[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010064321A - Mold and method of manufacturing optical element using the same - Google Patents

Mold and method of manufacturing optical element using the same Download PDF

Info

Publication number
JP2010064321A
JP2010064321A JP2008231600A JP2008231600A JP2010064321A JP 2010064321 A JP2010064321 A JP 2010064321A JP 2008231600 A JP2008231600 A JP 2008231600A JP 2008231600 A JP2008231600 A JP 2008231600A JP 2010064321 A JP2010064321 A JP 2010064321A
Authority
JP
Japan
Prior art keywords
light
mold
resin
optical element
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008231600A
Other languages
Japanese (ja)
Inventor
Masatoshi Hayashi
政俊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008231600A priority Critical patent/JP2010064321A/en
Publication of JP2010064321A publication Critical patent/JP2010064321A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain locally almost uniform UV irradiation for e.g. a UV-hardenable resin, thus enable molding an optical element having desired performance. <P>SOLUTION: A mold (1) is used to mold an optical element (10) by irradiating a light-energy-hardenable resin (12) with light and formed of a base material having permeability to used light (Lu) and contains a plurality of light-scattering pieces (1a) which are arranged in the mold and scatter incident light. The light-scattering pieces have refractive indices different from that of the base material and a granular form and are distributed in the vicinity of the surface 1b having a fine structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光エネルギ硬化型の樹脂に光を照射して光学素子を成形するのに用いられる型、および該型を用いる光学素子の製造方法に関する。   The present invention relates to a mold used to mold an optical element by irradiating light onto a light energy curable resin, and a method of manufacturing an optical element using the mold.

型を用いて回折格子のような光学素子を成形する場合、型の形状が成型品の硬化状態に影響を及ぼすことがある。例えば、金属製の金型と光学素子の基材(基板)との間にUV硬化型(紫外線硬化型)の樹脂(以下、単に「UV樹脂」ともいう)を挟んだ状態で基板側からUV光(紫外線)を照射して硬化させる場合、金型の表面がミラーの役割を果たしたり影の部分を作ったりする。その結果、格子形状内のUV樹脂の硬化プロセスが不均一になる。   When an optical element such as a diffraction grating is molded using a mold, the shape of the mold may affect the cured state of the molded product. For example, a UV curable (ultraviolet curable) resin (hereinafter also simply referred to as “UV resin”) is sandwiched between a metal mold and a base material (substrate) of an optical element, and UV is applied from the substrate side. When cured by irradiating light (ultraviolet rays), the mold surface acts as a mirror or creates a shadow part. As a result, the curing process of the UV resin in the lattice shape becomes non-uniform.

また、例えば石英ガラスからなる光透過性の型を用いて光学素子を成形する場合も、UV光が型による屈折作用および回折作用を受けて、樹脂に対するUV光の照射が不均一になる。反射率の高い金属製の金型ほどではないが、樹脂と透過性の型との屈折率の差に起因して、その界面でのフレネル反射や周期的位相差によるUV光照射の不均一が生じる。ここで、UV光の照射不均一性とは、マクロな分布としての不均一性ではなく、格子構造の一周期の内側で見られるミクロな(局所的な)不均一性のことである。   In addition, when an optical element is molded using a light transmissive mold made of, for example, quartz glass, the UV light is refracted and diffracted by the mold, and the irradiation of the UV light on the resin becomes nonuniform. Although not as high as metal molds with high reflectivity, UV light irradiation is uneven due to Fresnel reflection and periodic phase difference at the interface due to the difference in refractive index between resin and transmissive mold. Arise. Here, the irradiation non-uniformity of the UV light is not a non-uniformity as a macro distribution but a micro (local) non-uniformity seen inside one period of the lattice structure.

マクロな分布としての照射不均一性については、光源の特性を調整する既存の技術によって解決することができる。一例として、UV光源と型との間またはUV光源と光学素子の基材との間、即ちUV樹脂と光源との間の光路中に拡散板を介在させることにより、マクロな意味でのUV光の照射均一性を高める技術が提案されている(例えば、特許文献1を参照)。   Irradiation non-uniformity as a macro distribution can be solved by an existing technique for adjusting the characteristics of the light source. As an example, UV light in a macro sense is obtained by interposing a diffusion plate in the optical path between the UV light source and the mold or between the UV light source and the optical element substrate, that is, between the UV resin and the light source. There has been proposed a technique for improving the irradiation uniformity (see, for example, Patent Document 1).

特開2005−173057号公報JP 2005-173057 A

確かに、光源からの光を拡散板などの作用により理想的に拡散させることにより、光学素子の基材や型などの対象物に入射する光がある程度の角度分布を持つことになり、対象物の全体に亘って略均一な光照射、すなわちマクロな照射均一性が可能になる。しかしながら、光源からの光を理想的に拡散させても、格子構造の一周期の内側で見られる局所的な照射不均一性を解消することはできない。   Certainly, the light from the light source is ideally diffused by the action of a diffuser plate, etc., so that the light incident on the object such as the base material or mold of the optical element has a certain degree of angular distribution. Thus, substantially uniform light irradiation, that is, macro irradiation uniformity can be achieved. However, even if the light from the light source is ideally diffused, the local irradiation nonuniformity seen inside one period of the lattice structure cannot be eliminated.

それは、拡散板が、硬化すべきUV樹脂からある程度離れて配置され、ひいては回折構造のサイズに比してかなり遠方に配置されるからである。その結果、基材や型などの対象物に入射するUV光の角度を十分に大きく分布させることができず、UV光の局所的な照射不均一が発生してしまう。   This is because the diffusing plate is arranged at some distance from the UV resin to be cured, and thus far away from the size of the diffractive structure. As a result, the angle of UV light incident on an object such as a substrate or a mold cannot be distributed sufficiently large, and local irradiation unevenness of UV light occurs.

このように、従来技術では、UV硬化型の樹脂に対するUV光の照射に局所的な不均一が発生し易い。このため、光学素子の微小構造の先端などに樹脂特性の局所的な不均一性が生じ、ひいては所望の性能を有する光学素子を製造することが困難である。   Thus, in the prior art, local non-uniformity is likely to occur in the irradiation of UV light to the UV curable resin. For this reason, local non-uniformity in resin characteristics occurs at the tip of the microstructure of the optical element, and as a result, it is difficult to manufacture an optical element having desired performance.

本発明は、前述の課題に鑑みてなされたものであり、例えばUV硬化型の樹脂に対して局所的にもほぼ均一なUV光照射を実現し、所望の性能を有する光学素子を成形することのできる型を提供することを目的とする。   The present invention has been made in view of the above-described problems. For example, a UV curable resin can be locally and substantially uniformly irradiated with UV light, and an optical element having a desired performance is molded. The purpose is to provide a mold that can be used.

前記課題を解決するために、本発明の第1形態では、光エネルギ硬化型の樹脂に光を照射して光学素子を成形するのに用いられる型において、
使用光に対して透過性を有する母材によって形成され、その内部に分布配置されて入射光を散乱させる複数の光散乱体を含んでいることを特徴とする型を提供する。
In order to solve the above problems, in the first embodiment of the present invention, in a mold used to mold an optical element by irradiating light to a light energy curable resin,
Provided is a mold characterized in that it includes a plurality of light scatterers that are formed of a base material that is transparent to the light used, and that are distributed in the interior to scatter incident light.

本発明の第2形態では、第1形態の型を用いて光学素子を製造する製造方法において、
前記型の表面に接するように光エネルギ硬化型の樹脂を配置して、前記型の側および前記樹脂の側のうちの少なくとも一方の側から光を照射することを特徴とする製造方法を提供する。
In the second embodiment of the present invention, in a manufacturing method for manufacturing an optical element using the mold of the first embodiment,
Provided is a manufacturing method characterized in that a light energy curable resin is disposed so as to be in contact with the surface of the mold, and light is irradiated from at least one of the mold side and the resin side. .

光エネルギ硬化型の樹脂に光を照射して光学素子を成形するのに用いられる本発明の型は、使用光に対して透過性を有する母材によって形成され、その内部に分布配置されて入射光を散乱させる複数の光散乱体を含んでいる。この構成では、複数の光散乱体を含む型自体が拡散板の役割を果たすため、型の表面に接する樹脂の微細構造の隅々まで光がほぼ均一に照射される。その結果、本発明の型では、例えばUV硬化型の樹脂に対して局所的にもほぼ均一なUV光照射を実現し、所望の性能を有する光学素子を成形することができる。   The mold of the present invention used to mold an optical element by irradiating light onto a light energy curable resin is formed of a base material that is transparent to the light used, and is distributed and arranged inside the mold. It includes a plurality of light scatterers that scatter light. In this configuration, since the mold itself including a plurality of light scatterers serves as a diffusion plate, light is irradiated almost uniformly to every corner of the resin fine structure in contact with the surface of the mold. As a result, in the mold of the present invention, for example, UV irradiation can be performed evenly locally on a UV curable resin, and an optical element having desired performance can be molded.

以下、具体的な実施形態の説明に先立って、本発明の基本的な考え方について説明する。上述したように、従来技術ではUV硬化型の樹脂に対するUV光の照射に局所的な不均一が発生し易いが、この局所的な照射不均一性は硬化後の樹脂の屈折率および内部応力に影響する。UV硬化型の樹脂は、含有される硬化開始剤にある一定エネルギー量以上のUV光が照射されることにより周辺のモノマーの硬化をスタートさせる。樹脂に照射されるUV光に局所的な分布があれば、その局所的な分布に応じて樹脂の硬化順序にも局所的な分布が発生する。   The basic concept of the present invention will be described below prior to describing specific embodiments. As described above, in the prior art, local non-uniformity is likely to occur in the irradiation of UV light with respect to the UV curable resin. This local non-uniformity is caused by the refractive index and internal stress of the cured resin. Affect. The UV curable resin starts curing of surrounding monomers by irradiating the contained curing initiator with UV light having a certain energy amount or more. If the UV light applied to the resin has a local distribution, a local distribution also occurs in the curing order of the resin according to the local distribution.

一方、UV硬化型の樹脂では硬化収縮が発生し、この硬化収縮により屈折率が上昇することが知られている。また、何らかの理由により硬化収縮が不完全な場合には、硬化後の樹脂に内部応力が蓄積され、その内部応力によって屈折率が異なる分布を呈する。すなわち、UV光の局所的な照射不均一性は、硬化後の樹脂に内部応力を蓄積させ、硬化後の樹脂の屈折率を局所的に不均一にする。例えば光学素子としての回折格子の一周期内において、同一周期内に屈折率ムラがあると、回折光の位相分布が設計上の位相分布と異なってしまうことが容易に予想できる。   On the other hand, it is known that curing shrinkage occurs in a UV curable resin, and the refractive index increases due to the curing shrinkage. Further, when curing shrinkage is incomplete for some reason, internal stress is accumulated in the cured resin, and the refractive index varies depending on the internal stress. That is, the local irradiation non-uniformity of the UV light causes internal stress to accumulate in the cured resin and makes the refractive index of the cured resin locally non-uniform. For example, it can be easily predicted that the phase distribution of the diffracted light will be different from the designed phase distribution if there is refractive index unevenness within the same period in one period of the diffraction grating as an optical element.

本発明では、例えばUV光のような使用光に対して透過性を有する材料(母材)によって型を形成し、その内部に入射光を散乱させる複数の光散乱体を分布させている。ここで、光散乱体は、例えば、粒状の形態を有し、且つ母材とは異なる屈折率を有する。その結果、本発明の型では、複数の光散乱体を含む型自体が拡散板の役割を果たし、型の表面に接する樹脂の微細構造の隅々までUV光がまんべんなく均一に照射されることになる。   In the present invention, for example, a mold is formed of a material (matrix) that is transparent to use light such as UV light, and a plurality of light scatterers that scatter incident light are distributed therein. Here, the light scatterer has, for example, a granular form and a refractive index different from that of the base material. As a result, in the mold of the present invention, the mold itself including a plurality of light scatterers serves as a diffusion plate, and UV light is uniformly and uniformly irradiated to every corner of the resin fine structure in contact with the mold surface. Become.

本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる型の構成、および該型を用いて光学素子を製造する方法を概略的に示す図である。本実施形態では、一例として、UV硬化型(紫外線硬化型)の樹脂にUV光(紫外線)を照射してハイブリッド型の回折格子を成形するための型および製造方法に対して本発明を適用している。   Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing a configuration of a mold according to an embodiment of the present invention and a method for manufacturing an optical element using the mold. In this embodiment, as an example, the present invention is applied to a mold and a manufacturing method for forming a hybrid diffraction grating by irradiating a UV curable (ultraviolet curable) resin with UV light (ultraviolet light). ing.

図1を参照すると、本実施形態の型1は、使用光であるUV光Luに対して透過性を有する光学材料(母材)によって形成されている。そして、型1の内部には、入射光を散乱させる多数の光散乱体1aが分布配置されている。光散乱体1aは、粒状の形態を有し、且つ母材とは異なる屈折率を有する。   Referring to FIG. 1, the mold 1 of the present embodiment is formed of an optical material (base material) that is transparent to UV light Lu that is used light. A large number of light scatterers 1 a that scatter incident light are distributed in the mold 1. The light scatterer 1a has a granular form and a refractive index different from that of the base material.

型1の表面1bには、製造すべきハイブリッド型の回折格子10の回折光学面に対応した微細構造のパターンが形成されている。ただし、図1では、図面の明瞭化のために、表面1bの形状を単純化して示している。光散乱体1aは、型1の内部において所要の分布にしたがって配置されているが、とりわけ、微細構造を有する表面1bの近傍の領域に分布していることが重要である。   On the surface 1 b of the mold 1, a fine pattern corresponding to the diffractive optical surface of the hybrid diffraction grating 10 to be manufactured is formed. However, in FIG. 1, the shape of the surface 1b is shown in a simplified manner for the sake of clarity of the drawing. The light scatterers 1a are arranged in the mold 1 in accordance with a required distribution. In particular, it is important that the light scatterers 1a are distributed in a region near the surface 1b having a fine structure.

本実施形態の製造方法では、図1に示すように、例えば石英ガラス基板のような光透過性の基材11と型1の表面1bとの間にUV硬化型の樹脂12を挟んで、型1の基底面1cの側および基材11の側からUV光Luを照射する。この場合、図2に示すように、型1の基底面1c(図2では不図示)の側から照射されたUV光Luは、型1の内部に分布する光散乱体1aによって散乱された後、型1と樹脂12との界面から樹脂12に向かってほぼ均一に出射される。   In the manufacturing method of the present embodiment, as shown in FIG. 1, a UV curable resin 12 is sandwiched between a light-transmitting base material 11 such as a quartz glass substrate and the surface 1b of the mold 1, and a mold is formed. 1 is irradiated with UV light Lu from the base surface 1c side and the substrate 11 side. In this case, as shown in FIG. 2, the UV light Lu irradiated from the base 1c (not shown in FIG. 2) side of the mold 1 is scattered by the light scatterers 1a distributed inside the mold 1. The light is emitted almost uniformly from the interface between the mold 1 and the resin 12 toward the resin 12.

また、図3に示すように、基材11(図2では不図示)の側から照射されたUV光Luは、基材11、樹脂12、および樹脂12と型1との界面を透過して、型1の内部に入射する。型1の内部に入射したUV光Luは、型1の内部において表面1bの近傍の領域に分布する光散乱体1aによって散乱された後、型1と樹脂12との界面から樹脂12に向かってほぼ均一に出射される。   Further, as shown in FIG. 3, the UV light Lu irradiated from the side of the base material 11 (not shown in FIG. 2) is transmitted through the base material 11, the resin 12, and the interface between the resin 12 and the mold 1. , Enters the inside of the mold 1. The UV light Lu incident on the inside of the mold 1 is scattered by the light scatterer 1a distributed in the region in the vicinity of the surface 1b inside the mold 1 and then toward the resin 12 from the interface between the mold 1 and the resin 12. It is emitted almost uniformly.

このように、本実施形態では、使用光であるUV光に対して透過性を有する材料によって型1を形成し、その内部に(とりわけ微細構造を有する表面1bの近傍の領域に)入射光を散乱させる多数の光散乱体1aを分布させている。したがって、本実施形態の型1は、表面1bの微細構造の近傍においてUV光を散乱させる機能を有する。   As described above, in the present embodiment, the mold 1 is formed of a material that is transparent to the UV light that is the used light, and incident light is emitted into the mold 1 (particularly in a region near the surface 1b having a fine structure). A number of light scatterers 1a to be scattered are distributed. Therefore, the mold 1 of this embodiment has a function of scattering UV light in the vicinity of the fine structure of the surface 1b.

こうして、本実施形態では、多数の光散乱体1aを含む型1自体が拡散板の役割を果たし、型1の表面1bに接する樹脂12の微細構造の隅々までUV光が均一に照射される。その結果、本実施形態の型および該型を用いる製造方法では、UV硬化型の樹脂12に対して局所的にもほぼ均一なUV光照射を実現し、所望の性能を有するハイブリッド型の回折格子10(11,12)を成形することができる。   Thus, in this embodiment, the mold 1 including a large number of light scatterers 1a serves as a diffusion plate, and UV light is uniformly irradiated to every corner of the fine structure of the resin 12 in contact with the surface 1b of the mold 1. . As a result, in the mold of the present embodiment and the manufacturing method using the mold, a hybrid diffraction grating that achieves substantially uniform UV light irradiation locally on the UV curable resin 12 and has desired performance. 10 (11, 12) can be molded.

具体的に、本実施形態では、型1の表面1bの微細構造内のUV樹脂12にほぼ均一にUV光Luを照射することができるので、ハイブリッド型の回折格子10を構成する硬化後の樹脂12の屈折率や内部応力の均一性を全体的にも局所的にも向上させることができる。   Specifically, in the present embodiment, the UV resin 12 in the microstructure of the surface 1b of the mold 1 can be irradiated with the UV light Lu almost uniformly, so that the cured resin constituting the hybrid diffraction grating 10 is cured. The uniformity of the refractive index of 12 and the internal stress can be improved both locally and locally.

以下、数値例にしたがって、本実施形態の作用効果を検証する。各数値例では、屈折率が1.53のUV樹脂を用い、波長が350nmのUV光の平面波を垂直入射させて、ピッチが20μmで高さが20μmのブレーズ格子を成形するという条件で、RCWA法による解析を行った。以下、RCWA法について簡単に説明する。   Hereinafter, the operational effects of the present embodiment will be verified according to numerical examples. In each numerical example, an RCWA is used under the condition that a UV resin having a refractive index of 1.53 is used, a plane wave of UV light having a wavelength of 350 nm is vertically incident, and a blazed grating having a pitch of 20 μm and a height of 20 μm is formed. Analysis by the method was performed. The RCWA method will be briefly described below.

RCWA(Rigorous Coupled Wave Analysis)法とは、周期構造の厳密的な電磁界解析方法の一つである。RCWA法は、誘電率分布をフーリエ級数展開で表現し、電磁場との結合方程式を求め、これを境界条件の下で数値的に解くことにより回折効率を算出する計算手法である。周期構造を高さ方向に多層分割して、各層の電磁界はMaxwell方程式の固有モードで展開して取り扱う。電磁場を3次元で解析するので、使用するパラメータは電界E,磁界Hの各次元成分(Ex,Ey,Ez,Hx,Hy,Hz)である。   The RCWA (Rigorous Coupled Wave Analysis) method is one of strict electromagnetic field analysis methods for periodic structures. The RCWA method is a calculation method for calculating a diffraction efficiency by expressing a dielectric constant distribution by Fourier series expansion, obtaining a coupling equation with an electromagnetic field, and solving this numerically under boundary conditions. The periodic structure is divided into multiple layers in the height direction, and the electromagnetic field of each layer is handled by developing it in the eigenmode of the Maxwell equation. Since the electromagnetic field is analyzed in three dimensions, the parameters used are the dimensional components (Ex, Ey, Ez, Hx, Hy, Hz) of the electric field E and the magnetic field H.

簡略化のために直線偏光を考えたとき、電界Eと磁界Hとは直交するため、以下の成分のみの表示となる。ただし、回折格子面はXY平面内。溝はY軸に平行。光線入射方向はZ方向。
TEモード(電界が溝に平行な偏波) Hx,Ey,Hz
TMモード(電界が溝に垂直) Ex,Hy,Ez
When linearly polarized light is considered for simplification, since the electric field E and the magnetic field H are orthogonal, only the following components are displayed. However, the diffraction grating surface is in the XY plane. The groove is parallel to the Y axis. Light incident direction is Z direction.
TE mode (polarization where the electric field is parallel to the groove) Hx, Ey, Hz
TM mode (electric field perpendicular to groove) Ex, Hy, Ez

ここで、求めるのは回折効率ではなく、ニアフィールドでの電磁界分布である。RCWA法では、各場所における電磁界分布を算出することもできる。具体的には、型の格子形状に挟まれたUV硬化型の樹脂中にUV光を照射したときの電磁界強度分布に偏りがあるかどうかを調べる。したがって、入射光としてTEモードの波長350nmの平面波を用い、計算結果としてHx,Ey,Hzの強度マップを得る。強度分布にムラがあるかどうかを判断するには、Hx,Ey,Hzのうちの1つを見ればよい。   Here, what is required is not the diffraction efficiency but the electromagnetic field distribution in the near field. In the RCWA method, the electromagnetic field distribution at each location can also be calculated. Specifically, it is examined whether there is a bias in the electromagnetic field intensity distribution when UV light is irradiated in a UV curable resin sandwiched between mold shapes. Therefore, a plane wave having a wavelength of 350 nm in TE mode is used as incident light, and an intensity map of Hx, Ey, Hz is obtained as a calculation result. In order to determine whether the intensity distribution is uneven, one of Hx, Ey, and Hz may be viewed.

以下の図4〜図6では、光の磁界成分Hxの強度分布を、数値シミュレーションを行なった結果のマッピングデータの形態で示している。図4〜図6では、色の濃い部分の強度が高い。したがって、樹脂の硬化についても、色の濃い部分、即ち電磁界の強い領域において先行して反応が行われることが予想できる。   4 to 6 below, the intensity distribution of the magnetic field component Hx of light is shown in the form of mapping data as a result of numerical simulation. In FIGS. 4-6, the intensity | strength of a dark part is high. Accordingly, it can be expected that the resin is cured in advance in a dark portion, that is, in a region where the electromagnetic field is strong.

図4および図5は、第1比較例および第2比較例においてUV樹脂が硬化するときのUV光の磁界成分Hxの強度分布を示す図である。図6は、本実施例においてUV樹脂が硬化するときのUV光の磁界成分Hxの強度分布を示す図である。また、図7および図8は、第1比較例および第2比較例のZ=10μmにおけるX方向位置とUV光の磁界成分Hxとの関係を示す図である。図9は、本実施例のZ=10μmにおけるX方向位置とUV光の磁界成分Hxとの関係を示す図である。すなわち、図7〜図9では、Z=10μmで、X=−10μm〜+10μmの各位置におけるUV光の磁界成分Hxの振幅(パワー)を示している。   4 and 5 are diagrams showing the intensity distribution of the magnetic field component Hx of the UV light when the UV resin is cured in the first comparative example and the second comparative example. FIG. 6 is a diagram illustrating the intensity distribution of the magnetic field component Hx of the UV light when the UV resin is cured in the present embodiment. 7 and 8 are diagrams showing the relationship between the X-direction position at Z = 10 μm and the magnetic field component Hx of the UV light in the first comparative example and the second comparative example. FIG. 9 is a diagram illustrating the relationship between the position in the X direction at Z = 10 μm and the magnetic field component Hx of the UV light in the present embodiment. That is, FIGS. 7 to 9 show the amplitude (power) of the magnetic field component Hx of the UV light at each position of Z = 10 μm and X = −10 μm to +10 μm.

図4の第1比較例では、屈折率(n)が1.6で消光係数(k)が2.2の複素屈折率を有する金属により形成された金型41を用いて、UV樹脂12の側からUV光の平面波を垂直入射させている。図5の第2比較例では、1.49の屈折率を有する光透過性の材料により形成された型51を用いて、型51の側からUV光の平面波を垂直入射させている。図6の本実施例では、1.49の屈折率を有する光透過性の材料(母材)により形成され且つ屈折率が2.0で直径が0.2μmの球状の光散乱体1aが分布配置された型1を用いて、型1の側からUV光の平面波を垂直入射させている。   In the first comparative example of FIG. 4, a mold 41 made of a metal having a complex refractive index with a refractive index (n) of 1.6 and an extinction coefficient (k) of 2.2 is used. A plane wave of UV light is vertically incident from the side. In the second comparative example of FIG. 5, a plane wave of UV light is vertically incident from the side of the mold 51 using a mold 51 formed of a light transmissive material having a refractive index of 1.49. In the present embodiment of FIG. 6, a spherical light scatterer 1a formed of a light-transmitting material (base material) having a refractive index of 1.49, having a refractive index of 2.0 and a diameter of 0.2 μm is distributed. Using the arranged mold 1, a plane wave of UV light is vertically incident from the mold 1 side.

成形された回折格子のエッジ近傍に着目すると、第1比較例および第2比較例では、特にX=0μm〜−1μmの範囲に磁界成分Hxの小さい領域が存在し、硬化後の樹脂中に屈折率分布を生じることが予想される。これに対して、本実施例では、磁界成分Hxが局所的に小さくなる部分は存在するものの、その間隔は光の波長に比して無視できる程度に小さいので、仮に硬化後の樹脂中に磁界成分Hxの大小に応じた屈折率分布を生じたとしても、光に対しては平均的な屈折率を有するものとして応答する。すなわち、本実施例における磁界成分Hxの分布は実質的に無視できるものである。   Focusing on the vicinity of the edge of the formed diffraction grating, in the first comparative example and the second comparative example, a region having a small magnetic field component Hx exists particularly in the range of X = 0 μm to −1 μm, and the resin is refracted after curing. It is expected to produce a rate distribution. On the other hand, in this embodiment, although there is a portion where the magnetic field component Hx is locally reduced, the interval is so small as to be negligible as compared with the wavelength of light. Even if a refractive index distribution corresponding to the magnitude of the component Hx is generated, it responds to the light as having an average refractive index. That is, the distribution of the magnetic field component Hx in the present embodiment is substantially negligible.

さらに、本実施例のシミュレーションは、Y方向(図6の紙面に垂直な方向)の一断面における計算に過ぎない。実際には、型の内部の光散乱体はY方向にランダムに分布しているから、樹脂中に形成される磁界成分Hxの分布もランダムになり、Y方向に平均化されてほぼ均一になる。これに対して、第1比較例および第2比較例では、型中に光散乱体を含まないので、磁界成分Hxの分布はY方向に一様であり、格子エッジの全長に亘ってエッジから1μmの領域では常に照射光量が不足する条件となってしまう。   Furthermore, the simulation of the present embodiment is only a calculation in one cross section in the Y direction (direction perpendicular to the paper surface of FIG. 6). Actually, since the light scatterers inside the mold are randomly distributed in the Y direction, the distribution of the magnetic field component Hx formed in the resin is also random, averaged in the Y direction, and substantially uniform. . On the other hand, in the first comparative example and the second comparative example, since the light scatterer is not included in the mold, the distribution of the magnetic field component Hx is uniform in the Y direction, and from the edge over the entire length of the grating edge. In the region of 1 μm, the irradiation light quantity is always insufficient.

なお、上述の実施形態では、基材11と型1の表面1bとの間にUV硬化型の樹脂12を挟んで、型1の基底面1cの側および基材11の側からUV光Luを照射している。しかしながら、これに限定されることなく、型の側および基材の側のうちの少なくとも一方の側からUV光を照射することにより、上述の実施形態と同様の効果を得ることができる。ただし、使用光に対して透過性を有しない基材を用いる場合には、型の側からのみUV光を照射することになる。また、光透過性の基材を用いていずれか一方の側からUV光を照射する場合には、型の側からUV光を照射することが好ましい。   In the above-described embodiment, the UV curable resin 12 is sandwiched between the base material 11 and the surface 1b of the mold 1, and the UV light Lu is emitted from the base 1c side of the mold 1 and the base material 11 side. Irradiating. However, the present invention is not limited to this. By irradiating UV light from at least one of the mold side and the substrate side, the same effects as those of the above-described embodiment can be obtained. However, in the case of using a base material that is not transmissive to the used light, the UV light is irradiated only from the mold side. Moreover, when irradiating UV light from either side using a light-transmitting substrate, it is preferable to irradiate UV light from the mold side.

また、上述の実施形態では、UV硬化型の樹脂にUV光を照射してハイブリッド型の回折格子を成形している。しかしながら、UV硬化型の樹脂およびハイブリッド型の回折格子に限定されることなく、光エネルギ硬化型の樹脂に所要の光を照射して他の適当な光学素子を成形することができる。基材を有しない非ハイブリッド型の光学素子を成形する場合には、型の表面に接するように光エネルギ硬化型の樹脂を配置して、型の側および樹脂の側のうちの少なくとも一方の側から光を照射すれば良い。   Further, in the above-described embodiment, the hybrid diffractive grating is formed by irradiating the UV curable resin with UV light. However, the present invention is not limited to the UV curable resin and the hybrid diffraction grating, and other appropriate optical elements can be formed by irradiating the light energy curable resin with necessary light. When molding a non-hybrid optical element that does not have a substrate, a light energy curable resin is disposed so as to contact the surface of the mold, and at least one of the mold side and the resin side is arranged. It is sufficient to irradiate light from.

本発明の実施形態にかかる型の構成、および該型を用いて光学素子を製造する方法を概略的に示す図である。It is a figure which shows roughly the structure of the type | mold concerning embodiment of this invention, and the method of manufacturing an optical element using this type | mold. 型の側から照射されたUV光が界面から樹脂に向かってほぼ均一に出射される様子を示す図である。It is a figure which shows a mode that UV light irradiated from the type | mold side is radiate | emitted from the interface toward resin substantially uniformly. 基材の側から照射されたUV光が界面から樹脂に向かってほぼ均一に出射される様子を示す図である。It is a figure which shows a mode that the UV light irradiated from the base-material side is radiate | emitted substantially uniformly toward the resin from the interface. 第1比較例においてUV樹脂が硬化するときのUV光の磁界成分Hxの強度分布を示す図である。It is a figure which shows intensity distribution of the magnetic field component Hx of UV light when UV resin hardens | cures in a 1st comparative example. 第2比較例においてUV樹脂が硬化するときのUV光の磁界成分Hxの強度分布を示す図である。It is a figure which shows intensity distribution of the magnetic field component Hx of UV light when UV resin hardens | cures in a 2nd comparative example. 本実施例においてUV樹脂が硬化するときのUV光の磁界成分Hxの強度分布を示す図である。It is a figure which shows intensity distribution of the magnetic field component Hx of UV light when UV resin hardens | cures in a present Example. 第1比較例のZ=10μmにおけるX方向位置とUV光の磁界成分Hxとの関係を示す図である。It is a figure which shows the relationship between the X direction position in Z = 10micrometer of a 1st comparative example, and the magnetic field component Hx of UV light. 第2比較例のZ=10μmにおけるX方向位置とUV光の磁界成分Hxとの関係を示す図である。It is a figure which shows the relationship between the X direction position in Z = 10micrometer of 2nd comparative example, and the magnetic field component Hx of UV light. 本実施例のZ=10μmにおけるX方向位置とUV光の磁界成分Hxとの関係を示す図である。It is a figure which shows the relationship between the X direction position in Z = 10 micrometer of a present Example, and the magnetic field component Hx of UV light.

符号の説明Explanation of symbols

1 型
1a 光散乱体
1b 型の表面
1c 型の基底面
10 ハイブリッド型の回折格子
11 回折格子の基材
12 UV樹脂
Lu UV光
1 type 1a light scatterer 1b type surface 1c type basal plane 10 hybrid diffraction grating 11 diffraction grating substrate 12 UV resin Lu UV light

Claims (8)

光エネルギ硬化型の樹脂に光を照射して光学素子を成形するのに用いられる型において、
使用光に対して透過性を有する母材によって形成され、その内部に分布配置されて入射光を散乱させる複数の光散乱体を含んでいることを特徴とする型。
In a mold used to mold an optical element by irradiating light onto a light energy curable resin,
A mold comprising a plurality of light scatterers that are formed of a base material that is transmissive to the light used, and that are distributed in the interior to scatter incident light.
前記光散乱体は、前記母材とは異なる屈折率を有することを特徴とする請求項1に記載の型。 The mold according to claim 1, wherein the light scatterer has a refractive index different from that of the base material. 前記光散乱体は、粒状の形態を有することを特徴とする請求項1または2に記載の型。 The mold according to claim 1, wherein the light scatterer has a granular form. 前記複数の光散乱体は、微細構造を有する表面の近傍の領域に分布していることを特徴とする請求項1乃至3のいずれか1項に記載の型。 The mold according to any one of claims 1 to 3, wherein the plurality of light scatterers are distributed in a region in the vicinity of a surface having a fine structure. 前記母材は、紫外線に対して透過性を有することを特徴とする請求項1乃至4のいずれか1項に記載の型。 The mold according to any one of claims 1 to 4, wherein the base material is permeable to ultraviolet rays. 請求項1乃至5のいずれか1項に記載の型を用いて光学素子を製造する製造方法において、
前記型の表面に接するように光エネルギ硬化型の樹脂を配置して、前記型の側および前記樹脂の側のうちの少なくとも一方の側から光を照射することを特徴とする製造方法。
In the manufacturing method which manufactures an optical element using the type | mold of any one of Claims 1 thru | or 5,
A manufacturing method, wherein a light energy curable resin is disposed so as to be in contact with the surface of the mold, and light is irradiated from at least one of the mold side and the resin side.
前記光学素子の基材と前記型の表面との間に前記樹脂を挟んで、前記型の側および前記基材の側のうちの少なくとも一方の側から光を照射することを特徴とする請求項6に記載の製造方法。 The light is irradiated from at least one of the mold side and the substrate side with the resin sandwiched between the base of the optical element and the surface of the mold. 6. The production method according to 6. 前記型の側から光を照射することを特徴とする請求項6または7に記載の製造方法。 The manufacturing method according to claim 6, wherein light is irradiated from the mold side.
JP2008231600A 2008-09-10 2008-09-10 Mold and method of manufacturing optical element using the same Pending JP2010064321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231600A JP2010064321A (en) 2008-09-10 2008-09-10 Mold and method of manufacturing optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231600A JP2010064321A (en) 2008-09-10 2008-09-10 Mold and method of manufacturing optical element using the same

Publications (1)

Publication Number Publication Date
JP2010064321A true JP2010064321A (en) 2010-03-25

Family

ID=42190335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231600A Pending JP2010064321A (en) 2008-09-10 2008-09-10 Mold and method of manufacturing optical element using the same

Country Status (1)

Country Link
JP (1) JP2010064321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235461A (en) * 2010-05-06 2011-11-24 Asahi Kasei E-Materials Corp Method for producing plastic lens or optical waveguide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216501A (en) * 2006-02-16 2007-08-30 Kri Inc Method for producing pattern forming mold and pattern forming mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216501A (en) * 2006-02-16 2007-08-30 Kri Inc Method for producing pattern forming mold and pattern forming mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235461A (en) * 2010-05-06 2011-11-24 Asahi Kasei E-Materials Corp Method for producing plastic lens or optical waveguide

Similar Documents

Publication Publication Date Title
Ishii et al. Holey-metal lenses: sieving single modes with proper phases
Liang et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography
CN107229088B (en) Optical microstructure, manufacturing method of optical microstructure layer, light guide assembly and display device
KR101945661B1 (en) Diffusion plate
US20100020400A1 (en) Diffractive optical element, method for manufacturing diffractive optical element, and laser beam machining method
EP3529663B1 (en) A photolithography device for generating pattern on a photoresist substrate
US11396474B2 (en) Method for manufacturing a device for forming at least one focused beam in a near zone
KR20100116523A (en) Antireflection optical element, and method for producing original board
JP2017083815A (en) Diffuser panel, method of designing diffuser panel, method of manufacturing diffuser panel, display device, projection device, and illumination device
JP2013205512A (en) Light diffusion film, polarization plate, image forming apparatus, and display device
JP2015069834A (en) Light guide plate and surface light source device
JP2022531173A (en) Diffractive backlight manufacturing method
KR20210118868A (en) diffuser plate
Wang et al. Geometrically tunable beamed light emission from a quantum‐dot ensemble near a gradient metasurface
KR20130090899A (en) Backlight module, display device and fabricating method of grid points on light guiding plate and light guiding plate
CN106569360A (en) Light guide sheet, backlight apparatus and liquid crystal display apparatus
JP5942528B2 (en) Light diffusing film, polarizing plate, image forming apparatus and display device
JP5942527B2 (en) Method for designing light diffusing film, method for producing light diffusing film, and method for evaluating diffusion characteristics of light diffusing film
JP6266256B2 (en) Grating scale
WO2005085916A1 (en) Light control film and backlight device using it
JP2010064321A (en) Mold and method of manufacturing optical element using the same
JP2013104960A (en) Photomask and exposure method
KR100317881B1 (en) Plane light source unit and method for manufacturing hologram waveguide used for the same
JP5359624B2 (en) Method and apparatus for manufacturing diffractive optical element
JP4892939B2 (en) Backlight light guide plate for liquid crystal display device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730