[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010062299A - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
JP2010062299A
JP2010062299A JP2008225972A JP2008225972A JP2010062299A JP 2010062299 A JP2010062299 A JP 2010062299A JP 2008225972 A JP2008225972 A JP 2008225972A JP 2008225972 A JP2008225972 A JP 2008225972A JP 2010062299 A JP2010062299 A JP 2010062299A
Authority
JP
Japan
Prior art keywords
positive electrode
positive
active material
negative electrode
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008225972A
Other languages
Japanese (ja)
Inventor
Osamu Terabayashi
治 寺林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008225972A priority Critical patent/JP2010062299A/en
Publication of JP2010062299A publication Critical patent/JP2010062299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electricity storage device that is capable of preventing a reduction in volume energy density while achieving high power output even when using a positive electrode including particles of activated carbon or the like which have pores. <P>SOLUTION: In the electricity storage device, a closed container 4 contains a power generation cell, in which a positive electrode 2 and a negative electrode 1 are opposed to each other across a separator, and a lithium metal electrically connected to the negative electrode with the power generation cell and the lithium metal immersed in a nonaqueous electrolyte solvent 40. The negative electrode is pre-doped, and the positive electrode includes at least a positive-electrode active material, a conductive material, and a binder. When the converted specific surface area of the positive-electrode active material, which is measured by a laser diffraction/scatter type particle size distribution measuring apparatus, is defined as CS1, the real density of the positive-electrode active material is defined as ρ1, the ratio by weight of the positive-electrode active material is defined as W1, the converted specific surface area of the conductive material, which is measured by the apparatus, is defined as CS2, the real density of the conductive material is defined as ρ2, and the ratio by weight of the conductive material is defined as W2, the following formula is satisfied: 0.5<R=(CS2/ρ2×W2)/(CS1/ρ1×W1)<2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に、正極活物質などとして活性炭などの細孔を有する粒子が用いられている正極を備えたリチウムイオンキャパシタなどの蓄電デバイスに関するものである。   The present invention particularly relates to a power storage device such as a lithium ion capacitor including a positive electrode in which particles having pores such as activated carbon are used as a positive electrode active material.

近年、環境問題がクローズアップされる中にて、小規模の電力供給設備を電力需要地に分散配置する分散型電源の研究や環境に優しい新たなエネルギー源の開拓がなされている。それらの一環として、太陽光発電や風力発電により得られる電力は、分散型電源として使用可能である環境負担の少ないクリーンエネルギーとして注目されているものの、気象条件によって左右されてしまうため常時安定的に得られれるエネルギー源ではなく、これらのクリーンエネルギーを日常的に使用するためには、得られた電力を蓄積して、必要な時に必要な量だけ安定的に放出可能とする蓄電デバイスが必要となる。   In recent years, as environmental problems have been highlighted, research on distributed power sources in which small-scale power supply facilities are distributed in power demand areas and the development of new environmentally friendly energy sources have been conducted. As part of these efforts, the power generated by solar and wind power generation is attracting attention as a clean energy source that can be used as a distributed power source and has a low environmental burden. In order to use these clean energy on a daily basis instead of the energy source that can be obtained, an electricity storage device that accumulates the obtained electric power and can stably discharge the necessary amount when necessary is required. Become.

そこで、このような蓄電デバイスとして、リチウムイオンキャパシタなどの使用が期待されている。
このリチウムイオンキャパシタは、例えば、正極板と負極板とが、互いの間にセパレータを介在させて複数積層されるとともに、電解液に浸漬された状態で密閉容器に収容されて概略構成されている。
Therefore, use of a lithium ion capacitor or the like is expected as such an electricity storage device.
In this lithium ion capacitor, for example, a plurality of positive electrode plates and negative electrode plates are laminated with a separator interposed therebetween, and the lithium ion capacitor is schematically configured by being accommodated in an airtight container while being immersed in an electrolytic solution. .

そして、この正極板には、正極合剤層が、ニッケル箔やアルミニウム箔の金属箔からなる集電体の両面に形成されており、この正極合剤層は、少なくとも正極活物質、導電剤およびバインダーが含有されているとともに、この正極活物質としてリチウムイオンおよび/またはアニオンが可逆的に担持可能な活性炭などの炭素が用いられている。   In this positive electrode plate, a positive electrode mixture layer is formed on both surfaces of a current collector made of a metal foil such as a nickel foil or an aluminum foil. The positive electrode mixture layer includes at least a positive electrode active material, a conductive agent, and In addition to containing a binder, carbon such as activated carbon capable of reversibly supporting lithium ions and / or anions is used as the positive electrode active material.

他方、負極板には、リチウムイオンなどのアルカリ金属イオンの吸蔵・放出が可能な炭素材料からなる負極合剤層が、銅箔などの金属箔からなる集電体の両面に形成されている。また、この密閉容器内には、リチウム金属などが負極の集電体などに貼り付けられて、負極板は、このリチウム金属から電解液に溶出したリチウムイオンを吸蔵・放出するようになっている。   On the other hand, a negative electrode mixture layer made of a carbon material capable of occluding and releasing alkali metal ions such as lithium ions is formed on both sides of a current collector made of a metal foil such as a copper foil. Further, in this sealed container, lithium metal or the like is attached to a current collector or the like of the negative electrode, and the negative electrode plate occludes / releases lithium ions eluted from the lithium metal into the electrolytic solution. .

これにより、リチウムイオンキャパシタは、正極ではリチウムイオンおよび/またはアニオンの可逆的な担持、負極ではリチウムイオンなどの吸蔵・放出によって充放電し、従って、リチウムイオン二次電池と比べて電気容量が小さいものの、化学反応を伴わないために、低抵抗、すなわち、高出力で充放電速度が速い上に、充放電の繰り返し対する耐久性を有して充放電特性に優れている。また、上記負極合剤層に予めリチウムイオン等を吸蔵させるプレドープを行って動作電圧を大きくすることにより、エネルギー容量を増大させることができる。   As a result, the lithium ion capacitor is charged / discharged by reversible loading of lithium ions and / or anions at the positive electrode and insertion / release of lithium ions etc. at the negative electrode, and thus has a smaller electric capacity than a lithium ion secondary battery. However, since it does not involve a chemical reaction, it has low resistance, that is, high output and high charge / discharge speed, and has durability against repeated charge / discharge, and is excellent in charge / discharge characteristics. In addition, the energy capacity can be increased by pre-doping the negative electrode mixture layer in advance with lithium ions or the like to increase the operating voltage.

これに加えて、リチウムイオンキャパシタは、大電流用途に利用される板状の電極とセパレータとを多数積層してなる単一の電気二重層キャパシタと比較しても、電気二重層キャパシタの耐電圧が水系電解液で約1.3V、有機溶媒系電解液で約2.5Vと低いために、エネルギー密度が小さくなるのに対して、高容量の小スペース型電源として利用可能である。換言すると、リチウムイオンキャパシタは、リチウムイオン二次電池よりも充放電特性に優れて高出力な上に、電気二重層キャパシタよりも高容量・小スペース型の蓄電デバイスである。   In addition to this, the lithium ion capacitor has a withstand voltage of an electric double layer capacitor even when compared with a single electric double layer capacitor in which a large number of plate-like electrodes and separators used for large current applications are laminated. Is about 1.3 V for aqueous electrolytes and about 2.5 V for organic solvent electrolytes, so the energy density is low, but it can be used as a high-capacity small space power source. In other words, the lithium ion capacitor is a power storage device that has a charge / discharge characteristic superior to that of the lithium ion secondary battery and high output, and has a higher capacity and a smaller space than the electric double layer capacitor.

このため、このリチウムイオンキャパシタは、従前よりも自動車のパワーウインドやステレオなどの電装設備が充実してきていることから鉛電池に代わる車載用電源としての利用や、ガソリン車に代わるハイブリット電気自動車などの燃料自動車の駆動電源への利用も期待されるなど、形態の変更に応じやすく、設置場所の制約を受けにくいことからも様々な用途の使用が検討されている。   For this reason, this lithium-ion capacitor is used as an in-vehicle power supply instead of a lead battery, as well as a hybrid electric vehicle that replaces a gasoline vehicle. Use in various applications is also being considered because it is easy to respond to changes in the form and is not subject to restrictions on installation location, such as expected to be used as a driving power source for fuel vehicles.

特開2005−197084号公報Japanese Patent Laid-Open No. 2005-197084

ところで、このリチウムイオンキャパシタは、さらなる高出力化を追求すると、正極活物質の粒子径を減少させて、表面積を増大させることとなるものの、その場合には、過剰量の導電材やバインダーを必要として、正極の体積が増大してしまうため、体積あたりのエネルギー容量、すなわち体積エネルギー密度が低下してしまうという問題がある。   By the way, if this lithium ion capacitor pursues further higher output, the particle size of the positive electrode active material is reduced and the surface area is increased, but in that case, an excessive amount of conductive material and binder are required. As the volume of the positive electrode increases, there is a problem that the energy capacity per volume, that is, the volume energy density is reduced.

これに対して、リチウムイオン二次電池では、特許文献1に示すように、正極活物質の全表面積に対する導電材の全表面積の比率をBET比表面積から算出して、適正な導電材の量を特定することにより、高出力を得つつも体積エネルギー密度の低下を防止する方法が提案されている。   On the other hand, in the lithium ion secondary battery, as shown in Patent Document 1, the ratio of the total surface area of the conductive material to the total surface area of the positive electrode active material is calculated from the BET specific surface area, and the appropriate amount of the conductive material is determined. By specifying, a method for preventing a decrease in volume energy density while obtaining a high output has been proposed.

しかしながら、このBET比表面積から算出する方法を用いても、リチウムイオンキャパシタは、正極合剤層が活性炭などからなるため、出力と何ら関係しない粒子の細孔内の表面まで表面積として加算してしまうこととなる。   However, even if this method of calculating from the BET specific surface area is used, in the lithium ion capacitor, since the positive electrode mixture layer is made of activated carbon or the like, the surface area is added to the surface in the pores of the particles that have nothing to do with the output. It will be.

本発明は、かかる事情に鑑みてなされたもので、活性炭などの粒子が細孔を有する正極を用いた場合にも、適正な活物質量および導電材量を特定して高出力を得つつも体積エネルギー密度の低下を防止できる蓄電デバイスを提供することを課題とするものである。   The present invention has been made in view of such circumstances, and even when using a positive electrode in which particles such as activated carbon have pores, while specifying an appropriate amount of active material and amount of conductive material to obtain high output It is an object of the present invention to provide an electricity storage device that can prevent a decrease in volume energy density.

すなわち、請求項1に記載の発明は、リチウムイオンまたはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出可能な負極とを、セパレータを介して対向配置した発電セルが、上記負極に電気的に接続されたリチウム金属とともに、リチウム塩を含んだ電解液に浸漬された状態で密閉容器に収容された蓄電デバイスにおいて、上記負極は、リチウムイオンを予め吸蔵するプレドープがなされており、上記正極は、少なくとも正極活物質、導電材およびバインダーからなるとともに、上記正極活物質のレーザ回折散乱式粒度分布測定装置によって測定された換算比表面積をCS1、真密度をρ1、重量比率をW1とし、かつ上記導電材の上記レーザ回折散乱式粒度分布測定装置によって測定された換算比表面積をCS2、真密度をρ2、重量比率をW2としたときに、上記正極活物質の全表面積に対する導電材の全絵表面積の比率であるR=(CS2/ρ2×W2)/(CS1/ρ1×W1)が0.5<R<2であることを特徴としている。   In other words, the power generation cell in which the positive electrode capable of reversibly carrying lithium ions or anions and the negative electrode capable of occluding and releasing lithium ions are arranged opposite to each other with a separator interposed therebetween. In the electricity storage device housed in a sealed container in a state of being immersed in an electrolyte solution containing lithium salt together with lithium metal electrically connected to the negative electrode, the negative electrode is pre-doped to previously store lithium ions, The positive electrode is composed of at least a positive electrode active material, a conductive material, and a binder. The converted specific surface area of the positive electrode active material measured by a laser diffraction scattering particle size distribution analyzer is CS1, the true density is ρ1, and the weight ratio is W1. And the converted specific surface area of the conductive material measured by the laser diffraction / scattering particle size distribution analyzer is CS2, Is the ratio of the total picture surface area of the conductive material to the total surface area of the positive electrode active material, R = (CS2 / ρ2 × W2) / (CS1 / ρ1 × W1) is 0. It is characterized by 5 <R <2.

請求項2に記載の発明は、請求項1に記載の蓄電デバイスにおいて、上記発電セルが、上記正極と上記負極とをそれぞれ互いの間にセパレータを介して交互に複数積層することにより、複数組設けられていることを特徴としている。   According to a second aspect of the present invention, in the electricity storage device according to the first aspect, the power generation cell includes a plurality of sets in which the positive electrode and the negative electrode are alternately stacked via a separator between each other. It is characterized by being provided.

請求項1〜2に記載の蓄電デバイスによれば、正極活物質の全表面積に対する導電材の全表面積の比率R=(CS2/ρ2×W2)/(CS1/ρ1×W1)が、0.5<R<2であるため、高出力を得つつも、体積エネルギー密度の低下を防止することができる。特に、請求項2に記載の蓄電デバイスのように、正極と負極とを、それぞれ互いの間にセパレータを介して交互に複数積層することにより、複数組設けることによって、よりエネルギー容量を増大させるとともに、出力を高くすることができる。   According to the electricity storage device according to claim 1, the ratio R = (CS2 / ρ2 × W2) / (CS1 / ρ1 × W1) of the total surface area of the conductive material to the total surface area of the positive electrode active material is 0.5. Since <R <2, it is possible to prevent a decrease in volume energy density while obtaining a high output. In particular, as in the electricity storage device according to claim 2, by increasing the energy capacity by providing a plurality of pairs of positive electrodes and negative electrodes alternately stacked via separators between each other, , Can increase the output.

以下、本発明に係るリチウムイオンキャパシタについて、図1〜図4を用いて説明する。
本実施形態のリチウムイオンキャパシタは、図1および図2に示すように、負極合剤層11が矩形薄板状の集電体10の表裏面に形成された負極板1と、正極合剤層21が矩形薄板状の集電体20の表裏面に形成された正極板2とが、それぞれ板面を上下方向に向けて配置され、かつ互いの間にセパレータ3を介在させて交互に複数(本実施形態においては3枚ずつ)積層されている。そして、これらの負極板1および正極板2が非水電解液40に浸漬されて密閉容器4に収容されており、この非水電解液40としては、負極板1および正極板2に対して不活性な有機溶媒中にLiBF4、LiPF6などのリチウム塩を溶解したものが用いられている。
Hereinafter, a lithium ion capacitor according to the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the lithium ion capacitor of this embodiment includes a negative electrode plate 1 in which a negative electrode mixture layer 11 is formed on the front and back surfaces of a rectangular thin plate-like current collector 10, and a positive electrode mixture layer 21. Are arranged on the front and back surfaces of the current collector 20 in the shape of a rectangular thin plate, the plate surfaces thereof are arranged in the vertical direction, and a plurality (alternately) of the positive electrode plates 2 are interposed with separators 3 interposed therebetween. In the embodiment, three sheets are laminated). The negative electrode plate 1 and the positive electrode plate 2 are immersed in the non-aqueous electrolyte 40 and accommodated in the sealed container 4. The non-aqueous electrolyte 40 is not suitable for the negative electrode plate 1 and the positive electrode plate 2. A solution in which a lithium salt such as LiBF 4 or LiPF 6 is dissolved in an active organic solvent is used.

この負極板1は、負極合剤層11としてリチウムイオンの吸蔵・放出が可能な炭素が用いられるとともに、図3に示すように、この負極合剤層11が集電体10の表裏面にそれぞれ幅方向中央部を除いて略全面に形成されている。そして、この集電体10として銅箔が用いられているとともに、集電体10の表面の負極合剤層11が形成されていない中央部には、負極合剤層11に電気的に接続された細長板状のリチウム金属12が上下方向に向けて貼り付けられている。また、集電体10は、その一方の上角部(図1中において右上角部)に一体となって集電体10と同素材のタブ10aが設けられている。   In the negative electrode plate 1, carbon capable of occluding and releasing lithium ions is used as the negative electrode mixture layer 11, and the negative electrode mixture layer 11 is formed on the front and back surfaces of the current collector 10 as shown in FIG. 3. It is formed on substantially the entire surface except for the central portion in the width direction. A copper foil is used as the current collector 10 and is electrically connected to the negative electrode mixture layer 11 at the center of the current collector 10 where the negative electrode mixture layer 11 is not formed. An elongated plate-like lithium metal 12 is stuck in the vertical direction. Further, the current collector 10 is provided with a tab 10a made of the same material as that of the current collector 10 at one upper corner (upper right corner in FIG. 1).

他方、正極板2は、図4に示すように、正極合剤層21が集電体20の表裏面にそれぞれ幅方向中央部、すなわち、リチウム金属12の対応部を除いて略全面に形成されている。この正極合剤層21は、少なくとも正極活物質と導電材とバインダーとが含有されており、正極活物質としては、非水電解液40中のリチウムイオンおよび/またはアニオンを可逆的に担持可能な活性炭などの炭素が用いられている。   On the other hand, in the positive electrode plate 2, as shown in FIG. 4, the positive electrode mixture layer 21 is formed on the front and back surfaces of the current collector 20 on the substantially entire surface except for the center part in the width direction, that is, the corresponding part of the lithium metal 12. ing. The positive electrode mixture layer 21 contains at least a positive electrode active material, a conductive material, and a binder. The positive electrode active material can reversibly carry lithium ions and / or anions in the non-aqueous electrolyte 40. Carbon such as activated carbon is used.

また、正極合剤層21は、正極活物質のレーザー回折散乱式粒度分布測定装置によって計測された換算比表面積をCS1(m2/cc)、正極活物質の真密度ρ1(g/cc)、正極活物質の重量比率W1とし、かつ 導電材のレーザー回折散乱式粒度分布測定装置によって計測された換算比表面積をCS2(m2/cc)、導電材の真密度ρ2(g/cc)、導電材の重量比率W2としたときに、正極活物質の全表面積に対する導電材の全表面積の比率であるR=(CS2/ρ2×W2)/(CS1/ρ1×W1)が0.5<R<2となるように調製される。ここで、重量比率W1、W2とは、正極活物質と導電材とバインダーとの3成分の総計重量を100とした場合における正極活物質または導電材の重量であって、3成分に対する重量比率を意味するものである。 The positive electrode mixture layer 21 has a converted specific surface area measured by a laser diffraction / scattering particle size distribution measuring device of the positive electrode active material, CS1 (m 2 / cc), a true density ρ1 (g / cc) of the positive electrode active material, The converted specific surface area measured by the laser diffraction / scattering particle size distribution measuring device of the conductive material with the weight ratio W1 of the positive electrode active material is CS2 (m 2 / cc), the true density ρ2 (g / cc) of the conductive material, the conductive material When the weight ratio of the material is W2, R = (CS2 / ρ2 × W2) / (CS1 / ρ1 × W1), which is the ratio of the total surface area of the conductive material to the total surface area of the positive electrode active material, is 0.5 <R <. 2 is prepared. Here, the weight ratios W1 and W2 are the weights of the positive electrode active material or the conductive material when the total weight of the three components of the positive electrode active material, the conductive material, and the binder is 100, and the weight ratio with respect to the three components is That means.

このように、レーザー回折散乱式粒度分布測定装置によって計測することにより、正極活物質や導電材の粉体の粒子径とその個数と表面積と体積とから得られる粒度分布から、粒子が球状であると仮定した場合の換算比表面積が求められる。このため、上記Rが0.5<R<2となるように調整することによって、粉体が細孔を有する場合にも、高出力を得つつも、体積エネルギー密度の低下しないリチウムイオンキャパシタが得られる。   Thus, the particles are spherical from the particle size distribution obtained from the particle diameter, the number, the surface area, and the volume of the powder of the positive electrode active material or the conductive material by measuring with a laser diffraction scattering type particle size distribution measuring device. Assuming that, the converted specific surface area is obtained. For this reason, by adjusting the R so that 0.5 <R <2, it is possible to obtain a lithium ion capacitor in which the volume energy density does not decrease while obtaining high output even when the powder has pores. can get.

また、上記集電体20には、ニッケル箔やアルミニウム箔などが用いられているとともに、上述のように積層された際に、負極板1のタブ10aと重ならない残りの上角部(図1中において左上角部)に一体となって集電体20と同素材のタブ20aが設けられている。   The current collector 20 is made of nickel foil, aluminum foil, or the like, and the remaining upper corner portion (FIG. 1) that does not overlap with the tab 10a of the negative electrode plate 1 when laminated as described above. A tab 20a made of the same material as that of the current collector 20 is provided integrally with the upper left corner).

そして、全ての正極板2のタブ20aは、密閉容器4を貫通する共通の正極端子板42に溶接されて電気的に接続されるとともに、全ての負極板1のタブ10aは、密閉容器4を貫通する共通の負極端子板41に溶接されて電気的に接続されている。   The tabs 20a of all the positive electrode plates 2 are welded and electrically connected to a common positive electrode terminal plate 42 penetrating the sealed container 4, and the tabs 10a of all the negative electrode plates 1 are connected to the sealed container 4. It welds and is electrically connected to the common negative electrode terminal plate 41 which penetrates.

この密閉容器4には、ラミネートフィルムなどの気密性軟包装材を融着等により矩形袋状に加工した可撓性を有するものが用いられており、密閉容器4の内部は正極端子板42および負極端子板41が貫通しても気密性が保たれている。   The airtight container 4 is made of a flexible material obtained by processing an airtight soft packaging material such as a laminate film into a rectangular bag shape by fusion or the like. The inside of the airtight container 4 includes a positive terminal plate 42 and Even if the negative electrode terminal plate 41 penetrates, airtightness is maintained.

以上のように構成されるリチウムイオンキャパシタは、正極活物質の全表面積に対する導電材の全表面積の比率R=(CS2/ρ2×W2)/(CS1/ρ1×W1)が、0.5<R<2であるため、高出力を得つつも、体積エネルギー密度の低下を防止することができる。   In the lithium ion capacitor configured as described above, the ratio R = (CS2 / ρ2 × W2) / (CS1 / ρ1 × W1) of the total surface area of the conductive material to the total surface area of the positive electrode active material is 0.5 <R. Since <2, it is possible to prevent a decrease in volume energy density while obtaining a high output.

なお、本発明は、上述の実施形態に何ら限定されるものでなく、リチウムイオンキャパシタ以外、すなわち、適正な活物質量および導電材量を特定して、高出力を得つつも出力密度の低下を防止する作用が期待されるリチウム二次電池などのその他の蓄電デバイスにも適用可能である。   Note that the present invention is not limited to the above-described embodiment, and other than the lithium ion capacitor, that is, by specifying an appropriate amount of active material and amount of conductive material to obtain a high output while reducing the output density. The present invention is also applicable to other power storage devices such as lithium secondary batteries that are expected to have an effect of preventing the above.

次に、上記Rの異なる正極合剤層21を有する正極板2を備えた実施例1〜3および比較例1〜6のリチウムイオンキャパシタを作製して、0.5<R<2の範囲内において高出力、すなわち低抵抗値を得つつも、体積エネルギー密度の低下を防止できることを以下のようにして確認した。   Next, the lithium ion capacitors of Examples 1 to 3 and Comparative Examples 1 to 6 having the positive electrode plate 2 having the positive electrode mixture layers 21 having different R are prepared, and 0.5 <R <2 is satisfied. It was confirmed as follows that a decrease in volume energy density can be prevented while obtaining a high output, that is, a low resistance value.

[正極板2の作製]
まず、実施例1〜3および比較例1〜6の正極板2をそれぞれ作製するために、表1に示すCS1やρ1の異なる正極活物質としての活性炭粉末と、CS2やρ2の異なる導電材としてのアセチレンブラックとを用意し、さらに、上記活性炭粉末と、アセチレンブラックと、バインダーとしてのポリフッ化ビニリデン粉末とをそれぞれ表1に示す異なる割合で混合した。
なお、CS1およびCS2は、レーザー回折散乱式粒度分布測定装置(日機装社製)を用いて計測した値である。
[Preparation of positive electrode plate 2]
First, in order to produce each of the positive electrode plates 2 of Examples 1 to 3 and Comparative Examples 1 to 6, activated carbon powders as cathode active materials having different CS1 and ρ1 shown in Table 1 and conductive materials having different CS2 and ρ2 are used. The above activated carbon powder, acetylene black, and polyvinylidene fluoride powder as a binder were mixed at different ratios shown in Table 1, respectively.
CS1 and CS2 are values measured using a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd.).

次いで、これらの混合物にNメチルピロリドンを加えて混練してペースト状にしたものを、帯状のアルミ箔の両面にそれぞれ全面塗布した後に乾燥させることにより、正極合剤層21を形成した。この正極合剤層21が形成されたアルミ箔を、集電体20およびタブ20aの外形に合わせて所定形状に裁断した後に、集電体20の表裏面の幅方向中央部の正極合剤層21をそれぞれ剥ぎ取ることにより、集電体20の中央部に正極合剤層21が形成されていない実施例1〜3および比較例1〜6の正極板2がそれぞれ10枚ずつ得られた。   Next, a mixture obtained by adding N-methylpyrrolidone to these mixtures and kneading them into a paste was applied to both sides of the belt-like aluminum foil and then dried to form the positive electrode mixture layer 21. After the aluminum foil on which the positive electrode mixture layer 21 is formed is cut into a predetermined shape according to the outer shapes of the current collector 20 and the tab 20a, the positive electrode mixture layer in the center in the width direction on the front and back surfaces of the current collector 20 By stripping 21, 10 positive electrode plates 2 of Examples 1 to 3 and Comparative Examples 1 to 6 in which the positive electrode mixture layer 21 was not formed at the center of the current collector 20 were obtained.

[負極板1の作製]
難黒鉛化性炭素材料とポリフッ化ビニリデン粉末とを重量比で95:5になるように混合した後にNメチルピロリドンを加え、混練してペースト状にしたものを、帯状の銅箔の両面にそれぞれ全面塗布した後に乾燥させることにより、負極合剤層11を形成した。
[Preparation of Negative Electrode Plate 1]
A non-graphitizable carbon material and polyvinylidene fluoride powder were mixed at a weight ratio of 95: 5, N methylpyrrolidone was added, and the mixture was kneaded into a paste form on both sides of the strip-shaped copper foil. The negative electrode mixture layer 11 was formed by drying after coating the entire surface.

この負極合剤層11が形成された銅箔を、集電体10およびタブ10aの外形に合わせて所定形状に裁断した後に、集電体10の表裏面の幅方向中央部の負極合剤層11をそれぞれ剥ぎ取ることにより、集電体10の中央部に負極合剤層11が形成されていない負極板1が得られた。次いで、この負極板1の集電体10の表面にリチウム金属12を貼り付けた。これにより、実施例1〜3および比較例1〜6の負極板1として、同一のものを10枚1組として9組準備した。   The copper foil on which the negative electrode mixture layer 11 is formed is cut into a predetermined shape according to the outer shapes of the current collector 10 and the tab 10a, and then the negative electrode mixture layer at the center in the width direction on the front and back surfaces of the current collector 10 The negative electrode plate 1 in which the negative electrode mixture layer 11 was not formed in the central portion of the current collector 10 was obtained by peeling off each of 11. Next, lithium metal 12 was attached to the surface of the current collector 10 of the negative electrode plate 1. As a result, as the negative electrode plates 1 of Examples 1 to 3 and Comparative Examples 1 to 6, 9 sets of 10 identical sheets were prepared.

Figure 2010062299
Figure 2010062299

次いで、上述の実施例1の10枚の正極板2と10枚の負極板1とを、互いの間にセパレータ3を介在させて交互に積層することにより構成される10組の発電セルを組み立てた後に、全てのタブ20aを正極端子板42に、全てのタブ10aを負極端子板41にそれぞれ溶接する。次いで、これら全体を、負極端子板41および正極端子板42の一部を除いて、2枚のアルミラミネートフィルムで上記積層方向の両端部側から挟み込み、その後、熱シールにより上記端子板41、42側の一辺を除く3辺を封止めした後に、電解液40として1mol/LとなるようにLiPF6の濃度が調整されたポリピレンカーボネートを注入して端子板41、42側の残りの一辺をシールすることにより密閉容器4を形成して、実施例1のリチウムイオンキャパシタを作製した。
同様にして、上述の10枚の正極板2と10枚の負極板1とを用いて、実施例2〜3および比較例1〜6のリチウムイオンキャパシタを作製した。
Next, 10 sets of power generation cells constructed by alternately laminating 10 positive plates 2 and 10 negative plates 1 of Example 1 with separators 3 interposed between each other are assembled. After that, all the tabs 20a are welded to the positive terminal plate 42 and all the tabs 10a are welded to the negative terminal plate 41, respectively. Subsequently, the whole is sandwiched from both ends in the laminating direction by two aluminum laminate films except for a part of the negative electrode terminal plate 41 and the positive electrode terminal plate 42, and then the terminal plates 41, 42 are sealed by heat sealing. After sealing three sides excluding one side, polypyrene carbonate having a concentration of LiPF 6 adjusted to 1 mol / L as the electrolyte 40 is injected, and the remaining one side on the terminal plates 41 and 42 side is injected. The sealed container 4 was formed by sealing, and the lithium ion capacitor of Example 1 was produced.
Similarly, lithium ion capacitors of Examples 2 to 3 and Comparative Examples 1 to 6 were produced using the 10 positive plates 2 and 10 negative plates 1 described above.

上述の正極板2を除き、同一の構成を有する実施例1〜3および比較例1〜6のリチウムイオンキャパシタの体積エネルギー密度および抵抗を測定した。なお、体積エネルギー密度は、リチウムイオンキャパシタを10日間放置後に25℃で3.8Vまで1Aの電流値で充電し、1分間休止後に2.2Vまで1Aの電流値で放電したときの電力量をセルの容積で割って算出し、抵抗は、この体積エネルギー密度と同様に充電を行った後に100Aの電流値にて放電を行い、放電開始後の初期電圧降下により直流抵抗を算出した。
その結果を表2に示す。
Except for the positive electrode plate 2 described above, the volume energy density and resistance of the lithium ion capacitors of Examples 1 to 3 and Comparative Examples 1 to 6 having the same configuration were measured. The volume energy density is the amount of electric power when a lithium ion capacitor is left for 10 days and then charged at a current value of 1 A up to 3.8 V at 25 ° C., and discharged at a current value of 1 A up to 2.2 V after resting for 1 minute. The resistance was calculated by dividing by the volume of the cell, and the resistance was calculated in the same manner as the volume energy density, and then discharging was performed at a current value of 100 A, and the direct current resistance was calculated from the initial voltage drop after the discharge was started.
The results are shown in Table 2.

Figure 2010062299
Figure 2010062299

表2から判るように、実施例1〜3のリチウムイオンキャパシタは、抵抗を低く保ちつつも体積エネルギー密度の低下を防止できる。これに対して、比較例1〜6のリチウムイオンキャパシタは、抵抗が低いものの、体積エネルギー密度が低すぎて、大容量のものを必要とする場合には大型化してしまうため、実用上支障がある。   As can be seen from Table 2, the lithium ion capacitors of Examples 1 to 3 can prevent a decrease in volume energy density while keeping the resistance low. On the other hand, although the lithium ion capacitors of Comparative Examples 1 to 6 have low resistance, the volume energy density is too low, and when a large capacity is required, the lithium ion capacitors are practically hindered. is there.

本実施形態のリチウムイオンキャパシタを示す破断正面図である。It is a fracture | rupture front view which shows the lithium ion capacitor of this embodiment. 本実施形態のリチウムイオンキャパシタを示す破断側面図であって、図1のA−A線断面図である。FIG. 2 is a cutaway side view showing the lithium ion capacitor of the present embodiment, and is a cross-sectional view taken along line AA of FIG. 1. 本実施形態の負極板1の正面模式図である。It is a front schematic diagram of the negative electrode plate 1 of this embodiment. 本実施形態の正極板2の正面模式図である。It is a front schematic diagram of the positive electrode plate 2 of this embodiment.

符号の説明Explanation of symbols

1 負極板
2 正極板
3 セパレータ
4 密閉容器
10 負極板1の集電体
11 負極合剤層
20 正極板2用の集電体
21 正極合剤層
DESCRIPTION OF SYMBOLS 1 Negative electrode plate 2 Positive electrode plate 3 Separator 4 Airtight container 10 Current collector of negative electrode plate 1 11 Negative electrode mixture layer 20 Current collector for positive electrode plate 21 Positive electrode mixture layer

Claims (2)

リチウムイオンまたはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出可能な負極とを、セパレータを介して対向配置した発電セルが、
上記負極に電気的に接続されたリチウム金属とともに、リチウム塩を含んだ電解液に浸漬された状態で密閉容器に収容された蓄電デバイスにおいて、
上記負極は、リチウムイオンを予め吸蔵するプレドープがなされており、
上記正極は、少なくとも正極活物質、導電材およびバインダーからなるとともに、
上記正極活物質のレーザ回折散乱式粒度分布測定装置によって計測された換算比表面積をCS1、真密度をρ1、重量比率をW1とし、かつ
上記導電材の上記レーザ回折散乱式粒度分布測定装置によって計測された換算比表面積をCS2、真密度をρ2、重量比率をW2としたときに、
上記正極活物質の全表面積に対する導電材の全表面積の比率であるR=(CS2/ρ2×W2)/(CS1/ρ1×W1)が0.5<R<2であることを特徴とする蓄電デバイス。
A power generation cell in which a positive electrode capable of reversibly carrying lithium ions or anions and a negative electrode capable of occluding and releasing lithium ions are arranged opposite to each other via a separator.
With the lithium metal electrically connected to the negative electrode, in an electricity storage device housed in a sealed container in a state immersed in an electrolyte containing a lithium salt,
The negative electrode is pre-doped to previously store lithium ions,
The positive electrode comprises at least a positive electrode active material, a conductive material and a binder,
The converted specific surface area measured by the laser diffraction scattering type particle size distribution measuring device of the positive electrode active material is CS1, the true density is ρ1, the weight ratio is W1, and the conductive material is measured by the laser diffraction scattering type particle size distribution measuring device. When the converted specific surface area is CS2, the true density is ρ2, and the weight ratio is W2,
R = (CS2 / ρ2 × W2) / (CS1 / ρ1 × W1), which is a ratio of the total surface area of the conductive material to the total surface area of the positive electrode active material, satisfies 0.5 <R <2. device.
上記発電セルは、上記正極と上記負極とをそれぞれ互いの間にセパレータを介して交互に複数積層することにより、複数組設けられていることを特徴とする請求項1に記載の蓄電デバイス。   2. The power storage device according to claim 1, wherein a plurality of sets of the power generation cells are provided by alternately stacking a plurality of the positive electrodes and the negative electrodes with a separator interposed between each other.
JP2008225972A 2008-09-03 2008-09-03 Electricity storage device Pending JP2010062299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225972A JP2010062299A (en) 2008-09-03 2008-09-03 Electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225972A JP2010062299A (en) 2008-09-03 2008-09-03 Electricity storage device

Publications (1)

Publication Number Publication Date
JP2010062299A true JP2010062299A (en) 2010-03-18

Family

ID=42188794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225972A Pending JP2010062299A (en) 2008-09-03 2008-09-03 Electricity storage device

Country Status (1)

Country Link
JP (1) JP2010062299A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079943A (en) * 2010-10-01 2012-04-19 Shin Kobe Electric Mach Co Ltd Lithium ion power storage device
KR101138482B1 (en) * 2010-08-31 2012-04-25 삼성전기주식회사 lithium ion capacitor
KR101138502B1 (en) * 2010-08-27 2012-04-25 삼성전기주식회사 Method of manufacturing lithium ion capacitor
CN111799470A (en) * 2019-04-08 2020-10-20 宁德时代新能源科技股份有限公司 Positive pole piece and sodium ion battery
WO2023008119A1 (en) * 2021-07-27 2023-02-02 パナソニックIpマネジメント株式会社 Positive electrode, battery, and positive electrode manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138502B1 (en) * 2010-08-27 2012-04-25 삼성전기주식회사 Method of manufacturing lithium ion capacitor
KR101138482B1 (en) * 2010-08-31 2012-04-25 삼성전기주식회사 lithium ion capacitor
JP2012079943A (en) * 2010-10-01 2012-04-19 Shin Kobe Electric Mach Co Ltd Lithium ion power storage device
CN102447095A (en) * 2010-10-01 2012-05-09 新神户电机株式会社 Lithium ion storage device
CN111799470A (en) * 2019-04-08 2020-10-20 宁德时代新能源科技股份有限公司 Positive pole piece and sodium ion battery
CN111799470B (en) * 2019-04-08 2021-10-15 宁德时代新能源科技股份有限公司 Positive pole piece and sodium ion battery
WO2023008119A1 (en) * 2021-07-27 2023-02-02 パナソニックIpマネジメント株式会社 Positive electrode, battery, and positive electrode manufacturing method

Similar Documents

Publication Publication Date Title
US10297885B2 (en) Lithium ion battery and capacitor hybrid system in a single pouch
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JPH11238528A (en) Lithium secondary battery
JP2014232666A (en) Nonaqueous electrolyte secondary battery
JP5855893B2 (en) Method for producing non-aqueous lithium storage element
JP2013016265A (en) Nonaqueous secondary battery
JP2013530510A (en) Electrode assembly and lithium secondary battery including the same
CN112447941B (en) Nonaqueous electrolyte secondary battery
CN105706276A (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
WO2014049440A2 (en) Hybrid electrochemical energy storage device
TW201721941A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP2010062299A (en) Electricity storage device
WO2012127991A1 (en) Power storage device
JP5840429B2 (en) Lithium ion capacitor
JP6102442B2 (en) Lithium ion secondary battery
JP2014007038A (en) Electricity-storage device
JP2005327489A (en) Positive electrode for power storage element
JP7249991B2 (en) secondary battery
JP2011142040A (en) Solid-state battery module
JP2014212304A (en) Power storage device and method of manufacturing power storage module
US11302905B2 (en) Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same
JP7096981B2 (en) Lithium ion secondary battery
WO2013179807A1 (en) Metal-air secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module