームシリンダ38のヘッド室38aへ供給される。このとき、切換弁2は制御パイロット圧を受けていないためチェック弁として機能し、ロッド室38bへの作動油流通が遮断される。したがって、油圧ポンプ10からの作動油が再生回路L2へ流入することはない。なお、圧力センサ1aにおいてブーム下げ操作が検出されないため、電磁比例減圧弁3は制御されない。
また、ロッド室38b内の作動油は、パイロット切換弁5を通って回路L1bを流通し、コントロール弁8を介してタンク15へと戻る。このとき、パイロットチェック弁4が開弁していないため、ロッド室38bからの戻り油が再生回路L2へ流入することもない。したがって、操作レバー42の操作量に応じてブームシリンダ38が伸長する。
[4−2.ブーム下げ操作]
一方、操作レバー42がブーム下げ方向に操作されると、下げ側リモコン弁13aの二次圧が図2(a)中のA方向へ伝達され、コントロール弁8の流量制御スプールがS1位置に切り換えられる。また、切換弁2及び落下防止弁7にもリモコン弁13の二次圧が導入されて切り換えられる。圧力センサ1aではブーム下げ操作が検出され、その情報がコントローラ20へ伝達される。
一方、操作レバー42がブーム下げ方向に操作されると、下げ側リモコン弁13aの二次圧が図2(a)中のA方向へ伝達され、コントロール弁8の流量制御スプールがS1位置に切り換えられる。また、切換弁2及び落下防止弁7にもリモコン弁13の二次圧が導入されて切り換えられる。圧力センサ1aではブーム下げ操作が検出され、その情報がコントローラ20へ伝達される。
油圧ポンプ10から吐出された作動油は、コントロール弁8を介して回路L1b側へと流通し、パイロット切換弁5を介してブームシリンダ38のロッド室38bへ供給される。また、ヘッド室38aの作動油は、分岐点BPを介してコントロール弁8側,再生回路L2及びリリーフ回路L6へと分流する。このとき、落下防止弁7は回路L1aを開放しているため、コントロール弁8側へ流れる作動油をタンク15へと戻る。
切換弁2はリモコン弁13の二次圧に応じた開度で開放されるため、操作レバー42の操作量が大きいほど再生回路L2を流通する作動油流量が増加する。また、切換弁2の下流圧がパイロット回路L3にも伝達され、パイロットチェック弁4,パイロット切換弁5及びパイロット絞り弁6が切り換えられる。
これにより、回路L1bではパイロット切換弁5でコントロール弁8側への逆流が防止される。また、再生回路L2の作動油は、電磁比例減圧弁3及びパイロットチェック弁4を通ってロッド室38bへ供給され、作動油の再生がなされる。
これにより、回路L1bではパイロット切換弁5でコントロール弁8側への逆流が防止される。また、再生回路L2の作動油は、電磁比例減圧弁3及びパイロットチェック弁4を通ってロッド室38bへ供給され、作動油の再生がなされる。
また、コントローラ20は、リリーフ回路L6の圧力センサ1で検出されたシリンダヘッド圧PHに基づき、所定設定圧PPからシリンダヘッド圧PHを減算した差圧がゼロになるように、電磁比例減圧弁3の開度を制御する。例えば、シリンダヘッド圧PHが所定設定圧PPと比較して高圧である場合には、電磁比例減圧弁3の開度を増加させて再生流量を増加させる。これにより、ロッド室38b側の作動油圧が上昇することになる。つまり、コントローラ20は、ブームシリンダ38のヘッド室38aの作動油のみが負担していた負荷をロッド室38b内の作動油にも分担させてロッド室38bの作動油圧を上昇させ、シリンダヘッド圧PHを一定にしている。
シリンダヘッド圧PHが一定に制御されれば、ヘッド室38aの作動油がリリーフ弁16からリリーフされなくなるとともに、落下防止弁7における戻り油の流量も、操作レバー42の操作量を変化させない限り一定となる。これにより、ブームシリンダ38の作動速度は、ブームシリンダ38に作用する負荷の影響を受けにくくなる。
また、作動油が再生回路L2を流通しているときには、パイロット回路L3を介して制御パイロット圧がパイロット絞り弁6に伝達される。これにより、センターバイパスL5が開放され、ネガコン回路L4のネガコン圧が上昇する。したがって、レギュレータ11におけるネガコン制御により油圧ポンプ10の吐出流量が抑えられる。パイロット絞り弁6の開度は、パイロット回路L3の作動油圧が高いほど、すなわち、再生回路L2を流通する作動油圧が高圧であるほど開放されるため、シリンダヘッド圧が高圧であるほどメイン油圧回路L1を流通する作動油流量は減少する。
また、作動油が再生回路L2を流通しているときには、パイロット回路L3を介して制御パイロット圧がパイロット絞り弁6に伝達される。これにより、センターバイパスL5が開放され、ネガコン回路L4のネガコン圧が上昇する。したがって、レギュレータ11におけるネガコン制御により油圧ポンプ10の吐出流量が抑えられる。パイロット絞り弁6の開度は、パイロット回路L3の作動油圧が高いほど、すなわち、再生回路L2を流通する作動油圧が高圧であるほど開放されるため、シリンダヘッド圧が高圧であるほどメイン油圧回路L1を流通する作動油流量は減少する。
[5.効果]
このように、本作業機械の油圧シリンダ制御回路によれば、シリンダヘッド圧PHが大きいほど電磁比例減圧弁3の開度が開放されるため、油圧シリンダ38のヘッド室38aの作用する負荷圧力(シリンダヘッド圧PH)を一定値に収束させることができ、油圧変動を安定化させることができる。またこれにより、作動油の再生時におけるシリンダヘッド圧PHの変動に関わらず、常に一定速度でブームシリンダ38を駆動することができる。
このように、本作業機械の油圧シリンダ制御回路によれば、シリンダヘッド圧PHが大きいほど電磁比例減圧弁3の開度が開放されるため、油圧シリンダ38のヘッド室38aの作用する負荷圧力(シリンダヘッド圧PH)を一定値に収束させることができ、油圧変動を安定化させることができる。またこれにより、作動油の再生時におけるシリンダヘッド圧PHの変動に関わらず、常に一定速度でブームシリンダ38を駆動することができる。
また、シリンダヘッド圧PHが一定となるため、落下防止弁7を介した戻り油の流量を操作レバー42の操作量に対して一定にすることが可能となり、作動油の再生によるブームシリンダ38の作動速度の急変を防止することができる。
また、ブームシリンダ38に作用する負荷の影響を受けにくい速度制御を実施することも可能になる。例えば作業負荷がブーム下げ操作時に変動したとしても、ブームシリンダ38の作動速度を一定にすることができる。あるいはアタッチメントの交換により定常的に負荷が増減したとしても、ブームシリンダ38の作動速度は変化せず、良好な操作性が得られる。
また、ブームシリンダ38に作用する負荷の影響を受けにくい速度制御を実施することも可能になる。例えば作業負荷がブーム下げ操作時に変動したとしても、ブームシリンダ38の作動速度を一定にすることができる。あるいはアタッチメントの交換により定常的に負荷が増減したとしても、ブームシリンダ38の作動速度は変化せず、良好な操作性が得られる。
また、パイロット回路L3を介してセンターバイパスL5のパイロット絞り弁6を制御することにより、油圧ポンプ10から吐出される作動油流量を適切に制御することができる。例えば、シリンダ下げ操作時にシリンダヘッド圧PHが高圧であった場合にはネガコン圧が高く設定されるため、油圧ポンプ10の吐出流量を減少させて、作動油のエネルギーロスを抑えることができる。
一方、油圧ショベル30のバケット37が接地状態となりシリンダヘッド圧PHが低圧になり、再生回路L2を介した作動油の再生ができない場合であっても、センターバイパスL5のパイロット絞り弁6が絞られてネガコン圧が低く設定されるため、油圧ポンプ10の吐出流量を増加させることができ、ブームシリンダ38のロッド側38bへ作動油を供給してブームシリンダ38を縮めることができる。このように、たとえ自重の作用しない状況であっても油圧シリンダを適切な速度で縮小させることができる。
[6.その他]
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上述の実施形態では、ブームシリンダ38における作動油の再生回路L2が例示されているが、アームシリンダ39の再生回路として構成することも考えられる。この場合、アームイン操作時にアームシリンダ39のロッド室からヘッド室へと作動油を再生させる油圧回路に対して、本発明の構成を適用すればよい。
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上述の実施形態では、ブームシリンダ38における作動油の再生回路L2が例示されているが、アームシリンダ39の再生回路として構成することも考えられる。この場合、アームイン操作時にアームシリンダ39のロッド室からヘッド室へと作動油を再生させる油圧回路に対して、本発明の構成を適用すればよい。
また、上述の実施形態では、本発明を油圧ショベル30の油圧回路に適用したものを例示したが、本発明の適用対象はこれに限定されず、ブルドーザやホイールローダ,油圧式クレーン等様々な作業機械の油圧回路に適用することが可能である。
1 圧力センサ
1a 圧力センサ(圧力スイッチ)
2 切換弁
3 電磁比例減圧弁
4 パイロットチェック弁
5 パイロット切換弁
6 パイロット絞り弁
7 落下防止弁
8 コントロール弁
9 ネガコン用リリーフ弁
10 油圧ポンプ
11 レギュレータ
12 エンジン
13 リモコン弁
13a 下げ側リモコン弁
13b 上げ側リモコン弁
14 パイロットポンプ
15 タンク
16 リリーフ弁
20 コントローラ(制御手段)
21 所定圧設定器(所定圧設定手段)
22 減算器(差圧演算手段)
23 PI制御演算器(開度制御手段)
24 電磁比例減圧弁ドライバ(開度制御手段)
30 油圧ショベル
31 下部走行体
32 上部旋回体
33 エンジンルーム
34 フロント作業機
35 ブーム
36 アーム
37 バケット
38 ブームシリンダ
38a ヘッド室
38b ロッド室
39 アームシリンダ
40 バケットシリンダ
41 キャブ
42 操作レバー
L1 メイン油圧回路
L2 再生回路
L3 パイロット回路
L4 ネガコン回路
L5 センターバイパス
L6 リリーフ回路
BP 分岐点
1a 圧力センサ(圧力スイッチ)
2 切換弁
3 電磁比例減圧弁
4 パイロットチェック弁
5 パイロット切換弁
6 パイロット絞り弁
7 落下防止弁
8 コントロール弁
9 ネガコン用リリーフ弁
10 油圧ポンプ
11 レギュレータ
12 エンジン
13 リモコン弁
13a 下げ側リモコン弁
13b 上げ側リモコン弁
14 パイロットポンプ
15 タンク
16 リリーフ弁
20 コントローラ(制御手段)
21 所定圧設定器(所定圧設定手段)
22 減算器(差圧演算手段)
23 PI制御演算器(開度制御手段)
24 電磁比例減圧弁ドライバ(開度制御手段)
30 油圧ショベル
31 下部走行体
32 上部旋回体
33 エンジンルーム
34 フロント作業機
35 ブーム
36 アーム
37 バケット
38 ブームシリンダ
38a ヘッド室
38b ロッド室
39 アームシリンダ
40 バケットシリンダ
41 キャブ
42 操作レバー
L1 メイン油圧回路
L2 再生回路
L3 パイロット回路
L4 ネガコン回路
L5 センターバイパス
L6 リリーフ回路
BP 分岐点
Claims (4)
- 油圧ショベルに搭載されコントロール弁によって作動油流量を制御される油圧シリンダの伸縮時に、該コントロール弁を介することなく一方の油室から排出される作動油を駆動側の他方の油室へ供給して再生させる油圧シリンダ制御回路であって、
該一方の油室側の負荷圧力を検出する圧力センサと、
該一方の油室と該他方の油室とを接続する再生回路と、
該再生回路上に介装され、該油圧シリンダの再生に係る操作が検出された時に該再生回路を開放するとともに該操作が検出されないときに該再生回路を遮断する切換弁と、
該再生回路における該切換弁よりも該他方の油室側に介装され、開度を変更可能に形成された電磁比例減圧弁と、
該再生回路における該電磁比例減圧弁よりも該他方の油室側に介装され、パイロット制御により該他方の油室側からの作動油流入を遮断する状態及び該再生回路を開放する状態を切り換えるパイロットチェック弁と、
該再生回路における該パイロットチェック弁の下流側と該コントロール弁とを接続する回路上に介装され、パイロット制御により該回路を開放する状態及び該他方の油室側から該コントロール弁側への作動油流出を遮断する状態を切り換えるパイロット切換弁と、
該切換弁の二次圧を制御パイロット圧として該パイロットチェック弁及び該パイロット切換弁へと導入するパイロット回路と、
該一方の油室側から該他方の油室への作動油の供給時における該一方の油室側の目標圧力としての所定設定圧を設定する所定圧設定手段と、
該圧力センサで検出された該負荷圧力と該所定圧設定手段で設定された該所定設定圧との差圧に応じて該電磁比例減圧弁の開度を制御する制御手段とを備えた
ことを特徴とする、作業機械の油圧シリンダ制御回路。 - 該制御手段が、該差圧が小さいほど該電磁比例減圧弁の開度を絞り、該差圧が大きいほど該電磁比例減圧弁の開度を開放する制御を実施する
ことを特徴とする、請求項1記載の作業機械の油圧シリンダ制御回路。 - 該コントロール弁のセンターバイパスを介してブリードオフされる作動油を油圧ポンプへと導くネガコン回路と、
該センターバイパス上に介装され、該パイロット回路から導入される該制御パイロット圧に応じて該ネガコン回路の作動油圧を制御するパイロット絞り弁とをさらに備えた
ことを特徴とする、請求項1又は2記載の作業機械の油圧シリンダ制御回路。 - 油圧ショベルに搭載されコントロール弁によって作動油流量を制御される油圧シリンダの伸縮時に、該コントロール弁を介することなく一方の油室から排出される作動油を駆動側の他方の油室へ供給して再生させる油圧シリンダ制御回路であって、
該一方の油室側の負荷圧力を検出する圧力センサと、
該一方の油室と該他方の油室とを接続する再生回路と、
該再生回路上に介装され、開度を変更可能に形成された電磁比例減圧弁と、
該一方の油室側から該他方の油室への作動油の供給時における該一方の油室側の目標圧力としての所定設定圧を設定する所定圧設定手段と、
該所定圧設定手段で設定された該所定設定圧と該圧力センサで検出された該負荷圧力との差圧を演算する差圧演算手段と、
該差圧演算手段で演算された該差圧が小さいほど該電磁比例減圧弁の開度を絞り、該差圧が大きいほど該電磁比例減圧弁の開度を開放する開度制御手段とを備えた
ことを特徴とする、作業機械の油圧シリンダ制御回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008246040A JP2010078035A (ja) | 2008-09-25 | 2008-09-25 | 作業機械の油圧シリンダ制御回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008246040A JP2010078035A (ja) | 2008-09-25 | 2008-09-25 | 作業機械の油圧シリンダ制御回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010078035A true JP2010078035A (ja) | 2010-04-08 |
Family
ID=42208720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008246040A Withdrawn JP2010078035A (ja) | 2008-09-25 | 2008-09-25 | 作業機械の油圧シリンダ制御回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010078035A (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013015467A1 (ko) * | 2011-07-26 | 2013-01-31 | 볼보 컨스트럭션 이큅먼트 에이비 | 건설기계용 유압시스템 |
CN104154052A (zh) * | 2014-06-30 | 2014-11-19 | 北京航天发射技术研究所 | 液压传动伸缩机构自适应伸收到位判断控制系统 |
CN104675807A (zh) * | 2015-03-12 | 2015-06-03 | 徐州重型机械有限公司 | 差动液压控制系统和方法、及起重机 |
CN104791310A (zh) * | 2015-02-06 | 2015-07-22 | 湘潭大学 | 流量回收节能型管片拼装机水平移动液压控制系统 |
CN104912869A (zh) * | 2015-06-20 | 2015-09-16 | 苏州蓝王机床工具科技有限公司 | 一种液压缸快速伸缩控制回路 |
WO2015178316A1 (ja) * | 2014-05-19 | 2015-11-26 | 住友重機械工業株式会社 | ショベル及びその制御方法 |
WO2016002392A1 (ja) * | 2014-07-03 | 2016-01-07 | ナブテスコ株式会社 | 建設機械用油圧回路 |
CN105443487A (zh) * | 2015-03-04 | 2016-03-30 | 徐州重型机械有限公司 | 液压差动回路的控制系统和方法、起重机及机床 |
CN105980714A (zh) * | 2014-04-03 | 2016-09-28 | 日立建机株式会社 | 工程机械 |
CN106246616A (zh) * | 2016-10-11 | 2016-12-21 | 上海振华重工(集团)股份有限公司 | 集装箱跨运车的车轮架悬挂液压系统及其控制方法 |
CN107885245A (zh) * | 2018-01-03 | 2018-04-06 | 福建瑞铼泊流体装备有限公司 | 一种智能压力控制系统 |
CN109296569A (zh) * | 2018-12-07 | 2019-02-01 | 湖南五新隧道智能装备股份有限公司 | 一种臂架控制系统 |
JP2019183980A (ja) * | 2018-04-11 | 2019-10-24 | 株式会社加藤製作所 | 建設機械の油圧回路 |
CN114165490A (zh) * | 2022-01-17 | 2022-03-11 | 湖南星邦智能装备股份有限公司 | 控制臂架缩回的控制方法、系统、机械设备及存储介质 |
-
2008
- 2008-09-25 JP JP2008246040A patent/JP2010078035A/ja not_active Withdrawn
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103649560A (zh) * | 2011-07-26 | 2014-03-19 | 沃尔沃建造设备有限公司 | 用于施工机械的液压系统 |
WO2013015467A1 (ko) * | 2011-07-26 | 2013-01-31 | 볼보 컨스트럭션 이큅먼트 에이비 | 건설기계용 유압시스템 |
CN105980714A (zh) * | 2014-04-03 | 2016-09-28 | 日立建机株式会社 | 工程机械 |
WO2015178316A1 (ja) * | 2014-05-19 | 2015-11-26 | 住友重機械工業株式会社 | ショベル及びその制御方法 |
JPWO2015178316A1 (ja) * | 2014-05-19 | 2017-04-20 | 住友重機械工業株式会社 | ショベル及びその制御方法 |
CN104154052B (zh) * | 2014-06-30 | 2017-01-25 | 北京航天发射技术研究所 | 液压传动伸缩机构自适应伸收到位判断控制系统 |
CN104154052A (zh) * | 2014-06-30 | 2014-11-19 | 北京航天发射技术研究所 | 液压传动伸缩机构自适应伸收到位判断控制系统 |
CN106662125A (zh) * | 2014-07-03 | 2017-05-10 | 纳博特斯克有限公司 | 建筑机械用液压回路 |
WO2016002392A1 (ja) * | 2014-07-03 | 2016-01-07 | ナブテスコ株式会社 | 建設機械用油圧回路 |
JP2016014451A (ja) * | 2014-07-03 | 2016-01-28 | ナブテスコ株式会社 | 建設機械用油圧回路 |
US10161109B2 (en) | 2014-07-03 | 2018-12-25 | Nabtesco Corporation | Hydraulic circuit for construction machine |
CN106662125B (zh) * | 2014-07-03 | 2018-06-12 | 纳博特斯克有限公司 | 建筑机械用液压回路 |
KR102345858B1 (ko) | 2014-07-03 | 2022-01-03 | 나부테스코 가부시키가이샤 | 건설 기계용 유압 회로 |
KR20170026553A (ko) * | 2014-07-03 | 2017-03-08 | 나부테스코 가부시키가이샤 | 건설 기계용 유압 회로 |
CN104791310A (zh) * | 2015-02-06 | 2015-07-22 | 湘潭大学 | 流量回收节能型管片拼装机水平移动液压控制系统 |
CN105443487A (zh) * | 2015-03-04 | 2016-03-30 | 徐州重型机械有限公司 | 液压差动回路的控制系统和方法、起重机及机床 |
CN105443487B (zh) * | 2015-03-04 | 2018-01-16 | 徐州重型机械有限公司 | 液压差动回路的控制系统和方法、起重机及机床 |
CN104675807A (zh) * | 2015-03-12 | 2015-06-03 | 徐州重型机械有限公司 | 差动液压控制系统和方法、及起重机 |
CN104912869A (zh) * | 2015-06-20 | 2015-09-16 | 苏州蓝王机床工具科技有限公司 | 一种液压缸快速伸缩控制回路 |
CN106246616A (zh) * | 2016-10-11 | 2016-12-21 | 上海振华重工(集团)股份有限公司 | 集装箱跨运车的车轮架悬挂液压系统及其控制方法 |
CN107885245A (zh) * | 2018-01-03 | 2018-04-06 | 福建瑞铼泊流体装备有限公司 | 一种智能压力控制系统 |
CN107885245B (zh) * | 2018-01-03 | 2023-12-08 | 福建瑞铼泊流体装备制造有限公司 | 一种智能压力控制系统 |
JP2019183980A (ja) * | 2018-04-11 | 2019-10-24 | 株式会社加藤製作所 | 建設機械の油圧回路 |
CN109296569A (zh) * | 2018-12-07 | 2019-02-01 | 湖南五新隧道智能装备股份有限公司 | 一种臂架控制系统 |
CN114165490A (zh) * | 2022-01-17 | 2022-03-11 | 湖南星邦智能装备股份有限公司 | 控制臂架缩回的控制方法、系统、机械设备及存储介质 |
CN114165490B (zh) * | 2022-01-17 | 2024-01-19 | 湖南星邦智能装备股份有限公司 | 控制臂架缩回的控制方法、系统、机械设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010078035A (ja) | 作業機械の油圧シリンダ制御回路 | |
JP6291394B2 (ja) | 作業機械の油圧駆動システム | |
KR101932304B1 (ko) | 작업 기계의 유압 구동 장치 | |
KR101945653B1 (ko) | 작업 기계의 유압 구동 시스템 | |
JP6317656B2 (ja) | 作業機械の油圧駆動システム | |
JP5388787B2 (ja) | 作業機械の油圧システム | |
US10301793B2 (en) | Hydraulic drive system for work machine | |
JP2018054047A (ja) | 作業機械の油圧駆動装置 | |
JP2019052702A (ja) | 建設機械の油圧駆動システム | |
WO2019220872A1 (ja) | 作業機械の油圧駆動装置 | |
KR101747519B1 (ko) | 하이브리드식 건설 기계 | |
US20140283915A1 (en) | Hydraulic Control System Having Relief Flow Capture | |
JP2015183756A (ja) | 油圧ショベル駆動システム | |
JP2015172400A (ja) | ショベル | |
JP2009167659A (ja) | 作業機械の油圧制御回路 | |
JP6591370B2 (ja) | 建設機械の油圧制御装置 | |
JP2009179983A (ja) | 作業機械の油圧制御回路 | |
JP6989548B2 (ja) | 建設機械 | |
JP6580301B2 (ja) | ショベル | |
JP4443483B2 (ja) | 油圧駆動装置 | |
JP2021021199A (ja) | ショベル | |
JP2015031377A (ja) | 油圧駆動装置 | |
JP2015172398A (ja) | ショベル | |
JP2015172397A (ja) | ショベル | |
JP2015172394A (ja) | ショベル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100713 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100812 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111206 |