[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5562538B2 - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP5562538B2
JP5562538B2 JP2008212515A JP2008212515A JP5562538B2 JP 5562538 B2 JP5562538 B2 JP 5562538B2 JP 2008212515 A JP2008212515 A JP 2008212515A JP 2008212515 A JP2008212515 A JP 2008212515A JP 5562538 B2 JP5562538 B2 JP 5562538B2
Authority
JP
Japan
Prior art keywords
light
sensor
light source
concentration
thermopile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008212515A
Other languages
Japanese (ja)
Other versions
JP2010048645A (en
Inventor
芳郎 宮崎
純也 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008212515A priority Critical patent/JP5562538B2/en
Publication of JP2010048645A publication Critical patent/JP2010048645A/en
Application granted granted Critical
Publication of JP5562538B2 publication Critical patent/JP5562538B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、二酸化炭素などの所定の気体の濃度を測定する濃度測定装置に関する。   The present invention relates to a concentration measuring apparatus that measures the concentration of a predetermined gas such as carbon dioxide.

例えば、二酸化炭素などの所定の気体の濃度を測定する濃度測定装置は、光源と、前記光源からの光を導く気体サンプル室と、前記気体サンプル室から導かれた前記光源からの光を受光するセンサ及び前記光源と前記センサとの間に予め定めた波長の光のみを透過させる透過部材が設けられた受光部と、前記センサが受光した前記光源からの光の強さに基づいて前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えている。   For example, a concentration measuring device that measures the concentration of a predetermined gas such as carbon dioxide receives a light source, a gas sample chamber that guides light from the light source, and light from the light source that is guided from the gas sample chamber. The gas sample based on the intensity of light from the light source received by the sensor, and a light receiving portion provided with a transmission member that transmits only light of a predetermined wavelength between the sensor and the light source. A concentration calculation unit that calculates a predetermined gas concentration in the room.

光源は、例えば、赤外線を放射する。受光器は、赤外線センサと、前記赤外線センサと光源との間に配置されて所定の波長の赤外線のみを透過するフィルタとを備えている。フィルタを透過する赤外線の波長は、測定対象の気体の濃度により定められる。   The light source emits infrared rays, for example. The light receiver includes an infrared sensor and a filter that is disposed between the infrared sensor and the light source and transmits only infrared rays having a predetermined wavelength. The wavelength of infrared rays that pass through the filter is determined by the concentration of the gas to be measured.

そして、濃度測定装置は、気体サンプル室内に雰囲気をポンプなどによって供給し、フィルタを介して赤外線センサが受光した光源からの赤外線の強さを測定することで、前記雰囲気中の前述した測定対象の気体の濃度を測定する(例えば特許文献1を参照)。
特開2007−212315号
Then, the concentration measuring device supplies the atmosphere into the gas sample chamber by a pump or the like, and measures the intensity of infrared rays from the light source received by the infrared sensor through the filter. The concentration of gas is measured (for example, refer to Patent Document 1).
JP 2007-212315 A

しかしながら、前述した特許文献1などに示された従来の濃度測定装置は、赤外線センサのグランド側の電位は0電位に接地されるために、発光部に用いられる発光源の熱揺らぎによってセンサ出力にうねりが生じてしまい、そのうねりがノイズとなって精度良く濃度を測定することが困難であった。   However, in the conventional concentration measuring apparatus disclosed in Patent Document 1 described above, since the potential on the ground side of the infrared sensor is grounded to 0 potential, the sensor output is caused by the thermal fluctuation of the light source used in the light emitting unit. Waviness occurred, and the waviness became noise, and it was difficult to measure the concentration with high accuracy.

そこで、本発明は、雰囲気中の測定対象の気体の濃度を精度良く測定することができる濃度測定装置を提供すること課題とする。   Then, this invention makes it a subject to provide the density | concentration measuring apparatus which can measure the density | concentration of the gas of the measuring object in atmosphere accurately.

上記課題を解決するためになされた請求項1に記載の発明は、光源と、前記光源からの光を導く気体サンプル室と、前記気体サンプル室から導かれた前記光源からの光を受光するサーモパイル型センサ及び前記光源と前記サーモパイル型センサとの間に予め定めた波長の光のみを透過させる透過部材が設けられた受光部と、前記サーモパイル型センサが受光した前記光源からの光の強さに基づいて前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、予め定めた一定の電圧を供給する定電圧源と、前記定電圧源から供給される一定電圧を分圧する抵抗と、を備え、前記抵抗によって分圧された電圧を前記サーモパイル型センサ冷接点にバイアス電圧として印加するバイアス印加手段を備え、前記受光部には前記サーモパイル型センサが複数設けられているとともに、これら複数の前記サーモパイル型センサにそれぞれ対応する前記透過部材の透過する波長が互いに異なる、ことを特徴とする濃度測定装置である。 The invention according to claim 1, which has been made to solve the above problems, includes a light source, a gas sample chamber that guides light from the light source, and a thermopile that receives light from the light source guided from the gas sample chamber. A light receiving portion provided with a transmission member that transmits only light of a predetermined wavelength between the mold sensor and the light source and the thermopile sensor; and the intensity of light from the light source received by the thermopile sensor. A concentration calculation unit that calculates a concentration of a predetermined gas in the gas sample chamber based on a constant voltage source that supplies a predetermined constant voltage, and a supply from the constant voltage source bias applying means is provided for dividing a resistor, a constant voltage is, applies a voltage divided by the resistor as a bias voltage to the cold junction of the thermopile sensor Provided, together with the thermopile sensor to the light receiving portion is provided with a plurality, concentration measuring device wavelengths transmitted through the transmission member respectively corresponding to the plurality of the Samopai Le sensor are different from each other, characterized in that It is.

請求項2に記載の発明は、光源と、前記光源からの光を導く気体サンプル室と、前記気体サンプル室から導かれた前記光源からの光を受光するサーモパイル型センサ及び前記光源と前記サーモパイル型センサとの間に予め定めた波長の光のみを透過させる透過部材が設けられた受光部と、前記サーモパイル型センサが受光した前記光源からの光の強さに基づいて前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、前記サーモパイル型センサの冷接点に所定のバイアス電圧を印加するバイアス印加手段を備えたことを特徴とする濃度測定装置である。 The invention according to claim 2 is a light source, a gas sample chamber that guides light from the light source, a thermopile sensor that receives light from the light source guided from the gas sample chamber, the light source, and the thermopile type. A light receiving portion provided with a transmission member that transmits only light of a predetermined wavelength between the sensor and a predetermined intensity in the gas sample chamber based on the intensity of light from the light source received by the thermopile sensor. in the concentration measuring apparatus and a concentration calculator that calculates the concentration of the gas was measured density which is characterized by comprising a bias applying means for applying a predetermined bias voltage to the cold junction of the thermopile sensor Device.

請求項3に記載の発明は、請求項2に記載の発明において、前記受光部には前記サーモパイル型センサが複数設けられているとともに、前記透過部材の透過する波長が複数の前記サーモパイル型センサにそれぞれ対応して互いに異なり、複数の前記サーモパイル型センサのうち一方のセンサが受光した前記光源からの光の強さと、他方のセンサが受光した前記光源からの光の強さと、を減算する減算手段を備え、前記バイアス印加手段が、前記減算手段の差分が0になるように、前記一方のセンサの光の強さと前記他方のセンサとのバイアス電圧を調整することを特徴とするものである。 Invention according to claim 3, in the invention described in claim 2, together with the thermopile sensor to the light receiving portion is provided with a plurality of said Samopai Le sensor transmission for wavelengths of a plurality of said transmission member Are subtracted by subtracting the intensity of light from the light source received by one of the thermopile sensors and the intensity of light from the light source received by the other sensor. And the bias applying means adjusts the light intensity of the one sensor and the bias voltage with the other sensor so that the difference between the subtracting means becomes zero. .

請求項4に記載の発明は、請求項3に記載の発明において、前記濃度算出部が、前記減算手段の減算結果に基づいて前記気体の濃度を算出することを特徴とするものである。 The invention according to claim 4 is the invention according to claim 3 , wherein the concentration calculation unit calculates the concentration of the gas based on a subtraction result of the subtraction means .

請求項5に記載の発明は、請求項2に記載の発明において、前記受光部には前記サーモパイル型センサが複数設けられているとともに、前記透過部材の透過する波長が複数の前記サーモパイル型センサにそれぞれ対応して互いに異なり、前記バイアス印加手段が、前記光源消灯時の前記複数のサーモパイル型センサの出力に基づいて、前記一方のセンサと前記他方のセンサとのバイアス電圧が等しくなるように調整することを特徴とするものである。 Invention according to claim 5, in the invention described in claim 2, together with the thermopile sensor to the light receiving portion is provided with a plurality of said Samopai Le sensor transmission for wavelengths of a plurality of said transmission member The bias applying means adjusts the bias voltages of the one sensor and the other sensor to be equal based on the outputs of the plurality of thermopile sensors when the light source is turned off. It is characterized by doing.

以上説明したように請求項1に記載の発明によれば、バイアス印加手段によりサーモパイル型センサの冷接点側に所定のバイアス電圧を印加することができるので、光源をパルス点灯させたときの当該センサの下端値となるロー側の出力値を確実に検出することができるために、光源側の熱揺らぎによるセンサ出力波形の変動によって生じていたノイズを無くして精度良く安定した測定を行うことができる。また、バイアス印加手段が、定電圧源を備えて、その定電圧源の一定電圧を抵抗で分圧してバイアス電圧としてサーモパイル型センサに供給しているので、光源側の熱揺らぎによるセンサ出力波形の変動によって生じているノイズを無くして精度良く安定した測定を行うことができる。また、受光部に複数のサーモパイル型センサが設けられているとともに、複数のサーモパイル型センサにそれぞれ対応する透過部材の波長が互いに異なっているので、複数種類の気体の濃度を測定することができる。 As described above, according to the first aspect of the present invention, the bias applying means can apply a predetermined bias voltage to the cold junction side of the thermopile type sensor , so that the sensor when the light source is pulsed is applied. Since the low-side output value that is the lower end value of the light source can be reliably detected, noise generated due to fluctuations in the sensor output waveform due to thermal fluctuation on the light source side can be eliminated, and accurate and stable measurement can be performed. . Further, the bias applying means includes a constant voltage source, and a constant voltage of the constant voltage source is divided by a resistor and supplied to the thermopile sensor as a bias voltage, so that the sensor output waveform due to thermal fluctuation on the light source side is supplied. Noise generated by fluctuations can be eliminated and accurate and stable measurement can be performed. Moreover, since the several thermopile type sensor is provided in the light-receiving part, and the wavelength of the transmissive member corresponding to each of the several thermopile type sensor is mutually different, the density | concentration of multiple types of gas can be measured.

請求項2に記載の発明によれば、バイアス印加手段によりサーモパイル型センサの冷接点側に所定のバイアス電圧を印加することができるので、光源をパルス点灯させたときの当該センサの下端値となるロー側の出力値を確実に検出することができるために、光源側の熱揺らぎによるセンサ出力波形の変動によって生じていたノイズを無くして精度良く安定した測定を行うことができる。 According to the second aspect of the present invention, since a predetermined bias voltage can be applied to the cold junction side of the thermopile sensor by the bias applying means, the lower limit value of the sensor when the light source is pulsed is obtained. Since the low-side output value can be detected reliably, noise that has been caused by fluctuations in the sensor output waveform due to thermal fluctuations on the light source side can be eliminated, and accurate and stable measurement can be performed.

請求項3に記載の発明によれば、減算手段で、複数のセンサのうち一方のセンサが受光した光源からの光の強さと、他方のセンサが受光した光源からの光の強さとを減算して、バイアス印加手段が減算手段の差分が0になるように一方のセンサと他方のセンサとのバイアス電圧を調整しているので、センサ間の個体差や温度差なども吸収して高精度に複数のセンサのバイアス電圧を等しくすることができる。 According to the invention described in claim 3, the subtracting means subtracts the light intensity from the light source received by one of the plurality of sensors and the light intensity from the light source received by the other sensor. Since the bias applying means adjusts the bias voltage between one sensor and the other sensor so that the difference between the subtracting means becomes zero, the individual difference or temperature difference between the sensors can be absorbed with high accuracy. The bias voltages of a plurality of sensors can be made equal.

請求項4に記載の発明によれば、減算手段の減算結果に基づいて気体の濃度を算出しているので、気体の濃度測定の分解能を高くすることができるためにより高精度に濃度を測定することができる。 According to the fourth aspect of the present invention, since the gas concentration is calculated based on the subtraction result of the subtracting means, the resolution of the gas concentration measurement can be increased, so that the concentration is measured with higher accuracy. be able to.

請求項5に記載の発明によれば、光源消灯時の複数のセンサの出力に基づいてバイアス印加手段が一方のセンサと他方のセンサとのバイアス電圧が同一になるように調整しているので、センサ間の個体差や温度差なども吸収して高精度に複数のセンサのバイアス電圧を等しくすることができる。 According to the invention of claim 5, since the bias voltage between one sensor and another sensor bias applying means on the basis of the outputs of the plurality of sensors when the light source off is adjusted to be the same By absorbing individual differences and temperature differences between sensors, it is possible to equalize the bias voltages of a plurality of sensors with high accuracy.

[第1実施形態]
以下、本発明の第1の実施形態に係る濃度測定装置を、図1乃至図7を参照して説明する。
[First Embodiment]
Hereinafter, a concentration measuring apparatus according to a first embodiment of the present invention will be described with reference to FIGS.

濃度測定装置1は、図1に示すように、濃度の測定対象の気体を含んだ雰囲気が充填される気体サンプル室2と、発光部40と、受光部41と、制御回路部3と、受光回路部4と、濃度算出部としてのマイクロコンピュータ(以下、μcomと記載する)5と、を備えている。   As shown in FIG. 1, the concentration measuring device 1 includes a gas sample chamber 2 filled with an atmosphere containing a gas whose concentration is to be measured, a light emitting unit 40, a light receiving unit 41, a control circuit unit 3, and a light receiving unit. A circuit unit 4 and a microcomputer (hereinafter referred to as μcom) 5 as a concentration calculation unit are provided.

気体サンプル室2は、図1に示すように、測定セル6を備えている。測定セル6は、円筒状に形成されて、後述する光源7からの赤外線を受光ユニット8に導くように形成されている。   The gas sample chamber 2 includes a measurement cell 6 as shown in FIG. The measurement cell 6 is formed in a cylindrical shape and guides infrared rays from a light source 7 described later to the light receiving unit 8.

発光部40は、測定セル6の一端に備えられて例えば略箱状に形成され、内部に光源7が設けられている。光源7は、電圧が印加されることで、光としての赤外線を測定セル6の一端部から他端部に向かって放射する。光源として、例えば黒体炉、電球等が用いられる。また、光源7には、リフレクタ30が取り付けられている。リフレクタ30は、光源7から出射された光を反射させ、受光ユニット8へ平行光として向かわせる。   The light emitting unit 40 is provided at one end of the measurement cell 6 and is formed in, for example, a substantially box shape, and the light source 7 is provided therein. The light source 7 emits infrared light as light from one end portion to the other end portion of the measurement cell 6 by applying a voltage. As the light source, for example, a black body furnace or a light bulb is used. A reflector 30 is attached to the light source 7. The reflector 30 reflects the light emitted from the light source 7 and directs it to the light receiving unit 8 as parallel light.

受光部41は、測定セル6の他端に備えられて例えば略箱状に形成され、内部に受光ユニット8が設けられている。受光ユニット8は、図2及び図3に示すように、ユニット本体11と、複数の受光器12と、集光部材13と、を備えている。ユニット本体11は、箱状に形成されている。また、発光部40と受光部41には外部の雰囲気を供給または排出するための図示しない供給部を備え、この供給部はポンプと配管などが接続され、気体サンプル室2内に雰囲気を強制的に供給し、気体サンプル室2内の気体を強制的に排出する。   The light receiving unit 41 is provided at the other end of the measurement cell 6 and is formed, for example, in a substantially box shape, and the light receiving unit 8 is provided therein. As shown in FIGS. 2 and 3, the light receiving unit 8 includes a unit main body 11, a plurality of light receivers 12, and a light collecting member 13. The unit main body 11 is formed in a box shape. In addition, the light emitting unit 40 and the light receiving unit 41 are provided with a supply unit (not shown) for supplying or discharging an external atmosphere. The supply unit is connected to a pump and piping, forcing the atmosphere in the gas sample chamber 2. The gas in the gas sample chamber 2 is forcibly discharged.

受光器12は、図示例では、2つ設けられている。受光器12は、それぞれ、センサとしての赤外線センサ14と、透過部材15とを備えている。赤外線センサ14は、ユニット本体11に取り付けられている。複数の受光器12の赤外線センサ14は、同一平面上に配置されている。赤外線センサ14は、光源7が発しかつ透過部材15を透過した赤外線を受光し、この赤外線の熱を電気エネルギーに変換する。赤外線センサ14は、赤外線の熱を電気エネルギーに変換して、センサ出力としてμcom5に向かって出力する。赤外線センサ14として、例えばサーモパイル型のものが用いられる。   In the illustrated example, two light receivers 12 are provided. Each of the light receivers 12 includes an infrared sensor 14 as a sensor and a transmission member 15. The infrared sensor 14 is attached to the unit main body 11. The infrared sensors 14 of the plurality of light receivers 12 are arranged on the same plane. The infrared sensor 14 receives infrared rays emitted from the light source 7 and transmitted through the transmission member 15 and converts the heat of the infrared rays into electric energy. The infrared sensor 14 converts infrared heat into electrical energy and outputs the converted energy toward the μcom 5 as a sensor output. As the infrared sensor 14, a thermopile type is used, for example.

透過部材15は、ユニット本体11に取り付けられて、赤外線センサ14と光源7との間に配置されている。複数の受光器12の透過部材15は、同一平面上に配置されている。透過部材15は、それぞれ、光源7からの赤外線のうち予め定められた波長の赤外線のみを透過して、当該透過した波長の赤外線を赤外線センサ14まで導く。複数の受光器12の透過部材15は、互いに透過する赤外線の波長が異なる。   The transmission member 15 is attached to the unit body 11 and is disposed between the infrared sensor 14 and the light source 7. The transmission members 15 of the plurality of light receivers 12 are arranged on the same plane. Each of the transmissive members 15 transmits only infrared rays having a predetermined wavelength out of infrared rays from the light source 7 and guides the infrared rays having the transmitted wavelengths to the infrared sensor 14. The transmission members 15 of the plurality of light receivers 12 have different wavelengths of infrared rays that pass through each other.

透過部材15は、その透過する赤外線の波長は、濃度測定装置1が濃度の測定対象とする気体に応じて定められる。透過部材15の透過する赤外線の波長は、濃度の測定対象の気体に対する透過率が小さな赤外線の波長にされる。なお、受光器12は、二酸化炭素を測定対象の気体としている。図示例では、一方の受光器12は、基準として用いられ、その透過部材15が大気中で全く減衰しない波長が4.0μm付近の赤外線のみを透過する。他方の受光器12は、二酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した二酸化炭素中で減衰しやすい波長が4.3μm付近の赤外線のみを透過する。   The wavelength of infrared rays that pass through the transmissive member 15 is determined according to the gas that the concentration measuring device 1 is to measure the concentration of. The wavelength of the infrared ray transmitted through the transmission member 15 is set to a wavelength of an infrared ray having a small transmittance with respect to the gas whose concentration is to be measured. The light receiver 12 uses carbon dioxide as a gas to be measured. In the illustrated example, one of the light receivers 12 is used as a reference, and the transmitting member 15 transmits only infrared light having a wavelength of about 4.0 μm that does not attenuate at all in the atmosphere. The other light receiver 12 is used to measure the concentration of carbon dioxide, and the transmission member 15 transmits only infrared rays having a wavelength that is likely to be attenuated in the carbon dioxide described above in the vicinity of 4.3 μm.

集光部材13は、例えば300度などの所定の角度の範囲の赤外線を集光して、透過部材15つまり赤外線センサ14に集中させる。すると、光源7から直接入射する赤外線以外にも、測定セル6の外壁の内面で反射す赤外線も赤外線センサ14に集めることができるので、赤外線の受光効率を良くすることができる。なお、集光部材13として、フレーネルレンズ等を用いることができる。   The condensing member 13 condenses infrared rays in a predetermined angle range such as 300 degrees and concentrates the infrared rays on the transmitting member 15, that is, the infrared sensor 14. Then, in addition to the infrared rays directly incident from the light source 7, infrared rays reflected by the inner surface of the outer wall of the measurement cell 6 can be collected in the infrared sensor 14, so that the infrared light receiving efficiency can be improved. Note that a Fresnel lens or the like can be used as the light collecting member 13.

制御回路部3は、図1に示すように、発振器16、クロック分周回路17、定電圧回路18などを備えており、μcom5の命令とおりに、所定の周波数で光源7を点滅させる。   As shown in FIG. 1, the control circuit unit 3 includes an oscillator 16, a clock frequency dividing circuit 17, a constant voltage circuit 18, and the like, and blinks the light source 7 at a predetermined frequency according to a command of μcom5.

受光回路部4は、図4に示すように、複数のアンプ19と、切り換え器20と、A/D変換器21と、分圧回路23と、を備えている。アンプ19は、それぞれ、赤外線センサ14と1対1に対応して設けられている。アンプ19は、対応する赤外線センサ14からの信号を増幅して、切り換え器20を介してA/D変換器21に向かって出力する。A/D変換器21は、赤外線センサ14からの信号をデジタル信号に変換して、μcom5に向かって出力する。   As shown in FIG. 4, the light receiving circuit unit 4 includes a plurality of amplifiers 19, a switching device 20, an A / D converter 21, and a voltage dividing circuit 23. The amplifiers 19 are provided in one-to-one correspondence with the infrared sensor 14. The amplifier 19 amplifies the signal from the corresponding infrared sensor 14 and outputs it to the A / D converter 21 via the switcher 20. The A / D converter 21 converts the signal from the infrared sensor 14 into a digital signal and outputs it to the μcom 5.

バイアス印加手段としての分圧回路23は、図4に示すようにサーモパイルの冷接点側に所定の一定電圧を印加する。分圧回路23は、予め定められた一定電圧を出力する定電圧源24に抵抗25、抵抗26が直列に接続された回路であり、この抵抗25と抵抗26との中間点を赤外線センサ14(サーモパイル)の冷接点に接続している。これによって、定電圧源24を抵抗25と抵抗26との抵抗値の比で分圧した電圧が、バイアス電圧として冷接点に印加される。この分圧回路23は、1つで複数の赤外線センサ14に共通に接続してもよいし、それぞれの赤外線センサ14に個別に設けてもよい。   As shown in FIG. 4, the voltage dividing circuit 23 as a bias applying means applies a predetermined constant voltage to the cold junction side of the thermopile. The voltage dividing circuit 23 is a circuit in which a resistor 25 and a resistor 26 are connected in series to a constant voltage source 24 that outputs a predetermined constant voltage, and an intermediate point between the resistor 25 and the resistor 26 is an infrared sensor 14 ( It is connected to the cold junction of the thermopile. As a result, a voltage obtained by dividing the constant voltage source 24 by the ratio of the resistance values of the resistors 25 and 26 is applied to the cold junction as a bias voltage. One voltage dividing circuit 23 may be commonly connected to the plurality of infrared sensors 14 or may be provided individually for each infrared sensor 14.

また、図4の分圧回路を設けずに図5に示すようにDC電源(定電圧源)から直接赤外線センサ14の冷接点に接続してもよい。この場合も2つの赤外線センサ14に共通に接続しもよいし、それぞれ個別にDC電源を設けてもよい。   Further, as shown in FIG. 5, the voltage dividing circuit of FIG. 4 may not be provided, and the DC power source (constant voltage source) may be directly connected to the cold junction of the infrared sensor 14. Also in this case, the two infrared sensors 14 may be connected in common, or a DC power source may be provided individually.

μcom5は、制御回路部3及び受光回路部4と接続して、これらの動作を制御することで、濃度測定装置1全体の動作をつかさどる。μcom5は、予め定められたプログラムに従って動作するコンピュータである。このμcom5は、周知のように、予め定めたプログラムに従って各種の処理や制御などを行う中央演算処理装置(CPU)、CPUのためのプログラム等を格納した読み出し専用のメモリであるROM、各種のデータを格納するとともにCPUの処理作業に必要なエリアを有する読み出し書き込み自在のメモリであるRAM等を有して構成している。   The μcom 5 is connected to the control circuit unit 3 and the light receiving circuit unit 4 and controls these operations, thereby controlling the operation of the concentration measuring apparatus 1 as a whole. μcom5 is a computer that operates according to a predetermined program. As is well known, this μcom 5 is a central processing unit (CPU) that performs various processes and controls in accordance with a predetermined program, a ROM that is a read-only memory storing a program for the CPU, and various data. And a RAM that is a readable / writable memory having an area necessary for processing operations of the CPU.

また、μcom5には、濃度測定装置1自体がオフ状態の間も記憶内容の保持が可能な電気的消去/書き換え可能な読み出し専用のメモリが接続している。そして、このメモリには、濃度の算出に必要な吸光係数、測定距離、濃度変換係数等の各種情報を記憶するとともに、算出した濃度を外部から読出可能に時系列的に記憶する。   In addition, the μcom 5 is connected to an electrically erasable / rewritable read-only memory capable of holding stored contents even when the concentration measuring apparatus 1 itself is in an OFF state. The memory stores various information such as an extinction coefficient, a measurement distance, and a concentration conversion coefficient necessary for calculating the concentration, and stores the calculated concentration in a time series so that it can be read from the outside.

前述した構成の濃度測定装置1は、光源7を点滅(パルス点灯)させて、この光源7からの赤外線を各赤外線センサ14で受光する。そして、濃度測定装置1のμcom5は、赤外線センサ14に受光した赤外線の強さなどに基づいて、予め定められた気体(二酸化炭素)の雰囲気中の濃度を測定する。具体的には、濃度測定装置1のμcom5は、基準として用いられる赤外線センサ14で受光した赤外線の強さと、二酸化炭素を測定するための赤外線センサ14で受光した赤外線の強さとを比較して、測定対象の二酸化炭素の濃度を測定する。   In the concentration measuring apparatus 1 having the above-described configuration, the light source 7 blinks (pulse lighting), and the infrared rays from the light source 7 are received by each infrared sensor 14. The μcom 5 of the concentration measuring apparatus 1 measures the concentration of a predetermined gas (carbon dioxide) in the atmosphere based on the intensity of infrared rays received by the infrared sensor 14 and the like. Specifically, the μcom 5 of the concentration measuring apparatus 1 compares the intensity of infrared light received by the infrared sensor 14 used as a reference with the intensity of infrared light received by the infrared sensor 14 for measuring carbon dioxide, Measure the concentration of carbon dioxide to be measured.

このとき、赤外線センサ14の出力波形は図6に示すような波形となる。二酸化炭素の濃度は光源7をパルス点灯させたことによって生じる2つの赤外線センサ14の出力波形のHi(山)の値とlo(谷)の値との差をそれぞれ算出してその値を比較して測定する。本実施形態の場合、図4や図5に示した回路によるバイアス電圧によって赤外線センサ14の出力が嵩上げされる。つまり0電位(接地電位)よりも高い電位を印加することでパルス波形のlo部分の値が確実に測定できるために、図6のように波形のうねりによるノイズの影響を排除することができる。   At this time, the output waveform of the infrared sensor 14 is as shown in FIG. The concentration of carbon dioxide is calculated by calculating the difference between the Hi (mountain) value and lo (valley) value of the output waveforms of the two infrared sensors 14 generated when the light source 7 is pulsed. To measure. In the case of this embodiment, the output of the infrared sensor 14 is raised by the bias voltage by the circuits shown in FIGS. That is, by applying a potential higher than 0 potential (ground potential), the value of the lo portion of the pulse waveform can be reliably measured, so that the influence of noise due to waveform undulation can be eliminated as shown in FIG.

本実施形態によれば、濃度測定装置1の受光部41に設けられている赤外線センサ14の冷接点に分圧回路23によって所定のバイアス電圧を印加しているので、赤外線センサ14の出力波形のlo部分を確実に測定することができ、光源7の熱揺らぎによる出力波形のうねりによって生じていたノイズの影響を無くすことができる。したがって、精度良く気体の濃度を測定することができる。   According to the present embodiment, since the predetermined bias voltage is applied to the cold junction of the infrared sensor 14 provided in the light receiving unit 41 of the concentration measuring device 1 by the voltage dividing circuit 23, the output waveform of the infrared sensor 14 is The lo portion can be reliably measured, and the influence of noise caused by the undulation of the output waveform due to the thermal fluctuation of the light source 7 can be eliminated. Therefore, the gas concentration can be accurately measured.

[第2実施形態]
次に、本発明の第2の実施形態を図7を参照して説明する。なお、前述した第1の実施形態と同一部分には、同一符号を付して説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. Note that the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態は、受光回路部4が第1の実施形態と異なる。本実施形態の受光回路部4は、複数のアンプ19と、切り換え器20と、A/D変換器21と、減算回路27と、複数のD/A変換器28とを備えている。複数のアンプ19と、切り換え器20と、A/D変換器21と、は第1の実施形態と同様である。減算手段としての減算回路27は、アンプ19の出力同士の減算を行う回路である。具体的には4.0μm付近の赤外線を受光した赤外線センサ14のアンプ19を介した出力から4.3μm付近の赤外線を受光した赤外線センサ14のアンプ19を介した出力を減算してその減算値を増幅する。D/A変換器28は、それぞれ、赤外線センサ14と1対1に対応して設けられ、μcom5によって算出されたバイアス電圧値をアナログ電圧に変換して赤外線センサ14にバイアス電圧として印加する。   In the present embodiment, the light receiving circuit unit 4 is different from the first embodiment. The light receiving circuit unit 4 of this embodiment includes a plurality of amplifiers 19, a switcher 20, an A / D converter 21, a subtraction circuit 27, and a plurality of D / A converters 28. The plurality of amplifiers 19, the switcher 20, and the A / D converter 21 are the same as those in the first embodiment. A subtracting circuit 27 as subtracting means is a circuit that subtracts the outputs of the amplifier 19. Specifically, the subtracted value is obtained by subtracting the output through the amplifier 19 of the infrared sensor 14 receiving the infrared light near 4.3 μm from the output through the amplifier 19 of the infrared sensor 14 receiving the infrared light near 4.0 μm. Amplify. The D / A converter 28 is provided in one-to-one correspondence with the infrared sensor 14, converts the bias voltage value calculated by μcom 5 into an analog voltage, and applies the analog voltage to the infrared sensor 14 as a bias voltage.

本実施形態では、当初はμcom5に予め設定されている所定の0電位(接地電位)よりも高いバイアス電圧値をD/A変換器28を介して2つの赤外線センサ14にそれぞれ印加し、減算回路27で算出した4.0μm付近の赤外線を受光した赤外線センサ14の(アンプ19を介した)値と4.3μm付近の赤外線を受光した赤外線センサ14の(アンプ19を介した)値との差を検出して、μcom5において、2つの赤外線センサ14のバイアス電圧が同一となるように(つまり、差分が0になるように)調整してD/A変換器28へ調整後のバイアス電圧値を出力する。これによって、2つ赤外線センサ14のバイアス電圧をより高精度に一致させることができるため気体(二酸化炭素)の濃度算出の精度を高めることができる。 In the present embodiment, initially, a bias voltage value higher than a predetermined 0 potential (ground potential) preset in μcom 5 is applied to each of the two infrared sensors 14 via the D / A converter 28, and the subtraction circuit The difference between the value (through the amplifier 19) of the infrared sensor 14 that has received the infrared light around 4.0 μm and the value (through the amplifier 19) of the infrared sensor 14 that has received the infrared light around 4.3 μm calculated in 27. In μcom5, the bias voltage values of the two infrared sensors 14 are adjusted to be the same (that is, the difference is zero), and the adjusted bias voltage value is supplied to the D / A converter 28. Output . By this, it is possible to improve the accuracy of concentration calculation of gas (carbon dioxide) it is possible to match the bias voltage of the two infrared sensor 14 more accurately.

そして、本実施形態では、減算回路27で算出した4.0μm付近の赤外線を受光した赤外線センサ14の(アンプ19を介した)値と4.3μm付近の赤外線を受光した赤外線センサ14の(アンプ19を介した)値との差を増幅した値に基づいてμcom5で濃度を算出している。これによって、図6の波形のHiとloとの差に基づいて算出するよりも濃度算出の分解能を上げることができる。   In this embodiment, the value of the infrared sensor 14 that has received the infrared light around 4.0 μm calculated by the subtraction circuit 27 (via the amplifier 19) and the (amplifier) of the infrared sensor 14 that has received the infrared light around 4.3 μm are calculated. The concentration is calculated by μcom5 based on the value obtained by amplifying the difference from the value (via 19). As a result, it is possible to increase the density calculation resolution as compared with the calculation based on the difference between Hi and lo in the waveform of FIG.

また、本実施形態では、上述した減算回路27を用いたバイアス電圧の調整の他に、2つの赤外線センサ14のアンプ19を介した出力値のうち、図6の波形のloの値に基づいて調整する方法がある。詳細に説明すると、このloの期間は、光源7がパルス点灯している際の消灯時の期間であるために、このときに測定される値は赤外線センサ14が受光した光の強さではなくバイアス電圧そのものとなる。したがって、lo期間の2つの赤外線センサ14の出力(バイアス電圧)を測定して、それらが等しくなるようにμcom5で調整すればよい。すなわち、光源7消灯時の複数の赤外線センサ14の出力に基づいて、一方の赤外線センサ14と他方の赤外線センサ14とのバイアス電圧が等しくなるように調整している。   In the present embodiment, in addition to the adjustment of the bias voltage using the subtraction circuit 27 described above, based on the value of lo of the waveform in FIG. 6 among the output values via the amplifiers 19 of the two infrared sensors 14. There is a way to adjust. More specifically, since the period of lo is a period when the light source 7 is turned off when the light source 7 is pulsed, the value measured at this time is not the intensity of light received by the infrared sensor 14. It becomes the bias voltage itself. Therefore, the outputs (bias voltages) of the two infrared sensors 14 in the lo period may be measured and adjusted by μcom 5 so that they are equal. In other words, the bias voltages of one infrared sensor 14 and the other infrared sensor 14 are adjusted to be equal based on the outputs of the plurality of infrared sensors 14 when the light source 7 is turned off.

なお、本実施形態では、上述した減算回路27を用いる方法と、光源7消灯時の赤外線センサ14の出力を用いる方法と、のどちらも可能となるように受光回路部4が構成されているので、上述した減算回路27を用いる方法または光源7消灯時の赤外線センサ14の出力を用いる方法のいずれかを適宜選択して行えばよい。また、バイアス電圧の調整方法は、一方の赤外線センサ14の電圧を他方の赤外線センサ14の電圧に合わせる方法でも良いし、一方の赤外線センサ14の電圧と他方の赤外線センサ14の電圧との中間の電圧に合わせる方法でもよい。   In the present embodiment, the light receiving circuit section 4 is configured so that both the method using the subtracting circuit 27 described above and the method using the output of the infrared sensor 14 when the light source 7 is turned off can be used. Any one of the above-described method using the subtraction circuit 27 and the method using the output of the infrared sensor 14 when the light source 7 is turned off may be selected as appropriate. The bias voltage may be adjusted by adjusting the voltage of one infrared sensor 14 to the voltage of the other infrared sensor 14, or between the voltage of one infrared sensor 14 and the voltage of the other infrared sensor 14. A method of matching the voltage may be used.

本実施形態によれば、減算回路27で4.0μm付近の赤外線を受光した赤外線センサ14の値と4.3μm付近の赤外線を受光した赤外線センサ14の値との差を算出し、その値に基づいて2つの赤外線センサ14のバイアス電圧が等しくなるように(差分が0になるように)μcom5で調整しているので、赤外線センサ14間の個体差や温度差なども吸収して高精度に2つの赤外線センサのバイアス電圧を等しくすることができる。したがって、気体の濃度測定がより高精度に行うことができる。   According to the present embodiment, the difference between the value of the infrared sensor 14 that has received infrared light in the vicinity of 4.0 μm and the value of the infrared sensor 14 that has received infrared light in the vicinity of 4.3 μm is calculated by the subtraction circuit 27, and Since the adjustment is made with μcom5 so that the bias voltages of the two infrared sensors 14 are equal to each other (so that the difference becomes 0), individual differences and temperature differences between the infrared sensors 14 are absorbed and highly accurate. The bias voltages of the two infrared sensors can be made equal. Therefore, the gas concentration can be measured with higher accuracy.

また、光源7を消灯した期間の2つの赤外線センサ14の出力からバイアス電圧を測定し、それらが等しくなるように(差分が0になるように)μcom5で調整しているので、赤外線センサ14間の個体差や温度差なども吸収して高精度に2つの赤外線センサのバイアス電圧を等しくすることができる。したがって、気体の濃度測定がより高精度に行うことができる。   In addition, the bias voltage is measured from the outputs of the two infrared sensors 14 during the period when the light source 7 is turned off, and is adjusted by μcom 5 so that they are equal (so that the difference is 0). It is possible to equalize the bias voltages of the two infrared sensors with high accuracy by absorbing individual differences and temperature differences. Therefore, the gas concentration can be measured with higher accuracy.

また、減算回路27で算出した4.0μm付近の赤外線を受光した赤外線センサ14の値と4.3μm付近の赤外線を受光した赤外線センサ14の値との差から気体の濃度を測定しているので、分解能を高くすることができ、より高精度な濃度測定を行うことができる。   In addition, the gas concentration is measured from the difference between the value of the infrared sensor 14 that receives infrared light around 4.0 μm calculated by the subtracting circuit 27 and the value of the infrared sensor 14 that receives infrared light near 4.3 μm. Therefore, the resolution can be increased, and more accurate concentration measurement can be performed.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる濃度測定装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the density | concentration measuring apparatus concerning one Embodiment of this invention. 図1に示された気体サンプル室の受光ユニットの正面を模式的に示す説明図である。It is explanatory drawing which shows typically the front of the light-receiving unit of the gas sample chamber shown by FIG. 図2中のVI−VI線の断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section of the VI-VI line in FIG. 図1に示された濃度測定装置の受光回路の構成を示す説明図である。It is explanatory drawing which shows the structure of the light-receiving circuit of the density | concentration measuring apparatus shown by FIG. 図4に示された受光回路のうち赤外線センサのバイアス印加回路の他の構成を示す説明図である。FIG. 5 is an explanatory diagram showing another configuration of the bias applying circuit of the infrared sensor in the light receiving circuit shown in FIG. 4. 図4に示された受光回路の赤外線センサの出力波形図である。FIG. 5 is an output waveform diagram of an infrared sensor of the light receiving circuit shown in FIG. 4. 本発明の第2の実施形態にかかる濃度測定装置の受光回路の構成を示す説明図である。It is explanatory drawing which shows the structure of the light-receiving circuit of the density | concentration measuring apparatus concerning the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 濃度測定装置
2 気体サンプル室
4 受光回路部
5 マイクロコンピュータ(濃度算出部、バイアス印加手段)
6 測定セル
7 光源
14 赤外線センサ(センサ)
15 透過部材
23 分圧回路(バイアス印加手段)
24 定電圧源
27 減算回路(減算手段)
40 発光部
41 受光部
DESCRIPTION OF SYMBOLS 1 Concentration measuring device 2 Gas sample chamber 4 Light receiving circuit part 5 Microcomputer (Concentration calculation part, bias application means)
6 Measurement cell 7 Light source 14 Infrared sensor (sensor)
15 Transmission member 23 Voltage dividing circuit (bias applying means)
24 constant voltage source 27 subtraction circuit (subtraction means)
40 Light emitting part 41 Light receiving part

Claims (5)

光源と、前記光源からの光を導く気体サンプル室と、前記気体サンプル室から導かれた前記光源からの光を受光するサーモパイル型センサ及び前記光源と前記サーモパイル型センサとの間に予め定めた波長の光のみを透過させる透過部材が設けられた受光部と、前記サーモパイル型センサが受光した前記光源からの光の強さに基づいて前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、
予め定めた一定の電圧を供給する定電圧源と、前記定電圧源から供給される一定電圧を分圧する抵抗と、を備え、前記抵抗によって分圧された電圧を前記サーモパイル型センサ冷接点にバイアス電圧として印加するバイアス印加手段を備え、
前記受光部には前記サーモパイル型センサが複数設けられているとともに、これら複数の前記サーモパイル型センサにそれぞれ対応する前記透過部材の透過する波長が互いに異なる、
ことを特徴とする濃度測定装置。
A light source, a gas sample chamber for guiding light from the light source, a thermopile sensor for receiving light from the light source guided from the gas sample chamber, and a predetermined wavelength between the light source and the thermopile sensor A light receiving portion provided with a transmission member that transmits only the light of the light, and a concentration for calculating a predetermined gas concentration in the gas sample chamber based on the intensity of light from the light source received by the thermopile sensor In a concentration measuring device comprising a calculation unit,
A predetermined constant voltage source for supplying a constant voltage, the and a for dividing resistor a constant voltage supplied from the constant voltage source, cold junction of the divided voltage by the resistor the thermopile sensor comprising a bias application means for applying a bias voltage to,
Together with the thermopile sensor is provided with a plurality on the light receiving portion, different wavelengths for transmission of the transmission member respectively corresponding to the plurality of the Samopai Le sensor each other,
A concentration measuring apparatus characterized by the above.
光源と、前記光源からの光を導く気体サンプル室と、前記気体サンプル室から導かれた前記光源からの光を受光するサーモパイル型センサ及び前記光源と前記サーモパイル型センサとの間に予め定めた波長の光のみを透過させる透過部材が設けられた受光部と、前記サーモパイル型センサが受光した前記光源からの光の強さに基づいて前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、
前記サーモパイル型センサの冷接点に所定のバイアス電圧を印加するバイアス印加手段を備えたことを特徴とする濃度測定装置。
A light source, a gas sample chamber for guiding light from the light source, a thermopile sensor for receiving light from the light source guided from the gas sample chamber, and a predetermined wavelength between the light source and the thermopile sensor A light receiving portion provided with a transmission member that transmits only the light of the light, and a concentration for calculating a predetermined gas concentration in the gas sample chamber based on the intensity of light from the light source received by the thermopile sensor In a concentration measuring device comprising a calculation unit,
Concentration measuring apparatus characterized by comprising a bias application means for applying a predetermined bias voltage to the cold junction of the thermopile sensor.
前記受光部には前記サーモパイル型センサが複数設けられているとともに、前記透過部材の透過する波長が複数の前記サーモパイル型センサにそれぞれ対応して互いに異なり、
複数の前記サーモパイル型センサのうち一方のセンサが受光した前記光源からの光の強さと、他方のセンサが受光した前記光源からの光の強さと、を減算する減算手段を備え、
前記バイアス印加手段が、前記減算手段の差分が0になるように、前記一方のセンサの光の強さと前記他方のセンサとのバイアス電圧を調整することを特徴とする請求項2に記載の濃度測定装置。
Together with the the light receiving portion is provided with a plurality the thermopile sensor, a wavelength which passes through the transmitting member is different from each other in correspondence with the plurality of the Samopai Le sensor,
Subtracting means for subtracting the intensity of light from the light source received by one sensor among the plurality of thermopile sensors and the intensity of light from the light source received by the other sensor,
3. The density according to claim 2, wherein the bias applying unit adjusts the light intensity of the one sensor and the bias voltage with the other sensor so that the difference between the subtracting units becomes zero. measuring device.
前記濃度算出部が、前記減算手段の減算結果に基づいて前記気体の濃度を算出することを特徴とする請求項3に記載の濃度測定装置。   The concentration measuring apparatus according to claim 3, wherein the concentration calculating unit calculates the concentration of the gas based on a subtraction result of the subtracting unit. 前記受光部には前記サーモパイル型センサが複数設けられているとともに、前記透過部材の透過する波長が複数の前記サーモパイル型センサにそれぞれ対応して互いに異なり、
前記バイアス印加手段が、前記光源消灯時の前記複数のサーモパイル型センサの出力に基づいて、前記一方のセンサと前記他方のセンサとのバイアス電圧が等しくなるように調整することを特徴とする請求項2に記載の濃度測定装置。
Together with the the light receiving portion is provided with a plurality the thermopile sensor, a wavelength which passes through the transmitting member is different from each other in correspondence with the plurality of the Samopai Le sensor,
The bias applying means adjusts the bias voltages of the one sensor and the other sensor to be equal based on outputs of the plurality of thermopile sensors when the light source is turned off. 2. The concentration measuring apparatus according to 2.
JP2008212515A 2008-08-21 2008-08-21 Concentration measuring device Expired - Fee Related JP5562538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212515A JP5562538B2 (en) 2008-08-21 2008-08-21 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212515A JP5562538B2 (en) 2008-08-21 2008-08-21 Concentration measuring device

Publications (2)

Publication Number Publication Date
JP2010048645A JP2010048645A (en) 2010-03-04
JP5562538B2 true JP5562538B2 (en) 2014-07-30

Family

ID=42065850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212515A Expired - Fee Related JP5562538B2 (en) 2008-08-21 2008-08-21 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP5562538B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130432A (en) * 1988-10-25 1990-05-18 Cascadia Technol Corp Gas analyzer
GB9008908D0 (en) * 1990-04-20 1990-06-20 Emi Plc Thorn Thermal detection arrangement
JPH06258144A (en) * 1993-03-03 1994-09-16 Casio Comput Co Ltd Temperature sensor
JPH0772078A (en) * 1993-09-02 1995-03-17 Matsushita Electric Ind Co Ltd Infrared gas sensor
JPH085552A (en) * 1994-06-14 1996-01-12 Tokuyama Corp Nondispersive infrared gas detector
JP2710228B2 (en) * 1994-08-11 1998-02-10 日本電気株式会社 Bolometer type infrared detecting element, driving method thereof, and detecting integration circuit
US5721430A (en) * 1995-04-13 1998-02-24 Engelhard Sensor Technologies Inc. Passive and active infrared analysis gas sensors and applicable multichannel detector assembles
JP2002055049A (en) * 2000-08-14 2002-02-20 Horiba Ltd Continuous measuring apparatus
JP2002156279A (en) * 2000-11-20 2002-05-31 Seiko Epson Corp Thermopile type infrared sensor
JP3993084B2 (en) * 2002-12-19 2007-10-17 理研計器株式会社 Infrared gas detector and infrared gas detector

Also Published As

Publication number Publication date
JP2010048645A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
EP2787368B1 (en) Optical distance measuring apparatus
US8649012B2 (en) Optical gas sensor
US8858069B2 (en) Optical fiber temperature distribution measuring device
JP2604754B2 (en) Spectrophotometer
JP5175654B2 (en) Gas sample chamber and concentration measuring apparatus including the gas sample chamber
WO2015119127A1 (en) Gas concentration detection device
JP6199400B2 (en) Air-fuel ratio measurement system including optical sensor
JP2006038721A (en) Gas concentration detector
JP5335638B2 (en) Smoke detector and fire alarm
US20060266919A1 (en) On-board light source based gain correction for semi-active laser seekers
JP5562538B2 (en) Concentration measuring device
KR102049285B1 (en) Optical measurement apparatus and optical measurement method
WO2016021495A1 (en) Gas density detection device and gas density calculation method for gas density detection device
JP2010066209A (en) Concentration measuring device
JP2008292321A (en) Gas concentration measuring instrument
WO2011155368A1 (en) Spectrophotometer
JP6530669B2 (en) Gas concentration measuring device
KR100643700B1 (en) Apparatus for measuring infrared beam and method for measuring infrared beam
JP5864346B2 (en) Auto focus mechanism
KR20150113575A (en) Micro controller unit type dust sensor
US7242017B2 (en) Device to detect and/or characterize individual moving objects having very small dimensions
JP2010060484A (en) Gas cell, gas sample chamber and concentration measuring instrument
KR101579558B1 (en) Apparatus for sensing laser
JP6401606B2 (en) Fluorescent glass dosimeter reader
JP2009109344A (en) Infrared detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees