JP5840342B2 - Insulation degradation diagnosis method for insulation materials - Google Patents
Insulation degradation diagnosis method for insulation materials Download PDFInfo
- Publication number
- JP5840342B2 JP5840342B2 JP2009174650A JP2009174650A JP5840342B2 JP 5840342 B2 JP5840342 B2 JP 5840342B2 JP 2009174650 A JP2009174650 A JP 2009174650A JP 2009174650 A JP2009174650 A JP 2009174650A JP 5840342 B2 JP5840342 B2 JP 5840342B2
- Authority
- JP
- Japan
- Prior art keywords
- insulation
- insulating material
- humidity
- insulation resistance
- deterioration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Testing Relating To Insulation (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
本発明は、電気機器などに使用される絶縁材料の絶縁劣化診断方法に関する。 The present invention relates to a method for diagnosing insulation deterioration of an insulating material used for electrical equipment and the like.
周知のように、電力設備は、社会インフラを支える重要な設備で、長期の安定稼動が求められている。そのためには、設備の劣化状態を把握し、保全・更新を計画的に実施する必要がある。ところで、電力設備の導体支持やバリヤ等に使われている絶縁材料は、材料自体の経年劣化、および設置環境に浮遊する塵埃やガスの付着等で絶縁特性が低下する。しかし、この絶縁特性の低下は放電、トラッキングの発生により設備停止に至る原因となるので、絶縁材料は設備の劣化診断の対象とされている。 As is well known, power facilities are important facilities that support social infrastructure, and long-term stable operation is required. For that purpose, it is necessary to grasp the deterioration state of the equipment and to carry out maintenance and update systematically. By the way, the insulating material used for the conductor support of an electric power equipment, a barrier, etc. deteriorates insulation characteristics due to aging deterioration of the material itself and adhesion of dust and gas floating in the installation environment. However, since this deterioration of the insulation characteristics causes the equipment to stop due to the occurrence of discharge and tracking, the insulating material is a target of equipment deterioration diagnosis.
特に、設置環境が絶縁材料の劣化に及ぼす影響は、塵埃やガスの付着による汚損だけでなく、絶縁材料の成分と反応する環境因子が存在するような環境では、通常の経年劣化を大幅に上回る速さで劣化が進行する。たとえば、無機充填材に炭酸カルシウム使われる絶縁材料は、炭酸カルシウムが塩素系ガスや窒素酸化物ガス等と反応すると、塩化カルシウムや硝酸カルシウムが絶縁材料表面に形成される。これらの物質は、湿度40%RH以下の低湿度でも水分を吸入して潮解するため、低湿度条件でも、絶縁材料表面が結露し漏れ電流が流れることで絶縁が破壊され、設備停止に至る。
したがって、設備の劣化状態の診断や余寿命を診断するためには、経年的な材料の劣化に加え、設置環境が材料の劣化に及ぼす影響も合わせて把握することが大事である。
In particular, the effect of the installation environment on the deterioration of insulating materials is not only due to contamination due to dust and gas adhesion, but also in environments where there are environmental factors that react with the components of the insulating material, it significantly exceeds normal aging deterioration. Degradation progresses at high speed. For example, in an insulating material used as calcium filler for an inorganic filler, when calcium carbonate reacts with chlorine-based gas, nitrogen oxide gas, or the like, calcium chloride or calcium nitrate is formed on the surface of the insulating material. Since these substances inhale and deliquesce even at low humidity of 40% RH or less, the surface of the insulating material is dewed and leakage current flows even under low humidity conditions, and the insulation is destroyed and the equipment is stopped.
Therefore, in order to diagnose the deterioration state of the equipment and the remaining life, it is important to grasp the influence of the installation environment on the material deterioration in addition to the material deterioration over time.
絶縁材料の劣化を診断する従来技術として、特許文献1が提案されている。特許文献1には、有機樹脂材料表面に波長が異なる少なくとも2種類の単色光を照射し、各波長における反射光の吸光度差または吸光度比を算出し、予め求めておいた樹脂の劣化度と反射光の吸光度差または吸光度比とのマスターカーブに基づいて樹脂材料の劣化を判定することが開示されている。特許文献1に開示された発明は、樹脂材料表面の劣化状態を把握する技術である。しかし、前記したように、設置環境によっては劣化を大幅に加速する環境因子が存在するため、劣化を診断するためには、環境影響の把握が必要であり、特許文献1に開示された発明では環境影響の把握は困難である。
環境影響も考慮した絶縁材料の劣化診断方法として、特許文献2が提案されている。特許文献2では、診断項目(絶縁抵抗、部分放電、tanδ等)と相関の強い測定項目のデータをMT法によるマハラノビスの距離という一つの指標で表し、診断項目とのマスターカーブを予め作成しておく。診断項目が絶縁抵抗の場合は20℃50%RHの値でのマスターカーブを作成する。診断対象絶縁物を測定し、マハラノビスの距離を算出しマスターカーブから20℃50%RHでの絶縁抵抗値を読み取る。この値から、ガウス分布関数による温湿度補正式により、所望の温湿度条件での絶縁抵抗を求め診断する方法である。この方法は、材料自体の劣化と設置環境の影響の両方を考慮した方法である。しかし、20℃50%RHというのは、前記のような炭酸カルシウムの反応変質が起きている場合を除いて、劣化の差がわずかしか表れない温湿度条件である。また、材料の湿度依存性は、材料自体の劣化及び材料の表面に付着した塵埃の量や塵埃に吸着したガス成分の種類と量の組み合わせにより異なる湿度依存性を示すことから、湿度補正式で補正できない劣化条件がでてくる。
本発明はこうした事情を考慮してなされたもので、材料自体の劣化と設置環境因子が材料の劣化に及ぼす影響の両方を考慮した材料因子と温度・湿度を含む設置環境因子の多変量解析により絶縁特性を推定することで、さまざまな劣化状態で精度よく絶縁材料の表面絶縁抵抗が推定可能な、非破壊で実施できる絶縁材料の劣化診断方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and is based on a multivariate analysis of the installation environment factors including temperature and humidity, taking into account both the deterioration of the material itself and the influence of the installation environment factor on the deterioration of the material. An object of the present invention is to provide a non-destructive method for diagnosing deterioration of an insulating material that can accurately estimate the surface insulation resistance of the insulating material in various deterioration states by estimating the insulating characteristics.
本発明に係る絶縁材料の劣化診断方法は、絶縁劣化判定基準となる絶縁材料の絶縁特性の変化と、当該絶縁特性の変化に相関のある複数の前記絶縁材料の材料特性及び絶縁材料が設置されている大気環境因子の関係を多変量解析により整理し、前記絶縁材料の絶縁特性の推定式を予め作成する工程と、劣化診断の際、前記絶縁材料の材料特性及び大気環境因子を測定し、前記推定式により絶縁材料の絶縁特性を推定する工程と、推定した絶縁特性により絶縁材料の劣化状態を診断する工程とを備えていることを特徴とする。 In the insulation material deterioration diagnosis method according to the present invention, a change in insulation characteristics of an insulation material, which is a criterion for insulation deterioration, and a plurality of material characteristics and insulation materials correlated with the change in the insulation characteristics are installed. Organizing the relationship of atmospheric environmental factors by multivariate analysis, pre-establishing the estimation formula of the insulating characteristics of the insulating material, and measuring the material characteristics and atmospheric environmental factors of the insulating material at the time of deterioration diagnosis, The method includes a step of estimating an insulating property of the insulating material by the estimation formula, and a step of diagnosing a deterioration state of the insulating material by the estimated insulating property.
絶縁劣化判定基準となる絶縁材料の絶縁特性、たとえば表面絶縁抵抗と、表面絶縁抵抗変化と相関のある複数の絶縁材料の材料特性、及び絶縁物が設置されている大気環境因子の関係を多変量解析の手法であるT(タグチ)法またはTS(タグチ・シュミット)法により整理し、絶縁材料の表面絶縁抵抗の推定式を予め作成する。 Multivariate relationship between insulation characteristics of insulation materials that are criteria for insulation deterioration, for example, surface insulation resistance, material characteristics of multiple insulation materials that correlate with changes in surface insulation resistance, and atmospheric environmental factors where insulation is installed The estimation formula of the surface insulation resistance of the insulating material is prepared in advance by organizing by the analysis method T (Taguchi) or TS (Taguchi Schmid).
測定する材料特性は、たとえば色差L*、色差a*(赤−緑)、色差b*(黄−青)、青色反射率、赤色反射率、光沢度(入射角20°)、光沢度(入射角60°)、光沢度(入射角85°)、表面粗さ、濡れ性(接触角)等、材料の劣化に伴い変化する特性が選択される。また、大気環境因子は、材料表面の汚損度、塩素イオン、硝酸イオン、硫酸イオン、ナトリウムイオン、アンモニウムイオン等、及び設置環境の温度、湿度等が選択される。
選択される項目は、材料の種類により異なる。例えば、材料の初期の色調が赤色と灰色では、劣化による色調変化が異なり、絶縁抵抗と相関のある表面特性が異なるからである。
The material properties to be measured are, for example, color difference L *, color difference a * (red-green), color difference b * (yellow-blue), blue reflectance, red reflectance, glossiness (
Items to be selected vary depending on the type of material. For example, when the initial color tone of the material is red and gray, the color tone change due to deterioration is different, and the surface characteristics correlated with the insulation resistance are different.
推定式を作成するために、想定される劣化形態を網羅し、劣化程度も新品から寿命品まで広範囲の材料データを収集し、そのデータから絶縁抵抗の推定式をT法またはTS法により作成し、推定精度を上げる効果の大きい因子を絞り込む。T法またはTS法で解析するデータは、フィールド回収品だけで劣化に偏りがある場合は、実験室で作成した模擬劣化品のデータも追加する。模擬汚損品は、熱劣化条件を変えて作成した材料自体の劣化を模擬した熱劣化品に、各種汚損溶液に浸漬して表面に汚損を付与するか、表面に塵埃を付着させてガス試験装置内で各種ガスを吸着させ汚損を付与した材料を作成し、データを追加する。 In order to create an estimation formula, we collect a wide range of material data, covering the assumed degradation forms, and the degree of degradation from new to life, and create an estimation formula for insulation resistance from that data using the T or TS method. , Narrow down factors that have a large effect on improving estimation accuracy. If the data to be analyzed by the T method or the TS method is biased in deterioration only by the field collection product, the data of the simulated deterioration product created in the laboratory is also added. Simulated fouling products are gas-testing devices that are immersed in various fouling solutions to impart fouling to the surface of heat-degraded products simulating the deterioration of the materials themselves created by changing the heat deterioration conditions, or by attaching dust to the surface. Create materials with various gases adsorbed inside and add data.
次に、劣化診断に際しては推定式作成時に絞り込んだ絶縁材料の材料特性及び大気環境因子を測定し、推定式により絶縁材料の表面絶縁抵抗値を計算する。図4は、余寿命診断ステップ例を示す。以下、このステップについて説明する。
まず、診断対象の絶縁材料の種別を確認した((1)参照)後、絶縁材料の絶縁抵抗(V1)を測定する((2)参照)。この後、(3)のように材料表面の汚損度,塩素イオン等の環境因子(x1,x2,…)を測定する。更に、材料表面を清拭した後、材料表面特性(x11,x12,…)を測定する。
Next, in the deterioration diagnosis, the material properties and atmospheric environment factors of the insulating material narrowed down when the estimation formula is created are measured, and the surface insulation resistance value of the insulating material is calculated by the estimation formula. FIG. 4 shows an example of remaining life diagnosis steps. Hereinafter, this step will be described.
First, after confirming the type of insulating material to be diagnosed (see (1)), the insulation resistance (V1) of the insulating material is measured (see (2)). Thereafter, as shown in (3), environmental factors (x1, x2,...) Such as the degree of contamination of the material surface and chlorine ions are measured. Further, after the material surface is wiped, the material surface characteristics (x11, x12,...) Are measured.
次に、上記(1)を診断装置に入力し、予め作成しておいた材料別推定式を選択する。この後、上記(2)から絶縁抵抗(V1)を、上記(3)から環境因子(x1,x2,…)を、上記(4)から材料表面特性(x11,x12,…)を、更に設置環境の最高温度・湿度(客先提供情報)を診断装置内の選択した材料別推定式に入力する((5)参照)。
次に、上記(5)の材料別推定式により、現状の温度・湿度下での絶縁材料の絶縁抵抗(V2)を算出し((6)参照)、実際に測定した絶縁抵抗(V1)と比較することで、材料別推定式の妥当性を確認する(図4の(2)右側の楕円内に記載)。次に、設置環境で想定される最高温度湿度(例えば、梅雨時期)の絶縁抵抗値(V3)を算出する((7)参照)。更に、上記(6)の絶縁抵抗値(V3)に基づいて寿命閾値までの時間を判定する((8)参照)。
Next, the above (1) is input to the diagnostic apparatus, and a material-specific estimation formula prepared in advance is selected. Thereafter, the insulation resistance (V1) from (2) above, the environmental factors (x1, x2,...) From (3) above, and the material surface characteristics (x11, x12,...) From (4) above are further installed. Enter the maximum temperature and humidity of the environment (customer-provided information) into the selected material-specific estimation formula in the diagnostic device (see (5)).
Next, calculate the insulation resistance (V2) of the insulation material under the current temperature and humidity (see (6)) using the estimation formula for each material in (5) above, and the actually measured insulation resistance (V1) and By comparing, the validity of the estimation formula for each material is confirmed (shown in the ellipse on the right side of (2) in FIG. 4). Next, the insulation resistance value (V3) of the highest temperature and humidity (for example, the rainy season) assumed in the installation environment is calculated (see (7)). Further, the time until the lifetime threshold is determined based on the insulation resistance value (V3) in (6) (see (8)).
絶縁材料の絶縁劣化が原因の設備トラブルの多くは、湿度が90%RHを超えることもある梅雨時である。従って、余寿命は、高湿度時の絶縁抵抗が設備ごとに設定されている寿命閾値に至るまでの時間とする(図5)。なお、図5において、余寿命診断条件は、設置環境の最高温度・湿度である。高湿度時の絶縁抵抗は、前記計算の温度・湿度に梅雨時に想定される条件を入れて計算することで求められれる。 Many of the equipment troubles caused by the insulation deterioration of the insulating material are during the rainy season when the humidity may exceed 90% RH. Accordingly, the remaining life is the time until the insulation resistance at high humidity reaches the life threshold set for each facility (FIG. 5). In FIG. 5, the remaining life diagnosis condition is the maximum temperature and humidity of the installation environment. The insulation resistance at high humidity can be obtained by calculating the temperature / humidity calculated above with the conditions assumed during the rainy season.
絶縁特性変化の湿度依存曲線を作成すると、材料の劣化状態や汚損状態によりある湿度近傍で変曲すること多く、全湿度範囲で推定式を作成すると推定精度が悪くなる。その場合は、絶縁抵抗の湿度依存曲線の変曲点の前後各々の湿度範囲で推定式を作成することで、推定精度が向上する。絶縁物の種類(基材、充填材の組合せ)により湿度依存性が異なることがあるので、変曲点は材料毎に確認し、推定式を作成する湿度範囲を決める。 When the humidity dependence curve of the insulation characteristic change is created, the curve is often in the vicinity of a certain humidity due to the deterioration state or fouling state of the material, and if the estimation formula is created in the entire humidity range, the estimation accuracy is deteriorated. In that case, the estimation accuracy is improved by creating an estimation equation in each humidity range before and after the inflection point of the humidity dependence curve of the insulation resistance. Since the humidity dependence may vary depending on the type of insulator (combination of base material and filler), the inflection point is confirmed for each material, and the humidity range for creating the estimation formula is determined.
また、絶縁材料の材料特性である表面粗さ、色差、反射率、光沢度などは、経年劣化による材料の変色や表面が荒れた状態を測定することが目的である。これらの特性測定に替わり、絶縁材料表面の色画像を取得し、色情報を推定因子として推定式を作成することも可能である。デジカメ等で簡便に総合的に材料の表面の劣化情報を得ることができる。 The purpose of the surface roughness, color difference, reflectance, glossiness, and the like, which are the material characteristics of the insulating material, is to measure the discoloration of the material due to aging and the roughened surface. Instead of these characteristic measurements, it is also possible to obtain a color image of the surface of the insulating material and create an estimation formula using the color information as an estimation factor. It is possible to obtain deterioration information on the surface of the material comprehensively with a digital camera or the like.
本発明によれば、材料自体の劣化と設置環境因子の劣化の両方を考慮し、かつ設置環境の温度・湿度を推定因子に加えたことで、さまざまな劣化状態での表面絶縁抵抗を任意な温度・湿度条件で求めることが可能になる。絶縁抵抗の湿度依存性曲線が編曲する湿度の前後の領域で、推定式を個別に作成することで、推定式の制度を上げることができる。
また、色差計や反射率計のような特殊な計測器を使わず、安価なデジカメ等で得られる色画像情報に変えても同様に絶縁抵抗の推定が可能である。
以上により、推定式を予め求めておくことで、現場で、非破壊で簡便に実施できる絶縁材料の劣化診断方法を提供できる。
According to the present invention, the surface insulation resistance in various deterioration states can be arbitrarily determined by considering both the deterioration of the material itself and the deterioration of the installation environment factor and adding the temperature and humidity of the installation environment to the estimation factor. It can be obtained under temperature and humidity conditions. The system of the estimation formula can be improved by separately creating the estimation formula in the region around the humidity where the humidity dependence curve of the insulation resistance is arranged.
Also, the insulation resistance can be estimated in the same manner even if the color image information obtained by an inexpensive digital camera is used without using a special measuring instrument such as a color difference meter or a reflectance meter.
As described above, by obtaining the estimation formula in advance, it is possible to provide a method for diagnosing the deterioration of an insulating material that can be easily and non-destructively performed on site.
次に、本発明の実施形態に係る絶縁材料の絶縁劣化診断方法について図面を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
(実施形態)
(1)まず、絶縁劣化判定基準となる絶縁材料の絶縁特性の変化と、当該絶縁特性の変化に相関のある複数の前記絶縁材料の材料特性及び絶縁材料が設置されている大気環境因子の関係を多変量解析により整理し、前記絶縁材料の絶縁特性の推定式を予め作成する。
Next, an insulation deterioration diagnosis method for an insulating material according to an embodiment of the present invention will be described with reference to the drawings. Note that the present embodiment is not limited to the following description.
(Embodiment)
(1) First, the relationship between the change in the insulation characteristics of the insulation material, which is a criterion for insulation deterioration, and the relationship between the material characteristics of the plurality of insulation materials and the atmospheric environmental factors in which the insulation materials are installed. Are arranged by multivariate analysis, and an estimation formula of the insulating property of the insulating material is created in advance.
最初に、T法またはTS法により絶縁材料の表面絶縁抵抗を予測する式を作成するためのデータを収集する。測定する絶縁材料の材料特性としては、例えば色差L*、色差a*、色差b*、青色反射率、赤色反射率、光沢度(入射角20°)、光沢度(入射角60°)、光沢度(入射角85°)、表面粗さ、濡れ性(接触角)等、材料の劣化に伴い変化する特性が選択される。また、大気環境因子は、材料表面の汚損度、塩素イオン、硝酸イオン、硫酸イオン、ナトリウムイオン、アンモニウムイオン及び設置環境の温度、湿度等を測定する。予測式作成の段階で、推定精度を向上させる項目を絞り込むので、広範囲でデータ収集する。
First, data for creating a formula for predicting the surface insulation resistance of an insulating material by the T method or the TS method is collected. As the material characteristics of the insulating material to be measured, for example, color difference L *, color difference a *, color difference b *, blue reflectance, red reflectance, gloss (
フィールド回収品だけで劣化に偏りがある場合は、実験室で作成した模擬劣化品のデータも追加する。模擬汚損品は、熱劣化条件を変えて作成した材料自体の劣化を模擬した熱劣化品に、各種汚損溶液に浸漬して表面に汚損を付与するか、表面に塵埃を付着させてガス試験装置内で各種ガスを吸着させ汚損を付与した材料を作成した材料を測定し、恒温恒湿槽内に放置して絶縁抵抗の温湿度特性を測定する。 If there is a bias in the deterioration of the field-collected products alone, data on the simulated deteriorated products created in the laboratory is also added. Simulated fouling products are gas-testing devices that are immersed in various fouling solutions to impart fouling to the surface of heat-degraded products simulating the deterioration of the materials themselves created by changing the heat deterioration conditions, or by attaching dust to the surface. The material which made the material which adsorb | sucked various gas in the inside and gave the pollution is measured, and it is left to stand in a constant temperature and humidity chamber, and the temperature-humidity characteristic of insulation resistance is measured.
次に、測定したデータを多変量解析の手法であるT(タグチ)法またはTS(タグチ・シュミット)法により整理し、絶縁材料の表面絶縁抵抗の推定式を作成する。ここで、推定式を策定した時に含まれていなかった劣化モードがあると、推定精度が悪くなる。従って、推定式を作成するために、想定される劣化形態を網羅し、劣化程度も新品から寿命品まで広範囲の材料データを収集することが大事である。 Next, the measured data is organized by the T (Taguchi) method or the TS (Taguchi Schmidt) method, which is a multivariate analysis technique, and an estimation formula for the surface insulation resistance of the insulating material is created. Here, if there is a degradation mode that was not included when the estimation formula was formulated, the estimation accuracy deteriorates. Therefore, in order to create an estimation equation, it is important to collect a wide range of material data covering a range of assumed deterioration and a degree of deterioration from a new product to a life product.
図1は、水和アルミナを充填した不飽和ポリエステル樹脂の表面絶縁抵抗の温湿度依存性を示した特性図である。図1において、線aは160℃で加熱劣化する絶縁板による湿度と表面絶縁抵抗との関係、線bは180℃で加熱劣化する絶縁板による湿度と表面絶縁抵抗との関係を夫々示す。また、線cは160℃の加熱劣化で破損した絶縁板による湿度と表面絶縁抵抗との関係、線dは180℃の加熱劣化で破損した絶縁板による湿度と表面絶縁抵抗との関係を夫々示す。図1より、材料の劣化、汚損レベルで75%近傍で湿度依存性は変化することが明らかである。 FIG. 1 is a characteristic diagram showing the temperature and humidity dependence of the surface insulation resistance of an unsaturated polyester resin filled with hydrated alumina. In FIG. 1, line a shows the relationship between humidity and surface insulation resistance due to an insulating plate that deteriorates by heating at 160 ° C., and line b shows the relationship between humidity and surface insulation resistance by an insulating plate that deteriorates by heating at 180 ° C. Line c shows the relationship between the humidity due to the insulating plate damaged by heat deterioration at 160 ° C. and the surface insulation resistance, and line d shows the relationship between the humidity due to the insulating plate damaged by heat deterioration at 180 ° C. and the surface insulation resistance. . From FIG. 1, it is clear that the humidity dependency changes in the vicinity of 75% at the deterioration and fouling level of the material.
図2は、湿度50%RH以上の全データをTS法で解析して作成した絶縁抵抗の予測値と真値の相関を示す(但し、縦軸は、横軸はlog[絶縁抵抗]を示す)。図2の場合、相関係数R2=0.48と相関は低く、予測精度が悪い。図3は、絶縁抵抗の湿度依存性が変化した湿度75%RH以上のデータをTS法で解析して作成した絶縁抵抗の予測値と真値の相関を示す(但し、縦軸は、横軸はlog[絶縁抵抗]を示す)。図3の場合、相関係数R2=0.86と相関が高く、推定式の予測精度が向上した。 FIG. 2 shows the correlation between the predicted value and true value of the insulation resistance created by analyzing all data with a humidity of 50% RH or higher by the TS method (however, the vertical axis represents log [insulation resistance]. ). In the case of FIG. 2, the correlation coefficient R 2 = 0.48 and the correlation is low, and the prediction accuracy is poor. FIG. 3 shows the correlation between the predicted value of the insulation resistance and the true value created by analyzing the data of 75% RH or higher where the humidity dependency of the insulation resistance is changed by the TS method (however, the vertical axis is the horizontal axis) Indicates log [insulation resistance]. In the case of FIG. 3, the correlation coefficient R 2 = 0.86 is high, and the prediction accuracy of the estimation formula is improved.
(2)次に、劣化診断の際、絶縁材料の材料特性及び大気環境因子を測定し、前記推定式により絶縁材料の絶縁特性を推定する。つづいて、推定した絶縁特性により絶縁材料の劣化状態を診断する。
絶縁材料の絶縁劣化が原因の設備トラブルの多くは、湿度が90%RHを超えることもある梅雨時である。したがって、余寿命は、高湿度時の絶縁抵抗が設備ごとに設定されている寿命閾値に至るまでの時間とする。高湿度時の絶縁抵抗は前記計算の温度・湿度に梅雨時に想定される条件を入れて計算することで求める。したがって、絶縁抵抗の予測式は特に高湿度条件での予測精度が高いことが望まれる。本発明により作成した予測式は高湿度条件での予測精度が高いことを確認した。また、予測式の推定精度を上げるためには、測定項目ごとに最適な数値処理を行うことが効果がある。
(2) Next, at the time of deterioration diagnosis, the material characteristics and atmospheric environment factors of the insulating material are measured, and the insulating characteristics of the insulating material are estimated by the estimation formula. Subsequently, the deterioration state of the insulating material is diagnosed based on the estimated insulating characteristics.
Many of the equipment troubles caused by the insulation deterioration of the insulating material are during the rainy season when the humidity may exceed 90% RH. Therefore, the remaining life is the time until the insulation resistance at high humidity reaches the life threshold set for each facility. The insulation resistance at high humidity is obtained by calculating the temperature / humidity calculated above with the conditions assumed during the rainy season. Therefore, it is desired that the prediction formula of the insulation resistance has high prediction accuracy especially under high humidity conditions. The prediction formula created by the present invention was confirmed to have high prediction accuracy under high humidity conditions. In order to increase the estimation accuracy of the prediction formula, it is effective to perform optimum numerical processing for each measurement item.
本発明によれば、上述したように、絶縁材料の絶縁特性の変化と前記絶縁材料の材料特性及び絶縁材料が設置されている大気環境因子の関係を多変量解析により整理して、絶縁材料の絶縁特性の推定式を予め作成した後、劣化診断の際、前記絶縁材料の材料特性及び大気環境因子を測定して、前記推定式により絶縁材料の絶縁特性を推定し、更に推定した絶縁特性により絶縁材料の劣化状態を診断することにより、さまざまな劣化状態で精度よく絶縁材料の表面絶縁抵抗が推定可能であるとともに、絶縁材料を破壊することなく実施できる。 According to the present invention, as described above, the relationship between the change in the insulation characteristics of the insulation material, the material characteristics of the insulation material, and the atmospheric environmental factors in which the insulation material is installed is organized by multivariate analysis, and After preparing the estimation formula of the insulation characteristics in advance, at the time of deterioration diagnosis, measure the material characteristics and atmospheric environmental factors of the insulation material, estimate the insulation characteristics of the insulation material by the estimation formula, and further according to the estimated insulation characteristics By diagnosing the deterioration state of the insulating material, the surface insulation resistance of the insulating material can be accurately estimated in various deterioration states, and the insulating material can be carried out without being destroyed.
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
Claims (5)
劣化診断の際、前記絶縁材料の絶縁抵抗ならびに前記絶縁材料の材料特性及び温度湿度を含む大気環境因子を測定し、前記推定式により現状の温度湿度下での前記絶縁材料の絶縁抵抗を算出し、実際に測定した絶縁抵抗と比較することで前記推定式の妥当性を確認する工程と、
前記推定式により前記絶縁材料の設置環境で想定される最高温度湿度での前記絶縁材料の絶縁抵抗を算出する工程と、
算出した前記絶縁材料の設置環境で想定される最高温度湿度での前記絶縁材料の絶縁抵抗に基づいて寿命閾値までの時間を判定する工程と
を備えていることを特徴とする絶縁材料の絶縁劣化診断方法。 A change in insulation resistance of an insulation material that is a criterion for insulation deterioration, a material property of the plurality of insulation materials correlated with the change in the insulation resistance, and an atmospheric environmental factor in which the insulation material is installed. A process of organizing relationships of atmospheric environmental factors including multivariate analysis using a T (Taguchi) method or a TS (Taguchi-Schmidt) method, and creating an estimation equation of insulation resistance of the insulating material in advance;
At the time of deterioration diagnosis, the insulation resistance of the insulation material and the atmospheric environmental factors including the material properties and temperature and humidity of the insulation material are measured, and the insulation resistance of the insulation material under the current temperature and humidity is calculated by the estimation formula. Confirming the validity of the estimated equation by comparing with the actually measured insulation resistance;
Calculating an insulation resistance of the insulating material at a maximum temperature and humidity assumed in an installation environment of the insulating material by the estimation formula;
A step of determining a time to a life threshold value based on an insulation resistance of the insulating material at a maximum temperature and humidity assumed in an installation environment of the calculated insulating material. Diagnosis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009174650A JP5840342B2 (en) | 2009-07-27 | 2009-07-27 | Insulation degradation diagnosis method for insulation materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009174650A JP5840342B2 (en) | 2009-07-27 | 2009-07-27 | Insulation degradation diagnosis method for insulation materials |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014149098A Division JP5872643B2 (en) | 2014-07-22 | 2014-07-22 | Insulation degradation diagnosis method for insulation materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011027596A JP2011027596A (en) | 2011-02-10 |
JP5840342B2 true JP5840342B2 (en) | 2016-01-06 |
Family
ID=43636510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009174650A Active JP5840342B2 (en) | 2009-07-27 | 2009-07-27 | Insulation degradation diagnosis method for insulation materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5840342B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014224824A (en) * | 2014-07-22 | 2014-12-04 | 株式会社東芝 | Insulation deterioration diagnosis method of insulation material |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5722027B2 (en) * | 2010-12-28 | 2015-05-20 | 株式会社東芝 | Insulation material deterioration diagnosis device, deterioration diagnosis method, and deterioration diagnosis program |
JP5787565B2 (en) * | 2011-03-23 | 2015-09-30 | 株式会社東芝 | Insulation deterioration diagnosis method |
JP6037611B2 (en) * | 2011-12-15 | 2016-12-07 | 三菱電機株式会社 | Diagnosis method for remaining insulation life of power distribution equipment |
JP5951299B2 (en) * | 2012-03-19 | 2016-07-13 | 株式会社東芝 | Deterioration diagnosis apparatus and deterioration diagnosis method |
JP6334271B2 (en) * | 2014-05-30 | 2018-05-30 | 株式会社東芝 | Remaining life calculation method, deterioration diagnosis method, deterioration diagnosis device, and program |
JP2016046014A (en) * | 2014-08-20 | 2016-04-04 | 株式会社東芝 | Insulation recovery method of insulation material |
JP2015135348A (en) * | 2015-03-25 | 2015-07-27 | 株式会社東芝 | Insulating material remaining life estimation apparatus, insulating material remaining life estimation method, and insulating material remaining life estimation program |
JP6848748B2 (en) * | 2017-07-26 | 2021-03-24 | 三菱電機株式会社 | Remaining life diagnosis method and remaining life diagnosis device for electrical equipment |
JP7000169B2 (en) * | 2018-01-15 | 2022-01-19 | 株式会社東芝 | Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program |
CN113424044B (en) * | 2019-02-13 | 2024-05-28 | 三菱电机株式会社 | Method and device for diagnosing remaining life of electrical equipment |
JP7374004B2 (en) * | 2020-01-24 | 2023-11-06 | 三菱重工業株式会社 | Deterioration diagnosis method and system for composite materials for rotating electric machines |
CN112305338B (en) * | 2020-09-21 | 2022-10-25 | 中国电力科学研究院有限公司 | Aging degree detection method and system for dry-type transformer |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2763388B2 (en) * | 1990-07-24 | 1998-06-11 | 三菱電機株式会社 | Crystallization prevention method |
JPH07157644A (en) * | 1993-12-08 | 1995-06-20 | Sumitomo Bakelite Co Ltd | Polyester resin composition for high-voltage part |
JPH11343398A (en) * | 1998-03-31 | 1999-12-14 | Hitachi Chem Co Ltd | Flame retardant epoxy resin composition, and prepreg, laminate for electrical wiring board and metallic foil with resin using the composition |
JP2002025839A (en) * | 2000-07-04 | 2002-01-25 | Fuji Electric Co Ltd | Deterioration diagnosing device for oil-immersed electrical equipment |
JP4045776B2 (en) * | 2001-04-17 | 2008-02-13 | 三菱電機株式会社 | Life diagnosis method for power distribution facilities |
JP2002368056A (en) * | 2001-06-06 | 2002-12-20 | Hitachi Ltd | Method for providing yield conditions, method for determining production conditions, method for fabricating semiconductor device and recording medium |
JP2003222587A (en) * | 2001-11-20 | 2003-08-08 | Hitachi Ltd | Method and device for non-destructive deterioration diagnosis |
JP2004236465A (en) * | 2003-01-31 | 2004-08-19 | Mitsubishi Electric Corp | Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment |
JP4121430B2 (en) * | 2003-08-08 | 2008-07-23 | 三菱電機株式会社 | Insulation diagnosis method for electrical equipment |
JP5085860B2 (en) * | 2005-11-28 | 2012-11-28 | 株式会社名南製作所 | Wood inspection method, apparatus and program |
JP4794503B2 (en) * | 2007-05-31 | 2011-10-19 | 三菱電機株式会社 | Method for measuring contact resistance and method for estimating remaining life of electrical equipment |
JP2008013773A (en) * | 2007-08-09 | 2008-01-24 | Hitachi Chem Co Ltd | Flame-retardant non-halogen epoxy resin composition, prepreg using it and laminate for electric wiring boards |
-
2009
- 2009-07-27 JP JP2009174650A patent/JP5840342B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014224824A (en) * | 2014-07-22 | 2014-12-04 | 株式会社東芝 | Insulation deterioration diagnosis method of insulation material |
Also Published As
Publication number | Publication date |
---|---|
JP2011027596A (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5840342B2 (en) | Insulation degradation diagnosis method for insulation materials | |
KR100541996B1 (en) | A dignosis method of insulation of electric apparatus | |
WO2009063218A3 (en) | Pipeline condition detecting method and apparatus | |
JP5872643B2 (en) | Insulation degradation diagnosis method for insulation materials | |
JP5836904B2 (en) | Insulation material degradation diagnosis method and apparatus | |
JP5722027B2 (en) | Insulation material deterioration diagnosis device, deterioration diagnosis method, and deterioration diagnosis program | |
JP7228410B2 (en) | Corrosion diagnostic system | |
CN108051364A (en) | A kind of EPR nuclear energy cable residue lifetime estimation method and prediction EPR nuclear energy cable remaining life methods | |
CN104089838B (en) | Cable insulation life-span quick determination method based on hardness | |
JP2011099709A (en) | Method and system for diagnosing deterioration in appearance of building | |
JP5562287B2 (en) | Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment | |
JP3794290B2 (en) | Article deterioration diagnosis method, quality inspection method, material judgment method and diagnostic device, article deterioration management method | |
JP5374445B2 (en) | Remaining life diagnosis method, remaining life diagnosis device and program | |
JP6609038B2 (en) | Corrosion environment monitoring device | |
JP6460003B2 (en) | Diagnosis method of electrical equipment | |
JP2004236465A (en) | Estimating method for remaining lifetime of solid insulator for power receiving and distributing equipment | |
JP7549978B2 (en) | Method for determining remaining life of polymeric material and method for inspection | |
JP5951299B2 (en) | Deterioration diagnosis apparatus and deterioration diagnosis method | |
JP2007327877A (en) | Analysis method of polyvinyl chloride composition | |
US20220163441A1 (en) | Deterioration prediction method | |
JP2017110916A (en) | Deterioration diagnostic device and deterioration diagnostic method | |
JP5081685B2 (en) | Degradation state diagnosis method of insulating oil in oil-filled equipment | |
JP2015135348A (en) | Insulating material remaining life estimation apparatus, insulating material remaining life estimation method, and insulating material remaining life estimation program | |
JP5550034B2 (en) | Degradation diagnosis method for polymer materials | |
CN108375537A (en) | Cable for ship insulation life detection method based on biggest quality minimizing speed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131205 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131212 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131219 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140109 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140821 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140910 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20141107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5840342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |