[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009231781A - Multijunction silicon thin film photoelectric converter - Google Patents

Multijunction silicon thin film photoelectric converter Download PDF

Info

Publication number
JP2009231781A
JP2009231781A JP2008078774A JP2008078774A JP2009231781A JP 2009231781 A JP2009231781 A JP 2009231781A JP 2008078774 A JP2008078774 A JP 2008078774A JP 2008078774 A JP2008078774 A JP 2008078774A JP 2009231781 A JP2009231781 A JP 2009231781A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
conversion unit
silicon
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008078774A
Other languages
Japanese (ja)
Other versions
JP5180640B2 (en
Inventor
Kunita Yoshikawa
訓太 吉河
Mitsuru Ichikawa
満 市川
Tomomi Meguro
智巳 目黒
Fumiyasu Sezaki
文康 瀬崎
Takashi Kuchiyama
崇 口山
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008078774A priority Critical patent/JP5180640B2/en
Priority to US12/740,338 priority patent/US8410355B2/en
Priority to PCT/JP2008/069766 priority patent/WO2009057698A1/en
Publication of JP2009231781A publication Critical patent/JP2009231781A/en
Application granted granted Critical
Publication of JP5180640B2 publication Critical patent/JP5180640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a technology for producing an interlayer indicative of proper optical characteristics, in order to provide the multijunction silicon photoelectric converter capable of balancing current generated in each silicon thin film photoelectric conversion unit at a higher value and performing conversion with a higher conversion efficiency. <P>SOLUTION: The multijunction silicon thin film photoelectric converter includes an interlayer 4 wherein a transparent oxide layer 4a is located at first, and n layers (n=2 or more, an integral number) of a laminated layer where a carbon layer 4d/a transparent oxide layer 4c are laminated in order are followed. According to the arrangement, each film thickness is optimized, so that wavelength selectiveness and anti-stress nature are improved while series resistance is maintained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透明酸化物層/カーボン層/透明酸化物層/カーボン層/透明酸化物層の順に積層された層であることを特徴とする中間層を有する多接合型シリコン系薄膜光電変換装置に関するものである。   The present invention relates to a multi-junction silicon-based thin film photoelectric conversion device having an intermediate layer, characterized in that the layer is laminated in the order of transparent oxide layer / carbon layer / transparent oxide layer / carbon layer / transparent oxide layer. It is about.

近年、半導体内部の光電効果を用いて光を電気に変換する光電変換装置が注目され、開発が精力的に行われているが、その光電変換装置の中でもシリコン系薄膜光電変換装置は、低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が期待できる。薄膜光電変換装置は、一般に表面が絶縁性の基板上に順に積層された第一電極と、1つ以上の半導体薄膜光電変換ユニットと、及び第二電極とを含んでいる。ここで、光電変換ユニットは一般的にp型層、i型層、及びn型層の順に積層されてなり、その主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットと呼ばれ、i型層が結晶質のものは結晶質光電変換ユニットと呼ばれている。また、光電変換装置の変換効率を向上させる方法として、2つ以上の光電変換ユニットを積層した、多接合型と呼ばれる構造を採用した光電変換装置が知られている。この方法においては、光電変換装置の光入射側に大きな光学的禁制帯幅を有する光電変換層を含む光電変換ユニットを配置し、その後ろに順に小さなバンドギャップを有する光電変換層を含む光電変換ユニットを1つ以上配置することにより、入射光の広い波長範囲にわたる光電変換を可能にし、入射する光を有効利用することにより装置全体としての変換効率の向上が図られている。本願では、相対的に光入射側に配置された光電変換ユニットを前方光電変換ユニットと呼び、これよりも相対的に光入射側から遠い側に隣接して配置された光電変換ユニットを後方光電変換ユニットと呼ぶ。3つ以上の光電変換ユニットを積層した光電変換装置においては、光入射側から2つめ以降に配置された後方光電変換ユニットを前方光電変換ユニットとして、相対的に光入射側から遠い側に隣接して配置された後方光電変換ユニットが複数存在することとなる。上記多接合型構造を採用することで入射光を有効利用できるが、多接合型光電変換装置全体の特性、特に短絡電流密度は積層された各光電変換ユニットの短絡電流密度のうち小さい方の短絡電流密度に制限される。したがって、多接合型光電変換装置全体の特性を向上するためには、それぞれの光電変換ユニットで発生した短絡電流密度のバランスを取る必要がある。   In recent years, photoelectric conversion devices that convert light into electricity using photoelectric effects inside semiconductors have attracted attention and are being developed vigorously. Among these photoelectric conversion devices, silicon-based thin film photoelectric conversion devices are at low temperatures. Since it can be formed on a large area glass substrate or stainless steel substrate, cost reduction can be expected. A thin film photoelectric conversion device generally includes a first electrode, a surface of which is sequentially laminated on an insulating substrate, one or more semiconductor thin film photoelectric conversion units, and a second electrode. Here, the photoelectric conversion unit is generally laminated in the order of a p-type layer, an i-type layer, and an n-type layer, and the i-type photoelectric conversion layer that occupies the main part is amorphous when it is amorphous. It is called a photoelectric conversion unit, and a crystal whose i-type layer is crystalline is called a crystalline photoelectric conversion unit. As a method for improving the conversion efficiency of a photoelectric conversion device, a photoelectric conversion device employing a structure called a multi-junction type in which two or more photoelectric conversion units are stacked is known. In this method, a photoelectric conversion unit including a photoelectric conversion layer including a photoelectric conversion layer having a large optical forbidden bandwidth is disposed on a light incident side of the photoelectric conversion device, and a photoelectric conversion layer including a photoelectric conversion layer having a small band gap in order behind the photoelectric conversion layer. By arranging one or more of these, photoelectric conversion over a wide wavelength range of incident light is possible, and conversion efficiency of the entire apparatus is improved by effectively using incident light. In the present application, the photoelectric conversion unit relatively disposed on the light incident side is referred to as a front photoelectric conversion unit, and the photoelectric conversion unit disposed adjacent to the side farther from the light incident side than this is the rear photoelectric conversion. Called a unit. In a photoelectric conversion device in which three or more photoelectric conversion units are stacked, a rear photoelectric conversion unit arranged second or later from the light incident side is a front photoelectric conversion unit, and is adjacent to a side relatively far from the light incident side. Thus, there are a plurality of rear photoelectric conversion units arranged. Incident light can be used effectively by adopting the above multi-junction structure, but the characteristics of the entire multi-junction photoelectric conversion device, especially the short-circuit current density, is the shorter of the short-circuit current densities of the stacked photoelectric conversion units. Limited to current density. Therefore, in order to improve the characteristics of the entire multi-junction photoelectric conversion device, it is necessary to balance the short-circuit current density generated in each photoelectric conversion unit.

そこで、近年積層された複数の光電変換ユニットの間に光透過性及び光反射性の双方を有し且つ導電性の中間層を介在させる構造を有する積層型の光電変換装置が提案されている。この場合、中間層に到達した光の一部が反射し、中間層よりも光入射側に位置する前方光電変換ユニット内での光吸収量が増加し、その前方光電変換ユニットで発生する電流値を増大させることができる。例えば、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットからなるハイブリッド型光電変換装置に中間反射層を挿入した場合、非晶質シリコン層の膜厚を増やすことなく非晶質シリコン光電変換ユニットによって発生する電流を増加させることができる。もしくは、同一の電流値を得るために必要な非晶質シリコン層の膜厚を薄くできることから、非晶質シリコン層の膜厚増加に応じて顕著となる光劣化による非晶質シリコン光電変換ユニットの特性低下を押さえることが可能となる。このような中間層では、前方光電変換ユニットで吸収される光の波長領域を選択的に反射し、且つ後方光電変換ユニットで吸収される光の波長領域は選択的に透過することが好ましい。   Therefore, in recent years, there has been proposed a stacked photoelectric conversion device having a structure in which both a light transmitting property and a light reflecting property are interposed between a plurality of stacked photoelectric conversion units and a conductive intermediate layer is interposed. In this case, a part of the light reaching the intermediate layer is reflected, the amount of light absorption in the front photoelectric conversion unit located on the light incident side of the intermediate layer is increased, and the current value generated in the front photoelectric conversion unit Can be increased. For example, when an intermediate reflective layer is inserted into a hybrid photoelectric conversion device composed of an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit, the amorphous silicon photoelectric conversion is performed without increasing the film thickness of the amorphous silicon layer. The current generated by the unit can be increased. Alternatively, the amorphous silicon photoelectric conversion unit due to photodegradation that becomes conspicuous as the thickness of the amorphous silicon layer increases because the thickness of the amorphous silicon layer necessary to obtain the same current value can be reduced. It is possible to suppress the deterioration of characteristics. In such an intermediate layer, it is preferable that the wavelength region of light absorbed by the front photoelectric conversion unit is selectively reflected and the wavelength region of light absorbed by the rear photoelectric conversion unit is selectively transmitted.

中間層を屈折率差のある複数の薄膜で構成することで、光の干渉を発生させ特定波長領域での透過或いは反射率を向上させることが出来る。また、中間層の膜厚を厚くすれば、より高次の干渉波を用いることができ、透過或いは反射率を波長に対してさらに急峻に変化させることが出来る。しかし、単純に膜厚を厚くすれば、構成する材料由来の光吸収や直列抵抗が増大してしまう。   By configuring the intermediate layer with a plurality of thin films having a difference in refractive index, light interference can be generated and transmission or reflectance in a specific wavelength region can be improved. Further, if the thickness of the intermediate layer is increased, higher-order interference waves can be used, and the transmission or reflectance can be changed more steeply with respect to the wavelength. However, if the film thickness is simply increased, light absorption and series resistance derived from the constituent materials increase.

光透過性を有し且つ導電性の中間層を挿入した例として、例えば特許文献1においては、導電性酸素化シリコン層のみからなる中間層を光電変換ユニット間に挿入することにより光の反射、透過量を制御し中間層を挿入しない時と比較して短絡電流密度が増加することを開示している。ところが導電性酸素化シリコン層の屈折率は1.95程度であり、光電変換ユニットを構成するシリコン層の屈折率が3.3程度であることを考えると屈折率差が十分ではないため満足のいく反射特性が得られている訳では無い。又特許文献2においては、中間層に複数の材料を交互に積層された多層膜を挿入することを開示している。しかしながら多層膜の一部として多結晶シリコン層を用いており、この場合、多層膜内の屈折率差により波長選択性は高まると考えられるが、多結晶シリコン層を光学的に有意な膜厚で挿入すると、多結晶シリコン層による吸収ロスが発生してしまう。
特開2005−135987号公報 特開2001−308354号公報
As an example in which a light-transmitting and conductive intermediate layer is inserted, for example, in Patent Document 1, reflection of light by inserting an intermediate layer consisting only of a conductive oxygenated silicon layer between photoelectric conversion units, It discloses that the short circuit current density is increased as compared with the case where the amount of transmission is controlled and the intermediate layer is not inserted. However, the refractive index of the conductive oxygenated silicon layer is about 1.95, and considering that the refractive index of the silicon layer constituting the photoelectric conversion unit is about 3.3, the difference in refractive index is not sufficient, so that satisfactory. Not all reflection characteristics are obtained. Further, Patent Document 2 discloses that a multilayer film in which a plurality of materials are alternately laminated is inserted into an intermediate layer. However, a polycrystalline silicon layer is used as a part of the multilayer film. In this case, the wavelength selectivity is considered to increase due to the refractive index difference in the multilayer film, but the polycrystalline silicon layer has an optically significant film thickness. If inserted, an absorption loss due to the polycrystalline silicon layer occurs.
JP 2005-135987 A JP 2001-308354 A

上述のように、中間層として十分な反射特性を得るためには前方光電変換ユニットとの屈折率差を大きくする必要があり、そのためには中間層の屈折率を出来るだけ小さくする必要がある。さらに前述したように前方光電変換ユニットで吸収される光の波長領域では反射率を高く、後方光電変換ユニットで吸収される光の波長領域では反射率を低くする必要がある。中間層を屈折率差のある複数の薄膜で構成することで、光の干渉を発生させ特定波長領域での透過或いは反射率を向上させることが出来る。また、中間層の膜厚を厚くすれば、より高次の干渉波を用いることができ、反射率を波長に対してさらに急峻に変化させ、波長選択性を向上させることが出来る。しかし、単純に膜厚を厚くすれば、構成する材料由来の光吸収や直列抵抗が増大してしまう。また、膜厚が厚くなれば材料間で発生する応力も大きくなり、膜剥がれの原因にもなる。   As described above, in order to obtain sufficient reflection characteristics as the intermediate layer, it is necessary to increase the refractive index difference from the front photoelectric conversion unit, and for this purpose, it is necessary to reduce the refractive index of the intermediate layer as much as possible. Further, as described above, it is necessary to increase the reflectance in the wavelength region of light absorbed by the front photoelectric conversion unit, and to decrease the reflectance in the wavelength region of light absorbed by the rear photoelectric conversion unit. By configuring the intermediate layer with a plurality of thin films having a difference in refractive index, light interference can be generated and transmission or reflectance in a specific wavelength region can be improved. Further, if the thickness of the intermediate layer is increased, higher-order interference waves can be used, the reflectance can be changed more steeply with respect to the wavelength, and the wavelength selectivity can be improved. However, if the film thickness is simply increased, light absorption and series resistance derived from the constituent materials increase. In addition, as the film thickness increases, the stress generated between the materials also increases, causing film peeling.

上記課題を解決するために本発明者らは、下記発明に到った。中間層を透明酸化物層/カーボン層/透明酸化物層/カーボン層/透明酸化物層の順に積層された層とし、各膜厚を最適化することで直列抵抗と耐応力性を維持しつつ、波長選択性を向上させている。   In order to solve the above problems, the present inventors have reached the following invention. The intermediate layer is a layer laminated in the order of transparent oxide layer / carbon layer / transparent oxide layer / carbon layer / transparent oxide layer, while maintaining the series resistance and stress resistance by optimizing each film thickness. The wavelength selectivity is improved.

即ち本発明は、
(1)中間層を介して直列接続されたシリコン系薄膜光電変換ユニットを備えた多接合型シリコン系薄膜光電変換装置であって、該中間層が透明酸化物層から始まり、それ以降の層がカーボン層/透明酸化物層の順に積層された層を一組とした層をn層積層された層であることを特徴とし(n=2以上の整数)、また(2)前記カーボン層が、膜中に水素を含有し、(3)前記カーボン層の600nmの波長の光に対する屈折率が1.35〜1.70であることを特徴とし、(4)前記中間層を構成する透明酸化物層が酸化亜鉛により形成され、(5)透明酸化物層の合計膜厚が100Å以上1000Å以下であることが特徴であり、(6)前記中間層に含まれるカーボン層の合計膜厚が300Å以上2000Å以下であることが特徴である光電変換装置に関するものである。
That is, the present invention
(1) A multi-junction silicon-based thin film photoelectric conversion device including silicon-based thin film photoelectric conversion units connected in series via an intermediate layer, the intermediate layer starting from a transparent oxide layer, and the subsequent layers It is a layer in which n layers are formed by laminating a set of layers laminated in the order of carbon layer / transparent oxide layer (n is an integer of 2 or more), and (2) the carbon layer is The film contains hydrogen, (3) the carbon layer has a refractive index of 1.35 to 1.70 with respect to light having a wavelength of 600 nm, and (4) a transparent oxide constituting the intermediate layer The layer is formed of zinc oxide, (5) the total thickness of the transparent oxide layer is 100 to 1000 mm, and (6) the total thickness of the carbon layer included in the intermediate layer is 300 to or more. Light characterized by being less than 2000 mm It relates converter.

透明酸化物層/カーボン層/透明酸化物層/カーボン層/透明酸化物層の順で積層させることで、カーボン層を一層で製膜した場合と比較して耐応力性が格段に向上した。これにより、生産性が向上した。また、中間層内の透明酸化物層、カーボン層の膜厚を調整することで、任意の光の波長領域において、反射特性を急峻に変化させることができる。これにより、前方光電変換ユニットに必要な波長の光だけを効率的に中間層で反射させることができ、光電変換電流を増大させることができた。   By laminating the transparent oxide layer / carbon layer / transparent oxide layer / carbon layer / transparent oxide layer in this order, the stress resistance was remarkably improved as compared with the case where the carbon layer was formed as a single layer. This improved productivity. Further, by adjusting the film thickness of the transparent oxide layer and the carbon layer in the intermediate layer, the reflection characteristics can be sharply changed in an arbitrary wavelength region of light. Thereby, only the light of a wavelength required for the front photoelectric conversion unit can be efficiently reflected by the intermediate layer, and the photoelectric conversion current can be increased.

以上のような効果により、本発明によれば高性能な多接合型シリコン系光電変換装置を提供することができる。   Due to the above effects, according to the present invention, a high-performance multi-junction silicon-based photoelectric conversion device can be provided.

以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each drawing of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or an equivalent part.

図1に、本発明の実施形態の一例による多接合型シリコン系光電変換装置の断面図を示す。透明基板1上に、透明電極層2、前方光電変換ユニット3、中間層4、後方光電変換ユニット5、および裏面電極層6の順に配置されている。なお、図1には光電変換ユニットが前方光電変換ユニットと後方光電変換ユニットの2つで構成された二接合型光電変換装置となっているが、本発明は光電変換ユニットを3段以上積層した多接合型シリコン系光電変換装置にも適用し得る。例えば光入射側から第一光電変換ユニット、第二光電変換ユニット、第三光電変換ユニットの順に配置された3接合型シリコン系光電変換装置において、第一光電変換ユニットと第二光電変換ユニットを、それぞれ前方光電変換ユニットと後方光電変換ユニットと見なし、両者の境界近傍に中間層を設けても良い。あるいは第二光電変換ユニットと第三光電変換ユニットを、それぞれ前方光電変換ユニットと後方光電変換ユニットと見なし、両者の境界近傍に中間層を設けても良い。むろん、第一光電変換ユニットと第二光電変換ユニットの境界近傍および第二光電変換ユニットと第三光電変換ユニットの境界近傍の両方にシリコン複合層を設けた構造でも良い。3接合型シリコン系光電変換装置としては、例えば第一光電変換ユニットに非晶質シリコン光電変換ユニット、第二光電変換ユニットに非晶質シリコンゲルマニウムあるいは結晶質シリコン系光電変換ユニット、第三光電変換ユニットに非晶質シリコンゲルマニウムあるいは結晶質シリコン系光電変換ユニットを適用する場合などが挙げられるが、組み合わせはこの限りではない。   FIG. 1 shows a cross-sectional view of a multi-junction silicon-based photoelectric conversion device according to an example of an embodiment of the present invention. On the transparent substrate 1, the transparent electrode layer 2, the front photoelectric conversion unit 3, the intermediate layer 4, the rear photoelectric conversion unit 5, and the back electrode layer 6 are arranged in this order. In FIG. 1, the photoelectric conversion unit is a two-junction photoelectric conversion device including a front photoelectric conversion unit and a rear photoelectric conversion unit. In the present invention, three or more photoelectric conversion units are stacked. It can also be applied to a multi-junction silicon-based photoelectric conversion device. For example, in the three-junction silicon-based photoelectric conversion device arranged in the order of the first photoelectric conversion unit, the second photoelectric conversion unit, and the third photoelectric conversion unit from the light incident side, the first photoelectric conversion unit and the second photoelectric conversion unit are Each may be regarded as a front photoelectric conversion unit and a rear photoelectric conversion unit, and an intermediate layer may be provided in the vicinity of the boundary between them. Alternatively, the second photoelectric conversion unit and the third photoelectric conversion unit may be regarded as a front photoelectric conversion unit and a rear photoelectric conversion unit, respectively, and an intermediate layer may be provided in the vicinity of the boundary between them. Of course, a structure in which a silicon composite layer is provided both near the boundary between the first photoelectric conversion unit and the second photoelectric conversion unit and near the boundary between the second photoelectric conversion unit and the third photoelectric conversion unit may be used. Examples of the 3-junction silicon photoelectric conversion device include an amorphous silicon photoelectric conversion unit as the first photoelectric conversion unit, an amorphous silicon germanium or crystalline silicon photoelectric conversion unit as the second photoelectric conversion unit, and a third photoelectric conversion unit. A case where an amorphous silicon germanium or a crystalline silicon-based photoelectric conversion unit is applied to the unit may be mentioned, but the combination is not limited thereto.

基板側から光を入射するタイプの光電変換装置にて用いられる透明基板1には、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。透明電極層2はSnO、ZnO等の導電性金属酸化物から成ることが好ましく、CVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明電極層2はその表面に微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。 A plate-like member or a sheet-like member made of glass, transparent resin or the like is used for the transparent substrate 1 used in a photoelectric conversion device of a type in which light enters from the substrate side. The transparent electrode layer 2 is preferably made of a conductive metal oxide such as SnO 2 or ZnO, and is preferably formed using a method such as CVD, sputtering, or vapor deposition. The transparent electrode layer 2 desirably has the effect of increasing the scattering of incident light by having fine irregularities on its surface.

裏面電極層6としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニットと金属電極との間に、ITO、SnO、ZnO等の導電性酸化物からなる層を形成しても構わない(図示せず)。 As the back electrode layer 6, it is preferable to form at least one metal layer made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Between the photoelectric conversion unit and the metal electrode, ITO, may be formed a layer made of SnO 2, conductive oxides such as ZnO (not shown).

光入射側からみて透明電極層2の後方に、複数の光電変換ユニットが配置される。図1のように2つの光電変換ユニットが積層された構造の場合、光入射側に配置された前方光電変換ユニット3には相対的にバンドギャップの広い材料、例えば非晶質シリコン系材料による光電変換ユニットなどが用いられる。その後方に配置された後方光電変換ユニット5には、それよりも相対的にバンドギャップの狭い材料、例えば結晶質を含むシリコン系材料による光電変換ユニットや、非晶質シリコンゲルマニウム光電変換ユニットなどが用いられる。   A plurality of photoelectric conversion units are arranged behind the transparent electrode layer 2 when viewed from the light incident side. In the case of a structure in which two photoelectric conversion units are stacked as shown in FIG. 1, the front photoelectric conversion unit 3 disposed on the light incident side has a relatively wide bandgap material, for example, an amorphous silicon-based material. A conversion unit or the like is used. The rear photoelectric conversion unit 5 arranged on the rear side includes a material having a relatively narrow band gap, for example, a photoelectric conversion unit made of a silicon-based material containing a crystalline material, an amorphous silicon germanium photoelectric conversion unit, or the like. Used.

各々の光電変換ユニットは、p型層、実質的に真性な光電変換層であるi型層、およびn型層から成るpin接合によって構成されるのが好ましい。このうちi型層に非晶質シリコンを用いたものを非晶質シリコン光電変換ユニット、結晶質を含むシリコンを用いたものを結晶質シリコン光電変換ユニットと呼ぶ。なお、非晶質あるいは結晶質のシリコン系材料としては、半導体を構成する主要元素としてシリコンのみを用いる場合だけでなく、炭素、酸素、窒素、ゲルマニウムなどの元素をも含む合金材料であってもよい。また、導電型層の主要構成材料としては、必ずしもi型層と同質のものである必要はなく、例えば非晶質シリコン光電変換ユニットのp型層に非晶質シリコンカーバイドを用い得るし、n型層に結晶質を含むシリコン層(μc−Siとも呼ばれる)も用い得る。   Each photoelectric conversion unit is preferably constituted by a pin junction including a p-type layer, an i-type layer that is a substantially intrinsic photoelectric conversion layer, and an n-type layer. Among these, those using amorphous silicon for the i-type layer are called amorphous silicon photoelectric conversion units, and those using crystalline silicon are called crystalline silicon photoelectric conversion units. Note that the amorphous or crystalline silicon-based material is not only a case where only silicon is used as a main element constituting a semiconductor, but also an alloy material including elements such as carbon, oxygen, nitrogen, and germanium. Good. The main constituent material of the conductive layer is not necessarily the same as that of the i-type layer. For example, amorphous silicon carbide can be used for the p-type layer of the amorphous silicon photoelectric conversion unit, and n A silicon layer (also referred to as μc-Si) containing crystal in the mold layer can also be used.

本発明では、前方光電変換ユニットと後方光電変換ユニットとの間に前方光電変換ユニットで吸収できる波長領域の光に対する反射率が高く、前方光電変換ユニットで吸収できない波長領域の光に対する反射率が低くなるような反射特性を有する中間層4を用いている。上記中間層4は透明酸化物層4a、カーボン層4b、透明酸化物層4c、カーボン層4d、透明酸化物層4eの繰り返しからなる多層膜を用いることを特徴としており、中間反射層として機能させるためには、前方光電変換ユニット3内の光電変換層と後方光電変換ユニット5内の光電変換層との間のいずれかの位置に配置させる必要がある。また、この中間層4は光電変換ユニット内の導電型層の一部を兼ねることができる場合もある。   In the present invention, between the front photoelectric conversion unit and the rear photoelectric conversion unit, the reflectance for light in the wavelength region that can be absorbed by the front photoelectric conversion unit is high, and the reflectance for light in the wavelength region that cannot be absorbed by the front photoelectric conversion unit is low. An intermediate layer 4 having such reflection characteristics is used. The intermediate layer 4 is characterized by using a multilayer film composed of a transparent oxide layer 4a, a carbon layer 4b, a transparent oxide layer 4c, a carbon layer 4d, and a transparent oxide layer 4e, and functions as an intermediate reflective layer. For this purpose, it is necessary to arrange the photoelectric conversion layer in any position between the photoelectric conversion layer in the front photoelectric conversion unit 3 and the photoelectric conversion layer in the rear photoelectric conversion unit 5. In some cases, the intermediate layer 4 can also serve as a part of the conductive layer in the photoelectric conversion unit.

本中間層の透明酸化物層としては、酸化錫、酸化亜鉛、ITO、導電性酸素化シリコン層等を用いることが出来る。特に酸化亜鉛層4a、カーボン層4b、酸化亜鉛層4c、カーボン層4d、酸化亜鉛層4eの繰り返しからなる多層膜を積層して構成してなる多層膜中間層とすることが好ましい。何故なら低屈折率層としてカーボン層のみを中間層として用いた場合、光電変換ユニットとのオーミック接合が不十分であり、良好な電気的接合が形成出来ない。そこで、電気的接合を形成可能な酸化亜鉛層を光電変換ユニットとカーボン層間に挿入した中間層を用いる必要がある。また、波長選択性を向上させるためカーボン層の膜厚を厚くした場合、応力に対して非常に弱くなり製膜中又は製膜後に膜剥がれが生じてしまう。故にカーボン層内に、応力がカーボン層と異なり導電性と透明性、カーボン層との屈折率差を有する酸化亜鉛層を挿入することで、耐応力性を格段に向上させ、波長選択性についても向上させることができる。   As the transparent oxide layer of the intermediate layer, tin oxide, zinc oxide, ITO, a conductive oxygenated silicon layer, or the like can be used. In particular, a multilayer intermediate layer formed by laminating a multilayer film formed by repeating the zinc oxide layer 4a, the carbon layer 4b, the zinc oxide layer 4c, the carbon layer 4d, and the zinc oxide layer 4e is preferable. This is because when only the carbon layer is used as the intermediate layer as the low refractive index layer, the ohmic junction with the photoelectric conversion unit is insufficient and a good electrical junction cannot be formed. Therefore, it is necessary to use an intermediate layer in which a zinc oxide layer capable of forming an electrical junction is inserted between the photoelectric conversion unit and the carbon layer. Further, when the film thickness of the carbon layer is increased in order to improve wavelength selectivity, the film becomes very weak against stress, and film peeling occurs during or after film formation. Therefore, stress resistance is remarkably improved and wavelength selectivity is also improved by inserting a zinc oxide layer that has conductivity and transparency, and a refractive index difference from the carbon layer, unlike the carbon layer. Can be improved.

透明酸化物層の形成方法は均一な薄膜が形成される手段である必要がある。例えば、スパッタリングや蒸着などのPVD法や、各種CVD法などの化学気相法などの他に、透明酸化物層の原料を含む溶液をスピンコート法やロールコート法、スプレー塗布やディッピング塗布などにより塗布した後に加熱処理などで透明酸化物層を形成する方法も挙げられる。例えば導電性酸素化シリコンについては、光電変換ユニットを構成するn型μc−Si層のプラズマCVD法による作製時と同様の条件で、追加的にCOガスをチャンバー内へ導入することにより作製することが可能でありプロセス的に有利である。また、カーボン層についてもプラズマCVDにて作成すれば、光電変換ユニット及び中間層を1台のプラズマCVDにて作成することが可能になるため生産性が向上する。これらの透明酸化物層の膜厚は10Å以上2000Å以下であることが好ましい。透明酸化物層の膜厚が薄い場合は、透明酸化物層の導電性が極めて低く光電変換ユニットとの直列接続における障害となる。また透明酸化物層の膜厚が厚い場合は、透明性が悪くなり、生産コストも高くなる可能性がある。 The method for forming the transparent oxide layer needs to be a means for forming a uniform thin film. For example, in addition to PVD methods such as sputtering and vapor deposition and chemical vapor deposition methods such as various CVD methods, a solution containing a raw material for the transparent oxide layer is applied by spin coating, roll coating, spray coating, dipping coating, etc. There is also a method of forming a transparent oxide layer by heat treatment after coating. For example, conductive oxygenated silicon is produced by additionally introducing CO 2 gas into the chamber under the same conditions as those for producing the n-type μc-Si layer constituting the photoelectric conversion unit by the plasma CVD method. Is possible and process advantageous. Further, if the carbon layer is also formed by plasma CVD, the photoelectric conversion unit and the intermediate layer can be formed by one plasma CVD, so that productivity is improved. The film thickness of these transparent oxide layers is preferably from 10 to 2000 mm. When the thickness of the transparent oxide layer is thin, the conductivity of the transparent oxide layer is extremely low, which becomes an obstacle in series connection with the photoelectric conversion unit. Moreover, when the film thickness of a transparent oxide layer is thick, transparency may worsen and production cost may also become high.

本中間層におけるカーボン層には主に炭素原子からなる成分により構成されるものであれば特に限定されるものではないが、例えばダイヤモンドライクカーボンやグラファイトライクカーボン、アモルファスカーボンを用いることが可能である。カーボン膜は、一般的に知られている手法により生産することができ、例えばプラズマCVD法や蒸着法、スパッタリング法などがある。プラズマCVD法でカーボン層を形成する場合、原料は通常使用されるものを使用でき、炭素源としてメタンやベンゼンなどがあり、例えばメタン又はメタンと水素を用いる方法により良好なカーボン膜を得ることができる。また、カーボン層の安定性を上げる為にフッ素原子を導入してもよく、その際の炭素源としてテトラフルオロメタン、トリフルオロメタン、ジフルオロメタン、フルオロメタンやフッ素置換ベンゼンなどが使用できる。メタンについては水素で希釈を行わなくても良い。プラズマのパワーは特に制限はないが0.02〜1W/cmが好ましい。カーボン層の膜厚は、100Å〜1200Åが中間層の特性上好ましく、さらに好ましくは400Å〜900Åが良い。膜厚が薄い場合には反射特性が低下する。膜厚が厚い場合は、応力に対して弱くなり、また透明性が悪くなる可能性がある。また、蒸着法やスパッタリング法を用いてカーボン層を形成する場合においても、あらかじめ水素を含有させることにより品質の良い膜を得ることができる。本発明によるカーボン層は、600nmの波長の光に対する屈折率が1.25〜1.80とすることが好ましい。これ以上屈折率が高い場合、透明酸化物層との屈折率差が有意ではなくなり波長選択性が得られ難くなる。対して、これ以上に屈折率が低く、導電性を併せ持つような膜は波長選択性を持たせるための膜厚が厚くなってしまう上に、上記の製法では密度も低くなるので応力に耐えられなくなる可能性が高い。さらに、膜厚を厚くすることで導電性に問題が出てくると考えられる。また、この中間層4は光電変換には寄与しない不活性な層であり、ここで吸収される光は発電に寄与しないため、中間層4は可能な限り透明な方が良い。またここでカーボン層の屈折率として600nmの波長の光での値を指標とした理由は以下の点が挙げられる。積層型光電変換装置の一つである、非晶質シリコン系光電変換ユニットと結晶質シリコン系光電変換ユニットを2段積層したハイブリッド型光電変換装置において、非晶質シリコン系光電変換ユニットの分光感度電流の立下りと、結晶質シリコン系光電変換ユニットの分光感度電流の立ち上りは600nm付近の波長で交錯する。このため600nm付近の光を良く反射する膜、即ち、600nmの光に対する屈折率が小さい膜が、選択制に優れた反射特性を容易に得ることができ、前方光電変換ユニットの発電電流を増加するのに好適となる。なお、屈折率は例えばエリプソメトリ法などを用いて評価可能である。 The carbon layer in the intermediate layer is not particularly limited as long as it is mainly composed of components composed of carbon atoms, but for example, diamond-like carbon, graphite-like carbon, or amorphous carbon can be used. . The carbon film can be produced by a generally known technique, such as a plasma CVD method, a vapor deposition method, or a sputtering method. When the carbon layer is formed by plasma CVD, the raw materials can be those usually used, and there are methane and benzene as the carbon source. For example, a good carbon film can be obtained by a method using methane or methane and hydrogen. it can. In order to improve the stability of the carbon layer, fluorine atoms may be introduced, and tetrafluoromethane, trifluoromethane, difluoromethane, fluoromethane, fluorine-substituted benzene, or the like can be used as a carbon source at that time. Methane does not have to be diluted with hydrogen. The plasma power is not particularly limited, but is preferably 0.02 to 1 W / cm 2 . The film thickness of the carbon layer is preferably 100 to 1200 mm in view of the properties of the intermediate layer, and more preferably 400 to 900 mm. When the film thickness is thin, the reflection characteristics are degraded. When the film thickness is large, the film becomes weak against stress and the transparency may be deteriorated. Even when the carbon layer is formed by vapor deposition or sputtering, a high quality film can be obtained by adding hydrogen in advance. The carbon layer according to the present invention preferably has a refractive index of 1.25 to 1.80 for light having a wavelength of 600 nm. If the refractive index is higher than this, the difference in refractive index from the transparent oxide layer becomes insignificant and it becomes difficult to obtain wavelength selectivity. On the other hand, a film having a refractive index lower than this and having conductivity further increases the film thickness for providing wavelength selectivity, and the above manufacturing method also lowers the density, so that it can withstand stress. There is a high possibility of disappearing. Furthermore, increasing the film thickness is considered to cause problems with conductivity. The intermediate layer 4 is an inactive layer that does not contribute to photoelectric conversion, and the light absorbed here does not contribute to power generation. Therefore, the intermediate layer 4 should be as transparent as possible. The reason why the value of light with a wavelength of 600 nm is used as an index as the refractive index of the carbon layer is as follows. Spectral sensitivity of the amorphous silicon photoelectric conversion unit is one of the stacked photoelectric conversion devices in a hybrid photoelectric conversion device in which an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit are stacked in two stages. The fall of the current and the rise of the spectral sensitivity current of the crystalline silicon photoelectric conversion unit intersect at a wavelength near 600 nm. Therefore, a film that reflects light in the vicinity of 600 nm, that is, a film having a small refractive index with respect to 600 nm light, can easily obtain a reflection characteristic that is excellent in selection, and increases the generated current of the front photoelectric conversion unit. It becomes suitable for. The refractive index can be evaluated using, for example, an ellipsometry method.

最初の透明酸化物層以降のカーボン層/透明酸化物層の順に積層された層を一組とした層の積層数nとしては、2以上が好ましく、特に2〜5が好ましい。これ以上積層させた場合、耐応力性は向上するものの、波長選択性の向上は得られず、逆に中間層内での高屈折率体である透明酸化物層内での光の閉じ込めに由来すると思われるロスが顕著に増大する傾向にある。さらに好ましい範囲として、波長選択性、耐応力性、吸収ロスを考えた場合、光電変換ユニットに組み込む中間層としてのバランスは積層数1〜3が挙げられる。   The number n of layers in which the carbon layers / transparent oxide layers after the first transparent oxide layer are stacked in this order is preferably 2 or more, particularly preferably 2 to 5. When it is laminated more than this, although the stress resistance is improved, the wavelength selectivity cannot be improved, and conversely, it is derived from light confinement in the transparent oxide layer, which is a high refractive index in the intermediate layer. Then, the loss that seems to be increasing tends to increase remarkably. Further, as a preferable range, when considering wavelength selectivity, stress resistance, and absorption loss, the balance as an intermediate layer incorporated in the photoelectric conversion unit may include 1 to 3 layers.

以下においては、上述の実施の形態に対応する積層構造を含む多接合型シリコン系光電変換装置の製造方法の実施例として、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットとが積層された2スタック型スーパーストレート構造の多接合型シリコン系光電変換装置を挙げ、比較例と比較しつつ詳細に説明する。各図において同様の部材には同一の参照符号を付し、重複する説明は省略する。また、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。   In the following, an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit are stacked as an example of a method for manufacturing a multi-junction silicon-based photoelectric conversion device including a stacked structure corresponding to the above-described embodiment. Further, a multi-junction silicon photoelectric conversion device having a two-stack superstrate structure will be given and will be described in detail while comparing with a comparative example. In the drawings, the same members are denoted by the same reference numerals, and redundant description is omitted. Moreover, this invention is not limited to a following example, unless the meaning is exceeded.

(実施例1)
図1を参照して説明される実施例1としての多接合シリコン太陽電池が作製された。透明基板1にはガラスを用い、透明電極層2にはSnOを用いた。この際の透明電極層2の膜厚は800nm、シート抵抗は10オーム/□、ヘイズ率は15〜20%とした。この上に、ボロンドープのp型シリコンカーバイド(SiC)層を100Å、ノンドープの非晶質シリコン光電変換層を2000Å、リンドープのn型μc−Si層を200Åの膜厚で、それぞれプラズマCVD法により製膜した。これにより、前方光電変換ユニットであるpin接合の非晶質シリコン光電変換ユニット3を形成した。さらに非晶質シリコン光電変換ユニット3の上に中間層4を形成した。まず、スパッタ法により酸化亜鉛からなる透明酸化物層4aを製膜した。スパッタターゲットとして酸化亜鉛中に2wt%のAlを添加したものにおいて、スパッタガスとしてArガスを導入し、基板を150℃に加熱、圧力を0.27Paとした上で、DCスパッタ法により酸化亜鉛を膜厚150Åで形成した。なお酸化亜鉛層4aを分光エリプソメトリ法にて測定したところ、波長600nmでの屈折率は2.1であった。次にCVD法によりカーボン層4bを製膜した。基板温度150℃、0.27W/cmの放電電力により、メタンを50sccm、(メタン濃度100体積%)を原料にして、プラズマCVD装置を用いてカーボン膜を膜厚400Å形成した。なおカーボン層4bを分光エリプソメトリ法にて測定したところ、波長600nmでの屈折率は1.5であった。次に酸化亜鉛層4aと同様の方法により透明酸化物層4cとして酸化亜鉛層を膜厚75Å製膜し、カーボン層4bと同様の方法にてカーボン層4dを400Å製膜した。最後に透明酸化物層4eとして酸化亜鉛層を75Å製膜した。そして前記中間層4の上にボロンドープのp型微結晶シリコン層を150Å、ノンドープの結晶質シリコン光電変換層を35000Å、リンドープのn型微結晶シリコン層を200Åの膜厚でそれぞれプラズマCVD法により製膜した。これにより、後方光電変換ユニットであるpin接合の結晶質シリコン光電変換ユニット5を形成した。さらに後方光電変換ユニット5の上に、裏面電極層6としてZnO膜を800Å、Ag膜を2500Åの膜厚で、それぞれスパッタ法により形成した。以上のようにして得られた多接合シリコン太陽電池から1cm角の受光面積を有する光電変換ユニットを分離し、前方光電変換ユニット、後方光電変換ユニットへの入射光量を評価するために分光感度特性を測定したところ、前方光電変換ユニットで14.3mA/cm、後方変換ユニットで14.0mA/cmであった。直列接続なので律速電流は14.0mA/cmとなる。分光感度電流を纏めたもの及び製膜後の膜剥がれの有無を表1に示す。
Example 1
A multi-junction silicon solar cell as Example 1 described with reference to FIG. 1 was produced. Glass was used for the transparent substrate 1 and SnO 2 was used for the transparent electrode layer 2. The film thickness of the transparent electrode layer 2 at this time was 800 nm, the sheet resistance was 10 ohm / □, and the haze ratio was 15 to 20%. On top of this, a boron-doped p-type silicon carbide (SiC) layer having a thickness of 100 mm, a non-doped amorphous silicon photoelectric conversion layer having a thickness of 2000 mm, and a phosphorous-doped n-type μc-Si layer having a thickness of 200 mm are manufactured by plasma CVD. Filmed. Thereby, the amorphous silicon photoelectric conversion unit 3 of the pin junction which is a front photoelectric conversion unit was formed. Further, an intermediate layer 4 was formed on the amorphous silicon photoelectric conversion unit 3. First, a transparent oxide layer 4a made of zinc oxide was formed by sputtering. In the case where 2 wt% Al is added to zinc oxide as a sputtering target, Ar gas is introduced as a sputtering gas, the substrate is heated to 150 ° C., the pressure is set to 0.27 Pa, and then zinc oxide is added by DC sputtering. The film thickness was 150 mm. In addition, when the zinc oxide layer 4a was measured by the spectroscopic ellipsometry method, the refractive index in wavelength 600nm was 2.1. Next, a carbon layer 4b was formed by a CVD method. Using a plasma CVD apparatus, a carbon film having a film thickness of 400 mm was formed using 50 sccm of methane (100 volume% methane) as a raw material with a substrate temperature of 150 ° C. and a discharge power of 0.27 W / cm 2 . When the carbon layer 4b was measured by a spectroscopic ellipsometry method, the refractive index at a wavelength of 600 nm was 1.5. Next, a zinc oxide layer having a thickness of 75 mm was formed as a transparent oxide layer 4c by the same method as that for the zinc oxide layer 4a, and a carbon layer 4d was formed by a method similar to that for the carbon layer 4b by a thickness of 400 mm. Finally, a zinc oxide layer of 75 mm was formed as the transparent oxide layer 4e. On the intermediate layer 4, a boron-doped p-type microcrystalline silicon layer having a thickness of 150 mm, a non-doped crystalline silicon photoelectric conversion layer having a thickness of 35000 mm, and a phosphorus-doped n-type microcrystalline silicon layer having a thickness of 200 mm are formed by plasma CVD. Filmed. Thereby, the crystalline silicon photoelectric conversion unit 5 of the pin junction which is a back photoelectric conversion unit was formed. Further, a ZnO film having a thickness of 800 mm and an Ag film having a thickness of 2500 mm were formed as the back electrode layer 6 on the rear photoelectric conversion unit 5 by sputtering. In order to evaluate the amount of light incident on the front photoelectric conversion unit and the rear photoelectric conversion unit by separating a photoelectric conversion unit having a 1 cm square light receiving area from the multi-junction silicon solar cell obtained as described above, spectral sensitivity characteristics are obtained. was measured, 14.3mA / cm 2 in the front photoelectric conversion unit was 14.0mA / cm 2 in the rear conversion unit. Since it is connected in series, the rate-limiting current is 14.0 mA / cm 2 . Table 1 summarizes the spectral sensitivity current and the presence or absence of film peeling after film formation.

Figure 2009231781
(実施例2)
図1を参照して説明される実施例2としての多接合シリコン太陽電池が作製された。ただし、カーボン層の製膜時の放電電力が0.22W/cm2であり、製膜されたカーボン層の600nmにおける屈折率が1.7であったことが異なる。分光感度特性を測定したところ、前方光電変換ユニットで14.8mA/cm、後方変換ユニットで12.6mA/cmあった。直列接続なので律速電流は12.6mA/cmとなる。分光感度電流を纏めたもの及び製膜後の膜剥がれの有無を表1に示す。
Figure 2009231781
(Example 2)
A multi-junction silicon solar cell as Example 2 described with reference to FIG. 1 was produced. However, the difference is that the discharge power at the time of forming the carbon layer was 0.22 W / cm2, and the refractive index at 600 nm of the formed carbon layer was 1.7. Measurement of the spectral sensitivity characteristics, 14.8mA / cm 2 in the front photoelectric conversion unit, there 12.6mA / cm 2 in the rear conversion unit. Since it is connected in series, the rate-limiting current is 12.6 mA / cm 2 . Table 1 summarizes the spectral sensitivity current and the presence or absence of film peeling after film formation.

(比較例1)
図2に示す構成の多接合型薄膜シリコン太陽電池を比較例1として作製した。非晶質シリコン光電変換ユニット3を形成後、透明酸化物層4aとして酸化亜鉛層を実施例1と同様の方法で150Å製膜した。次にカーボン層4bを実施例1と同様の方法で800Å製膜した。なおカーボン層4bを分光エリプソメトリ法にて測定したところ、波長600nmでの屈折率は1.5であった。さらにその上に透明酸化物層4cとして酸化亜鉛層を実施例1と同様の方法で150Å製膜した。そして実施例1と同様の方法により結晶質シリコン光電変換ユニット5を形成した。さらに結晶質シリコン光電変換ユニット5の上に、実施例1と同様の方法で裏面電極層6を形成した。分光感度特性を測定したところ、前方光電変換ユニットで14.2mA/cm、後方変換ユニットで13.6mA/cmあった。直列接続なので律速電流は13.6mA/cmとなる。但し、比較例1は製膜後2時間で膜が剥がれ始め12時間で完全に剥がれてしまった。分光感度電流を纏めたもの及び製膜後の膜剥がれの有無を表1に示す。
(Comparative Example 1)
A multi-junction thin-film silicon solar cell having the configuration shown in FIG. After forming the amorphous silicon photoelectric conversion unit 3, a zinc oxide layer was formed as a transparent oxide layer 4a in a thickness of 150 mm in the same manner as in Example 1. Next, the carbon layer 4b was formed into a film of 800 mm in the same manner as in Example 1. When the carbon layer 4b was measured by a spectroscopic ellipsometry method, the refractive index at a wavelength of 600 nm was 1.5. Further, a zinc oxide layer having a thickness of 150 mm was formed thereon as a transparent oxide layer 4c in the same manner as in Example 1. A crystalline silicon photoelectric conversion unit 5 was formed by the same method as in Example 1. Further, a back electrode layer 6 was formed on the crystalline silicon photoelectric conversion unit 5 by the same method as in Example 1. Measurement of the spectral sensitivity characteristics, 14.2mA / cm 2 in the front photoelectric conversion unit, there 13.6mA / cm 2 in the rear conversion unit. Since it is connected in series, the rate-limiting current is 13.6 mA / cm 2 . However, in Comparative Example 1, the film started to peel off in 2 hours after film formation and was completely peeled off in 12 hours. Table 1 summarizes the spectral sensitivity current and the presence or absence of film peeling after film formation.

(比較例2)
図2に示す構成の多接合型薄膜シリコン太陽電池を比較例2として作製した。この場合、中間層4のカーボン層4bが実施例2と同様の方法で製膜され、600nmにおける屈折率が1.7であったことが、比較例1と異なっている。
分光感度特性を測定したところ、前方光電変換ユニットで14.6mA/cm、後方変換ユニットで12.6mA/cmあった。直列接続なので律速電流は12.6mA/cmとなる。但し、比較例1は製膜後6時間で膜が剥がれ始め42時間で完全に剥がれてしまった。分光感度電流を纏めたもの及び製膜後の膜剥がれの有無を表1に示す。
(Comparative Example 2)
A multi-junction thin-film silicon solar cell having the configuration shown in FIG. In this case, the carbon layer 4b of the intermediate layer 4 was formed by the same method as in Example 2, and the refractive index at 600 nm was 1.7, which is different from Comparative Example 1.
Measurement of the spectral sensitivity characteristics, 14.6mA / cm 2 in the front photoelectric conversion unit, there 12.6mA / cm 2 in the rear conversion unit. Since it is connected in series, the rate-limiting current is 12.6 mA / cm 2 . However, in Comparative Example 1, the film began to peel off 6 hours after the film formation and was completely peeled off in 42 hours. Table 1 summarizes the spectral sensitivity current and the presence or absence of film peeling after film formation.

本発明による多接合型シリコン系光電変換装置の構造断面図Cross-sectional view of structure of multi-junction silicon photoelectric conversion device according to the present invention 比較例1、2における多接合型シリコン系光電変換装置の構造断面図Cross-sectional view of structure of multi-junction silicon photoelectric conversion device in Comparative Examples 1 and 2

符号の説明Explanation of symbols

1 透明基板
2 透明電極層
3 前方光電変換ユニット
4 中間層
4a 透明酸化物層
4b カーボン層
4c 透明酸化物層
4d カーボン層
4e 透明酸化物層
5 後方光電変換ユニット
6 裏面電極層
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent electrode layer 3 Front photoelectric conversion unit 4 Intermediate layer 4a Transparent oxide layer 4b Carbon layer 4c Transparent oxide layer 4d Carbon layer 4e Transparent oxide layer 5 Back photoelectric conversion unit 6 Back surface electrode layer

Claims (6)

中間層を介して直列接続されたシリコン系薄膜光電変換ユニットを備えた多接合型シリコン系薄膜光電変換装置であって、該中間層が透明酸化物層から始まり、それ以降の層がカーボン層/透明酸化物層の順に積層された層を一組とした層をn層積層された層であることを特徴とする多接合型シリコン系薄膜光電変換装置。(n=2以上の整数)   A multi-junction silicon-based thin film photoelectric conversion device including silicon-based thin film photoelectric conversion units connected in series via an intermediate layer, wherein the intermediate layer starts with a transparent oxide layer, and the subsequent layers are carbon layers / A multi-junction silicon-based thin-film photoelectric conversion device, characterized in that n layers are formed by laminating layers in which transparent oxide layers are sequentially laminated. (N = 2 or greater integer) 前記カーボン層が、膜中に水素を含有していることを特徴とする請求項1に記載の多接合型シリコン系薄膜光電変換装置。   The multi-junction silicon-based thin film photoelectric conversion device according to claim 1, wherein the carbon layer contains hydrogen in the film. 前記カーボン層の600nmの波長の光に対する屈折率が1.25〜1.80であることを特徴とする請求項1または請求項2に記載の多接合型シリコン系薄膜光電変換装置。   3. The multi-junction silicon-based thin film photoelectric conversion device according to claim 1, wherein a refractive index of the carbon layer with respect to light having a wavelength of 600 nm is 1.25 to 1.80. 前記中間層を構成する透明酸化物層が酸化亜鉛により形成されていることを特徴とする請求項1〜請求項3のいずれかに記載の多接合型シリコン系薄膜光電変換装置。   4. The multi-junction silicon-based thin film photoelectric conversion device according to claim 1, wherein the transparent oxide layer constituting the intermediate layer is formed of zinc oxide. 前記透明酸化物層の合計膜厚が100Å以上1000Å以下であることを特徴とする請求項4に記載の多接合型シリコン系薄膜光電変換装置。   5. The multi-junction silicon-based thin film photoelectric conversion device according to claim 4, wherein a total film thickness of the transparent oxide layer is 100 to 1000 mm. 前記中間層に含まれるカーボン層の合計膜厚が300Å以上2000Å以下であることを特徴とする請求項4または請求項5に記載の多接合型シリコン系薄膜光電変換装置。 6. The multi-junction silicon-based thin film photoelectric conversion device according to claim 4, wherein a total film thickness of the carbon layers included in the intermediate layer is not less than 300 mm and not more than 2000 mm.
JP2008078774A 2007-11-02 2008-03-25 Multi-junction silicon-based thin film photoelectric conversion device Expired - Fee Related JP5180640B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008078774A JP5180640B2 (en) 2008-03-25 2008-03-25 Multi-junction silicon-based thin film photoelectric conversion device
US12/740,338 US8410355B2 (en) 2007-11-02 2008-10-30 Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer
PCT/JP2008/069766 WO2009057698A1 (en) 2007-11-02 2008-10-30 Thin-film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078774A JP5180640B2 (en) 2008-03-25 2008-03-25 Multi-junction silicon-based thin film photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2009231781A true JP2009231781A (en) 2009-10-08
JP5180640B2 JP5180640B2 (en) 2013-04-10

Family

ID=41246803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078774A Expired - Fee Related JP5180640B2 (en) 2007-11-02 2008-03-25 Multi-junction silicon-based thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP5180640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554290C2 (en) * 2010-06-07 2015-06-27 Говернинг Консил Оф Зэ Юниверсити Оф Торонто Multiple-junction photoelectric device
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
WO2016157979A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Photoelectric conversion device and photoelectric conversion module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201968A (en) * 1988-02-05 1989-08-14 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell
JPH04127580A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Multi-junction type amorphous silicon solar cell
JPH09102623A (en) * 1995-10-03 1997-04-15 Sanyo Electric Co Ltd Photovoltaic device
JP2001267598A (en) * 2000-03-17 2001-09-28 Sharp Corp Laminated solar cell
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
JP2003142709A (en) * 2001-10-31 2003-05-16 Sharp Corp Laminated solar battery and method for manufacturing the same
JP2003179241A (en) * 2001-12-10 2003-06-27 Kyocera Corp Thin film solar cell
JP2004260014A (en) * 2003-02-26 2004-09-16 Kyocera Corp Multilayer type thin film photoelectric converter
JP2004311968A (en) * 2003-03-26 2004-11-04 Canon Inc Stacked photovoltaic element and method for producing the same
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201968A (en) * 1988-02-05 1989-08-14 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell
JPH04127580A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Multi-junction type amorphous silicon solar cell
JPH09102623A (en) * 1995-10-03 1997-04-15 Sanyo Electric Co Ltd Photovoltaic device
JP2001267598A (en) * 2000-03-17 2001-09-28 Sharp Corp Laminated solar cell
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
JP2003142709A (en) * 2001-10-31 2003-05-16 Sharp Corp Laminated solar battery and method for manufacturing the same
JP2003179241A (en) * 2001-12-10 2003-06-27 Kyocera Corp Thin film solar cell
JP2004260014A (en) * 2003-02-26 2004-09-16 Kyocera Corp Multilayer type thin film photoelectric converter
JP2004311968A (en) * 2003-03-26 2004-11-04 Canon Inc Stacked photovoltaic element and method for producing the same
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554290C2 (en) * 2010-06-07 2015-06-27 Говернинг Консил Оф Зэ Юниверсити Оф Торонто Multiple-junction photoelectric device
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
WO2016157979A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Photoelectric conversion device and photoelectric conversion module
CN107408632A (en) * 2015-03-31 2017-11-28 株式会社钟化 Photoelectric conversion device and photoelectric conversion module
JPWO2016157979A1 (en) * 2015-03-31 2017-12-21 株式会社カネカ Photoelectric conversion device and photoelectric conversion module
CN107408632B (en) * 2015-03-31 2020-01-14 株式会社钟化 Photoelectric conversion device and photoelectric conversion module
US10672930B2 (en) 2015-03-31 2020-06-02 Kaneka Corporation Photoelectric conversion device and photoelectric conversion module

Also Published As

Publication number Publication date
JP5180640B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
US8410355B2 (en) Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
JPWO2008062685A1 (en) Substrate with transparent conductive film for photoelectric conversion device, method for producing the same, and photoelectric conversion device using the same
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
JP2008270562A (en) Multi-junction type solar cell
JP2010087205A (en) Multi-junction thin-film photoelectric converter
JP5180574B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JP2007305826A (en) Silicon-based thin film solar cell
JP4025744B2 (en) Manufacturing method of stacked photoelectric conversion device
JP5180640B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
JP2009290115A (en) Silicon-based thin-film solar battery
JP2009158288A (en) Transparent conductive film and solar cell using transparent conductive film
US20110120534A1 (en) Thin film solar cell and manufacturing method thereof
WO2010104041A1 (en) Thin film solar cell and production method thereof
KR20210099964A (en) Manufacturing method of the transparent bifacial solar cells and the transparent bifacial solar cells manufactured thereof
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
JP5542025B2 (en) Photoelectric conversion device
JP5022246B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
JPWO2005109526A1 (en) Thin film photoelectric converter
JP5818789B2 (en) Thin film solar cell
JP5409675B2 (en) Thin film solar cell and manufacturing method thereof
JP2010080672A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees