[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010048654A - Concentration measuring instrument - Google Patents

Concentration measuring instrument Download PDF

Info

Publication number
JP2010048654A
JP2010048654A JP2008212751A JP2008212751A JP2010048654A JP 2010048654 A JP2010048654 A JP 2010048654A JP 2008212751 A JP2008212751 A JP 2008212751A JP 2008212751 A JP2008212751 A JP 2008212751A JP 2010048654 A JP2010048654 A JP 2010048654A
Authority
JP
Japan
Prior art keywords
pressure
sample chamber
gas sample
atmosphere
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008212751A
Other languages
Japanese (ja)
Other versions
JP5562539B2 (en
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008212751A priority Critical patent/JP5562539B2/en
Publication of JP2010048654A publication Critical patent/JP2010048654A/en
Application granted granted Critical
Publication of JP5562539B2 publication Critical patent/JP5562539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concentration measuring instrument capable of keeping the pressure in a gas sample chamber constant. <P>SOLUTION: The pressure in the carbon dioxide module 2 of the concentration measuring instrument 1 is measured by an absolute pressure sensor 43, and the measuring result and a preset reference pressure set value are subtracted. In a case that the pressure in the carbon dioxide module 2 is lower than the reference pressure set value, the number of rotations of the motor of a pump 45 is raised to increase the flow velocity of the atmosphere supplied into the carbon dioxide module 2 and, in a case that the pressure in the carbon dioxide module 2 is higher than the reference pressure set value, the number of rotations of the motor of the pump 45 is lowered to decrease the flow velocity of the atmosphere supplied into the carbon dioxide module 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二酸化炭素などの所定の気体の濃度を測定する濃度測定装置に関する。   The present invention relates to a concentration measuring apparatus that measures the concentration of a predetermined gas such as carbon dioxide.

例えば、二酸化炭素などの所定の気体の濃度を測定する濃度測定装置は、光源と、光源からの光を導く気体サンプル室と、気体サンプル室から導かれた光源からの光を受光するセンサが設けられた受光部と、気体サンプル室内に雰囲気を供給する供給部と、気体サンプル室内の雰囲気を排出する排出部と、センサが受光した光源からの光の強さに基づいて気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えている。   For example, a concentration measuring device that measures the concentration of a predetermined gas such as carbon dioxide includes a light source, a gas sample chamber that guides light from the light source, and a sensor that receives light from the light source guided from the gas sample chamber. The gas sample chamber is predetermined based on the intensity of light from the light source received by the sensor, the supply unit for supplying the atmosphere into the gas sample chamber, the discharge unit for discharging the atmosphere in the gas sample chamber, and the sensor. A concentration calculation unit for calculating the concentration of the gas obtained.

光源は、例えば、赤外線を放射する。受光器は、赤外線センサと、前記赤外線センサと光源との間に配置されて所定の波長の赤外線のみを透過するフィルタとを備えている。フィルタを透過する赤外線の波長は、測定対象の気体の濃度により定められる。   The light source emits infrared rays, for example. The light receiver includes an infrared sensor and a filter that is disposed between the infrared sensor and the light source and transmits only infrared rays having a predetermined wavelength. The wavelength of infrared rays that pass through the filter is determined by the concentration of the gas to be measured.

そして、濃度測定装置は、気体サンプル室内に雰囲気をポンプなどによって供給部から供給し、フィルタを介して赤外線センサが受光した光源からの赤外線の強さを測定することで、前記雰囲気中の前述した測定対象の気体の濃度を測定する(例えば特許文献1を参照)。   Then, the concentration measuring device supplies the atmosphere from the supply unit with a pump or the like into the gas sample chamber, and measures the intensity of infrared rays from the light source received by the infrared sensor through the filter, thereby the above-described atmosphere in the atmosphere. The concentration of the gas to be measured is measured (see, for example, Patent Document 1).

また、気体の濃度は、圧力によって変動するために、気体サンプル室内の圧力を測定してその圧力に基づいて濃度を補正する補正方法が特許文献2に記載されている。
特開2007−212315号公報 特開2003−14632号公報
Further, since the gas concentration varies depending on the pressure, Patent Document 2 discloses a correction method for measuring the pressure in the gas sample chamber and correcting the concentration based on the pressure.
JP 2007-212315 A JP 2003-14632 A

前述した特許文献2に示された補正方法は、ボイル=シャルルの法則を適用して行っているために、低濃度(数百ppm以下)では、正確に圧力補正を行うことができないという問題があった。   Since the correction method disclosed in Patent Document 2 described above is performed by applying the Boyle-Charles law, there is a problem that pressure correction cannot be performed accurately at low concentrations (several hundred ppm or less). there were.

特許文献2では圧力変動があることを前提にして補正を行なっているが、雰囲気の圧力の変動を無くして気体サンプル室内の圧力を一定に保つことができれば補正式による補正などを行なう必要はない。   In Patent Document 2, correction is performed on the premise that there is pressure fluctuation, but if the pressure in the gas sample chamber can be kept constant by eliminating fluctuations in atmospheric pressure, there is no need to perform correction by a correction formula. .

そこで、本発明は、気体サンプル室内の圧力を一定に保つことができる濃度測定装置を提供すること課題とする。   Then, this invention makes it a subject to provide the density | concentration measuring apparatus which can keep the pressure in a gas sample chamber constant.

上記課題を解決するためになされた請求項1に記載の発明は、光源と、前記光源からの光を導く気体サンプル室と、前記気体サンプル室から導かれた前記光源からの光を受光するセンサが設けられた受光部と、前記気体サンプル室内に雰囲気を供給する供給部と、前記気体サンプル室内の雰囲気を排出する排出部と、前記センサが受光した前記光源からの光の強さに基づいて前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、前記気体サンプル室内の圧力を測定する圧力測定手段と、前記圧力測定手段で測定された前記気体サンプル室内の圧力と予め設定された所定の圧力とを比較する圧力比較手段と、前記圧力比較手段の比較結果に基づいて前記供給部への前記雰囲気の供給量を変更する供給量変更手段と、を備えたことを特徴とする濃度測定装置である。   The invention according to claim 1, which has been made to solve the above problems, includes a light source, a gas sample chamber that guides light from the light source, and a sensor that receives light from the light source guided from the gas sample chamber. On the basis of the intensity of light from the light source received by the sensor, a supply unit for supplying an atmosphere into the gas sample chamber, a discharge unit for discharging the atmosphere in the gas sample chamber, A concentration measuring device comprising: a concentration calculating unit that calculates a predetermined gas concentration in the gas sample chamber; and a pressure measuring unit that measures the pressure in the gas sample chamber; and the pressure measuring unit Pressure comparison means for comparing the pressure in the gas sample chamber with a predetermined pressure set in advance, and the supply amount of the atmosphere to the supply unit based on the comparison result of the pressure comparison means A supply quantity changing means for further, the concentration measuring apparatus characterized by comprising a.

請求項2に記載の発明は、請求項1に記載の発明において、前記圧力比較手段で比較した結果前記気体サンプル室内の圧力が、前記予め設定された所定の圧力よりも低い場合は、前記供給量変更手段が前記供給部への雰囲気の供給量を多くすることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the present invention, when the pressure in the gas sample chamber is lower than the preset predetermined pressure as a result of comparison by the pressure comparison means, the supply is performed. The amount changing means increases the supply amount of the atmosphere to the supply unit.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記圧力比較手段で比較した結果前記気体サンプル室内の圧力が、前記予め設定された所定の圧力よりも高い場合は、前記供給量変更手段が前記供給部への雰囲気の供給量を少なくすることを特徴とするものである。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein when the pressure in the gas sample chamber is higher than the predetermined pressure set as a result of comparison by the pressure comparison means, The supply amount changing means reduces the supply amount of the atmosphere to the supply unit.

請求項4に記載の発明は、請求項1乃至3のうちいずれか一項に記載の発明において、前記排出部にオリフィスを設けたことを特徴とするものである。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein an orifice is provided in the discharge portion.

以上説明したように請求項1に記載の発明によれば、圧力測定手段で測定された前記気体サンプル室内の圧力と予め設定された所定の圧力とを圧力比較手段で比較し、その比較結果に基づいて供給量変更手段が供給部の雰囲気の供給量を変更しているので、気体サンプル室内の圧力を所定の圧力に保つことができ、圧力の補正等が不要となる。したがって、圧力に依存することなく精度の良い濃度を測定することができる。   As described above, according to the first aspect of the present invention, the pressure in the gas sample chamber measured by the pressure measuring means is compared with a predetermined pressure set in advance by the pressure comparing means, and the comparison result is obtained. Since the supply amount changing means changes the supply amount of the atmosphere of the supply unit based on this, the pressure in the gas sample chamber can be maintained at a predetermined pressure, and pressure correction or the like becomes unnecessary. Therefore, it is possible to measure the concentration with high accuracy without depending on the pressure.

請求項2に記載の発明によれば、圧力比較手段で比較した結果気体サンプル室内の圧力が、予め設定された所定の圧力よりも低い場合は、供給量変更手段が供給部の雰囲気の供給量が多くなるようにしているので、気体サンプル室の圧力を一定に保つように、雰囲気の流速を上げるようにすることができる。   According to the second aspect of the present invention, when the pressure in the gas sample chamber is lower than the predetermined pressure set as a result of the comparison by the pressure comparison means, the supply amount change means supplies the supply amount of the atmosphere in the supply section. Therefore, the flow rate of the atmosphere can be increased so as to keep the pressure of the gas sample chamber constant.

請求項3に記載の発明によれば、圧力比較手段で比較した結果気体サンプル室内の圧力が、予め設定された所定の圧力よりも高い場合は、供給量変更手段が供給部の雰囲気の供給量が少なくなるようにしているので、気体サンプル室の圧力を一定に保つように、雰囲気の流速を下げるようにすることができる。   According to the third aspect of the present invention, when the pressure in the gas sample chamber is higher than a predetermined pressure set as a result of the comparison by the pressure comparison means, the supply amount change means supplies the supply amount of the atmosphere in the supply section. Therefore, the flow rate of the atmosphere can be lowered so as to keep the pressure of the gas sample chamber constant.

請求項4に記載の発明によれば、排出部にオリフィス構造を設けているので、気体サンプル室内の圧力変動が大きくなることを抑制し圧力変動に対してコントロールしやすくすることができる。   According to the invention described in claim 4, since the orifice structure is provided in the discharge part, it is possible to suppress an increase in pressure fluctuation in the gas sample chamber and to easily control the pressure fluctuation.

以下、本発明の一実施形態に係る濃度測定装置を、図1乃至図6を参照して説明する。   Hereinafter, a concentration measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.

濃度測定装置1は、図1に示すように、濃度の測定対象の気体を含んだ雰囲気が充填される気体サンプル室としての二酸化炭素モジュール2と、コントロールユニット42と、圧力測定手段としての絶対圧センサ43と、圧力比較手段としての減算器44と、供給量変更手段としてのポンプ45と、湿度センサ46と、を備えている。   As shown in FIG. 1, the concentration measuring apparatus 1 includes a carbon dioxide module 2 as a gas sample chamber filled with an atmosphere containing a gas whose concentration is to be measured, a control unit 42, and an absolute pressure as pressure measuring means. A sensor 43, a subtractor 44 as pressure comparison means, a pump 45 as supply amount changing means, and a humidity sensor 46 are provided.

二酸化炭素モジュール2は図1や図2に示すように、測定セル6と、発光部40と、受光部41と、供給部としてのINLET47と、排出部としてのOUTLET48と、を備えている。   As shown in FIGS. 1 and 2, the carbon dioxide module 2 includes a measurement cell 6, a light emitting unit 40, a light receiving unit 41, an INLET 47 as a supply unit, and an OUTLET 48 as a discharge unit.

測定セル6は、円筒状に形成されて、後述する光源7からの赤外線を受光ユニット8に導くように形成されている。   The measurement cell 6 is formed in a cylindrical shape and guides infrared rays from a light source 7 described later to the light receiving unit 8.

発光部40は、測定セル6の一端に備えられて例えば略箱状に形成され、内部に光源7が設けられている。光源7は、電圧が印加されることで、光としての赤外線を測定セル6の一端部から他端部に向かって放射する。光源として、例えば黒体炉、電球等が用いられる。また、光源7には、リフレクタ30が取り付けられている。リフレクタ30は、光源7から出射された光を反射させ、受光ユニット8へ平行光として向かわせる。   The light emitting unit 40 is provided at one end of the measurement cell 6 and is formed in, for example, a substantially box shape, and the light source 7 is provided therein. The light source 7 emits infrared light as light from one end portion to the other end portion of the measurement cell 6 by applying a voltage. As the light source, for example, a black body furnace or a light bulb is used. A reflector 30 is attached to the light source 7. The reflector 30 reflects the light emitted from the light source 7 and directs it to the light receiving unit 8 as parallel light.

受光部41は、測定セル6の他端に備えられて例えば略箱状に形成され、内部に受光ユニット8が設けられている。受光ユニット8は、図3及び図4に示すように、ユニット本体11と、複数の受光器12と、集光部材13と、を備えている。ユニット本体11は、箱状に形成されている。   The light receiving unit 41 is provided at the other end of the measurement cell 6 and is formed, for example, in a substantially box shape, and the light receiving unit 8 is provided therein. As shown in FIGS. 3 and 4, the light receiving unit 8 includes a unit main body 11, a plurality of light receivers 12, and a light collecting member 13. The unit main body 11 is formed in a box shape.

受光器12は、図示例では、2つ設けられている。受光器12は、それぞれ、センサとしての赤外線センサ14と、透過部材15とを備えている。赤外線センサ14は、ユニット本体11に取り付けられている。複数の受光器12の赤外線センサ14は、同一平面上に配置されている。赤外線センサ14は、光源7が発しかつ透過部材15を透過した赤外線を受光し、この赤外線の熱を電気エネルギーに変換する。赤外線センサ14は、赤外線の熱を電気エネルギーに変換して、センサ出力として後述するコントロールユニット42のμCOM5に向かって出力する。赤外線センサ14として、例えばサーモパイル型のものが用いられる。   In the illustrated example, two light receivers 12 are provided. Each of the light receivers 12 includes an infrared sensor 14 as a sensor and a transmission member 15. The infrared sensor 14 is attached to the unit main body 11. The infrared sensors 14 of the plurality of light receivers 12 are arranged on the same plane. The infrared sensor 14 receives infrared rays emitted from the light source 7 and transmitted through the transmission member 15 and converts the heat of the infrared rays into electric energy. The infrared sensor 14 converts infrared heat into electric energy, and outputs it as a sensor output to the μCOM 5 of the control unit 42 described later. As the infrared sensor 14, a thermopile type is used, for example.

透過部材15は、ユニット本体11に取り付けられて、赤外線センサ14と光源7との間に配置されている。複数の受光器12の透過部材15は、同一平面上に配置されている。透過部材15は、それぞれ、光源7からの赤外線のうち予め定められた波長の赤外線のみを透過して、当該透過した波長の赤外線を赤外線センサ14まで導く。複数の受光器12の透過部材15は、互いに透過する赤外線の波長が異なる。   The transmission member 15 is attached to the unit body 11 and is disposed between the infrared sensor 14 and the light source 7. The transmission members 15 of the plurality of light receivers 12 are arranged on the same plane. Each of the transmissive members 15 transmits only infrared rays having a predetermined wavelength out of infrared rays from the light source 7 and guides the infrared rays having the transmitted wavelengths to the infrared sensor 14. The transmission members 15 of the plurality of light receivers 12 have different wavelengths of infrared rays that pass through each other.

透過部材15は、その透過する赤外線の波長は、濃度測定装置1が濃度の測定対象とする気体に応じて定められる。透過部材15の透過する赤外線の波長は、濃度の測定対象の気体に対する透過率が小さな赤外線の波長にされる。なお、受光器12は、二酸化炭素を測定対象の気体としている。図示例では、一方の受光器12は、基準として用いられ、その透過部材15が大気中で全く減衰しない波長が4.0μm付近の赤外線のみを透過する。他方の受光器12は、二酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した二酸化炭素中で減衰しやすい波長が4.3μm付近の赤外線のみを透過する。   The wavelength of infrared rays that pass through the transmissive member 15 is determined according to the gas that the concentration measuring device 1 is to measure the concentration of. The wavelength of the infrared ray transmitted through the transmission member 15 is set to a wavelength of an infrared ray having a small transmittance with respect to the gas whose concentration is to be measured. The light receiver 12 uses carbon dioxide as a gas to be measured. In the illustrated example, one of the light receivers 12 is used as a reference, and the transmitting member 15 transmits only infrared light having a wavelength of about 4.0 μm that does not attenuate at all in the atmosphere. The other light receiver 12 is used to measure the concentration of carbon dioxide, and the transmission member 15 transmits only infrared rays having a wavelength that is likely to be attenuated in the carbon dioxide described above in the vicinity of 4.3 μm.

集光部材13は、例えば300度などの所定の角度の範囲の赤外線を集光して、透過部材15つまり赤外線センサ14に集中させる。すると、光源7から直接入射する赤外線以外にも、測定セル6の外壁の内面で反射す赤外線も赤外線センサ14に集めることができるので、赤外線の受光効率を良くすることができる。なお、集光部材13として、フレーネルレンズ等を用いることができる。   The condensing member 13 condenses infrared rays in a predetermined angle range such as 300 degrees and concentrates the infrared rays on the transmitting member 15, that is, the infrared sensor 14. Then, in addition to the infrared rays directly incident from the light source 7, infrared rays reflected by the inner surface of the outer wall of the measurement cell 6 can be collected in the infrared sensor 14, so that the infrared light receiving efficiency can be improved. Note that a Fresnel lens or the like can be used as the light collecting member 13.

INLET47は、大気などの外部の雰囲気を二酸化炭素モジュール2内へ供給するための配管であり、筒状に形成され発光部40もしくは受光部41に接続されている。   The INLET 47 is a pipe for supplying an external atmosphere such as the atmosphere into the carbon dioxide module 2 and is formed in a cylindrical shape and connected to the light emitting unit 40 or the light receiving unit 41.

OUTLET48は、二酸化炭素モジュール2内の雰囲気を外部へ排出するための配管であり、筒状に形成され受光部41もしくは発光部40に接続されている。また、OUTLET48は、図5に示したように内部にオリフィス50が設けられている。オリフィス50は円盤上に形成された板に複数の小穴51が設けられており雰囲気の流れる方向に対して垂直に設けられている。   The OUTLET 48 is a pipe for discharging the atmosphere in the carbon dioxide module 2 to the outside, and is formed in a cylindrical shape and connected to the light receiving unit 41 or the light emitting unit 40. Further, the OUTLET 48 is provided with an orifice 50 inside as shown in FIG. The orifice 50 is provided with a plurality of small holes 51 in a plate formed on the disk, and is provided perpendicular to the direction in which the atmosphere flows.

コントロールユニット42は、図2に示したように、制御回路部3と、受光回路部4と、濃度算出部としてのマイクロコンピュータ(以下、μcomと記載する)5と、を備えている。   As shown in FIG. 2, the control unit 42 includes a control circuit unit 3, a light receiving circuit unit 4, and a microcomputer (hereinafter referred to as μcom) 5 as a concentration calculation unit.

制御回路部3は、図2に示すように、発振器16、クロック分周回路17、定電圧回路18などを備えており、μcom5の命令とおりに、所定の周波数で光源7を点滅(パルス点灯)させる。   As shown in FIG. 2, the control circuit unit 3 includes an oscillator 16, a clock frequency dividing circuit 17, a constant voltage circuit 18, and the like, and blinks the light source 7 at a predetermined frequency (pulse lighting) according to a command of μcom5. Let

受光回路部4は、図6に示すように、複数のアンプ19と、切り換え器20と、A/D変換器21と、を備えている。アンプ19は、それぞれ、赤外線センサ14と1対1に対応して設けられている。アンプ19は、対応する赤外線センサ14からの信号を増幅して、切り換え器20を介してA/D変換器21に向かって出力する。A/D変換器21は、赤外線センサ14からの信号をデジタル信号に変換して、μcom5に向かって出力する。   As shown in FIG. 6, the light receiving circuit unit 4 includes a plurality of amplifiers 19, a switcher 20, and an A / D converter 21. The amplifiers 19 are provided in one-to-one correspondence with the infrared sensor 14. The amplifier 19 amplifies the signal from the corresponding infrared sensor 14 and outputs it to the A / D converter 21 via the switcher 20. The A / D converter 21 converts the signal from the infrared sensor 14 into a digital signal and outputs it to the μcom 5.

μcom5は、制御回路部3及び受光回路部4と接続して、これらの動作を制御することで、濃度測定装置1全体の動作をつかさどる。μcom5は、予め定められたプログラムに従って動作するコンピュータである。このμcom5は、周知のように、予め定めたプログラムに従って各種の処理や制御などを行う中央演算処理装置(CPU)、CPUのためのプログラム等を格納した読み出し専用のメモリであるROM、各種のデータを格納するとともにCPUの処理作業に必要なエリアを有する読み出し書き込み自在のメモリであるRAM等を有して構成している。   The μcom 5 is connected to the control circuit unit 3 and the light receiving circuit unit 4 and controls these operations, thereby controlling the operation of the concentration measuring apparatus 1 as a whole. μcom5 is a computer that operates according to a predetermined program. As is well known, this μcom 5 is a central processing unit (CPU) that performs various processes and controls in accordance with a predetermined program, a ROM that is a read-only memory storing a program for the CPU, and various data. And a RAM that is a readable / writable memory having an area necessary for processing operations of the CPU.

また、μcom5には、濃度測定装置1自体がオフ状態の間も記憶内容の保持が可能な電気的消去/書き換え可能な読み出し専用のメモリが接続している。そして、このメモリには、濃度の算出に必要な吸光係数、測定距離、濃度変換係数等の各種情報を記憶するとともに、算出した濃度を外部から読出可能に時系列的に記憶する。   In addition, the μcom 5 is connected to an electrically erasable / rewritable read-only memory capable of holding stored contents even when the concentration measuring apparatus 1 itself is in an OFF state. The memory stores various information such as an extinction coefficient, a measurement distance, and a concentration conversion coefficient necessary for calculating the concentration, and stores the calculated concentration in a time series so that it can be read from the outside.

前述した構成の濃度測定装置1は、光源7を点滅(パルス点灯)させて、この光源7からの赤外線を各赤外線センサ14で受光する。そして、濃度測定装置1のμcom5は、赤外線センサ14に受光した赤外線の強さなどに基づいて、予め定められた気体(二酸化炭素)の雰囲気中の濃度を測定する。具体的には、濃度測定装置1のμcom5は、基準として用いられる赤外線センサ14で受光した赤外線の強さと、二酸化炭素を測定するための赤外線センサ14で受光した赤外線の強さとを比較して、測定対象の二酸化炭素の濃度を測定する。   In the concentration measuring apparatus 1 having the above-described configuration, the light source 7 blinks (pulse lighting), and the infrared rays from the light source 7 are received by each infrared sensor 14. The μcom 5 of the concentration measuring apparatus 1 measures the concentration of a predetermined gas (carbon dioxide) in the atmosphere based on the intensity of infrared rays received by the infrared sensor 14 and the like. Specifically, the μcom 5 of the concentration measuring apparatus 1 compares the intensity of infrared light received by the infrared sensor 14 used as a reference with the intensity of infrared light received by the infrared sensor 14 for measuring carbon dioxide, Measure the concentration of carbon dioxide to be measured.

絶対圧センサ43は、例えば半導体式の圧力センサなどで構成されて、二酸化炭素モジュール2内の絶対圧(完全真空を基準とした圧力)を測定するセンサである。   The absolute pressure sensor 43 is configured by, for example, a semiconductor pressure sensor, and is a sensor that measures the absolute pressure (pressure based on complete vacuum) in the carbon dioxide module 2.

減算器44は、予め設定された所定の圧力としての基準圧力設定値と絶対圧センサ43が測定した二酸化炭素モジュール2内の絶対圧とを減算し、その結果をポンプ45へ出力する。基準圧力設定値は例えば1気圧(1013hPa)以上の絶対圧を設定するのが望ましい。   The subtracter 44 subtracts the reference pressure set value as a predetermined pressure set in advance and the absolute pressure in the carbon dioxide module 2 measured by the absolute pressure sensor 43, and outputs the result to the pump 45. The reference pressure set value is desirably set to an absolute pressure of 1 atm (1013 hPa) or more, for example.

ポンプ45は、内蔵するモータによって外部の大気などの雰囲気を吸引して湿度センサ46に出力する。また、ポンプ45は、減算器44の結果に基づいて、モータの回転数を変更させて湿度センサ46に出力する雰囲気の流速を変更する。   The pump 45 sucks an atmosphere such as the outside air by a built-in motor and outputs it to the humidity sensor 46. Further, the pump 45 changes the flow rate of the atmosphere output to the humidity sensor 46 by changing the number of rotations of the motor based on the result of the subtracter 44.

湿度センサ46は、例えば高分子膜式のセンサで構成され、二酸化炭素モジュール2のINLET47に設けられ、二酸化炭素モジュール2内に供給される雰囲気の湿度を測定する。   The humidity sensor 46 is composed of, for example, a polymer film type sensor, is provided in the INLET 47 of the carbon dioxide module 2, and measures the humidity of the atmosphere supplied into the carbon dioxide module 2.

本実施形態の濃度測定装置は、減算器44で減算した結果が正の値となった場合は、基準圧力設定値よりも絶対圧センサ43で測定した二酸化炭素モジュール2内の絶対圧が低いと判断し、ポンプ45はモータの回転数を高めて吸引する雰囲気の量を多くして二酸化炭素モジュール2内に供給する雰囲気の流速を上げる。つまり、流速を上げることで二酸化炭素モジュール2内の絶対圧を上昇させる。すなわち、二酸化炭素モジュール2内の圧力が、基準圧力設定値よりも低い場合は、ポンプ45がINLET47への雰囲気の供給量を多くしている。   In the concentration measuring device of the present embodiment, when the result of subtraction by the subtracter 44 becomes a positive value, the absolute pressure in the carbon dioxide module 2 measured by the absolute pressure sensor 43 is lower than the reference pressure set value. As a result, the pump 45 increases the rotational speed of the motor to increase the amount of the atmosphere to be sucked and increase the flow rate of the atmosphere supplied into the carbon dioxide module 2. That is, the absolute pressure in the carbon dioxide module 2 is increased by increasing the flow rate. That is, when the pressure in the carbon dioxide module 2 is lower than the reference pressure set value, the pump 45 increases the supply amount of the atmosphere to the INLET 47.

また、減算器44で減算した結果が負の値となった場合は、基準圧力設定値よりも絶対圧センサ43で測定した二酸化炭素モジュール2内の絶対圧が高いと判断し、ポンプ45はモータの回転数を低くして吸引する雰囲気の量を少なくして二酸化炭素モジュール2内に供給する雰囲気の流速を下げる。つまり、流速を下げることで二酸化炭素モジュール2内の絶対圧を下降させる。すなわち、二酸化炭素モジュール2内の圧力が、基準圧力設定値よりも高い場合は、ポンプ45がINLET47への雰囲気の供給量を少なくしている。そして、減算器44で減算した結果が0の場合は二酸化炭素モジュール2内の絶対圧が基準圧力設定値となっているのでポンプ45のモータの回転数は変更しない。   If the result of subtraction by the subtractor 44 is a negative value, it is determined that the absolute pressure in the carbon dioxide module 2 measured by the absolute pressure sensor 43 is higher than the reference pressure set value, and the pump 45 is a motor. The number of atmospheres to be sucked is reduced by lowering the number of rotations, and the flow rate of the atmosphere supplied into the carbon dioxide module 2 is lowered. That is, the absolute pressure in the carbon dioxide module 2 is lowered by lowering the flow rate. That is, when the pressure in the carbon dioxide module 2 is higher than the reference pressure set value, the pump 45 reduces the supply amount of the atmosphere to the INLET 47. When the result of subtraction by the subtracter 44 is 0, the absolute pressure in the carbon dioxide module 2 is the reference pressure set value, so the rotation speed of the motor of the pump 45 is not changed.

なお、本実施形態では、減算器44を設けて絶対圧センサ43の出力を基準圧力設定値と減算していたが、絶対圧センサ43の出力をコントロールユニット42のμcom5へ入力し、μcom5内のメモリなどに基準圧力設定値を記憶させておいて、それらを比較して比較結果をコントロールユニット42からポンプ45へ出力する構成としてもよい。   In this embodiment, the subtractor 44 is provided and the output of the absolute pressure sensor 43 is subtracted from the reference pressure set value. However, the output of the absolute pressure sensor 43 is input to μcom 5 of the control unit 42, and The reference pressure set value may be stored in a memory or the like, compared, and the comparison result may be output from the control unit 42 to the pump 45.

本実施形態によれば、濃度測定装置1の二酸化炭素モジュール2内の圧力を絶対圧センサ43で測定し、その測定結果と予め設定した基準圧力設定値とを減算して、基準圧力設定値よりも二酸化炭素モジュール2内の絶対圧が低い場合は、ポンプ45のモータの回転数を高めて二酸化炭素モジュール2内に供給する雰囲気の流速を上げ、基準圧力設定値よりも二酸化炭素モジュール2内の絶対圧が高い場合は、ポンプ45のモータの回転数を低くして二酸化炭素モジュール2内に供給する雰囲気の流速を下げているので、二酸化炭素モジュール2内の圧力を所定の圧力に保つことができ、圧力の補正等が不要となる。したがって、圧力に依存することなく精度の良い濃度を測定することができる。   According to the present embodiment, the pressure in the carbon dioxide module 2 of the concentration measuring device 1 is measured by the absolute pressure sensor 43, and the measurement result is subtracted from the preset reference pressure set value to obtain the reference pressure set value. If the absolute pressure in the carbon dioxide module 2 is low, the rotational speed of the motor of the pump 45 is increased to increase the flow rate of the atmosphere supplied into the carbon dioxide module 2, and the carbon dioxide module 2 has a higher flow rate than the reference pressure setting value. When the absolute pressure is high, the rotation speed of the motor of the pump 45 is lowered to lower the flow velocity of the atmosphere supplied into the carbon dioxide module 2, so that the pressure in the carbon dioxide module 2 can be kept at a predetermined pressure. This eliminates the need for pressure correction. Therefore, it is possible to measure the concentration with high accuracy without depending on the pressure.

また、OUTLET48に、オリフィス50を設けたので、気体サンプル室内の圧力変動が大きくなることを抑制し圧力変動に対してコントロールし易くすることができる。   In addition, since the orifice 50 is provided in the OUTLET 48, it is possible to suppress an increase in pressure fluctuation in the gas sample chamber and to easily control the pressure fluctuation.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる濃度測定装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the density | concentration measuring apparatus concerning one Embodiment of this invention. 図1に示された二酸化炭素モジュールとコントロールユニットの構成を示す説明図である。It is explanatory drawing which shows the structure of the carbon dioxide module and control unit which were shown by FIG. 図2に示された二酸化炭素モジュールの受光ユニットの正面を模式的に示す説明図である。It is explanatory drawing which shows typically the front of the light reception unit of the carbon dioxide module shown by FIG. 図3中のVI−VI線の断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section of the VI-VI line in FIG. 図1に示されたOUTLETの内部を示した断面斜視図である。FIG. 2 is a cross-sectional perspective view showing the inside of OUTLET shown in FIG. 1. 図1に示された濃度測定装置の受光回路の構成を示す説明図である。It is explanatory drawing which shows the structure of the light-receiving circuit of the density | concentration measuring apparatus shown by FIG.

符号の説明Explanation of symbols

1 濃度測定装置
2 二酸化炭素モジュール(気体サンプル室)
7 光源
14 赤外線センサ(センサ)
40 発光部
41 受光部
43 絶対圧センサ(圧力測定手段)
44 減算器(圧力比較手段)
45 ポンプ(供給量変更手段)
47 INLET(供給部)
48 OURLET(排出部)
50 オリフィス
1 Concentration measuring device 2 Carbon dioxide module (gas sample chamber)
7 Light source 14 Infrared sensor (sensor)
40 Light emitting part 41 Light receiving part 43 Absolute pressure sensor (pressure measuring means)
44 Subtractor (pressure comparison means)
45 Pump (Supply amount changing means)
47 INLET (supply section)
48 OURLET (Discharge Department)
50 orifice

Claims (4)

光源と、前記光源からの光を導く気体サンプル室と、前記気体サンプル室から導かれた前記光源からの光を受光するセンサが設けられた受光部と、前記気体サンプル室内に雰囲気を供給する供給部と、前記気体サンプル室内の雰囲気を排出する排出部と、前記センサが受光した前記光源からの光の強さに基づいて前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、
前記気体サンプル室内の圧力を測定する圧力測定手段と、
前記圧力測定手段で測定された前記気体サンプル室内の圧力と予め設定された所定の圧力とを比較する圧力比較手段と、
前記圧力比較手段の比較結果に基づいて前記供給部への前記雰囲気の供給量を変更する供給量変更手段と、
を備えたことを特徴とする濃度測定装置。
A light source, a gas sample chamber for guiding light from the light source, a light receiving unit provided with a sensor for receiving light from the light source guided from the gas sample chamber, and a supply for supplying an atmosphere into the gas sample chamber A concentration unit that calculates a predetermined gas concentration in the gas sample chamber based on the intensity of light from the light source received by the sensor, a discharge unit that discharges the atmosphere in the gas sample chamber In a concentration measuring device comprising:
Pressure measuring means for measuring the pressure in the gas sample chamber;
Pressure comparing means for comparing the pressure in the gas sample chamber measured by the pressure measuring means with a predetermined pressure set in advance;
Supply amount changing means for changing the supply amount of the atmosphere to the supply unit based on the comparison result of the pressure comparison means;
A concentration measuring apparatus comprising:
前記圧力比較手段で比較した結果前記気体サンプル室内の圧力が、前記予め設定された所定の圧力よりも低い場合は、前記供給量変更手段が前記供給部への雰囲気の供給量を多くすることを特徴とする請求項1に記載の濃度測定装置。   When the pressure in the gas sample chamber is lower than the preset predetermined pressure as a result of comparison by the pressure comparison means, the supply amount changing means increases the supply amount of the atmosphere to the supply section. The concentration measuring apparatus according to claim 1, wherein the apparatus is a concentration measuring apparatus. 前記圧力比較手段で比較した結果前記気体サンプル室内の圧力が、前記予め設定された所定の圧力よりも高い場合は、前記供給量変更手段が前記供給部への雰囲気の供給量を少なくすることを特徴とする請求項1または2に記載の濃度測定装置。   When the pressure in the gas sample chamber is higher than the predetermined pressure set as a result of comparison by the pressure comparison means, the supply amount changing means reduces the supply amount of the atmosphere to the supply section. The concentration measuring apparatus according to claim 1 or 2, characterized in that: 前記排出部にオリフィスを設けたことを特徴とする請求項1乃至3のうちいずれか一項に記載の濃度測定装置。   The concentration measuring apparatus according to claim 1, wherein an orifice is provided in the discharge unit.
JP2008212751A 2008-08-21 2008-08-21 Concentration measuring device Expired - Fee Related JP5562539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212751A JP5562539B2 (en) 2008-08-21 2008-08-21 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212751A JP5562539B2 (en) 2008-08-21 2008-08-21 Concentration measuring device

Publications (2)

Publication Number Publication Date
JP2010048654A true JP2010048654A (en) 2010-03-04
JP5562539B2 JP5562539B2 (en) 2014-07-30

Family

ID=42065858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212751A Expired - Fee Related JP5562539B2 (en) 2008-08-21 2008-08-21 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP5562539B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531547Y2 (en) * 1987-08-07 1993-08-13
JPH05296893A (en) * 1992-04-22 1993-11-12 Horiba Ltd Switching equipment of dilution ratio of dilution sampling apparatus
JPH0669806U (en) * 1993-02-26 1994-09-30 株式会社堀場製作所 Gas concentration measuring device
JPH09178656A (en) * 1995-12-26 1997-07-11 Shimadzu Corp Infrared gas analyzer
JPH10281988A (en) * 1997-04-09 1998-10-23 Nippon Sanso Kk Method and device for gas analysis
JP2003014591A (en) * 2001-06-27 2003-01-15 Shimadzu Corp Gas analyzer
JP2003014632A (en) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd Gas pressure correction method for gas concentration monitor due to ultraviolet absorption or the like and correction system therefor
JP2003057155A (en) * 2001-08-14 2003-02-26 Dowa Mining Co Ltd Apparatus and method for sampling gas sample
JP2004239611A (en) * 1999-10-12 2004-08-26 Nok Corp Co sensor
JP2005156306A (en) * 2003-11-25 2005-06-16 Horiba Ltd Passage changeover type analyzer and measuring device using it
JP3679065B2 (en) * 2002-03-29 2005-08-03 株式会社ユー・ドム Gas concentration measurement device in the atmosphere
JP2007248369A (en) * 2006-03-17 2007-09-27 Horiba Ltd Gas analyzer and analysis method
WO2008016569A2 (en) * 2006-07-31 2008-02-07 Applied Materials, Inc. Methods and apparatus for insitu analysis of gases in electronic device fabrication systems

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531547Y2 (en) * 1987-08-07 1993-08-13
JPH05296893A (en) * 1992-04-22 1993-11-12 Horiba Ltd Switching equipment of dilution ratio of dilution sampling apparatus
JPH0669806U (en) * 1993-02-26 1994-09-30 株式会社堀場製作所 Gas concentration measuring device
JPH09178656A (en) * 1995-12-26 1997-07-11 Shimadzu Corp Infrared gas analyzer
JPH10281988A (en) * 1997-04-09 1998-10-23 Nippon Sanso Kk Method and device for gas analysis
JP2004239611A (en) * 1999-10-12 2004-08-26 Nok Corp Co sensor
JP2003014591A (en) * 2001-06-27 2003-01-15 Shimadzu Corp Gas analyzer
JP2003014632A (en) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd Gas pressure correction method for gas concentration monitor due to ultraviolet absorption or the like and correction system therefor
JP2003057155A (en) * 2001-08-14 2003-02-26 Dowa Mining Co Ltd Apparatus and method for sampling gas sample
JP3679065B2 (en) * 2002-03-29 2005-08-03 株式会社ユー・ドム Gas concentration measurement device in the atmosphere
JP2005156306A (en) * 2003-11-25 2005-06-16 Horiba Ltd Passage changeover type analyzer and measuring device using it
JP2007248369A (en) * 2006-03-17 2007-09-27 Horiba Ltd Gas analyzer and analysis method
WO2008016569A2 (en) * 2006-07-31 2008-02-07 Applied Materials, Inc. Methods and apparatus for insitu analysis of gases in electronic device fabrication systems

Also Published As

Publication number Publication date
JP5562539B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
KR102122840B1 (en) Spectroscopic analysis method and spectroscopic analyzer
JP2009122983A (en) Smoke sensor and electronic apparatus
CN107923848B (en) Gas concentration detection device
KR20140125058A (en) Standard Calibration Method and Standard Calibration Apparatus for Detecting Ambient Ozone
WO2015119127A1 (en) Gas concentration detection device
JP5175654B2 (en) Gas sample chamber and concentration measuring apparatus including the gas sample chamber
JP2006038721A (en) Gas concentration detector
US8077316B2 (en) Chlorine dioxide sensor
US7140262B1 (en) Precision variable area flowmeter apparatus
JP5335638B2 (en) Smoke detector and fire alarm
JP5562539B2 (en) Concentration measuring device
JP5670717B2 (en) Ozone gas supply device
JP2009145125A (en) Gas sample chamber and concentration measuring instrument equipped with the same
JP2008232919A (en) Gas detection device
JP5161012B2 (en) Concentration measuring device
KR20170136885A (en) Small fine dust photo sensor
JP5026940B2 (en) Gas sample chamber and concentration measuring apparatus provided with the gas sample chamber
JP2009128111A (en) Light receiving unit and concentration measuring apparatus
JP2008292321A (en) Gas concentration measuring instrument
JP2017049194A (en) Detector system
TWI394198B (en) Excimer lamp device
JP5148921B2 (en) Gas concentration measuring device and light source driving circuit
JP5562538B2 (en) Concentration measuring device
JP2009109344A (en) Infrared detector
JP2010060485A (en) Gas cell, gas sample chamber and concentration measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees