[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010071187A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2010071187A
JP2010071187A JP2008239462A JP2008239462A JP2010071187A JP 2010071187 A JP2010071187 A JP 2010071187A JP 2008239462 A JP2008239462 A JP 2008239462A JP 2008239462 A JP2008239462 A JP 2008239462A JP 2010071187 A JP2010071187 A JP 2010071187A
Authority
JP
Japan
Prior art keywords
injection
stage
fuel
pressure
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008239462A
Other languages
Japanese (ja)
Inventor
健輔 ▲高▼田
Kensuke Takada
Manabu Yoshitome
学 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008239462A priority Critical patent/JP2010071187A/en
Priority to DE102009041479.7A priority patent/DE102009041479B4/en
Publication of JP2010071187A publication Critical patent/JP2010071187A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device learning injection quantity with high accuracy even if a cycle of pressure pulsation is changed according to fuel temperature when the injection quantity is learned by multi-stage injection. <P>SOLUTION: In this fuel injection control device, the cycle fp of the pressure pulsation generated in multi-stage injection for learning is calculated (S300) based on the length of a fuel pipe between a common rail and a fuel injection valve, fuel pressure, and fuel temperature, and any one of reference points (fp/2) made to be zero when the pressure pulsation is positively/negatively fluctuated is regarded as the optimum injection interval TINTopt (S302). In the fuel injection control device, injection intervals Tp1, Tp2, Tp3 between stages are calculated (S306) based on injection variation correction amounts Tc2, Tc3, Tc4 (S304) and the optimum injection interval TINTopt, multi-stage equal injection for learning is performed (S308) based on the injection intervals Tp1, Tp2, Tp3, and a learning value for a minute injection quantity is calculated (S310). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の各気筒に燃料を噴射する燃料噴射弁の噴射量を均等に分割して多段噴射を実施することにより各段の噴射量を学習する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that learns the injection amount of each stage by equally dividing the injection amount of a fuel injection valve that injects fuel into each cylinder of an internal combustion engine and performing multi-stage injection.

近年、排ガス規制の強化に対応するために、燃料噴射弁の噴射量を高精度に制御することが求められている。例えば、コモンレール式のディーゼルエンジンのように、1燃焼サイクルにおいて、エンジンの主なトルクを生成するメイン噴射の前に微少量のパイロット噴射を実施する場合には、噴射量の高精度な制御が必要である。そのため、燃料噴射弁の加工誤差および経時劣化に対する機械的改良が行われている。   In recent years, it has been required to control the injection amount of the fuel injection valve with high accuracy in order to cope with the tightening of exhaust gas regulations. For example, when a small amount of pilot injection is performed before the main injection that generates the main torque of the engine in one combustion cycle, such as a common rail type diesel engine, high-precision control of the injection amount is necessary. It is. For this reason, mechanical improvements have been made to processing errors and deterioration with time of the fuel injection valve.

しかしながら、機械的な改良には限界があるので、特許文献1に開示されているように、微少噴射量を学習して噴射量を補正し、燃料噴射弁の噴射量を高精度に制御することが知られている。   However, since there is a limit to the mechanical improvement, as disclosed in Patent Document 1, the injection amount is corrected by learning the minute injection amount, and the injection amount of the fuel injection valve is controlled with high accuracy. It has been known.

特許文献1の噴射量学習では、エンジン運転状態に基づいて算出される学習制御時噴射量を略均等にn回に分割して多段噴射を複数の燃料圧力で実施する。そして、多段噴射を実施しながら気筒間の回転速度変動を平滑化する噴射量補正を実施するとともに、平均エンジン回転速度を目標回転速度に維持する噴射量補正を実施し、気筒毎の噴射量補正量を各段に割り当てた補正値を学習値としている。   In the injection amount learning of Patent Document 1, the learning control injection amount calculated based on the engine operating state is divided into n times substantially evenly and multistage injection is performed with a plurality of fuel pressures. Then, while performing multi-stage injection, the injection amount correction for smoothing the rotational speed fluctuation between the cylinders is performed, and the injection amount correction for maintaining the average engine rotational speed at the target rotational speed is performed to correct the injection amount for each cylinder. A correction value in which an amount is assigned to each stage is used as a learning value.

しかしながら、多段噴射を実施すると各段の噴射によって圧力脈動が発生する。さらに、圧力脈動の周期は燃料温度に応じて変化する。特許文献1のように、噴射量を均等に分割して学習用に多段噴射を実施する場合、多段噴射において生じる圧力脈動の周期が燃料温度に応じて変化すると、各段の噴射量がばらつき、高精度に噴射量を学習ができないという問題が生じる。   However, when multistage injection is performed, pressure pulsation is generated by injection at each stage. Furthermore, the period of pressure pulsation changes according to the fuel temperature. As in Patent Document 1, when performing multistage injection for learning by dividing the injection amount evenly, if the period of pressure pulsation that occurs in multistage injection changes according to the fuel temperature, the injection amount of each stage varies, There arises a problem that the injection amount cannot be learned with high accuracy.

特許文献2には、噴射量学習用の多段噴射ではないが、1燃焼サイクルの間に少なくとも2回の燃料噴射を実施する場合、先に実施される第1の噴射により圧力脈動が発生し、この圧力脈動のために後に実施される第2の噴射の噴射量および噴射時期が変動することが開示されている。さらに圧力脈動の伝播速度、言い換えれば圧力脈動の周期が、燃料配管の長さと燃料圧力(コモンレール圧)と燃料温度とによって変化することが開示されている。   In Patent Document 2, although it is not multistage injection for learning the injection amount, when fuel injection is performed at least twice during one combustion cycle, pressure pulsation occurs due to the first injection performed first, It is disclosed that the injection amount and the injection timing of the second injection to be performed later vary due to the pressure pulsation. Furthermore, it is disclosed that the propagation speed of pressure pulsation, in other words, the period of pressure pulsation changes depending on the length of the fuel pipe, the fuel pressure (common rail pressure), and the fuel temperature.

そして、特許文献2では、燃料配管の長さと燃料圧力と燃料温度とに基づいて第1の噴射により発生する圧力脈動の周期を算出し、算出した圧力脈動の周期で第1の噴射と第2の噴射との間の噴射インターバルを除算した無次元化インターバルに基づいて、第2の噴射が目標噴射量および目標インターバル(目標噴射時期)で実施されるように第2の噴射の噴射量および噴射時期を補正している。   And in patent document 2, the cycle of the pressure pulsation generated by the first injection is calculated based on the length of the fuel pipe, the fuel pressure, and the fuel temperature, and the first injection and the second in the calculated pressure pulsation cycle. The injection amount and the injection of the second injection so that the second injection is performed at the target injection amount and the target interval (target injection timing) based on the dimensionless interval obtained by dividing the injection interval between the injection and The time is corrected.

そこで、多段噴射により噴射量学習を実施する場合にも、燃料温度に応じて変化する圧力脈動の周期を算出し、この圧力脈動の周期に基づいて初段噴射以降の各段の噴射が目標噴射量および目標噴射時期になるように噴射量および噴射時期を補正することにより、圧力脈動の影響を排除して噴射量学習を実施することが考えられる。
特開2003−254139号公報 特開2003−314337号公報
Therefore, even when the injection amount learning is performed by multi-stage injection, the period of pressure pulsation that changes according to the fuel temperature is calculated, and the injection of each stage after the first stage injection is the target injection amount based on this period of pressure pulsation. Further, it is conceivable to perform injection amount learning by correcting the injection amount and the injection timing so that the target injection timing is reached, thereby eliminating the influence of pressure pulsation.
JP 2003-254139 A JP 2003-314337 A

しかしながら、初段噴射以降の各段の噴射時期によっては、圧力脈動の振幅のばらつき、つまり燃料圧力のばらつきが大きい噴射時期に燃料噴射を実施することがあるので、噴射量を補正しても噴射量が目標噴射量からずれるおそれがある。   However, depending on the injection timing of each stage after the first stage injection, the fuel injection may be performed at the injection timing when the variation in pressure pulsation amplitude, that is, the fuel pressure variation is large, so even if the injection amount is corrected, the injection amount May deviate from the target injection amount.

また、燃料温度に応じて変化する圧力脈動の周期に基づいて初段噴射以降の各段の噴射時期および噴射量を補正すると、圧力脈動の周期に基づく補正と、多段噴射による噴射量学習とを合わせて噴射量を二重に補正することになる。その結果、高精度に噴射量学習を実施できないという問題がある。   Also, if the injection timing and injection amount of each stage after the first stage injection are corrected based on the pressure pulsation cycle that changes according to the fuel temperature, the correction based on the pressure pulsation cycle and the injection amount learning by multistage injection are combined. Thus, the injection amount is corrected twice. As a result, there is a problem that the injection amount learning cannot be performed with high accuracy.

本発明は、上記問題を解決するためになされたものであり、多段噴射により噴射量を学習する場合、燃料温度に応じて圧力脈動の周期が変化しても噴射量を高精度に学習する燃料噴射制御装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problem. When the injection amount is learned by multistage injection, the fuel that learns the injection amount with high accuracy even if the period of pressure pulsation changes according to the fuel temperature. An object is to provide an injection control device.

請求項1から7に記載の発明によると、多段噴射により噴射量を学習するときに、噴射指令手段が燃料噴射弁に指令する初段噴射以降の各段の噴射時期を燃料温度に基づいて調整することにより、噴射時期調整手段は多段噴射において発生する圧力脈動が正負に変動するときに0になる基準点を初段噴射以降の各段の噴射時期とする。   According to the first to seventh aspects of the invention, when learning the injection amount by multistage injection, the injection timing of each stage after the first stage injection commanded to the fuel injection valve by the injection command means is adjusted based on the fuel temperature. Thus, the injection timing adjusting means sets the reference point that becomes 0 when the pressure pulsation generated in the multistage injection changes positively or negatively as the injection timing of each stage after the first stage injection.

圧力脈動が正負に変動するときに0になる基準点においては、燃料噴射弁の噴射圧力は圧力脈動がない場合に噴射量を学習する燃料圧力になる。そして、圧力脈動の基準点においては、燃料圧力のばらつきが小さい。したがって、基準点を噴射時期とすることにより、学習燃料圧力において初段噴射以降の各段の噴射を開始できる。初段噴射の噴射開始時には圧力脈動は発生していないので、当然のことながら、学習燃料圧力で初段噴射を開始できる。   At the reference point that becomes 0 when the pressure pulsation fluctuates positively and negatively, the injection pressure of the fuel injection valve becomes the fuel pressure for learning the injection amount when there is no pressure pulsation. The fuel pressure variation is small at the pressure pulsation reference point. Therefore, by setting the reference point as the injection timing, it is possible to start injection at each stage after the first stage injection at the learning fuel pressure. Since the pressure pulsation does not occur at the start of the first stage injection, it is natural that the first stage injection can be started with the learning fuel pressure.

このように、初段噴射以降の各段の噴射時期を圧力脈動の基準点とすることにより、燃料圧力のばらつきが小さい噴射時期で噴射を開始できる。これにより、燃料圧力のばらつきの影響を極力排除して噴射量学習を実施できる。その結果、多段噴射の各段の噴射量を高精度に学習できる。   Thus, by using the injection timing of each stage after the first stage injection as the reference point of pressure pulsation, the injection can be started at the injection timing with a small variation in fuel pressure. Thereby, the injection amount learning can be performed while eliminating the influence of the variation in the fuel pressure as much as possible. As a result, the injection amount of each stage of multistage injection can be learned with high accuracy.

さらに、噴射量は調整せず、噴射時期だけを圧力脈動の基準点になるように調整するので、学習時の補正と合わせて噴射量を二重に補正することを防止できる。これにより、多段噴射の各段の噴射量を高精度に学習できる。   Furthermore, since the injection amount is not adjusted, and only the injection timing is adjusted to be the reference point for pressure pulsation, it is possible to prevent the injection amount from being corrected twice together with the correction at the time of learning. Thereby, the injection quantity of each stage of multistage injection can be learned with high accuracy.

請求項2に記載の発明によると、噴射時期調整手段は、燃料温度が高くなるにしたがい初段噴射以降の各段の噴射時期を遅角させる。
燃料温度が高くなると、圧力脈動の伝播速度が遅くなるので圧力脈動の周期は長くなる。したがって、燃料温度が高くなり圧力脈動の周期が長くなるにしたがい、圧力脈動の基準点で燃料噴射を開始するために噴射時期を遅角させる必要がある。
According to the second aspect of the invention, the injection timing adjusting means retards the injection timing of each stage after the first stage injection as the fuel temperature increases.
As the fuel temperature increases, the pressure pulsation cycle becomes longer because the propagation speed of the pressure pulsation becomes slower. Therefore, as the fuel temperature increases and the period of pressure pulsation becomes longer, it is necessary to retard the injection timing in order to start fuel injection at the pressure pulsation reference point.

ところで、燃料噴射弁に燃料噴射を指令してから燃料噴射弁が実際に燃料噴射を開始するまでには、燃料噴噴射弁の開弁特性に応じて遅れ時間が生じる。この噴射遅れ時間は、燃料圧力が同じであれば、多段噴射の各段においてほぼ同じである。   By the way, there is a delay time depending on the valve opening characteristics of the fuel injection valve from when the fuel injection valve is commanded to fuel injection until the fuel injection valve actually starts fuel injection. This injection delay time is substantially the same in each stage of multistage injection if the fuel pressure is the same.

しかし、燃料温度に基づいて噴射時期を調整し、圧力脈動の基準点で燃料噴射を開始しようとしても、実際の噴射時期が基準点からずれることがある。基準点前後の圧力脈動の振幅の変化率は噴射段数の位置によって異なるので、噴射時期が基準点らずれた場合、初段噴射以降の各段の噴射遅れ時間にばらつきが生じる。   However, even if the injection timing is adjusted based on the fuel temperature and fuel injection is started at the reference point of pressure pulsation, the actual injection timing may deviate from the reference point. Since the rate of change of the pressure pulsation amplitude before and after the reference point varies depending on the position of the number of injection stages, when the injection timing deviates from the reference point, the injection delay time of each stage after the first stage injection varies.

そこで、請求項3に記載の発明によると、噴射時期調整手段は、噴射指令手段が燃料噴射弁に指令する初段噴射以降の各段の噴射において、燃料噴射弁が実際に噴射を開始する噴射遅れ時間のばらつきを考慮して噴射時期を調整する。   Therefore, according to the third aspect of the invention, the injection timing adjusting means is an injection delay in which the fuel injection valve actually starts injection in each stage of injection after the initial stage injection commanded by the injection command means to the fuel injection valve. The injection timing is adjusted in consideration of time variations.

このように、噴射遅れ時間のばらつきを考慮して噴射時期を調整することにより、燃料温度に基づいて噴射時期を調整し、圧力脈動の基準点に極力近づけて燃料噴射を開始できる。その結果、噴射量を高精度に学習できる。噴射遅れ時間のばらつきは、予め噴射データの測定またはシミュレーション等で求めておくことができる。   In this manner, by adjusting the injection timing in consideration of the variation in the injection delay time, the injection timing can be adjusted based on the fuel temperature, and fuel injection can be started as close as possible to the reference point of pressure pulsation. As a result, the injection amount can be learned with high accuracy. Variations in the injection delay time can be obtained in advance by measurement or simulation of injection data.

ところで、多段噴射の各段における噴射により発生する圧力脈動の周期は、燃料噴射弁に燃料を供給する配管の長さ、燃料圧力、燃料温度が変化しなければほぼ一定である。配管長は長さの異なる配管に交換しない限り同じである。したがって、学習用の多段噴射を実施する場合、1回の多段噴射を実施中に燃料圧力および燃料温度が変化しないと考えれば、初段噴射により生じる圧力脈動の基準点を噴射時期として各段において燃料噴射を開始できれば、多段噴射の実施中に圧力脈動の周期は変化しない。   By the way, the period of pressure pulsation generated by the injection in each stage of the multi-stage injection is substantially constant unless the length of the pipe for supplying fuel to the fuel injection valve, the fuel pressure, and the fuel temperature are changed. The pipe length is the same as long as it is not replaced with a pipe having a different length. Therefore, when performing multistage injection for learning, if it is considered that the fuel pressure and the fuel temperature do not change during one multistage injection, the fuel pressure in each stage is set with the reference point of pressure pulsation caused by the first stage injection as the injection timing. If injection can be started, the period of pressure pulsation does not change during multistage injection.

そこで、請求項4に記載の発明によると、噴射時期調整手段は、多段噴射において、初段噴射によって生じる圧力脈動の基準点を初段噴射以降の各段の噴射時期とする。
これにより、初段噴射により生じる圧力脈動の基準点を噴射時期とすれば、初段噴射以降の各段において基準点で燃料噴射を開始できる。
Therefore, according to the invention described in claim 4, the injection timing adjusting means sets the reference point of the pressure pulsation generated by the first stage injection as the injection timing of each stage after the first stage injection in the multistage injection.
Accordingly, if the reference point of pressure pulsation generated by the first stage injection is set as the injection timing, fuel injection can be started at the reference point in each stage after the first stage injection.

しかし、圧力脈動の基準点を噴射時期としても、前述したように、実際の噴射時期が基準点からずれることがある。その結果、多段噴射において発生する圧力脈動の合成波の周期が一定ではなく、噴射段毎に変化する恐れがある。   However, even if the reference point of pressure pulsation is used as the injection timing, as described above, the actual injection timing may deviate from the reference point. As a result, the cycle of the combined wave of pressure pulsations generated in multi-stage injection is not constant and may vary from injection stage to injection stage.

そこで、請求項5に記載の発明によると、噴射時期調整手段は、多段噴射において発生する圧力脈動の合成波の基準点を初段噴射以降の各段の噴射時期とする。
これにより、実際の噴射時期が基準点からずれて圧力脈動の周期が変化することを考慮し、圧力脈動の合成波の基準点を初段噴射以降の各段の噴射時期とすることにより、圧力脈動の基準点でより正確に燃料噴射を開始できる。圧力脈動の合成波における基準点は、予め噴射データの測定またはシミュレーション等で求めておくことができる。
Therefore, according to the invention described in claim 5, the injection timing adjusting means sets the reference point of the combined wave of the pressure pulsation generated in the multistage injection as the injection timing of each stage after the first stage injection.
By taking into account that the actual injection timing deviates from the reference point and the period of pressure pulsation changes, the pressure pulsation is obtained by setting the reference point of the combined wave of pressure pulsation as the injection timing of each stage after the first stage injection. The fuel injection can be started more accurately at the reference point. The reference point in the combined wave of pressure pulsation can be obtained in advance by measurement of injection data or simulation.

請求項6に記載の発明によると、噴射時期調整手段は、多段噴射における前段噴射と前段噴射に続く後段噴射との間の噴射インターバルが燃料噴射弁の開弁特性によって決定される最小インターバル以上になるインターバル領域の基準点を初段噴射以降の各段の噴射時期とする。   According to the invention described in claim 6, the injection timing adjusting means is configured such that the injection interval between the front stage injection and the rear stage injection following the front stage injection in the multi-stage injection is greater than or equal to the minimum interval determined by the valve opening characteristics of the fuel injection valve. The reference point of the interval area is the injection timing of each stage after the first stage injection.

噴射指令手段が燃料噴射弁に燃料噴射を指令してから燃料噴射弁が開弁し燃料噴射を開始するまでには、燃料噴射弁の機械的特性および電気的特性により決定される開弁特性に応じて遅れ時間が生じる。したがって、前段噴射と後段噴射との間の噴射インターバルは、燃料噴射弁の開弁特性によって決定される最小インターバル以上にする必要がある。   From the time when the injection command means commands fuel injection to the fuel injection valve until the time when the fuel injection valve opens and starts fuel injection, the valve opening characteristic determined by the mechanical and electrical characteristics of the fuel injection valve Accordingly, a delay time occurs. Therefore, the injection interval between the front stage injection and the rear stage injection needs to be longer than the minimum interval determined by the valve opening characteristic of the fuel injection valve.

ところで、圧力脈動は時間経過とともに減衰するので、前段噴射との噴射インターバルが長くなるほど、実際の噴射時期が基準点からずれた場合に、後段の噴射量が圧力脈動によりずれるずれ量は小さくなる。しかし、噴射インターバルを長くしすぎると、多段噴射において燃焼不良または異常燃焼音の発生を引き起こす恐れがある。したがって、噴射インターバルには最大値が設定される。   By the way, since the pressure pulsation attenuates with time, the longer the injection interval from the preceding injection, the smaller the deviation amount of the subsequent injection amount due to the pressure pulsation when the actual injection timing deviates from the reference point. However, if the injection interval is too long, there is a risk of causing poor combustion or abnormal combustion noise in multistage injection. Therefore, a maximum value is set for the injection interval.

そこで、請求項7に記載の発明によると、噴射時期調整手段は、前段噴射と後段噴射との間で許容される最大インターバルと最小インターバルとの間で噴射インターバルが最大になる基準点を初段噴射以降の各段の噴射時期とする。   Therefore, according to the invention described in claim 7, the injection timing adjusting means sets the reference point at which the injection interval is maximum between the maximum interval and the minimum interval allowed between the front-stage injection and the rear-stage injection as the first-stage injection. The injection timing for each subsequent stage is used.

これにより、燃焼を阻害しない範囲で多段噴射を実施できるとともに、噴射時期が基準点からずれたとしても、圧力脈動による噴射量のずれを極力小さくすることができる。
尚、本発明に備わる複数の手段の各機能は、構成自体で機能が特定されるハードウェア資源、プログラムにより機能が特定されるハードウェア資源、またはそれらの組み合わせにより実現される。また、これら複数の手段の各機能は、各々が物理的に互いに独立したハードウェア資源で実現されるものに限定されない。
As a result, multistage injection can be performed within a range that does not inhibit combustion, and even if the injection timing deviates from the reference point, the deviation in the injection amount due to pressure pulsation can be minimized.
The functions of the plurality of means provided in the present invention are realized by hardware resources whose functions are specified by the configuration itself, hardware resources whose functions are specified by a program, or a combination thereof. The functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.

以下、本発明の実施形態を図に基づいて説明する。
(燃料噴射システム)
図1に、本実施形態の燃料噴射システム10を示す。燃料噴射システム10は、例えば、自動車用の4気筒のディーゼルエンジン(以下、単に「エンジン」ともいう。)2の各気筒に燃料を噴射するためのものである。燃料噴射システム10は、コモンレール20に燃料を供給する高圧ポンプ14と、高圧燃料を蓄えるコモンレール20と、コモンレール20から供給される高圧燃料をエンジン2の各気筒の燃焼室に噴射する燃料噴射弁30と、本システムを制御する電子制御装置(Electronic Control Unit:ECU)40とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
(Fuel injection system)
FIG. 1 shows a fuel injection system 10 of the present embodiment. The fuel injection system 10 is for, for example, injecting fuel into each cylinder of a four-cylinder diesel engine (hereinafter also simply referred to as “engine”) 2 for an automobile. The fuel injection system 10 includes a high-pressure pump 14 that supplies fuel to a common rail 20, a common rail 20 that stores high-pressure fuel, and a fuel injection valve 30 that injects high-pressure fuel supplied from the common rail 20 into the combustion chamber of each cylinder of the engine 2. And an electronic control unit (ECU) 40 for controlling the system.

燃料供給ポンプとしての高圧ポンプ14は、燃料タンク12から燃料を汲み上げるフィードポンプを内蔵している。高圧ポンプ14は、カムシャフトのカムの回転に伴いプランジャが往復移動することにより、フィードポンプから加圧室に吸入した燃料を加圧する公知のポンプである。高圧ポンプ14のプランジャは、1個のカムの周囲に複数設置されている。   The high-pressure pump 14 as a fuel supply pump incorporates a feed pump that pumps fuel from the fuel tank 12. The high-pressure pump 14 is a known pump that pressurizes fuel sucked from the feed pump into the pressurizing chamber by reciprocating the plunger as the cam of the camshaft rotates. Plural plungers of the high pressure pump 14 are installed around one cam.

調量アクチュエータとしての調量弁16は、高圧ポンプ14の吸入側に設置されており、電流制御されることにより高圧ポンプ14が吸入行程で吸入する燃料吸入量を調量する。そして、燃料吸入量が調量されることにより、高圧ポンプ14の燃料吐出量が調量される。   The metering valve 16 serving as a metering actuator is installed on the suction side of the high-pressure pump 14 and regulates the amount of fuel sucked by the high-pressure pump 14 during the suction stroke by current control. Then, by adjusting the fuel intake amount, the fuel discharge amount of the high-pressure pump 14 is adjusted.

コモンレール20には、内部の燃料圧力(コモンレール圧)を検出する圧力センサ22が設置されている。プレッシャリミッタ24は、コモンレール圧が予め設定された上限値を超えるとコモンレール20内の燃料を排出し、コモンレール圧が上限値を超えないように制限する。   The common rail 20 is provided with a pressure sensor 22 that detects internal fuel pressure (common rail pressure). The pressure limiter 24 discharges the fuel in the common rail 20 when the common rail pressure exceeds a preset upper limit value, and restricts the common rail pressure so as not to exceed the upper limit value.

燃料噴射弁30は、例えば、噴孔を開閉するノズルニードルのリフトを制御室の圧力で制御する公知の噴射弁である。燃料噴射弁30から燃料を噴射するときには、制御室と低圧側とを連通させることにより、コモンレール20から制御室に供給された高圧燃料を低圧側に溢流させる。これにより、制御室の燃料圧力が低下し、ノズルニードルがリフトする。燃料噴射弁30の制御室から低圧側に溢流した燃料は、燃料タンク12にリターンされる。   The fuel injection valve 30 is, for example, a known injection valve that controls the lift of the nozzle needle that opens and closes the injection hole with the pressure in the control chamber. When fuel is injected from the fuel injection valve 30, the high pressure fuel supplied from the common rail 20 to the control chamber overflows to the low pressure side by communicating the control chamber with the low pressure side. As a result, the fuel pressure in the control chamber decreases and the nozzle needle lifts. The fuel overflowing from the control chamber of the fuel injection valve 30 to the low pressure side is returned to the fuel tank 12.

エンジン2には、運転状態を検出するセンサとして、エンジン2の回転数を検出する回転数センサ32が設置されている。さらに、運転状態を検出する他のセンサとして、アクセルペダルの操作量であるアクセル開度を検出するアクセルセンサ、吸入空気の温度(吸気温)および燃料温度(燃温)をそれぞれ検出する温度センサ等が燃料噴射システム10に設けられている。   The engine 2 is provided with a rotation speed sensor 32 that detects the rotation speed of the engine 2 as a sensor that detects the operating state. Further, as other sensors for detecting the driving state, an accelerator sensor for detecting an accelerator opening that is an operation amount of an accelerator pedal, a temperature sensor for detecting an intake air temperature (intake air temperature), and a fuel temperature (fuel temperature), respectively. Is provided in the fuel injection system 10.

燃料噴射制御装置を構成するECU40は、CPU、ROM、RAM、フラッシュメモリ、入出力インタフェース等を中心とするマイクロコンピュータにて構成されている。そして、ECU40は、圧力センサ22、回転数センサ32、アクセルセンサ、吸気温センサ、燃温センサを含む各種センサの出力信号を取り込んでエンジン運転状態を検出し、検出したエンジン運転状態に基づいてエンジン運転状態を制御する。   The ECU 40 constituting the fuel injection control device is constituted by a microcomputer centering on a CPU, ROM, RAM, flash memory, input / output interface and the like. Then, the ECU 40 detects output signals from various sensors including the pressure sensor 22, the rotation speed sensor 32, the accelerator sensor, the intake air temperature sensor, and the fuel temperature sensor to detect the engine operating state, and the engine is based on the detected engine operating state. Control the operating state.

ECU40は、調量弁16に供給する電流のデューティ比と高圧ポンプ14の吐出量との関係を、吐出量特性マップとしてROMまたはフラッシュメモリ等の記憶装置に記憶している。そして、ECU40は、圧力センサ22から取得するコモンレール圧が目標コモンレール圧となるように調量弁16への通電をフィードバック制御している。   The ECU 40 stores the relationship between the duty ratio of the current supplied to the metering valve 16 and the discharge amount of the high-pressure pump 14 in a storage device such as a ROM or a flash memory as a discharge amount characteristic map. The ECU 40 performs feedback control of energization to the metering valve 16 so that the common rail pressure acquired from the pressure sensor 22 becomes the target common rail pressure.

また、ECU40は、圧力センサ22を含む各種センサから得たエンジン運転状態に基づいて燃料噴射弁30の噴射時期および噴射量を制御する。
ECU40は、1燃焼サイクル中に、主なトルクをエンジン2に発生させるメイン噴射の前後にパイロット噴射、ポスト噴射を含む多段噴射を実施する場合、各段の燃料噴射における噴射量および噴射時期、ならびに多段噴射のパターンを制御する。
Further, the ECU 40 controls the injection timing and the injection amount of the fuel injection valve 30 based on the engine operating state obtained from various sensors including the pressure sensor 22.
When performing multi-stage injection including pilot injection and post-injection before and after the main injection that causes the engine 2 to generate main torque during one combustion cycle, the ECU 40 performs the injection amount and injection timing in each stage of fuel injection, and Control the pattern of multi-stage injection.

ECU40は、ROMまたはフラッシュメモリに記憶されている制御プログラムを実行することにより、噴射指令手段、噴射量学習手段および噴射時期調整手段として機能する。   The ECU 40 functions as an injection command unit, an injection amount learning unit, and an injection timing adjustment unit by executing a control program stored in the ROM or flash memory.

(噴射指令手段)
ECU40は、燃料噴射弁30の噴射時期および噴射量を制御する噴射指令信号として噴射パルス信号を出力する。ECU40は、噴射パルス信号のパルス幅に対する噴射量の噴射量特性を、噴射圧であるコモンレール圧毎にマップとして前述した記憶装置に記憶している。噴射パルス信号のパルス幅が長くなると、噴射量は増加する。また、ECU40は、噴射パルス信号の立ち上がり時期により、燃料噴射弁30が噴射を開始する噴射時期を制御する。
(Injection command means)
The ECU 40 outputs an injection pulse signal as an injection command signal for controlling the injection timing and the injection amount of the fuel injection valve 30. The ECU 40 stores the injection amount characteristic of the injection amount with respect to the pulse width of the injection pulse signal in the storage device described above as a map for each common rail pressure that is the injection pressure. As the pulse width of the injection pulse signal becomes longer, the injection amount increases. Further, the ECU 40 controls the injection timing at which the fuel injection valve 30 starts injection based on the rising timing of the injection pulse signal.

(噴射量学習手段)
ECU40は、アイドル運転時において、エンジン2に加わる負荷、エンジン回転数、水温等が所定の学習条件を満たしている場合、微少噴射量学習を実施する。
(Injection amount learning means)
The ECU 40 performs minute injection amount learning when the load applied to the engine 2, the engine speed, the water temperature, and the like satisfy predetermined learning conditions during idle operation.

学習条件が満たされている場合、ECU40は、噴射量をn回に均等に分割し、1燃焼サイクルにおいてn段の多段噴射を燃料噴射弁30に指令する。
そして、ECU40は、気筒間の回転速度変動量が平滑化するように、各気筒の燃料噴射弁30に対する噴射量を補正する。この場合、ECU40は、各気筒において、噴射量の補正量をn等分した値を各段の第1噴射量補正量とする。
When the learning condition is satisfied, the ECU 40 equally divides the injection amount into n times, and commands the fuel injection valve 30 to perform n-stage multi-stage injection in one combustion cycle.
Then, the ECU 40 corrects the injection amount with respect to the fuel injection valve 30 of each cylinder so that the rotational speed fluctuation amount between the cylinders is smoothed. In this case, in each cylinder, the ECU 40 sets a value obtained by dividing the correction amount of the injection amount into n equal parts as the first injection amount correction amount of each stage.

次にECU40は、各気筒の平均エンジン回転速度が目標エンジン回転速度になるように、全気筒一律に噴射量を補正する。この場合、ECU40は、各気筒において、噴射量の補正量をn等分した値を各段の第2噴射量補正量とする。   Next, the ECU 40 uniformly corrects the injection amount so that the average engine rotation speed of each cylinder becomes the target engine rotation speed. In this case, in each cylinder, the ECU 40 sets a value obtained by dividing the correction amount of the injection amount into n equal parts as the second injection amount correction amount of each stage.

ECU40は、気筒間の回転速度変動量を平滑化し、各気筒の平均エンジン回転速度が目標エンジン回転速度になるように補正した多段噴射における各段の第1噴射量補正量および第2噴射量補正量と、前回までに同様に多段噴射により学習した噴射量学習値との和を、今回の微少噴射量学習の学習値とする。   The ECU 40 smoothes the rotational speed fluctuation amount between the cylinders, and corrects the average engine rotational speed of each cylinder so as to become the target engine rotational speed, and corrects the first injection amount correction amount and the second injection amount correction of each stage in the multi-stage injection. The sum of the amount and the injection amount learning value learned by multi-stage injection in the same manner up to the previous time is taken as the learning value for the current minute injection amount learning.

ECU40は、一つの学習燃料圧力において微少噴射量学習が終了すると、高圧ポンプ14の吐出量を調量してコモンレール圧を異なる学習燃料圧力に調圧する。学習燃料圧力は、噴射圧力として使用するコモンレール圧の使用範囲の全域を複数の圧力範囲に分割した各圧力範囲を代表する燃料圧力である。   When the small injection amount learning is completed at one learning fuel pressure, the ECU 40 adjusts the discharge amount of the high-pressure pump 14 to adjust the common rail pressure to a different learning fuel pressure. The learned fuel pressure is a fuel pressure representing each pressure range obtained by dividing the entire range of the common rail pressure used as the injection pressure into a plurality of pressure ranges.

そして、調圧した学習燃料圧力において、噴射量をn回に均等に分割した多段噴射により前述した微少噴射量学習を実施する。そして、ECU40は、学習条件が満たされている場合、学習燃料圧力を変更し未学習の学習燃料圧力において微少噴射量学習を実施する。   Then, the above-described minute injection amount learning is performed by the multistage injection in which the injection amount is equally divided into n times at the adjusted learning fuel pressure. When the learning condition is satisfied, the ECU 40 changes the learning fuel pressure and performs the minute injection amount learning at the unlearned learning fuel pressure.

(噴射時期調整手段)
多段噴射により微少噴射量学習を実施する場合、各段の燃料噴射により、各気筒の燃料噴射弁30とコモンレール20との間の燃料配管に圧力脈動が生じる。燃料噴射弁30とコモンレール20との間の燃料配管に圧力脈動が生じると、燃料噴射弁30が燃料噴射を開始するときの燃料圧力がばらつき、初段噴射以降の各段の噴射量がばらつくおそれがある。
(Injection timing adjustment means)
When the minute injection amount learning is performed by the multi-stage injection, pressure pulsation is generated in the fuel pipe between the fuel injection valve 30 and the common rail 20 of each cylinder by the fuel injection in each stage. If pressure pulsation occurs in the fuel pipe between the fuel injection valve 30 and the common rail 20, the fuel pressure when the fuel injection valve 30 starts fuel injection varies, and there is a possibility that the injection amount of each stage after the first stage injection may vary. is there.

さらに、圧力脈動の周期fpは、次式(1)に示すように、燃料噴射弁30とコモンレール20との間の燃料配管の長さと圧力脈動の伝播速度とにより決定される。そして、次式(2)に示すように、圧力脈動の伝播速度は、燃料の体積弾性係数と燃料密度とにより決定される。   Further, the pressure pulsation period fp is determined by the length of the fuel pipe between the fuel injection valve 30 and the common rail 20 and the propagation speed of the pressure pulsation, as shown in the following equation (1). As shown in the following equation (2), the propagation speed of the pressure pulsation is determined by the bulk modulus of the fuel and the fuel density.

圧力脈動の周期fp=燃料配管の長さ/圧力脈動の伝播速度 ・・・(1)
圧力脈動の伝播速度=(燃料の体積弾性係数/燃料密度)1/2 ・・・(2)
燃料の体積弾性係数は、燃料圧力および燃料温度の関数であり、燃料密度は燃料温度の関数である。燃料配管の長さは燃料噴射システム10において基本的に固定である。したがって、圧力脈動の周期は、燃料圧力および燃料温度によって変化する。
Pressure pulsation period fp = fuel pipe length / pressure pulsation propagation speed (1)
Pressure pulsation propagation speed = (bulk elastic modulus of fuel / fuel density) 1/2 (2)
The bulk modulus of fuel is a function of fuel pressure and fuel temperature, and the fuel density is a function of fuel temperature. The length of the fuel pipe is basically fixed in the fuel injection system 10. Therefore, the period of pressure pulsation changes with fuel pressure and fuel temperature.

したがって、図2に示すように、所定の燃料圧力において、基準の燃料温度のときの圧力脈動200に基づいて学習用の多段噴射202の基準噴射インターバル(TINT)を固定に設定すると、例えば燃料温度が基準温度から上昇し、図2に示すように圧力脈動210の周期が圧力脈動200の周期よりも長くなったときに、初段噴射以降の各段の噴射時期の燃料圧力が変化することがある。その結果、圧力脈動200で噴射したときの多段噴射202に対し、圧力脈動210で噴射したときの多段噴射212において各段の噴射量がばらつく。燃料温度の変化により各段の噴射量がばらつくと、噴射量を均等にn分割した多段噴射により微少噴射量を高精度に学習できない。   Therefore, as shown in FIG. 2, when the reference injection interval (TINT) of the learning multi-stage injection 202 is fixed based on the pressure pulsation 200 at the reference fuel temperature at a predetermined fuel pressure, for example, the fuel temperature Increases from the reference temperature, and as shown in FIG. 2, when the period of the pressure pulsation 210 becomes longer than the period of the pressure pulsation 200, the fuel pressure at the injection timing of each stage after the first stage injection may change. . As a result, the injection amount of each stage varies in the multistage injection 212 when the fuel is injected with the pressure pulsation 210 as compared to the multistage injection 202 when the fuel is injected with the pressure pulsation 200. If the injection amount at each stage varies due to a change in the fuel temperature, the minute injection amount cannot be learned with high accuracy by the multi-stage injection in which the injection amount is equally divided into n.

そこで、本願発明者は、学習用の多段噴射を実施する場合、圧力脈動の周期が変化しても各段の噴射量がばらつかないように、燃料温度に応じて各段の噴射時期を調整することを考えた。そして、本願発明者は、燃料圧力に加え、燃料温度に応じて変化する圧力脈動の周期に基づいて、初段噴射以降の各段の噴射時期、言い換えれば、前段噴射と前段噴射に続く後段噴射との噴射インターバルを調整し、図3に示す圧力脈動220において、圧力脈動220が正負に変動するときに0となる基準点222を各段の噴射時期とすることを見いだした。基準点222は、圧力脈動220の周期の1/2に相当する点である。   Therefore, when performing multistage injection for learning, the present inventor adjusts the injection timing of each stage according to the fuel temperature so that the injection amount of each stage does not vary even if the period of pressure pulsation changes. Thought to do. Then, the inventor of the present application, based on the pressure pulsation period that changes according to the fuel temperature in addition to the fuel pressure, the injection timing of each stage after the first stage injection, in other words, the subsequent stage injection and the subsequent stage injection following the preceding stage injection, In the pressure pulsation 220 shown in FIG. 3, the reference point 222 that becomes 0 when the pressure pulsation 220 fluctuates positively and negatively is found as the injection timing of each stage. The reference point 222 is a point corresponding to ½ of the period of the pressure pulsation 220.

基準点222において、圧力脈動220の燃料圧力は噴射量学習を実施するときのコモンレール圧の燃料圧力、つまり学習燃料圧力になる。初段噴射を開始するときには多段噴射による圧力脈動は発生していないので、初段噴射を実施するときの燃料圧力は学習燃料圧力である。したがって、燃料温度の変化に基づいて初段噴射以降の各段の噴射時期を調整し、圧力脈動220の基準点222で燃料噴射を開始することにより、多段噴射の各段において同じ学習燃料圧力で燃料噴射を開始できる。このように、燃料温度の変化に応じて圧力脈動の周期が変化しても、噴射量を調整することなく噴射時期を調整して圧力脈動220の基準点222を噴射時期とすることにより、噴射量をn分割した多段噴射の各段において、噴射量のばらつきを防止し、均等に燃料を噴射できる。   At the reference point 222, the fuel pressure of the pressure pulsation 220 becomes the fuel pressure of the common rail pressure when the injection amount learning is performed, that is, the learning fuel pressure. Since the pressure pulsation due to the multistage injection is not generated when the first stage injection is started, the fuel pressure when the first stage injection is performed is the learning fuel pressure. Therefore, by adjusting the injection timing of each stage after the first stage injection based on the change of the fuel temperature and starting the fuel injection at the reference point 222 of the pressure pulsation 220, the fuel is obtained at the same learning fuel pressure in each stage of the multistage injection. Injection can be started. Thus, even if the period of the pressure pulsation changes according to the change in the fuel temperature, the injection timing is adjusted without adjusting the injection amount, and the reference point 222 of the pressure pulsation 220 is set as the injection timing. In each stage of the multistage injection in which the quantity is divided into n, variation in the injection quantity can be prevented and fuel can be injected evenly.

また、図4に示すように、ECU40が燃料噴射弁30に燃料噴射を指令し、燃料噴射弁30に駆動電流230が供給されてから燃料噴射弁30が実際に多段噴射240の各段の燃料噴射を開始するまでには、燃料噴射弁30の機械的特性および電気的特性により決定される開弁特性に応じて遅れ時間ΔTが生じる。そして、この遅れ時間ΔTを含み、燃料噴射弁30には、燃料噴射弁30の開弁特性に基づいて前段噴射と後段噴射との間に最低限確保する必要のある最小インターバルが設定されている。   Further, as shown in FIG. 4, the ECU 40 commands the fuel injection valve 30 to inject fuel, and after the drive current 230 is supplied to the fuel injection valve 30, the fuel injection valve 30 actually performs the fuel in each stage of the multistage injection 240. Before the injection is started, there is a delay time ΔT according to the valve opening characteristics determined by the mechanical characteristics and electrical characteristics of the fuel injection valve 30. Then, including this delay time ΔT, the fuel injection valve 30 is set with a minimum interval that needs to be secured at least between the front-stage injection and the rear-stage injection based on the valve opening characteristics of the fuel injection valve 30. .

一方、多段噴射において各段の噴射インターバルを長くしすぎると、多段噴射の後半の噴射時期が遅れるため、着火不良または異常燃焼音の発生という問題が生じる。本実施形態では、多段噴射の最終段の噴射時期を圧縮行程の上死点(TDC)としている。尚、最終段の噴射時期は、燃焼音および排ガス等を考慮して可変に設定しても良い。また、着火不良または異常燃焼音の発生の程度は、コモンレール圧によっても増減する。そこで、多段噴射の段数およびコモンレール圧に基づいて、噴射インターバルの最大インターバルを設定する。   On the other hand, if the injection interval of each stage is too long in multistage injection, the latter half of the multistage injection is delayed, causing a problem of poor ignition or abnormal combustion noise. In this embodiment, the final stage injection timing of the multistage injection is set to the top dead center (TDC) of the compression stroke. Note that the final stage injection timing may be set variably in consideration of combustion noise, exhaust gas, and the like. In addition, the degree of occurrence of poor ignition or abnormal combustion noise also increases or decreases depending on the common rail pressure. Therefore, the maximum interval of the injection intervals is set based on the number of stages of multistage injection and the common rail pressure.

そして、図5に示すように、設定した最小インターバル250と最大インターバル252とのインターバル領域254で、各段の噴射時期となる基準点222を設定する。インターバル領域254に複数の基準点222が存在する場合には、どの基準点222を噴射時期としてもよい。   Then, as shown in FIG. 5, a reference point 222 that is the injection timing of each stage is set in the interval region 254 between the set minimum interval 250 and maximum interval 252. If there are a plurality of reference points 222 in the interval region 254, any reference point 222 may be used as the injection timing.

ここで、圧力脈動は時間経過とともに減衰するので、前段までの燃料噴射により発生する圧力脈動の影響を極力受けないためには、初段噴射以降の各段の噴射時期として、最小インターバル250と最大インターバル252との間で、最大インターバル252に極力近い基準点222を選ぶことが望ましい。   Here, since the pressure pulsation attenuates with time, in order to minimize the influence of the pressure pulsation generated by the fuel injection up to the previous stage, the minimum interval 250 and the maximum interval are used as the injection timing of each stage after the first stage injection. It is desirable to select a reference point 222 that is as close as possible to the maximum interval 252 with respect to 252.

以上のことから、最小インターバルをfmin、最大インターバルをfmax、圧力脈動の周期をfpとすると、学習用の多段噴射において初段噴射以降の各段の噴射時期は、次式(3)に基づいて算出される最適噴射インターバルTINToptにより決定される。   From the above, assuming that the minimum interval is fmin, the maximum interval is fmax, and the period of pressure pulsation is fp, the injection timing of each stage after the first stage injection is calculated based on the following equation (3) in the multistage injection for learning. Determined by the optimum injection interval TINTopt.

TINTopt=max(fmin<k×fp/2<fmax) ・・・(3)
式(3)において、kは(fmin<k×fp/2<fmax)を満たす自然数である。最大インターバル252に極力近い基準点222を噴射時期とする場合には、式(3)を満たすkの最大値を選択する。
TINTopt = max (fmin <k × fp / 2 <fmax) (3)
In Expression (3), k is a natural number that satisfies (fmin <k × fp / 2 <fmax). When the reference point 222 as close as possible to the maximum interval 252 is used as the injection timing, the maximum value of k that satisfies Equation (3) is selected.

ところで、多段噴射において、今回の噴射を実施するときに生じている圧力脈動は、今回噴射の前までの各段の噴射により生じる圧力脈動の合成である。しかし、1回の多段噴射において、コンレール圧と燃料温度とは一定であると考えられる。そして、式(1)、(2)から、燃料圧力であるコンレール圧と燃料温度とが変化せず一定であれば、圧力脈動の周期は変化せず一定である。したがって、図6に示す圧力脈動260の基準点262で各段の噴射を実施すれば、圧力脈動260の振幅は各段の合成になるものの、圧力脈動260の周期は、先頭の初段噴射を実施したときに生じる圧力脈動の周期と同じであり、変化しないと考えられる。   By the way, in multistage injection, the pressure pulsation generated when the current injection is performed is a combination of pressure pulsations generated by the injection of each stage before the current injection. However, it is considered that the conrail pressure and the fuel temperature are constant in one multistage injection. From the formulas (1) and (2), if the Conrail pressure as the fuel pressure and the fuel temperature are constant without change, the period of the pressure pulsation does not change and is constant. Therefore, if each stage of injection is performed at the reference point 262 of the pressure pulsation 260 shown in FIG. 6, the amplitude of the pressure pulsation 260 is a combination of the stages, but the period of the pressure pulsation 260 is the first stage injection. This is the same as the period of pressure pulsation that occurs when

したがって、圧力脈動260の基準点262を各段の噴射時期にすれば、多段噴射において、圧力脈動260の何れかの基準点262で各段の燃料噴射を実施することができる。   Therefore, if the reference point 262 of the pressure pulsation 260 is set to the injection timing of each stage, the fuel injection of each stage can be performed at any reference point 262 of the pressure pulsation 260 in the multistage injection.

ただし、前述したように、燃料噴射弁30に駆動電流230が供給されてから燃料噴射弁30が実際に多段噴射260の各段の燃料噴射を開始するまでには、燃料噴射弁30の開弁特性に応じて遅れ時間ΔTが生じる。この遅れ時間ΔTは、噴射量学習を実施するときの学習燃料圧力によって変化する。したがって、初段噴射以降の各段において基準点262を噴射時期にするためには、当然この遅れ時間ΔTを考慮する必要がある。   However, as described above, after the drive current 230 is supplied to the fuel injection valve 30, the fuel injection valve 30 is not opened until the fuel injection valve 30 actually starts fuel injection at each stage of the multi-stage injection 260. A delay time ΔT occurs depending on the characteristics. This delay time ΔT varies depending on the learned fuel pressure when the injection amount learning is performed. Therefore, in order to set the reference point 262 to the injection timing in each stage after the first stage injection, it is naturally necessary to consider this delay time ΔT.

ここで、遅れ時間ΔTを考慮して基準点262を噴射時期としても、正確に基準点262で燃料噴射を開始することは困難であり、実際の噴射時期が基準点262からずれることが考えられる。図6の多段噴射242に示すように実際の噴射時期が基準点262から符号272の示す位置にずれると、圧力脈動260の周期が点線の圧力脈動270に示すように変化する。このように、噴射時期が基準点262からずれると、初段噴射以降の各段における噴射量がばらつくことになる。   Here, even if the reference point 262 is set as the injection timing in consideration of the delay time ΔT, it is difficult to accurately start the fuel injection at the reference point 262, and the actual injection timing may deviate from the reference point 262. . When the actual injection timing shifts from the reference point 262 to the position indicated by reference numeral 272 as indicated by the multistage injection 242 in FIG. 6, the period of the pressure pulsation 260 changes as indicated by the dotted pressure pulsation 270. Thus, when the injection timing deviates from the reference point 262, the injection amount at each stage after the first stage injection varies.

さらに、基準点262からずれたときの圧力脈動の変化率は、噴射段数の位置、ならびに最小インターバルと最大インターバルとの間のいずれの基準点262を噴射時期とするか、つまり噴射インターバルによって異なる。この場合、図6の多段噴射242が示すように噴射時期が基準点262からずれると、各段の噴射量がばらつき、噴射量を高精度に学習できない。   Furthermore, the rate of change of pressure pulsation when deviating from the reference point 262 differs depending on the position of the number of injection stages and which reference point 262 between the minimum interval and the maximum interval is the injection timing, that is, the injection interval. In this case, as shown by the multi-stage injection 242 in FIG. 6, if the injection timing deviates from the reference point 262, the injection quantity at each stage varies and the injection quantity cannot be learned with high accuracy.

そこで、実際の噴射時期が基準点262からずれる噴射遅ればらつきを考慮して初段噴射以降の各段の噴射時期、言い換えれば各段の噴射インターバルを設定することが望ましい。   Therefore, it is desirable to set the injection timing of each stage after the first stage injection, in other words, the injection interval of each stage in consideration of the injection delay variation in which the actual injection timing deviates from the reference point 262.

本実施形態では、噴射遅ればらつきを補正する各段の噴射ばらつき補正量を、コモンレール圧および噴射インターバルをパラメータとするマップとして、多段噴射の段数位置毎にROMまたはフラッシュメモリ等の記憶装置に記憶している。例えば4段の多段噴射を実施する場合、2段目、3段目、4段目の噴射ばらつき補正量をそれぞれTc2、Tc3、Tc4、1段目と2段目、2段目と3段目、3段目と4段目との間の噴射インターバルをそれぞれTp1、Tp2、Tp3とすると、Tp1、Tp2、Tp3は次式(4)、(5)、(6)で表される。   In this embodiment, the injection variation correction amount for each stage for correcting the injection delay variation is stored in a storage device such as a ROM or a flash memory for each stage number position of the multistage injection as a map using the common rail pressure and the injection interval as parameters. ing. For example, when performing four-stage multi-stage injection, the second stage, third stage, and fourth stage injection variation correction amounts are set to Tc2, Tc3, Tc4, first stage and second stage, second stage and third stage, respectively. Assuming that the injection intervals between the third stage and the fourth stage are Tp1, Tp2, and Tp3, respectively, Tp1, Tp2, and Tp3 are expressed by the following equations (4), (5), and (6).

Tp1=TINTopt−Tc2 ・・・(4)
Tp2=TINTopt+Tc2−Tc3 ・・・(5)
Tp3=TINTopt+TC3−Tc4 ・・・(6)
このように、噴射遅ればらつきを考慮して多段噴射における噴射インターバル、つまり噴射時期を調整することにより、より正確に圧力脈動の基準点で初段噴射以降の各段の噴射を開始できる。
Tp1 = INTTop-Tc2 (4)
Tp2 = TINTop + Tc2-Tc3 (5)
Tp3 = TINTop + TC3-Tc4 (6)
In this way, by adjusting the injection interval in multi-stage injection, that is, the injection timing in consideration of the injection delay variation, the injection of each stage after the initial stage injection can be started more accurately at the reference point of pressure pulsation.

(微小噴射量学習ルーチン)
図7に、微少噴射量学習ルーチンを示す。図7のルーチンは、アイドル運転時において、エンジン2に加わる負荷、エンジン回転数、水温等が所定の学習条件を満たしている場合に実行される。図7において、「S」はステップを表している。尚、ECU40は、本ルーチンを実行する場合、例えば高圧ポンプ14の吐出量を調量することにより、微少噴射量学習でまだ学習していない学習燃料圧力にコモンレール圧を調圧する。また、多段噴射は4段噴射を例にしている。
(Micro injection amount learning routine)
FIG. 7 shows a minute injection amount learning routine. The routine of FIG. 7 is executed when the load applied to the engine 2, the engine speed, the water temperature, and the like satisfy predetermined learning conditions during idle operation. In FIG. 7, “S” represents a step. When this routine is executed, the ECU 40 adjusts the common rail pressure to the learned fuel pressure that has not yet been learned in the minute injection amount learning, for example, by adjusting the discharge amount of the high-pressure pump 14. In addition, the multi-stage injection is exemplified by a four-stage injection.

S300においてECU40は、コモンレール20と燃料噴射弁30との間の燃料配管の長さをROMまたはフラッシュメモリ等の記憶装置から読み出す。また、ECU40は、圧力センサ22の出力信号からコモンレール圧を燃料圧力として検出し、燃温センサの出力信号から燃料温度を検出する。そして、ECU40は、燃料配管の長さと、燃料圧力と、燃料温度とを式(1)、(2)に代入して圧力脈動の周期fpを算出する。   In S300, the ECU 40 reads the length of the fuel pipe between the common rail 20 and the fuel injection valve 30 from a storage device such as a ROM or a flash memory. Further, the ECU 40 detects the common rail pressure as the fuel pressure from the output signal of the pressure sensor 22, and detects the fuel temperature from the output signal of the fuel temperature sensor. Then, the ECU 40 calculates the pressure pulsation period fp by substituting the length of the fuel pipe, the fuel pressure, and the fuel temperature into the equations (1) and (2).

S302においてECU40は、各段の間の最適噴射インターバルTINToptを式(3)に基づいて算出する。
そして、S304においてECU40は、初段噴射以降の各段の噴射における噴射遅ればらつきを補正する噴射ばらつき補正量Tc2、Tc3、Tc4を、コモンレール圧と、段数位置と、S302で算出した最適噴射インターバルTINToptとに基づいて算出する。
In S302, the ECU 40 calculates the optimal injection interval TINTopt between the respective stages based on the equation (3).
In S304, the ECU 40 determines the injection variation correction amounts Tc2, Tc3, and Tc4 for correcting the injection delay variation in each stage of injection after the first stage injection, the common rail pressure, the stage number position, and the optimum injection interval TINTopt calculated in S302. Calculate based on

S306においてECU40は、このようにして算出した最適噴射インターバルTINToptと、補正量Tc2、Tc3、Tc4とを式(4)〜(6)に代入し、各段の間の噴射インターバルTp1、Tp2、Tp3を算出する。   In S306, the ECU 40 substitutes the optimum injection interval TINTopt calculated in this way and the correction amounts Tc2, Tc3, and Tc4 into the equations (4) to (6), and the injection intervals Tp1, Tp2, Tp3 between the respective stages. Is calculated.

S308においてECU40は、エンジン回転数およびアクセル開度に基づいて学習用噴射量を算出し、この学習用噴射量に基づいて、4段の多段噴射における各段の噴射量が均等になるように各段の噴射量を設定する。そして、S306において算出した各段の間の噴射インターバルTp1、Tp2、Tp3と、学習用噴射量を均等に4分割した各段の噴射量とに基づいて、ECU40は学習用の多段均等噴射を実施する。この学習用多段噴射において、ECU40は、気筒間の回転速度変動を平滑化するとともに、平均エンジン回転速度を目標回転速度に維持するように、各気筒において学習用に噴射する多段噴射の各段の噴射量を補正する。   In S308, the ECU 40 calculates the learning injection amount based on the engine speed and the accelerator opening, and based on the learning injection amount, each injection amount in each of the four stages of multistage injection is equalized. Sets the stage injection amount. Then, based on the injection intervals Tp1, Tp2, and Tp3 between the respective stages calculated in S306 and the injection quantity of each stage obtained by equally dividing the learning injection quantity into four parts, the ECU 40 performs the learning multi-stage uniform injection. To do. In this learning multi-stage injection, the ECU 40 smoothes fluctuations in the rotation speed between the cylinders and maintains the average engine rotation speed at the target rotation speed for each stage of the multi-stage injection that is injected for learning in each cylinder. Correct the injection amount.

S310においてECU40は、学習した噴射補正量と、前回までに学習した噴射補正量との和を今回の学習値として算出する。
ECU40は、S310において学習値の算出が終了すると、コモンレール圧の使用圧力範囲の全域を学習するまで、本ルーチンを繰り返し実行する。
In S310, the ECU 40 calculates the sum of the learned injection correction amount and the injection correction amount learned up to the previous time as the current learning value.
When the calculation of the learned value is completed in S310, the ECU 40 repeatedly executes this routine until the entire range of the working pressure range of the common rail pressure is learned.

以上説明した本実施形態によると、噴射量を均等にn分割して学習用の多段噴射を実施するときに、燃料温度とコモンレール圧と燃料配管長とに基づいて初段噴射以降の各段の噴射時期を調整し、圧力脈動の基準点で初段噴射以降の各段に燃料噴射を開始させている。これにより、各段の噴射において発生している圧力脈動の振幅は各段の噴射により発生する圧力脈動の合成波となるものの、圧力脈動の周期は変化せず一定である。したがって、各段の噴射を圧力脈動の基準点で開始することにより、燃料温度に応じて圧力脈動の周期が変化しても、各段における噴射量が圧力脈動によりばらつくことを極力低減できる。これにより、多段噴射を実施して微少噴射量を高精度に学習できる。   According to the present embodiment described above, when the multi-stage injection for learning is performed by equally dividing the injection amount by n, the injection at each stage after the initial stage injection is performed based on the fuel temperature, the common rail pressure, and the fuel pipe length. The timing is adjusted, and fuel injection is started in each stage after the first stage injection at the reference point of pressure pulsation. Thereby, the amplitude of the pressure pulsation generated in each stage of injection becomes a composite wave of the pressure pulsation generated by each stage of injection, but the period of the pressure pulsation does not change and is constant. Therefore, by starting the injection of each stage at the reference point of pressure pulsation, even if the period of pressure pulsation changes according to the fuel temperature, it is possible to reduce as much as possible that the injection amount in each stage varies due to the pressure pulsation. Thereby, multistage injection can be implemented and the minute injection amount can be learned with high accuracy.

また、燃料温度に応じて圧力脈動の周期が変化することにより生じる噴射量のばらつきを、噴射量を調整することなく噴射時期を調整することにより防止するので、噴射量学習における噴射量補正と合わせて二重に噴射量を補正することを防止できる。これにより、多段噴射を実施して微少噴射量を高精度に学習できる。   In addition, variations in the injection amount caused by the change in the pressure pulsation period according to the fuel temperature are prevented by adjusting the injection timing without adjusting the injection amount. Thus, it is possible to prevent the injection amount from being corrected twice. Thereby, multistage injection can be implemented and the minute injection amount can be learned with high accuracy.

[他の実施形態]
上記実施形態では、燃料温度に応じて周期の変化する圧力脈動に対し、圧力脈動の基準点を初段噴射以降の各段の噴射時期として各段の噴射を実施することにより、圧力脈動の振幅は各段の噴射により発生する圧力脈動の合成波になるものの、その周期は変らず一定であるとした。これに対し、圧力脈動の基準点を噴射時期とするものの、実際の噴射時期は基準点からずれるので、圧力脈動の合成波の周期、つまり基準点が変化することを考慮してもよい。圧力脈動の合成波における基準点のずれは、予め噴射データの測定またはシミュレーション等で求めておくことができる。
[Other Embodiments]
In the above-described embodiment, the pressure pulsation amplitude is obtained by performing the injection at each stage with the pressure pulsation reference point as the injection timing of each stage after the first stage injection with respect to the pressure pulsation whose cycle changes according to the fuel temperature. Although it is a composite wave of pressure pulsations generated by each stage of injection, its period is assumed to be constant. On the other hand, although the reference point of the pressure pulsation is set as the injection timing, the actual injection timing is deviated from the reference point, so that the period of the combined wave of pressure pulsation, that is, the reference point may be considered. The deviation of the reference point in the combined wave of pressure pulsation can be obtained in advance by measurement of injection data or simulation.

上記実施形態では、噴射指令手段、噴射時期調整手段の機能を、制御プログラムにより機能が特定されるECU40により実現している。これに対し、上記複数の手段の機能の少なくとも一部を、回路構成自体で機能が特定されるハードウェアで実現してもよい。   In the above embodiment, the functions of the injection command means and the injection timing adjustment means are realized by the ECU 40 whose functions are specified by the control program. On the other hand, at least some of the functions of the plurality of means may be realized by hardware whose functions are specified by the circuit configuration itself.

このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。   As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

本実施形態による燃料噴射システムを示すブロック図。The block diagram which shows the fuel-injection system by this embodiment. 燃料温度の変化による圧力脈動の周期および噴射量のずれを示すタイムチャート。The time chart which shows the shift | offset | difference of the period of pressure pulsation by the change of fuel temperature, and injection amount. 圧力脈動の周期を示すタイムチャート。The time chart which shows the period of pressure pulsation. 駆動電流に対する燃料噴射弁の噴射遅れを示すタイムチャート。The time chart which shows the injection delay of the fuel injection valve with respect to a drive current. 各段の噴射インターバルの設定を示すタイムチャート。The time chart which shows the setting of the injection interval of each step | level. 圧力脈動の合成と、燃料噴射弁の噴射遅れのばらつきとを示すタイムチャート。The time chart which shows the synthesis | combination of a pressure pulsation, and the dispersion | variation in the injection delay of a fuel injection valve. 微少噴射量学習ルーチンを示すフローチャート。The flowchart which shows a micro injection amount learning routine.

符号の説明Explanation of symbols

2:ディーゼルエンジン(内燃機関)、10:燃料噴射システム、20:コモンレール、30:燃料噴射弁、40:ECU(燃料噴射制御装置、噴射指令手段、噴射時期調整手段) 2: diesel engine (internal combustion engine), 10: fuel injection system, 20: common rail, 30: fuel injection valve, 40: ECU (fuel injection control device, injection command means, injection timing adjustment means)

Claims (7)

内燃機関の各気筒に噴射する燃料噴射弁の噴射量を均等に分割して多段噴射を実施することにより各段の噴射量を学習する燃料噴射制御装置において、
前記燃料噴射弁に燃料噴射を指令する噴射指令手段と、
前記多段噴射により噴射量を学習するときに、前記噴射指令手段が前記燃料噴射弁に指令する初段噴射以降の各段の噴射時期を燃料温度に基づいて調整することにより、前記多段噴射において発生する圧力脈動が正負に変動するときに0になる基準点を前記初段噴射以降の各段の噴射時期とする噴射時期調整手段と、
を備えることを特徴とする燃料噴射制御装置。
In the fuel injection control device that learns the injection amount of each stage by equally dividing the injection amount of the fuel injection valve that is injected into each cylinder of the internal combustion engine and performing multi-stage injection,
Injection command means for commanding fuel injection to the fuel injection valve;
When the injection amount is learned by the multi-stage injection, the injection command means generates the multi-stage injection by adjusting the injection timing of each stage after the first stage injection commanded to the fuel injection valve based on the fuel temperature. Injection timing adjusting means for setting the reference point that becomes 0 when the pressure pulsation fluctuates positively and negatively as the injection timing of each stage after the first stage injection;
A fuel injection control device comprising:
前記噴射時期調整手段は、燃料温度が高くなるにしたがい前記初段噴射以降の各段の噴射時期を遅角させることを特徴とする請求項1に記載の燃料噴射制御装置。   2. The fuel injection control device according to claim 1, wherein the injection timing adjusting means retards the injection timing of each stage after the initial stage injection as the fuel temperature increases. 前記噴射時期調整手段は、前記噴射指令手段が前記燃料噴射弁に燃料噴射を指令してから前記燃料噴射弁が実際に燃料噴射を開始するまでの噴射遅れ時間のばらつきを考慮して前記初段噴射以降の各段の噴射時期を調整することを特徴とする請求項1または2に記載の燃料噴射制御装置。   The injection timing adjustment means takes into account the variation in the injection delay time from when the injection command means commands fuel injection to the fuel injection valve until the fuel injection valve actually starts fuel injection. The fuel injection control device according to claim 1, wherein the injection timing of each subsequent stage is adjusted. 前記噴射時期調整手段は、前記初段噴射によって生じる圧力脈動の前記基準点を前記初段噴射以降の各段の噴射時期とすることを特徴とする請求項1から3のいずれか一項に記載の燃料噴射制御装置。   4. The fuel according to claim 1, wherein the injection timing adjusting unit sets the reference point of the pressure pulsation generated by the first-stage injection as the injection timing of each stage after the first-stage injection. 5. Injection control device. 前記噴射時期調整手段は、前記圧力脈動の合成波の前記基準点を前記初段噴射以降の各段の噴射時期とすることを特徴とする請求項1から3のいずれか一項に記載の燃料噴射制御装置。   The fuel injection according to any one of claims 1 to 3, wherein the injection timing adjusting means sets the reference point of the combined wave of the pressure pulsation as an injection timing of each stage after the first stage injection. Control device. 前記噴射時期調整手段は、前記多段噴射における前段噴射と前記前段噴射に続く後段噴射との間の噴射インターバルが前記燃料噴射弁の開弁特性によって決定される最小インターバル以上になるインターバル領域の前記基準点を前記初段噴射以降の各段の噴射時期とすることを特徴とする請求項1から5のいずれか一項に記載の燃料噴射制御装置。   The injection timing adjusting means is configured to determine the reference in the interval region in which the injection interval between the pre-stage injection in the multi-stage injection and the post-stage injection following the pre-stage injection is equal to or greater than the minimum interval determined by the valve opening characteristic of the fuel injection valve. The fuel injection control device according to any one of claims 1 to 5, wherein the point is an injection timing of each stage after the initial stage injection. 前記噴射時期調整手段は、前記前段噴射と前記後段噴射との間で許容される最大インターバルと前記最小インターバルとの間のインターバル領域において前記噴射インターバルが最大になる前記基準点を前記初段噴射以降の各段の噴射時期とすることを特徴とする請求項6に記載の燃料噴射制御装置。   The injection timing adjustment means sets the reference point at which the injection interval becomes maximum in the interval region between the maximum interval and the minimum interval allowed between the preceding stage injection and the following stage injection after the first stage injection. The fuel injection control device according to claim 6, wherein the injection timing is set for each stage.
JP2008239462A 2008-09-18 2008-09-18 Fuel injection control device Pending JP2010071187A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008239462A JP2010071187A (en) 2008-09-18 2008-09-18 Fuel injection control device
DE102009041479.7A DE102009041479B4 (en) 2008-09-18 2009-09-14 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239462A JP2010071187A (en) 2008-09-18 2008-09-18 Fuel injection control device

Publications (1)

Publication Number Publication Date
JP2010071187A true JP2010071187A (en) 2010-04-02

Family

ID=42035174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239462A Pending JP2010071187A (en) 2008-09-18 2008-09-18 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP2010071187A (en)
DE (1) DE102009041479B4 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155319A (en) * 2011-05-30 2011-08-17 联合汽车电子有限公司 Engine fuel injection control method and engine fuel injection electronic control device
JP2013213444A (en) * 2012-04-02 2013-10-17 Denso Corp Fuel injection control device
JP2013256894A (en) * 2012-06-12 2013-12-26 Nippon Soken Inc Fuel pressure waveform acquisition device
US8820151B2 (en) 2010-12-07 2014-09-02 Toyota Jidosha Kabushiki Kaisha Cetane number estimation apparatus
CN104160134A (en) * 2012-03-09 2014-11-19 丰田自动车株式会社 Control device and control method for multi-cylinder internal combustion engine
DE102015113518A1 (en) 2014-09-02 2016-03-10 Denso Corporation Fuel density detecting means
KR102680618B1 (en) * 2022-12-29 2024-07-03 주식회사 현대케피코 Injection Control System and Method for GDI Engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200659A1 (en) * 2012-01-18 2013-07-18 Robert Bosch Gmbh Method for correcting an injection quantity in a multiple injection by an injector of an internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118652B2 (en) 2002-02-20 2008-07-16 株式会社デンソー Accumulated fuel injection system
JP4089244B2 (en) 2002-03-01 2008-05-28 株式会社デンソー Injection amount control device for internal combustion engine
DE10343759B4 (en) * 2003-09-22 2015-01-15 Robert Bosch Gmbh Method and device for determining the deviation of the actual injection quantity from a calculated reference injection quantity of a fuel injection system
DE102006043326A1 (en) * 2006-09-15 2008-03-27 Robert Bosch Gmbh Internal combustion engine e.g. diesel engine, controlling method for e.g. motor vehicle, involves varying temporal hydraulic distance between partial injections by proximate injecting process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820151B2 (en) 2010-12-07 2014-09-02 Toyota Jidosha Kabushiki Kaisha Cetane number estimation apparatus
CN102155319A (en) * 2011-05-30 2011-08-17 联合汽车电子有限公司 Engine fuel injection control method and engine fuel injection electronic control device
CN102155319B (en) * 2011-05-30 2013-12-25 联合汽车电子有限公司 Engine fuel injection control method and engine fuel injection electronic control device
CN104160134A (en) * 2012-03-09 2014-11-19 丰田自动车株式会社 Control device and control method for multi-cylinder internal combustion engine
JP2013213444A (en) * 2012-04-02 2013-10-17 Denso Corp Fuel injection control device
JP2013256894A (en) * 2012-06-12 2013-12-26 Nippon Soken Inc Fuel pressure waveform acquisition device
US9127613B2 (en) 2012-06-12 2015-09-08 Denso Corporation Fuel pressure waveform acquisition device
DE102015113518A1 (en) 2014-09-02 2016-03-10 Denso Corporation Fuel density detecting means
US9664605B2 (en) 2014-09-02 2017-05-30 Denso Corporation Fuel density detection device
DE102015113518B4 (en) 2014-09-02 2022-03-24 Denso Corporation fuel density detection device
KR102680618B1 (en) * 2022-12-29 2024-07-03 주식회사 현대케피코 Injection Control System and Method for GDI Engine

Also Published As

Publication number Publication date
DE102009041479B4 (en) 2017-06-08
DE102009041479A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP4582191B2 (en) Fuel injection control device and fuel injection system using the same
JP2010071187A (en) Fuel injection control device
JP5212501B2 (en) Fuel injection device
WO2007026887A1 (en) Fuel injection control device for diesel engine
JP5829953B2 (en) Control device for multi-cylinder internal combustion engine
JP4333549B2 (en) Fuel injection control device for internal combustion engine
JPH1182105A (en) Fuel injection method for engine and its device
JP2005155360A (en) Injection quantity control device for internal combustion engine
JP2004251272A (en) Fuel injection device
JP5939227B2 (en) Pump control device
JP6365591B2 (en) Control device for internal combustion engine
JP2010261334A (en) Fuel injection control device
JP2012122448A (en) Fuel injection control device
JP4475205B2 (en) Control device for common rail fuel injection system
US20070181095A1 (en) Fuel injection controller
JP4569598B2 (en) Pressure reducing valve control device and fuel injection system using the same
JP4900287B2 (en) Fuel supply control device and fuel supply system using the same
JP2000257478A (en) Fuel injection control unit for high-pressure fuel injection system
JP4983751B2 (en) Fuel injection control device
WO2016189803A1 (en) Internal-combustion engine high-pressure pump control device
US9732696B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP6863236B2 (en) Fuel injection control device
JP2000234543A (en) Fuel pressure control device for high pressure fuel injection system
JP2011140926A (en) Fuel injection control device of internal combustion engine
JP4470975B2 (en) Fuel injection control device and fuel injection system using the same