JP2010071961A - Deterioration diagnosis method of polymer material - Google Patents
Deterioration diagnosis method of polymer material Download PDFInfo
- Publication number
- JP2010071961A JP2010071961A JP2008243187A JP2008243187A JP2010071961A JP 2010071961 A JP2010071961 A JP 2010071961A JP 2008243187 A JP2008243187 A JP 2008243187A JP 2008243187 A JP2008243187 A JP 2008243187A JP 2010071961 A JP2010071961 A JP 2010071961A
- Authority
- JP
- Japan
- Prior art keywords
- polymer material
- deterioration
- spectroscopic analysis
- insulation
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002861 polymer material Substances 0.000 title claims abstract description 88
- 230000006866 deterioration Effects 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000003745 diagnosis Methods 0.000 title description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 22
- 238000004611 spectroscopical analysis Methods 0.000 claims abstract description 20
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 15
- 239000013626 chemical specie Substances 0.000 claims abstract description 13
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000000089 atomic force micrograph Methods 0.000 claims abstract description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 4
- 238000012844 infrared spectroscopy analysis Methods 0.000 claims abstract description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 12
- 238000011002 quantification Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 abstract description 31
- 238000009413 insulation Methods 0.000 description 37
- 229920001225 polyester resin Polymers 0.000 description 26
- 239000004645 polyester resin Substances 0.000 description 26
- 230000015556 catabolic process Effects 0.000 description 19
- 238000006731 degradation reaction Methods 0.000 description 17
- 239000011810 insulating material Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 238000002405 diagnostic procedure Methods 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229910002651 NO3 Inorganic materials 0.000 description 4
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 4
- 239000012774 insulation material Substances 0.000 description 4
- 238000004566 IR spectroscopy Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- -1 nitrate ions Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Testing Relating To Insulation (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は高分子材料を絶縁材として用いた電気設備の絶縁劣化を診断するための技術に関する。 The present invention relates to a technique for diagnosing insulation deterioration of electrical equipment using a polymer material as an insulating material.
従来の電気設備の絶縁劣化を診断するための技術としては例えば特許文献1〜3に開示された診断方法が挙げられる。 Examples of conventional techniques for diagnosing insulation deterioration of electrical equipment include the diagnostic methods disclosed in Patent Documents 1 to 3.
特許文献1の沿面絶縁劣化検出装置は、絶縁材表面の汚損度を測るのに比べて直接的に絶縁材の劣化を測る方法としては、絶縁フレームに櫛形電極を付して表面抵抗をモニターし、モニターされた抵抗値が閾値以下の状態になったらアラーム信号を出力している。 The creeping insulation deterioration detection device of Patent Document 1 monitors the surface resistance by attaching a comb-shaped electrode to the insulating frame as a method of directly measuring the deterioration of the insulating material as compared to measuring the degree of contamination on the surface of the insulating material. When the monitored resistance value falls below the threshold value, an alarm signal is output.
特許文献2の診断方法は、受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料からなる未劣化部位と劣化部位の表面電気抵抗率の変化を測定し、予め測定された表面電気抵抗率の時間依存性基準曲線に基づいて受配電設備の余寿命を算出している。 The diagnostic method of Patent Document 2 measures the change in surface electrical resistivity of an undegraded part and a deteriorated part made of a material equivalent to a solid insulating material used for a main circuit part constituting a power distribution facility, The remaining life of the power distribution facility is calculated based on the time-dependent reference curve of resistivity.
これらの診断方法は、絶縁材料が短絡事故を起こしたとき、事故前後の装置における絶縁抵抗の測定では、図17(a)に示したように絶縁材の抵抗測定では周囲の温室度による表面抵抗の変動が激しく、絶縁劣化状態を正確に測定することが困難である。 In these diagnostic methods, when an insulation material causes a short-circuit accident, in the measurement of the insulation resistance in the apparatus before and after the accident, as shown in FIG. It is difficult to accurately measure the insulation deterioration state.
電気設備においては、短絡事故後の絶縁材付近から多量の硝酸塩が検出されている。非特許文献1によると、図16に示されたように、絶縁物の組成成分である炭酸カルシウム、ポリエステル樹脂、ガラス繊維のうち、大気中のNOxと反応して潮解性の硝酸カルシウムが生成し、これが表面抵抗率の低下の原因とされている。点検という立場から稼動中の設備に使われている絶縁材料そのものを分解、調査することが困難であったので、樹脂表面上の硝酸イオン性汚染物質の調査や、樹脂成分、樹脂表面の光沢や変色によりマハラノビスの距離を指標として、統計的信頼性手法であるMT法により間接的な情報から絶縁劣化状態を推測する手法が提案されている(非特許文献1)。 In electrical equipment, a large amount of nitrate has been detected in the vicinity of the insulating material after a short circuit accident. According to Non-Patent Document 1, as shown in FIG. 16, among calcium carbonate, polyester resin, and glass fiber, which are constituents of insulators, deliquescent calcium nitrate is generated by reacting with NOx in the atmosphere. This is the cause of the decrease in surface resistivity. From the standpoint of inspection, it was difficult to disassemble and investigate the insulating material used in the operating equipment, so it was necessary to investigate nitrate ion contaminants on the resin surface, resin components, resin surface gloss, A technique has been proposed in which the insulation degradation state is estimated from indirect information by the MT method, which is a statistical reliability technique, using the Mahalanobis distance as an index by discoloration (Non-patent Document 1).
また、特許文献3の高分子材料の劣化診断方法は、充填材を含む高分子材料が熱等の環境負荷で劣化していくとき光沢や色彩が微妙に変化することを利用して単一波長光を照射してその反射率を測定し、加速劣化による反射率の変化と比較して劣化度を診断している。
高分子材料の絶縁フレームが焼損、短絡する事故が生じたとき、硝酸イオンが多量に検出することは事実である。ところが、高分子材料の絶縁劣化速度の環境依存性を調査すると、事故が発生した環境においては特に高濃度の窒素酸化物が検出されていない。事故前後で硝酸塩イオン濃度が高いのは短絡、焼損した絶縁フレームの周囲のみであり、同じ施設に設置されている別の盤では異常な量の硝酸イオンは検出されていない。この環境調査結果から、絶縁フレーム短絡時の硝酸イオンは短絡事故による放電プラズマにより大気中の窒素と酸素が結合して発生してものであり、環境中の窒素酸化物や硝酸イオンの調査結果と現地サンプルの劣化状態とは、良い相関関係は認められず、劣化の主要因とは考えにくい(表1)。 It is true that a large amount of nitrate ion is detected when an accident occurs in which the insulating frame of the polymer material burns out and is short-circuited. However, when the environmental dependency of the insulation deterioration rate of the polymer material is investigated, particularly high concentrations of nitrogen oxides are not detected in the environment where the accident occurred. Before and after the accident, the nitrate ion concentration was high only around the insulation frame that was short-circuited and burned, and no abnormal amount of nitrate ion was detected in another panel installed in the same facility. From the environmental survey results, nitrate ions at the time of insulation frame short-circuiting are generated by the combination of nitrogen and oxygen in the atmosphere due to discharge plasma due to a short-circuit accident. There is no good correlation with the deterioration state of the field sample, and it is difficult to consider it as the main cause of deterioration (Table 1).
特許文献2で述べられているように絶縁フレームの絶縁抵抗値は高分子材料の抵抗が高すぎるため温湿度などの周囲環境による抵抗値変化(測定値のばらつき)が大きすぎて高分子材料の正確な劣化診断ができない(図17(a))。また、図17(b)に示されるように、部分放電等の電気的異常が発生する前では表面抵抗率の測定範囲が狭く、電気的評価では測定は困難である。 As described in Patent Document 2, the insulation resistance value of the insulating frame is too high because the resistance of the polymer material is too high, and the change in resistance value due to the ambient environment such as temperature and humidity (measured value variation) is too large. An accurate deterioration diagnosis cannot be performed (FIG. 17A). In addition, as shown in FIG. 17B, the surface resistivity measurement range is narrow before an electrical abnormality such as partial discharge occurs, and measurement is difficult by electrical evaluation.
以上のように従来,絶縁フレームの劣化評価方法は主に絶縁抵抗測定によって行われてきたが,周囲の温湿度による影響を受け、劣化兆候を正確に把握することは困難である。 As described above, the insulation frame deterioration evaluation method has been conventionally performed mainly by measuring the insulation resistance. However, it is difficult to accurately grasp the signs of deterioration due to the influence of the surrounding temperature and humidity.
最近では非特許文献1のように絶縁物の表面に付着している硝酸イオンの調査や特許文献3のように光沢・色調等の情報から劣化兆候を推測する方法が提案されている。しかしながら、これらの診断方法は絶縁破壊に至るメカニズムにおいて劣化の後期からの評価であり(後述の図1参照)、絶縁抵抗と相関性の高い評価は困難である。 Recently, as in Non-Patent Document 1, a method of estimating a deterioration sign from information on nitrate ions adhering to the surface of an insulator and information such as gloss and color tone has been proposed as in Patent Document 3. However, these diagnostic methods are evaluations from the later stage of deterioration in the mechanism leading to dielectric breakdown (see FIG. 1 described later), and it is difficult to evaluate highly correlated with insulation resistance.
本発明は、以上の事情に鑑みなされたもので、その目的は高分子材料表面における電位分布の変化が起こる前の早期の段階で高分子材料の劣化を発見できる高分子材料劣化の診断方法の提供にある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for diagnosing deterioration of a polymer material that can detect deterioration of the polymer material at an early stage before a change in potential distribution on the surface of the polymer material occurs. On offer.
そこで、前記課題を解決するための高分子材料の劣化診断方法は、高分子材料表面の物理化学的変化量を定量することにより前記高分子材料の劣化を診断する。 Therefore, a polymer material deterioration diagnosis method for solving the above problem diagnoses the deterioration of the polymer material by quantifying the amount of physicochemical change on the surface of the polymer material.
前記物理化学的変化量の定量としては前記高分子材料表面上の親水性化学種の分光分析による定量がある。前記分光分析としては赤外線分光分析またはラマン分光分析が挙げられる。前記親水性化学種としてヒドロキシル基または水素還元されたフェニル基を定量すると高分子材料の経年による加水分解の程度を診断できる。前記親水性化学種としてカルボキシル基を定量すると高分子材料の熱劣化の程度を診断できる。前記親水性化学種として硫酸イオンを定量すると腐食性ガスによる高分子材料表面の酸化状態を診断できる。 As the quantification of the amount of physicochemical change, there is a quantification of the hydrophilic species on the surface of the polymer material by spectroscopic analysis. Examples of the spectroscopic analysis include infrared spectroscopic analysis and Raman spectroscopic analysis. If the hydroxyl group or the hydrogen-reduced phenyl group is quantified as the hydrophilic species, the degree of hydrolysis of the polymer material over time can be diagnosed. When the carboxyl group is quantified as the hydrophilic chemical species, the degree of thermal degradation of the polymer material can be diagnosed. When sulfate ions are quantified as the hydrophilic chemical species, the oxidation state of the polymer material surface by the corrosive gas can be diagnosed.
また、前記物理化学変化量の定量として高分子材料表面の単位面積当たりの平均表面電位分布の測定が挙げられる。この測定により高分子材料の表面抵抗の劣化の程度を診断できる。前記平均表面電位分布の測定としては原子間力顕微鏡像による測定法が挙げられる。 Moreover, the measurement of the average surface potential distribution per unit area on the surface of the polymer material can be cited as the quantification of the physicochemical change amount. By this measurement, the degree of deterioration of the surface resistance of the polymer material can be diagnosed. Examples of the measurement of the average surface potential distribution include a measurement method using an atomic force microscope image.
以上の発明によれば高分子材料表面における電位分布の変化が起こる前の早期の段階で高分子材料の劣化を発見できる。 According to the above invention, deterioration of the polymer material can be found at an early stage before the change in potential distribution on the surface of the polymer material occurs.
1.絶縁破壊事故品の調査に基づく新しい劣化メカニズム
事故品の絶縁フレームの調査によると、焼損しないで残っている高分子表面から本来のポリエステル樹脂には存在しないはずのOH基(ヒドロキシル基)が検出され、絶縁フレームの樹脂内部からは検出されなかった。
1. New degradation mechanism based on investigation of insulation breakdown products According to the investigation of insulation frames of accident products, OH groups (hydroxyl groups) that should not exist in the original polyester resin were detected from the polymer surface remaining without burning. It was not detected from the resin inside the insulating frame.
そこで、イメージングIR法を用いて事故品の樹脂断面のOH基のマッピング像を採取したところ、図2に示された高分子材料断面のOH基分布のように、事故品の表面にOH基が多く存在し、数μm〜数十μmで急速に減少しているのが確認された。この調査結果から高分子材料の表面から深さ方向へのOH基の変化量と絶縁劣化には因果関係があると考えられる。 Therefore, when the mapping image of the OH group of the resin cross section of the accident product was collected using the imaging IR method, OH groups were found on the surface of the accident product as shown in the OH group distribution of the polymer material cross section shown in FIG. Many were present, and it was confirmed that the number decreased rapidly from several μm to several tens of μm. From this investigation result, it is considered that there is a causal relationship between the amount of change of OH groups from the surface of the polymer material to the depth direction and the deterioration of insulation.
また、稼動中の事故を発生していない絶縁フレームの高分子材料表面のIR分析を実施したところ、図3に示されたように稼動時間や設置環境によって量の異なるOH基が検出された。 Further, when an IR analysis was performed on the surface of the polymer material of the insulating frame where no accident occurred during operation, OH groups having different amounts depending on the operation time and installation environment were detected as shown in FIG.
以上のことから環境中の窒素酸化物により高分子材料中の炭酸カルシウムが吸湿性の硝酸カルシウムになって絶縁抵抗が低下するのではなく、図1の説明図のように、最初に絶縁フレームのポリエステル樹脂の加水分解により絶縁フレームの表面抵抗が低下して部分放電が発生し、この放電による硝酸イオンにより絶縁劣化が加速して事故に至ることが考えられる。 From the above, the nitrogen oxides in the environment do not cause the calcium carbonate in the polymer material to become hygroscopic calcium nitrate and lower the insulation resistance, but as shown in the explanatory diagram of FIG. It is conceivable that the surface resistance of the insulating frame decreases due to the hydrolysis of the polyester resin and partial discharge occurs, and the deterioration of the insulation is accelerated by nitrate ions caused by this discharge, leading to an accident.
2.高分子材料の絶縁劣化における表面抵抗と化学変化の相関
絶縁材料の表面抵抗は周囲環境によって大きく左右され、現地での絶縁抵抗測定では劣化による差異の検出は難しいが、絶縁フレームを恒温恒湿槽で環境制御して精度の高い絶縁抵抗計で測定すれば、劣化による絶縁抵抗の変化を正確に検出できる。そして、その抵抗特性と単位面積当たりの高分子材料の化学変化を定量化した数値に強い相関があれば、検出が容易で定量化しやすい化学状態変化を用いて絶縁劣化の指標とし、直接的な劣化診断が可能となる。
2. Correlation between surface resistance and chemical change in insulation degradation of polymer materials The surface resistance of insulation materials is greatly influenced by the surrounding environment, and it is difficult to detect the difference due to degradation in the local insulation resistance measurement, but the insulation frame is kept in a constant temperature and humidity chamber If you measure the environment with a highly accurate insulation resistance meter, you can accurately detect changes in insulation resistance due to deterioration. If there is a strong correlation between the resistance characteristics and the numerical value quantifying the chemical change of the polymer material per unit area, it can be used as an indicator of insulation degradation using a chemical state change that is easy to detect and easy to quantify. Deterioration diagnosis is possible.
(1)高分子材料の絶縁劣化の温湿度特性
通常の環境における絶縁抵抗では、測定時の誤差が大きく劣化による差異が観測できないため、絶縁フレーム(高分子材料)をサンプルとして切出し、このサンプルを図4に示したように環境試験装置1内の抵抗セル2に設置し、これに図示省略の測定電極を貼り付け、温湿度を制御しながらハイレジスタンスメータ3を用いて表面抵抗の挙動を測定した。測定された表面抵抗は端末PCにおいてモニタリングした。
(1) Temperature and humidity characteristics of insulation deterioration of polymer materials Insulation resistance in a normal environment has a large error during measurement and the difference due to deterioration cannot be observed. Therefore, cut out the insulation frame (polymer material) as a sample, As shown in FIG. 4, it is installed in the resistance cell 2 in the environmental test apparatus 1, and a measurement electrode (not shown) is attached to the cell, and the behavior of the surface resistance is measured using the high resistance meter 3 while controlling the temperature and humidity. did. The measured surface resistance was monitored on a terminal PC.
図5は新品のポリエステル樹脂からなる絶縁フレーム用高分子材料の湿度90℃における温度/表面抵抗特性を示す。図6は経年32年のポリエステル樹脂からなる絶縁フレーム用高分子材料の湿度90℃における温度/表面抵抗特性を示す。 FIG. 5 shows the temperature / surface resistance characteristics of a polymer material for an insulating frame made of a new polyester resin at a humidity of 90.degree. FIG. 6 shows the temperature / surface resistance characteristics at a humidity of 90 ° C. of a polymer material for an insulating frame made of a polyester resin aged 32 years.
図5に示されたように湿度90%における新品の絶縁フレーム用高分子材料表面の表面抵抗と温度変化による特性は温度を変えた瞬間に多少のゆらぎがあるものの、絶縁材料の表面温度と周囲温度の差がなくなると安定するという特性が示されている。 As shown in FIG. 5, the surface resistance of the new polymer material for the insulating frame at 90% humidity and the characteristics due to temperature change have some fluctuations at the moment when the temperature is changed, but the surface temperature of the insulating material and the surroundings. It shows the characteristic that it stabilizes when the temperature difference disappears.
一方、経年32の絶縁フレーム用高分子材料では、図6に示されたように、温度の切り替わり直後には漏洩電流による抵抗の低下が観測され、109Ω以下では部分放電による短絡も再現した。しかし、当該材料の表面温度と周囲温度との温度差がなくなると抵抗が回復する現象が観測された。 On the other hand, in the polymer material for insulating frames of aged 32, as shown in FIG. 6, a decrease in resistance due to leakage current was observed immediately after the temperature was switched, and a short circuit due to partial discharge was reproduced below 10 9 Ω. . However, a phenomenon was observed in which the resistance recovered when the temperature difference between the surface temperature of the material and the ambient temperature disappeared.
図7はポリエステル樹脂からなる絶縁フレーム用高分子材料の35℃湿度90%における表面抵抗特性の経時的変化を示す。このような経年の異なる高分子絶縁フレームの表面抵抗特性を平均化し、35℃湿度90%における表面抵抗の安定した時点の平均値から抵抗導電率をプロットして経年による抵抗導電率の劣化カーブをえることができ、常温で部分放電が発生しやすくなる導電率に至る閾値を決めることができた。 FIG. 7 shows the change over time of the surface resistance characteristics at 35 ° C. and 90% humidity of an insulating frame polymer material made of polyester resin. The surface resistance characteristics of polymer insulating frames with different aging are averaged, and the resistance conductivity is plotted from the average value of stable surface resistance at 35 ° C and humidity of 90%. It was possible to determine a threshold value that leads to conductivity at which partial discharge is likely to occur at room temperature.
(2)高分子材料表面の化学変化の定量化
高分子材料表面の化学的変化の定量化としては、高分子材料の表面状態が同一材料内部ではどの場所を測定しても変動幅が1%未満になるような測定面積をきめ、経年による化学変化量を分光分析法によって定量できる。分光分析法としては赤外線分光分析法、ラマン分光分析法が挙げられる。赤外線分光分析法の具体的な分析法としてはイメージングIR法がある(図8、図9、図10)。ラマン分光分析法としてはラマンコンフォーカル−ラマン分析法がある(図8、図11、図12、表2)。
(2) Quantification of the chemical change on the surface of the polymer material The quantification of the chemical change on the surface of the polymer material is as follows: the fluctuation range is 1% regardless of where the surface condition of the polymer material is measured. It is possible to determine the amount of chemical change over time by spectroscopic analysis by determining the measurement area to be less than Examples of the spectroscopic analysis method include infrared spectroscopic analysis method and Raman spectroscopic analysis method. As a specific analysis method of the infrared spectroscopy, there is an imaging IR method (FIGS. 8, 9, and 10). As a Raman spectroscopic analysis method, there is a Raman confocal-Raman analysis method (FIGS. 8, 11, 12, and Table 2).
図8(a)は前記分光分析の測定システムの概略構成図であり、図8(b)は前記測定システムの測定原理説明図である。図8(a)に示された赤外線分光法またはラマン分光法に基づく測定システムでは光源11から照射された光は干渉計12を介して試料室13内のサンプル17(図8(b)参照)の測定面に供される。そして、サンプル17の測定面上の物質または測定面における物質に起因する光成分(赤外線分光法の場合は赤外線吸収スペクトル、ラマン分光法の場合は散乱光(図8(b)参照))が検知器14によって検知される。検知された光成分はAD変換器15を介して端末16に入力される。端末16では検出された測定面上または内部に存在する各種の物質量の違いが可視化された状態(イメージング)で表示される。 FIG. 8A is a schematic configuration diagram of the measurement system of the spectroscopic analysis, and FIG. 8B is an explanatory diagram of the measurement principle of the measurement system. In the measurement system based on the infrared spectroscopy or the Raman spectroscopy shown in FIG. 8A, the light irradiated from the light source 11 passes through the interferometer 12 and the sample 17 in the sample chamber 13 (see FIG. 8B). It is used for the measurement surface. Then, the light component (infrared absorption spectrum in the case of infrared spectroscopy, scattered light (see FIG. 8B) in the case of Raman spectroscopy) detected by the substance on the measurement surface of the sample 17 or the substance on the measurement surface is detected. Detected by the instrument 14. The detected light component is input to the terminal 16 via the AD converter 15. On the terminal 16, the difference in the amount of various substances existing on or inside the detected measurement surface is displayed in a visualized state (imaging).
図9は新品のポリエステル樹脂からなる絶縁フレーム用高分子材料表面の加水分解によって生じたOH基の分布をイメージングIRによって経年的(新品、経年16年、経年20年、経年30年)に表示したイメージ像である。高分子材料の表面においてOH基の分布が経時的に拡大していくことが確認できる。 FIG. 9 shows the distribution of OH groups generated by hydrolysis of the surface of a polymer material for an insulating frame made of a new polyester resin as aged (new, 16 years, 20 years, 30 years) by imaging IR. It is an image. It can be confirmed that the distribution of OH groups expands with time on the surface of the polymer material.
図10はポリエステル樹脂からなる絶縁フレーム用高分子材料の表面における水酸基(OH基)検出量の比の経時的変化である。図10の特性図と図7の特性図との比較から明らかなように、高分子材料表面の親水基(水酸基等)の発現と表面抵抗との間に相関があることがわかる。すなわち、ポリエステル高分子材料の経年による加水分解のOH基の増加量はある単位面積以上になると表面抵抗の劣化と非常によい相関を示すことが確認された。このことから、疎水性の高分子表面が親水性のOH基に覆われていくことにより、通常環境で温湿度の変化、表面吸湿により、絶縁劣化、部分放電を発生すると判断される。したがって、未知試料上の親水性化学種例えばOH基を測定すること当該試料の劣化の程度を診断できる。 FIG. 10 shows the change over time in the ratio of the detected amount of hydroxyl groups (OH groups) on the surface of the polymer material for insulating frames made of polyester resin. As is clear from the comparison between the characteristic diagram of FIG. 10 and the characteristic diagram of FIG. That is, it was confirmed that the increase in the amount of OH groups by hydrolysis over time of the polyester polymer material shows a very good correlation with the deterioration of the surface resistance when it exceeds a certain unit area. From this, it is determined that the surface of the hydrophobic polymer is covered with the hydrophilic OH group, thereby causing deterioration of insulation and partial discharge due to change in temperature and humidity and surface moisture absorption in a normal environment. Therefore, the degree of deterioration of the sample can be diagnosed by measuring hydrophilic chemical species such as OH groups on the unknown sample.
図11は新品のポリエステル樹脂からなる絶縁フレーム用高分子材料のコンフォーカル−ラマン分析によって得られた組成分布のイメージ像である。図12は経年30年のポリエステル樹脂からなる絶縁フレーム用高分子材料のコンフォーカル−ラマン分析によって得られた組成分布のイメージ像である。図11及び図12に記載された番号1はフェニル基と結合した水素の分布、番号2は炭酸カルシウム由来のCO3 2-の分布、番号3はPE(ポリエチレン)の炭素と水素の結合(−CH2−)の分布、番号4は硫酸イオン(SO4 2-基)の分布を表す。図11,図12中の番号が付されていないイメージ像は前記各成分の分布を可視的に示したものである。 FIG. 11 is an image of a composition distribution obtained by confocal-Raman analysis of a polymer material for an insulating frame made of a new polyester resin. FIG. 12 is an image of a composition distribution obtained by confocal-Raman analysis of a polymer material for an insulating frame made of a polyester resin aged 30 years. 11 and 12, number 1 is the distribution of hydrogen bonded to the phenyl group, number 2 is the distribution of CO 3 2- derived from calcium carbonate, and number 3 is the bond between carbon and hydrogen (− The distribution of CH 2 —), number 4 represents the distribution of sulfate ions (SO 4 2− groups). The image images not numbered in FIGS. 11 and 12 visually show the distribution of each component.
表2は新品及び経年30年のポリエステル樹脂からなる絶縁フレーム用高分子材料のコンフォーカル−ラマンによる組成の定量化された成分の一覧である。表に記載の占有面積比率とは、測定面積に対する各化学種の占める比率を意味する。本試験例でのラマン分光では経年劣化による水素還元されたフェニル基の増加やSO4基による酸化の状態を定量化できることが示された。 Table 2 is a list of components quantified by the confocal-Raman composition of polymer materials for insulating frames made of new and 30-year-old polyester resins. The occupation area ratio described in the table means the ratio of each chemical species to the measurement area. The Raman spectroscopy in this test example showed that the increase in hydrogen-reduced phenyl groups due to aging and the state of oxidation by SO 4 groups can be quantified.
以上のように高分子材料表面上の物理化学変化量として高分子材料表面上の親水性化学種を分光分析によって定量することで高分子材料表面における電位分布の変化が起こる前の早期の段階で高分子材料の劣化診断が行える。また、高分子材料表面上の親水性化学種の定量は以下の効果(a)〜(c)を有する。 As described above, the amount of physicochemical changes on the surface of the polymer material is quantified by spectroscopic analysis of the hydrophilic chemical species on the surface of the polymer material. Degradation of polymer materials can be diagnosed. Moreover, the determination of the hydrophilic chemical species on the surface of the polymer material has the following effects (a) to (c).
(a)容易性
少量のサンプルで分光分析を用いて単位面積当たりの化学種の量を測定しているので、定量化が容易である。本発明の診断方法による測定結果は測定が難しく時間と手間のかかる従来技術による表面抵抗劣化特性の測定結果とよく一致するので、本発明の診断方法は従来技術と比べて速やかに高分子の絶縁劣化診断が行える。
(A) Ease Quantification is easy because the amount of chemical species per unit area is measured with a small amount of sample using spectroscopic analysis. Since the measurement result by the diagnostic method of the present invention is in good agreement with the measurement result of the surface resistance degradation characteristic by the prior art, which is difficult and time consuming to measure, the diagnostic method of the present invention is faster than the prior art to insulate the polymer. Deterioration diagnosis can be performed.
(b)余寿命予測、保全コストの削減
表面抵抗を常時モニターする方法では、表面抵抗がある閾値まで低下したときの警報としてはよいが、その装置の絶縁状態がいつまで保てるのか、余寿命は判らない。本法では、測定時までの経年と測定時の劣化度合いから同じ環境であると何年使えるのか余寿命を推定でき、装置の保全点検頻度を大幅に減らすことができる。
(B) Remaining life prediction and reduction of maintenance costs The method of constantly monitoring the surface resistance is good as an alarm when the surface resistance drops to a certain threshold, but it is not possible to know how long the insulation state of the device can be maintained. Absent. In this method, it is possible to estimate how many years it can be used in the same environment from the years before measurement and the degree of deterioration at the time of measurement, and it is possible to greatly reduce the frequency of equipment maintenance inspection.
(c)種々の劣化モードに対する対応性
広域波長分を用いる分光分析では、種々の環境負荷による劣化に対して、化学変化量の比較が可能であるため、加水分解だけではなく、熱劣化によるカルボン酸の増加、腐食性ガスによるSO4基の増加等、種々な劣化に対して応用ができる。
(C) Correspondence to various degradation modes In the spectroscopic analysis using a wide range of wavelengths, it is possible to compare the amount of chemical change against degradation due to various environmental loads. It can be applied to various deteriorations such as increase in acid and increase in SO 4 groups due to corrosive gas.
3.高分子材料表面の単位面積当たりの平均表面電位分布を測定することによる高分子材料の劣化診断
図13は新品のポリエステル樹脂からなる絶縁フレーム用高分子材料のAFM(原子間力顕微鏡)による表面電位分布を示した顕微鏡像(20μm角)を示す。図14(a)は経年30年のポリエステル樹脂からなる絶縁フレーム用高分子材料のAFMによる原子間力顕微鏡像(20μm角)を示す。図14(b)は経年30年のポリエステル樹脂からなる絶縁フレーム用高分子材料のAFMによる表面電位顕微鏡像(20μm角)を示す。図15は経年30年のポリエステル樹脂からなる絶縁フレーム用高分子材料のAFMによる表面電位顕微鏡像(20μm角)とその平均表面電位差を示す。
3. Degradation diagnosis of polymer material by measuring average surface potential distribution per unit area of polymer material surface FIG. 13 is a surface potential by AFM (atomic force microscope) of polymer material for insulating frame made of a new polyester resin. A microscopic image (20 μm square) showing the distribution is shown. FIG. 14A shows an atomic force microscope image (20 μm square) obtained by AFM of a polymer material for an insulating frame made of a polyester resin aged 30 years. FIG. 14B shows a surface potential microscope image (20 μm square) by AFM of a polymer material for an insulating frame made of a polyester resin aged 30 years. FIG. 15 shows a surface potential microscope image (20 μm square) by AFM of a polymer material for an insulating frame made of a polyester resin of 30 years and an average surface potential difference.
図13の光学観察結果によると、フレームの表面にはあまり凹凸がみられないことがわかる。一方、図14(a)及び図14(b)に示された顕微鏡像観察結果によると経年30年の絶縁フレーム表面に形成された凹凸が確認された。また、図15に開示されたように表面電位顕微鏡による20μm角の平均表面電位差は2.804Vであった。このように原子間力顕微鏡での表面電位顕微鏡(Surface Potential Microscope)測定によれば、各劣化生成物による定量化ではなく、単位面積当たりの高分子絶縁材の平均表面電位差を直接観測することで高分子絶縁材の絶縁劣化の診断が可能となることが示された。 According to the optical observation result in FIG. 13, it can be seen that the surface of the frame is not very uneven. On the other hand, according to the microscopic image observation results shown in FIGS. 14 (a) and 14 (b), irregularities formed on the surface of the insulating frame over 30 years were confirmed. Further, as disclosed in FIG. 15, the average surface potential difference of 20 μm square by the surface potential microscope was 2.804V. Thus, according to the surface potential microscope measurement by the atomic force microscope, the average surface potential difference of the polymer insulating material per unit area is not directly quantified but by quantification by each degradation product. It has been shown that it is possible to diagnose insulation deterioration of polymer insulation materials.
以上のように高分子材料表面上の物理化学変化量として高分子材料表面の単位面積当たりの平均表面電位分布の測定によっても高分子材料表面における電位分布の変化が起こる前の早期の段階で高分子材料の劣化診断が行える。また、分光分析や平均表面電位分布の測定は以下の効果(a)〜(c)を有する。 As described above, the amount of physicochemical change on the surface of the polymer material is also high at an early stage before the change in the potential distribution on the surface of the polymer material occurs by measuring the average surface potential distribution per unit area of the polymer material surface. Degradation of molecular materials can be diagnosed. Moreover, the spectroscopic analysis and the measurement of the average surface potential distribution have the following effects (a) to (c).
(a)絶縁劣化状態の直接観察
原子間力顕微鏡による表面電位顕微鏡(SPoM)像観察では、化学的な劣化メカニズムが判らなくても、微量のサンプルで絶縁材料の表面抵抗がどの程度劣化しているかが判断できる。
(A) Direct observation of insulation deterioration state In surface potential microscope (SPoM) image observation using an atomic force microscope, even if the chemical deterioration mechanism is unknown, how much the surface resistance of the insulating material deteriorates with a small amount of sample. Can be determined.
(b)簡単な現場点検、余寿命予測
絶縁劣化の故障メカニズムが判っている材料については、代理特性となる官能基に対する単一スペクトルの光源を用いたポータブルタイプの分光分析機を用いて現地での診断もできる。
(B) Simple on-site inspection and remaining life prediction For materials whose failure mechanism of insulation deterioration is known, a portable type spectroscopic analyzer using a single-spectrum light source for the functional group serving as a surrogate property is used locally. Can also be diagnosed.
(c)三次元的な劣化状態の把握
サンプル、劣化における測定マーカとなる官能基によっては、高分子材料の断面における面分布を分析することで三次元的な抵抗分布(表面抵抗と断面からの体積抵抗の空間分布)を予測することができる。
(C) Understanding the three-dimensional degradation state Depending on the sample and the functional group that serves as a measurement marker in degradation, the three-dimensional resistance distribution (from the surface resistance and the cross section) can be analyzed by analyzing the surface distribution in the cross section of the polymer material. The spatial distribution of volume resistance) can be predicted.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008243187A JP5550034B2 (en) | 2008-09-22 | 2008-09-22 | Degradation diagnosis method for polymer materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008243187A JP5550034B2 (en) | 2008-09-22 | 2008-09-22 | Degradation diagnosis method for polymer materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010071961A true JP2010071961A (en) | 2010-04-02 |
JP5550034B2 JP5550034B2 (en) | 2014-07-16 |
Family
ID=42203876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008243187A Active JP5550034B2 (en) | 2008-09-22 | 2008-09-22 | Degradation diagnosis method for polymer materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5550034B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012013657A (en) * | 2010-07-05 | 2012-01-19 | Ihi Infrastructure Systems Co Ltd | Spectroscopy analyzer |
JP2019095291A (en) * | 2017-11-22 | 2019-06-20 | 三菱電機株式会社 | Insulation deterioration diagnosis method and insulation deterioration diagnosis device |
JP2019158653A (en) * | 2018-03-14 | 2019-09-19 | 住友ゴム工業株式会社 | Method of predicting changes in abrasion resistance and fracture resistance |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61502978A (en) * | 1984-05-04 | 1986-12-18 | アレクサンダ− シエ−ラ− ウント コンパニ− ア−ゲ− | A method for determining the oxidation-dependent properties of homogeneous plastic bodies, as well as the use of the method and an apparatus for applying the method to large injection molded articles, in particular bottle cases. |
JPH01118755A (en) * | 1987-10-31 | 1989-05-11 | Ishikawajima Harima Heavy Ind Co Ltd | Method for diagnosing coating film deterioration with laser beam |
JPH04181147A (en) * | 1990-11-15 | 1992-06-29 | Tdk Corp | Chemical substance sensor |
JPH05256782A (en) * | 1992-03-05 | 1993-10-05 | Kimoto Denshi Kogyo Kk | Raman spectrometer for analysis of slight amount of constituent |
JPH0829341A (en) * | 1994-07-18 | 1996-02-02 | Yoshiki Uragami | Quantitative evaluation of deterioration of resin by ft-ir analysis |
JPH08201462A (en) * | 1995-01-25 | 1996-08-09 | Hitachi Ltd | Surface potential measuring apparatus |
JP2000214084A (en) * | 1999-01-25 | 2000-08-04 | Asahi Chem Ind Co Ltd | Method and apparatus for decision of test substance |
JP2005061901A (en) * | 2003-08-08 | 2005-03-10 | Mitsubishi Electric Corp | Insulation diagnostic method for electric equipment |
JP2007303852A (en) * | 2006-05-09 | 2007-11-22 | Canon Inc | Probe microscope and measuring method using it |
JP2008032430A (en) * | 2006-07-26 | 2008-02-14 | Ihi Corp | Method for diagnosing deterioration of film |
WO2008087799A1 (en) * | 2007-01-18 | 2008-07-24 | Konica Minolta Opto, Inc. | Microchip and method for manufacturing the microchip |
-
2008
- 2008-09-22 JP JP2008243187A patent/JP5550034B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61502978A (en) * | 1984-05-04 | 1986-12-18 | アレクサンダ− シエ−ラ− ウント コンパニ− ア−ゲ− | A method for determining the oxidation-dependent properties of homogeneous plastic bodies, as well as the use of the method and an apparatus for applying the method to large injection molded articles, in particular bottle cases. |
JPH01118755A (en) * | 1987-10-31 | 1989-05-11 | Ishikawajima Harima Heavy Ind Co Ltd | Method for diagnosing coating film deterioration with laser beam |
JPH04181147A (en) * | 1990-11-15 | 1992-06-29 | Tdk Corp | Chemical substance sensor |
JPH05256782A (en) * | 1992-03-05 | 1993-10-05 | Kimoto Denshi Kogyo Kk | Raman spectrometer for analysis of slight amount of constituent |
JPH0829341A (en) * | 1994-07-18 | 1996-02-02 | Yoshiki Uragami | Quantitative evaluation of deterioration of resin by ft-ir analysis |
JPH08201462A (en) * | 1995-01-25 | 1996-08-09 | Hitachi Ltd | Surface potential measuring apparatus |
JP2000214084A (en) * | 1999-01-25 | 2000-08-04 | Asahi Chem Ind Co Ltd | Method and apparatus for decision of test substance |
JP2005061901A (en) * | 2003-08-08 | 2005-03-10 | Mitsubishi Electric Corp | Insulation diagnostic method for electric equipment |
JP2007303852A (en) * | 2006-05-09 | 2007-11-22 | Canon Inc | Probe microscope and measuring method using it |
JP2008032430A (en) * | 2006-07-26 | 2008-02-14 | Ihi Corp | Method for diagnosing deterioration of film |
WO2008087799A1 (en) * | 2007-01-18 | 2008-07-24 | Konica Minolta Opto, Inc. | Microchip and method for manufacturing the microchip |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012013657A (en) * | 2010-07-05 | 2012-01-19 | Ihi Infrastructure Systems Co Ltd | Spectroscopy analyzer |
JP2019095291A (en) * | 2017-11-22 | 2019-06-20 | 三菱電機株式会社 | Insulation deterioration diagnosis method and insulation deterioration diagnosis device |
JP2019158653A (en) * | 2018-03-14 | 2019-09-19 | 住友ゴム工業株式会社 | Method of predicting changes in abrasion resistance and fracture resistance |
JP7069874B2 (en) | 2018-03-14 | 2022-05-18 | 住友ゴム工業株式会社 | How to predict changes in wear resistance and fracture resistance |
Also Published As
Publication number | Publication date |
---|---|
JP5550034B2 (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4937012B2 (en) | Remaining life diagnosis method for power distribution equipment | |
KR102198520B1 (en) | Sensor module for diagnosis of gas insulation apparatus | |
JP5840342B2 (en) | Insulation degradation diagnosis method for insulation materials | |
JP2012173183A (en) | Service life inspection method of cable coating material | |
RU2316746C2 (en) | Method and device for testing lubricant | |
JP2005061901A (en) | Insulation diagnostic method for electric equipment | |
JP5550034B2 (en) | Degradation diagnosis method for polymer materials | |
JP2010243224A (en) | Method for diagnosing deterioration of heat-resistant polyester varnish | |
JP5836904B2 (en) | Insulation material degradation diagnosis method and apparatus | |
EP3327736B1 (en) | Method for determining abnormality in oil-filled electric apparatus | |
JP4045776B2 (en) | Life diagnosis method for power distribution facilities | |
JP5374445B2 (en) | Remaining life diagnosis method, remaining life diagnosis device and program | |
CN104111410B (en) | Sulfur hexafluoride electrical equipment insulation fault monitoring method, device and equipment | |
CN112305338A (en) | Aging degree detection method and system for dry-type transformer | |
JP2012231633A (en) | Method and device for diagnosing remaining life of reception/distribution apparatus | |
KR101494382B1 (en) | Diagnosis method and apparatus of transformer oil | |
Schwarz et al. | Diagnostic methods for transformers | |
JP2017110916A (en) | Deterioration diagnostic device and deterioration diagnostic method | |
JP2014224824A (en) | Insulation deterioration diagnosis method of insulation material | |
KR101438158B1 (en) | Method and apparatus for predicting life time of transformer | |
JP2004354375A (en) | Deterioration diagnostic method and system for electric wire | |
JP2013126323A (en) | Remaining insulation life assessment method of power receiving and distributing apparatus | |
JP2009236665A (en) | Method of diagnosing degradation state of insulation oil in oil-filled equipment | |
JP3923257B2 (en) | Insulation deterioration diagnosis method | |
JP2006250872A (en) | Method for diagnosing degradation in oil transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5550034 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |