[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009279814A - Heat-shielding film material - Google Patents

Heat-shielding film material Download PDF

Info

Publication number
JP2009279814A
JP2009279814A JP2008133408A JP2008133408A JP2009279814A JP 2009279814 A JP2009279814 A JP 2009279814A JP 2008133408 A JP2008133408 A JP 2008133408A JP 2008133408 A JP2008133408 A JP 2008133408A JP 2009279814 A JP2009279814 A JP 2009279814A
Authority
JP
Japan
Prior art keywords
mass
film material
heat
resin
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133408A
Other languages
Japanese (ja)
Other versions
JP5146962B2 (en
Inventor
Hiroshi Suzuki
博 鈴木
Yoko Matsushita
陽子 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2008133408A priority Critical patent/JP5146962B2/en
Publication of JP2009279814A publication Critical patent/JP2009279814A/en
Application granted granted Critical
Publication of JP5146962B2 publication Critical patent/JP5146962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-shielding film material that makes excellent heat shielding properties and comfortable lightness stand together and is suitably used especially for a film structure space such as a tent warehouse, middle- and large-sized tent, truck hood and shading tent. <P>SOLUTION: The heat-shielding film material is obtained by forming an infrared reflective resin layer that is composed of a thermoplastic resin including a coarse-grained titanium oxide having a weight average particle size of 0.6-1.5 μm and interference mica particles on at least one surface of a fibrous base fabric, and it has a visible light transmittance (JIS Z8722) of 10-20%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は遮熱性が優れる膜材料に関するものである。更に詳しく述べるならば、本発明は、優れた遮熱性と、快適な明るさを与える透光性の両方を兼備し、特に、テント倉庫、中・大型テントや、トラック幌、日除けテント等の膜構造物の用途に好適に用いられる、遮熱性膜材料に関するものである。   The present invention relates to a film material having excellent heat shielding properties. More specifically, the present invention combines both excellent heat shielding properties and translucency that provides comfortable brightness, and in particular, membranes such as tent warehouses, medium and large tents, truck hoods, and sunshade tents. The present invention relates to a heat-shielding film material that is suitably used for structural applications.

繊維材料より形成された基布に、熱可塑性樹脂を、コーティング法、ディッピング法、カレンダー法又はTダイ押出し法などの方法により被覆した膜材料は、組立及び施工が容易であり、構造等のデザインの自由度が高い等の理由から、テント倉庫、中・大型テント等の膜構造物や、トラック幌、日除けテント等広い分野で利用されている。しかしながら、従来の膜材料は、太陽光線に含まれる近赤外線に対する透過性又は吸収性が高く、このため膜材料の表面側から透過又は吸収された近赤外線が膜材の裏面側に接する空間を直接暖め、また吸収された赤外線は膜材の温度を上昇させて輻射熱として膜材裏面側からも放出される。このような膜材料を使用し膜構造物空間(例えばテント倉庫)を形成した場合、夏季の強い太陽光線の下では膜構造物内部の温度が極度に高くなるため、人が長時間作業することが困難となり、またそれを日除けテントに用いた場合は、まぶしさを防ぎ、紫外線を減少させる効果はあるけれども、冷涼効果に関してはほとんど認められない程度であった。テント倉庫の場合、通常の建築物同様冷房を用いれば内部の温度を下げることも可能であるが、冷房の効率が非常に低くなり、エネルギーコストやそれに伴う環境面への負担を考えると、従来のテント倉庫は、実用上満足できるものではなかった。   A film material in which a thermoplastic resin is coated on a base fabric made of a fiber material by a coating method, dipping method, calendar method, T-die extrusion method, or the like is easy to assemble and construct, and the design of the structure, etc. Because of its high degree of freedom, it is used in a wide range of fields such as membrane structures such as tent warehouses, medium and large tents, truck hoods, and awning tents. However, the conventional film material is highly transmissive or absorbing near-infrared rays contained in sunlight, and therefore, the near-infrared light transmitted or absorbed from the surface side of the film material directly passes through the space where the back surface side of the film material is in contact. The warmed and absorbed infrared rays raise the temperature of the film material and are emitted from the back surface side of the film material as radiant heat. When such a membrane material is used to form a membrane structure space (for example, a tent warehouse), the temperature inside the membrane structure becomes extremely high under strong sunlight in the summer, so that people work for a long time. However, when it was used in a sunshade tent, it was effective to prevent glare and reduce ultraviolet rays, but the cooling effect was hardly recognized. In the case of a tent warehouse, it is possible to lower the internal temperature if cooling is used like a normal building, but the cooling efficiency becomes very low, and considering the energy cost and the environmental burden associated with it, The tent warehouse was not satisfactory in practice.

太陽光線に含まれる近赤外線を反射するシートを提供する技術は、古くから行われており、例えば、アルミニウムをポリエステルフィルム表面に蒸着したものを積層させるもの(特許文献1)が知られている。このシートを屋外で膜材料として使用した場合は表面のアルミニウム蒸着層の摩耗強度が悪いため、長期の使用には適さない。また、プラスチック樹脂にアルミニウム粉末を特定量含有させたシート(特許文献2)などが知られている。特許文献1及び2に記載のようなシートは、アルミニウム蒸着フィルムや、アルミニウム粉末含有シートが、光線を吸収することによってフィルムやシート自体が高温に加熱され、これらのフィルムやシートからなる構造体の内部に直接太陽光はとどかないものの、熱伝導による間接的な加熱があり、さらにフィルムやシート自体の熱による劣化も懸念される。   A technique for providing a sheet that reflects near-infrared rays contained in solar rays has been practiced for a long time. For example, a technique in which aluminum is vapor-deposited on a polyester film surface (Patent Document 1) is known. When this sheet is used outdoors as a film material, the wear strength of the aluminum deposited layer on the surface is poor, so it is not suitable for long-term use. Also known is a sheet (Patent Document 2) in which a specific amount of aluminum powder is contained in a plastic resin. Sheets such as those described in Patent Documents 1 and 2 are an aluminum vapor deposition film or an aluminum powder-containing sheet that absorbs light rays, whereby the film or sheet itself is heated to a high temperature, and a structure composed of these films and sheets. Although sunlight does not reach the inside directly, there is indirect heating due to heat conduction, and there is also concern about deterioration of the film or sheet itself due to heat.

一方、基布に被覆した熱可塑性樹脂層の温度上昇を防止するために低熱伝導性を付与する方法として、熱可塑性樹脂層中に中空球状体と白色顔料を併用した技術もあるが(例えば、特許文献3、特許文献4)、中空球状体自体には遮熱効果がないため、熱可塑性樹脂層表面に露出した場合は遮熱効果が低下し、また中空球状体を含有することにより熱可塑性樹脂層の被膜強度が低下し、樹脂層の摩耗強度も低いため、屋外で長期使用する膜材料としては不適切である。   On the other hand, as a method for imparting low thermal conductivity in order to prevent the temperature rise of the thermoplastic resin layer coated on the base fabric, there is a technique in which a hollow sphere and a white pigment are used in combination in the thermoplastic resin layer (for example, Patent Document 3 and Patent Document 4), since the hollow sphere itself has no heat shielding effect, the heat shielding effect is reduced when exposed to the surface of the thermoplastic resin layer, and the hollow sphere is thermoplastic by containing the hollow sphere. Since the film strength of the resin layer is reduced and the wear strength of the resin layer is low, it is inappropriate as a film material for long-term use outdoors.

また、顔料用酸化チタン(粒子径0.2〜0.4μm)を含有した樹脂層が、太陽光線に含まれる近赤外線を散乱させ、遮熱性を示すこと(例えば、特許文献5、特許文献6)が知られている。しかしこれらの方法で、より優れた遮熱性を得るには、樹脂層に含有する酸化チタンを増量する必要があり、このようにすると樹脂層の隠蔽性が増し膜材料の透光性が低下し、快適な明るさは得られず、この様な膜材料を用いたテント倉庫内部では、日中でも暗く照明が必要になるという問題がある。従って遮熱性と透光性とを両立した膜材料が望まれていた。   Moreover, the resin layer containing the titanium oxide for pigments (particle diameter 0.2-0.4 micrometer) scatters the near infrared rays contained in a solar ray, and shows thermal insulation (for example, patent document 5, patent document 6). )It has been known. However, it is necessary to increase the amount of titanium oxide contained in the resin layer in order to obtain better heat shielding properties by these methods, and in this way, the concealability of the resin layer increases and the translucency of the film material decreases. However, a comfortable brightness cannot be obtained, and there is a problem that the interior of the tent warehouse using such a film material needs to be darkly lit even during the day. Accordingly, there has been a demand for a film material having both heat shielding properties and translucency.

この問題を改良する試みとして、重量平均粒子径0.6〜1.5μmの粗粒酸化チタンを含有した熱可塑性樹脂フィルムや塗膜(例えば、特許文献7、特許文献8)が知られている。また、酸化チタンで被覆された雲母粒子を含有した熱可塑性樹脂フィルムやシート(例えば、特許文献9、特許文献10)も知られている。これらの熱可塑性樹脂フィルム、シートや塗膜は、農業用フィルムや農業用被覆材に使用されており、顔料用酸化チタン(粒子径0.2〜0.4μm)を含有した場合に比べ、透光性は向上するものの、可視光透過率が高いことを優先しており、実質的な遮熱性は低いのが現状である。更に、粗粒酸化チタンを含有した熱可塑性樹脂層によって、より優れた遮熱性を得るには、樹脂層に含有する粗粒酸化チタンを増量する必要があり、粗粒酸化チタンの含有量が少ない範囲では透光性向上に効果があるが、含有量が多くなると顔料用酸化チタンと同様に樹脂層の隠蔽性が増し膜材料の透光性が低くなり、快適な明るさは得られないという問題があった。また、酸化チタンで被覆された雲母粒子を含有した熱可塑性樹脂フィルムやシートでは、酸化チタンで被覆された雲母粒子を含有することによる透光性の低下量が小さく、高透光性を維持できるが、一方、含有量を多くしても優れた遮熱性は得られないという問題があった。   As an attempt to improve this problem, thermoplastic resin films and coating films (for example, Patent Document 7 and Patent Document 8) containing coarse titanium oxide having a weight average particle diameter of 0.6 to 1.5 μm are known. . Also known are thermoplastic resin films and sheets (for example, Patent Document 9 and Patent Document 10) containing mica particles coated with titanium oxide. These thermoplastic resin films, sheets, and coating films are used in agricultural films and agricultural coating materials, and are more transparent than those containing titanium oxide for pigments (particle diameter: 0.2 to 0.4 μm). Although the light property is improved, priority is given to high visible light transmittance, and the actual heat shielding property is low at present. Furthermore, in order to obtain more excellent heat shielding properties by the thermoplastic resin layer containing the coarse titanium oxide, it is necessary to increase the coarse titanium oxide contained in the resin layer, and the content of the coarse titanium oxide is small. In the range, it is effective in improving translucency, but if the content is increased, the concealability of the resin layer is increased and the translucency of the film material is lowered as in the case of titanium oxide for pigment, and comfortable brightness cannot be obtained. There was a problem. In addition, in the thermoplastic resin film or sheet containing mica particles coated with titanium oxide, the amount of decrease in translucency due to the inclusion of mica particles coated with titanium oxide is small, and high translucency can be maintained. On the other hand, however, there is a problem that even if the content is increased, excellent heat shielding properties cannot be obtained.

近年、膜材料を使用した膜構造空間は照明の省エネルギーの面から明るいことが求められ、その明るさも人間にとって快適な心地の良い明るさが求められている。具体的には、まぶしくなく柔らかい明るさで、膜構造空間内で空の雲の流れが分るような明るさであり、膜材料の透光率としては10〜20%の可視光透過率(JIS Z8722)に相当する明るさが求められている。可視光透過率が10〜20%を有する膜材料は既に各種あるが、これらは総じて遮熱性が低いという問題点があった。このように、快適な明るさである10〜20%の可視光透過率と優れた遮熱性とを併せ持った膜材料はまだ提供されていない。   In recent years, a membrane structure space using a membrane material is required to be bright from the viewpoint of energy saving of illumination, and the brightness is also required to be comfortable and comfortable for humans. Specifically, the brightness is dull and soft, and the brightness is such that the flow of sky clouds can be seen in the membrane structure space. The transmittance of the membrane material is 10 to 20% visible light transmittance ( Brightness equivalent to JIS Z8722) is required. There are already various types of film materials having a visible light transmittance of 10 to 20%, but these have a problem that they generally have low heat shielding properties. Thus, a film material having a visible light transmittance of 10 to 20%, which is comfortable brightness, and an excellent heat shielding property has not yet been provided.

特開2000−71858号公報JP 2000-71858 A 特開平8−81567号公報JP-A-8-81567 特開2004−10903号公報JP 2004-10903 A 特開2001−220502号公報JP 2001-220502 A 特開2006−233139号公報JP 2006-233139 A 特開2006−335949号公報JP 2006-335949 A 特開2006−314218号公報JP 2006-314218 A 特開2007−295858号公報JP 2007-295858 A 特開平10−290635号公報Japanese Patent Laid-Open No. 10-290635 特開2007−111002号公報JP 2007-111102 A

本発明は、優れた遮熱性と快適な明るさを与える透光性とを併せて具備し、特に、テント倉庫、中・大型テントや、トラック幌、日除けテント等の膜構造物の用途に好適に用いられる遮熱性膜材料を提供しようとするものである。   The present invention has both excellent heat shielding properties and translucency that provides comfortable brightness, and is particularly suitable for use in membrane structures such as tent warehouses, medium and large tents, truck hoods, and sunshade tents. An object of the present invention is to provide a heat-shielding film material used for the above.

本発明者は、上記の課題を解決するために、鋭意検討の結果、特定範囲の重量平均粒子径を有する粗粒酸化チタンと干渉雲母粒子を熱可塑性樹脂層中に配合する事により、優れた遮熱性と快適な明るさを両立させた遮熱性膜材料が得られることを見いだし、本発明を完成するに至った。   In order to solve the above problems, the present inventor has achieved excellent results by blending coarse titanium oxide having a weight average particle diameter in a specific range and interference mica particles in the thermoplastic resin layer as a result of intensive studies. It has been found that a heat-shielding film material having both heat-shielding properties and comfortable brightness can be obtained, and the present invention has been completed.

本発明の遮熱性膜材料は、繊維材料より形成された基布と、その少なくとも1面に形成された赤外線反射樹脂層とからなり、かつ10〜20%の可視光透過率(JIS Z8722)を有する膜材料であって、前記赤外線反射樹脂層が、重量平均粒子径0.6〜1.5μmの粗粒酸化チタンと、干渉雲母粒子とを含む熱可塑性樹脂により構成されていることを特徴とするものである。
本発明の遮熱性膜材料において、前記赤外線反射樹脂層が、前記赤外線反射樹脂層の質量に対して、5〜15質量%の前記粗粒酸化チタンと、1〜5質量%の前記干渉雲母粒子とを含むことが好ましい。
本発明の遮熱性膜材料において、前記干渉雲母粒子が、酸化チタン薄膜、又は酸化チタン/酸化ケイ素/酸化チタンによる複層構造を有する薄膜により被覆されていることが好ましい。
本発明の遮熱性膜材料において、前記赤外線反射樹脂層の上に防汚層がさらに形成されていることが好ましい。
本発明の遮熱性膜材料は、10%以下の日射熱取得率(JIS R3106)を有することが好ましい。
The heat-shielding film material of the present invention comprises a base fabric formed from a fiber material and an infrared reflective resin layer formed on at least one surface thereof, and has a visible light transmittance (JIS Z8722) of 10 to 20%. The infrared reflective resin layer is made of a thermoplastic resin containing coarse titanium oxide having a weight average particle diameter of 0.6 to 1.5 μm and interference mica particles. To do.
In the heat-shielding film material of the present invention, the infrared reflective resin layer is 5 to 15% by mass of the coarse titanium oxide and 1 to 5% by mass of the interference mica particles with respect to the mass of the infrared reflective resin layer. Are preferably included.
In the heat-shielding film material of the present invention, the interference mica particles are preferably coated with a titanium oxide thin film or a thin film having a multilayer structure of titanium oxide / silicon oxide / titanium oxide.
In the heat shielding film material of the present invention, it is preferable that an antifouling layer is further formed on the infrared reflective resin layer.
The thermal barrier film material of the present invention preferably has a solar heat gain (JIS R3106) of 10% or less.

本発明の膜材料は、優れた遮熱性と快適な明るさとを併せ有するものであり、それを、例えば、テント倉庫、中・大型テントや、トラック幌、日除けテント等の膜構造物の形成に使用することにより、遮熱性があり、且つ心地よい明るさのある快適な空間を提供することが可能となる。   The membrane material of the present invention has both excellent heat shielding properties and comfortable brightness. For example, it can be used to form membrane structures such as tent warehouses, medium and large tents, truck hoods, and sunshade tents. By using it, it is possible to provide a comfortable space having heat shielding properties and comfortable brightness.

本発明の遮熱性膜材料に含まれる基布を形成する繊維としては、ポリプロピレン繊維、ポリエチレン繊維、ポリエステル繊維、ナイロン繊維、ビニロン繊維などの合成繊維、木綿、麻などの天然繊維、アセテートなどの半合成繊維、ガラス繊維、シリカ繊維、アルミナ繊維、炭素繊維などの無機繊維が挙げられ、これらは、単独または2種以上からなる混用繊維によって構成されていてもよく、その形状はマルチフィラメント糸条、短繊維紡績糸条、モノフィラメント糸条、スプリットヤーン糸条、テープヤーン糸条などいずれであってもよい。本発明に使用される繊維基布は、織布、編布、不織布のいずれでもよい、織布を用いる場合、平織、綾織、繻子織、模紗織などいずれの構造をとるものでもよいが、平織織物は、得られる膜材の縦緯物性バランスに優れているため好ましく用いられる。編布を用いるときはラッセル編の緯糸挿入トリコットが好ましく用いられる。これら編織物は、少なくともそれぞれ、糸間間隙をおいて平行に配置された経糸及び緯糸を含む糸条により構成された粗目状の編織物(空隙率は最大80%、好ましくは5〜50%)、及び非粗目状編織物(糸条間に実質上間隙が形成されていない編織物)を包含する。不織布としてはスパンボンド不織布などが使用できる。繊維基布には必要に応じて撥水処理、吸水防止処理、接着処理、難燃処理などが施されていても良い。   The fibers forming the base fabric contained in the heat-shielding film material of the present invention include polypropylene fibers, polyethylene fibers, polyester fibers, nylon fibers, vinylon fibers and other synthetic fibers, cotton, hemp and other natural fibers, acetate and other semi-finished fibers. Examples thereof include inorganic fibers such as synthetic fibers, glass fibers, silica fibers, alumina fibers, and carbon fibers, which may be composed of single or two or more kinds of mixed fibers, and the shape thereof is a multifilament yarn, It may be any of short fiber spun yarn, monofilament yarn, split yarn yarn, tape yarn yarn and the like. The fiber base fabric used in the present invention may be any of a woven fabric, a knitted fabric, and a non-woven fabric. When a woven fabric is used, it may have any structure such as a plain weave, a twill weave, a satin weave, and a patterned weave. A woven fabric is preferably used because it is excellent in the longitudinal and physical properties balance of the obtained film material. When using a knitted fabric, a weft insertion tricot of Russell knitting is preferably used. These knitted fabrics are each a coarse knitted fabric composed of yarns including warps and wefts arranged in parallel with a gap between yarns (the porosity is 80% at maximum, preferably 5 to 50%) And non-coarse knitted fabric (knitted fabric with substantially no gap formed between yarns). As the nonwoven fabric, a spunbond nonwoven fabric can be used. The fiber base fabric may be subjected to water repellent treatment, water absorption prevention treatment, adhesion treatment, flame retardant treatment, and the like as necessary.

本発明の遮熱性膜材料に使用する赤外線反射樹脂層に用いられる熱可塑性樹脂(熱可塑性エラストマーを包含する)としては、塩化ビニル樹脂、塩化ビニル系共重合体樹脂、オレフィン樹脂、オレフィン系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂、ポリエステル系共重合体樹脂、およびフッ素含有共重合体樹脂などを、単独で用いてもよく、もしくは、2種以上を併用してもよい。これらの熱可塑性樹脂のなかでは、塩化ビニル樹脂(可塑剤、安定剤等を配合した軟質〜半硬質塩化ビニル樹脂を包含する)、オレフィン系共重合体樹脂、ウレタン系共重合体樹脂、ポリエステル系共重合体樹脂、及びフッ素含有共重合体樹脂等を用いることが好ましい。上記塩化ビニル樹脂及び塩化ビニル系共重合体樹脂とは、具体的に、ポリ塩化ビニル、塩化ビニル−エチレン共重合体樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビニル−塩化ビニリデン共重合体樹脂、塩化ビニル−アクリル酸共重合体樹脂、及び塩化ビニル−ウレタン共重合体樹脂などを包含する。また上記オレフィン樹脂及びオレフィン系共重合体樹脂は、具体的に、ポリエチレン、ポリプロピレン、エチレン−α−オレフィン共重合体樹脂、エチレン−酢酸ビニル共重合体樹脂、エチレン−アクリル酸共重合体樹脂、エチレン−アクリル酸エステル共重合体樹脂、エチレン−メタアクリル酸共重合体樹脂、エチレン−メタアクリル酸エステル共重合体樹脂、ポリプロピレンとエチレン−プロピレンゴム(EPRゴム)とのリアクター重合樹脂、これらのポリマーアロイ体であるPP−EPR樹脂、ポリプロピレンとエチレン−プロピレン−共役ジエン系ゴム(EPDMゴム)とのリアクター重合樹脂、もしくはこれらのポリマーアロイ体であるPP−EPDM樹脂などを包含する。本発明の採光膜材の熱可塑性樹脂被覆層は有機顔料、無機顔料による着色が可能であり、必要に応じて可塑剤、安定剤、充填剤、紫外線吸収剤、接着剤、防炎剤、防黴剤、滑剤等を含むことができる。   The thermoplastic resin (including thermoplastic elastomer) used for the infrared reflective resin layer used in the heat-shielding film material of the present invention includes vinyl chloride resin, vinyl chloride copolymer resin, olefin resin, olefin copolymer Combined resin, urethane resin, urethane copolymer resin, acrylic resin, acrylic copolymer resin, vinyl acetate resin, vinyl acetate copolymer resin, styrene resin, styrene copolymer resin, polyester resin, polyester resin Copolymer resins, fluorine-containing copolymer resins, and the like may be used alone or in combination of two or more. Among these thermoplastic resins, vinyl chloride resins (including soft to semi-rigid vinyl chloride resins blended with plasticizers, stabilizers, etc.), olefin copolymer resins, urethane copolymer resins, and polyester resins. It is preferable to use a copolymer resin, a fluorine-containing copolymer resin, or the like. Specific examples of the vinyl chloride resin and the vinyl chloride copolymer resin include polyvinyl chloride, vinyl chloride-ethylene copolymer resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinylidene chloride copolymer. Resin, vinyl chloride-acrylic acid copolymer resin, and vinyl chloride-urethane copolymer resin. Further, the olefin resin and olefin copolymer resin are specifically polyethylene, polypropylene, ethylene-α-olefin copolymer resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, ethylene. -Acrylic acid ester copolymer resin, ethylene-methacrylic acid copolymer resin, ethylene-methacrylic acid ester copolymer resin, reactor polymerization resin of polypropylene and ethylene-propylene rubber (EPR rubber), and these polymer alloys PP-EPR resin that is a polymer, reactor polymerization resin of polypropylene and ethylene-propylene-conjugated diene rubber (EPDM rubber), or PP-EPDM resin that is a polymer alloy of these. The thermoplastic resin coating layer of the daylighting film material of the present invention can be colored with organic pigments and inorganic pigments, and plasticizers, stabilizers, fillers, ultraviolet absorbers, adhesives, flameproofing agents, and anti-proofing agents as necessary. It can contain glazes, lubricants and the like.

本発明の遮熱性膜材料に使用する赤外線反射樹脂層を構成する粗粒酸化チタンの重量平均粒子径は0.6〜1.5μmであることが好ましい。重量平均粒子径が0.6μm未満では、それを少量を含有させた場合、波長が400nm以上700nm未満にある可視光領域の光線の平均透過率が低下するとともに、波長が700nm以上2000nm未満の近赤外光領域における光線の平均透過率が高くなり、そのために得られる赤外線反射樹脂層が白色化して光線透過率が不十分になる。また、前記重量平均粒子径が1.5μmを超えると、近赤外領域における光線の散乱効率が低下し、結果として近赤外光領域における光線の平均透過率が高くなり、遮熱性が低下する。また、本発明に用いる上記粗粒酸化チタン粒子は、長期耐候性を得るために、表面被覆されていることが好ましく、例えば酸化アルミニウム、酸化亜鉛、酸化ケイ素、酸化ジルコニウムなどの金属酸化物によって粗粒酸化チタン粒子に対して0.05〜3質量%で表面被覆された粗粒酸化チタン粒子が好ましい。   It is preferable that the weight average particle diameter of the coarse-grained titanium oxide constituting the infrared reflective resin layer used for the heat-shielding film material of the present invention is 0.6 to 1.5 μm. When the weight average particle diameter is less than 0.6 μm, when a small amount thereof is contained, the average transmittance of light in the visible light region having a wavelength of 400 nm or more and less than 700 nm is lowered, and the wavelength is close to 700 nm or more and less than 2000 nm. The average light transmittance in the infrared light region is increased, and the resulting infrared reflective resin layer is whitened, resulting in insufficient light transmittance. Further, when the weight average particle diameter exceeds 1.5 μm, the light scattering efficiency in the near infrared region decreases, and as a result, the average light transmittance in the near infrared region increases, and the heat shielding property decreases. . The coarse titanium oxide particles used in the present invention are preferably surface-coated in order to obtain long-term weather resistance. For example, the coarse titanium oxide particles are coarsely coated with a metal oxide such as aluminum oxide, zinc oxide, silicon oxide, or zirconium oxide. Coarse-grained titanium oxide particles whose surface is coated at 0.05 to 3% by mass with respect to the granular titanium oxide particles are preferred.

本発明の遮熱性膜材料に使用する赤外線反射樹脂層に含まれる干渉雲母粒子は、雲母粒子表面が、酸化チタン薄膜、又は酸化チタン/酸化ケイ素/酸化チタン(TiO2/SiO2/TiO2)の3層による複層構造を有する薄膜で被覆され、かつ5〜100μm、特に25〜75μmの粒子径を有する光干渉性粒子である。雲母粒子表面に対する酸化チタン薄膜による被覆率は、35〜70%に限定されることが好ましく、45〜60%であることがより好ましい。それが35%未満の場合は、太陽光からの熱線に対する遮蔽性が不足することがある、またそれが70%を越える場合には、赤外線反射樹脂層の透光性が不十分になることがあり、或いは、酸化チタンの有する触媒活性によって赤外線反射樹脂層の耐候性が不十分になることがある。この干渉雲母粒子の製造方法には、特に限定はなく、例えば、四塩化チタンの加水分解により雲母粒子表面に水酸化チタンを被覆させ、更に、焼結して酸化チタンを結晶化させる方法が挙げられる。なお、上記薄膜の雲母粒子表面への被覆率とは、表面が薄膜で被覆された雲母粒子中における薄膜の質量比率を表したものをいい、酸化チタンの量は二酸化チタン換算の質量である。 The interference mica particles contained in the infrared reflective resin layer used in the heat-shielding film material of the present invention have a mica particle surface having a titanium oxide thin film, or titanium oxide / silicon oxide / titanium oxide (TiO 2 / SiO 2 / TiO 2 ). The optical coherent particles are coated with a thin film having a multilayer structure of three layers and have a particle diameter of 5 to 100 μm, particularly 25 to 75 μm. The coverage with the titanium oxide thin film on the surface of the mica particles is preferably limited to 35 to 70%, and more preferably 45 to 60%. If it is less than 35%, the shielding property against heat rays from sunlight may be insufficient, and if it exceeds 70%, the translucency of the infrared reflecting resin layer may be insufficient. Or, the weather resistance of the infrared reflective resin layer may be insufficient due to the catalytic activity of titanium oxide. The method for producing the interference mica particles is not particularly limited. For example, the surface of the mica particles is coated with titanium hydroxide by hydrolysis of titanium tetrachloride, and further sintered to crystallize titanium oxide. It is done. The coverage of the thin film on the surface of the mica particles refers to the mass ratio of the thin film in the mica particles whose surfaces are coated with the thin film, and the amount of titanium oxide is the mass in terms of titanium dioxide.

膜材料の赤外線反射樹脂層中に粗粒酸化チタンのみを含有させた場合、その含有量が少ないときは、得られる膜材料は10〜20%の可視光透過率を有するが、遮熱性は低く、10%以下の日射熱取得率は得られない。また、含有量が多いときは、得られる膜材料の遮熱性が向上し、10%以下の日射熱取得率を得られるが、膜材料の隠蔽性が増し、可視光透過率10〜20%の快適な明るさは得られない。   When only the coarse titanium oxide is contained in the infrared reflective resin layer of the film material, when the content is small, the obtained film material has a visible light transmittance of 10 to 20%, but the heat shielding property is low. A solar heat gain rate of 10% or less cannot be obtained. Further, when the content is large, the heat shielding property of the obtained film material is improved, and a solar heat gain rate of 10% or less can be obtained, but the concealing property of the film material is increased, and the visible light transmittance is 10 to 20%. Comfortable brightness cannot be obtained.

膜材料の赤外線反射樹脂層中に、干渉雲母粒子のみを含有させた場合は、その含有量の調整により30%以上の光線透過率を維持して、遮熱性を付与することは可能であるが、この遮熱性のレベルは不十分であり、干渉雲母粒子の含有量を増やしても遮熱性の向上は小さく、得られる膜材料において、可視光透過率10〜20%の快適な明るさと、10%以下の日射熱取得率との両方を達成することは困難である。   When only the interference mica particles are contained in the infrared reflecting resin layer of the film material, it is possible to maintain a light transmittance of 30% or more by adjusting the content and to impart heat shielding properties. The level of the heat shielding property is insufficient, and even if the content of the interference mica particles is increased, the improvement of the heat shielding property is small. In the obtained film material, a comfortable brightness with a visible light transmittance of 10 to 20% and 10% It is difficult to achieve both a solar heat gain rate of less than%.

本発明の遮熱性膜材料において、膜材料の赤外線反射樹脂層に、粗粒酸化チタンと干渉雲母粒子を、ともに含有することによって、初めて、膜材料として、可視光透過率10〜20%の快適な明るさと、日射熱取得率10%以下の優れた遮熱性を発揮することが可能になる。   In the heat-shielding film material of the present invention, it is the first time that the infrared reflective resin layer of the film material contains both coarse titanium oxide and interference mica particles. High brightness and excellent heat shielding properties with a solar heat acquisition rate of 10% or less.

本発明の遮熱性膜材料の赤外線反射樹脂層に含まれる粗粒酸化チタンの含有量は、赤外線反射樹脂層の質量に対して、5〜15質量%であることが好ましく、8〜12質量%であることがより好ましい。含有量が5質量%未満の場合は、膜材料の遮熱性が低下し、干渉雲母粒子と組合せても、10%以下の日射熱取得率は得られないことがある。また、その含有量が15質量%を越える場合は、膜材料の隠蔽性が増大し10〜20%の可視光透過率が得られないことがある。   The content of coarse-grained titanium oxide contained in the infrared reflective resin layer of the heat-shielding film material of the present invention is preferably 5 to 15% by mass, and 8 to 12% by mass with respect to the mass of the infrared reflective resin layer. It is more preferable that When the content is less than 5% by mass, the heat shielding property of the film material is lowered, and even when combined with interference mica particles, a solar heat gain rate of 10% or less may not be obtained. On the other hand, when the content exceeds 15% by mass, the concealability of the film material is increased and a visible light transmittance of 10 to 20% may not be obtained.

本発明の遮熱性膜材料の赤外線反射樹脂層中の干渉雲母粒子の含有量は、粗粒酸化チタン5〜15質量%との組合せで、前記赤外線反射樹脂層の質量に対して1〜5質量%であることが好ましく、2〜4質量%であることがより好ましい。干渉雲母粒子の含有量が1質量%未満の場合は、膜材料の遮熱性が不十分になり、粗粒酸化チタンと組合せても、10%以下の日射熱取得率が得られないことがある。また、干渉雲母粒子の含有量が5質量%を越える場合は、膜材料の表面色及び透光色が虹彩色となり、ギラツキやイラツキが発生し、この膜材料により囲われた空間は、透光性はあるが、快適な明るさが得られないことがある。   The content of the interference mica particles in the infrared reflective resin layer of the heat-shielding film material of the present invention is 1 to 5 mass relative to the mass of the infrared reflective resin layer in combination with 5 to 15 mass% of coarse titanium oxide. %, And more preferably 2 to 4% by mass. When the content of the interference mica particles is less than 1% by mass, the heat shielding property of the film material becomes insufficient, and even when combined with coarse titanium oxide, a solar heat gain of 10% or less may not be obtained. . Further, when the content of the interference mica particles exceeds 5% by mass, the surface color and translucent color of the film material become iridescent, and glare and irritation occur, and the space surrounded by the film material is translucent. There is a possibility, but comfortable brightness may not be obtained.

本発明の遮熱性膜材料において、その経時的な汚れの付着による遮熱効果及び、透光性の低下を防止し、且つ美観を維持するために、前記赤外線反射樹脂層の上に少なくとも1層の防汚層を設けることができる。前記防汚層は遮熱性膜材料の遮熱性及び透光性を損なわず、極度の隠蔽性を伴わないものである限り、その形成方法及び素材に特に限定はない。このような防汚層は、例えば、溶剤に可溶化されたアクリル系樹脂もしくはフッ素系樹脂の少なくとも1種以上からなる樹脂溶液を塗布して形成した塗膜、これらにシリカ微粒子、またはコロイダルシリカを含む塗膜、オルガノシリケート及び/又はその縮合体を含む塗布剤を塗布して形成された親水性被膜層、光触媒性無機材料(例えば光触媒性酸化チタン)と結着剤とを含む塗布剤を塗布して形成された光触媒層、少なくとも最外表面がフッ素系樹脂により形成されたフィルムを接着剤もしくは熱溶融加工により積層したフィルム層等から適宜選択することができる。   In the heat-shielding film material of the present invention, at least one layer is provided on the infrared-reflective resin layer in order to prevent the heat-shielding effect due to the adhesion of dirt over time and the decrease in translucency and maintain the aesthetic appearance. An antifouling layer can be provided. The antifouling layer is not particularly limited in its formation method and material as long as it does not impair the heat-shielding and light-transmitting properties of the heat-shielding film material and does not have extreme concealing properties. Such an antifouling layer is, for example, a coating film formed by applying a resin solution consisting of at least one of an acrylic resin or a fluorine resin solubilized in a solvent, silica fine particles, or colloidal silica. Coating film including coating film, organosilicate and / or hydrophilic coating layer formed by applying coating agent containing condensate thereof, coating agent containing photocatalytic inorganic material (eg photocatalytic titanium oxide) and binder The photocatalyst layer thus formed, or a film layer obtained by laminating a film having at least the outermost surface formed of a fluorine-based resin by an adhesive or hot melt processing, can be appropriately selected.

本発明の遮熱性膜材料は、繊維材料より形成された基布と、その少なくとも1面上に形成された熱可塑性樹脂被覆層とを有する可撓性膜材であって、その形態は、ターポリン、帆布等の防水性膜材、またはメッシュシートであることが好ましい。これらのうち、帆布及びメッシュシートを製造するには、有機溶剤に可溶化した熱可塑性樹脂、水中で乳化重合された熱可塑性樹脂エマルジョン(ラテックス)、あるいは熱可塑性樹脂を水中に強制分散させ安定化したディスパージョン樹脂などの水分散樹脂、軟質ポリ塩化ビニル樹脂ペーストゾル、等を用いるディッピング加工(繊維布帛への両面加工)、及びコーティング加工(繊維布帛への片面加工、または両面加工)等を用いることができる。ターポリンはカレンダー成形法、またはTダイス押出法により成形されたフィルム又はシートを、繊維基布の片面または両面に接着層を介在して積層する方法、あるいは繊維布帛の両面に目抜け空隙部を介して熱ラミネート積層する方法により製造することが好ましく、さらにディッピング加工、またはコーティング加工と、フィルム積層の組み合わせ方法によっても製造可能である。   The heat-shielding film material of the present invention is a flexible film material having a base fabric made of a fiber material and a thermoplastic resin coating layer formed on at least one surface thereof. It is preferably a waterproof membrane material such as canvas or a mesh sheet. Among these, to produce canvas and mesh sheets, a thermoplastic resin solubilized in an organic solvent, a thermoplastic resin emulsion (latex) emulsion-polymerized in water, or a thermoplastic resin is forcibly dispersed in water and stabilized. Dipping process (double-sided processing to fiber fabric) using a water-dispersed resin such as a dispersion resin, soft polyvinyl chloride resin paste sol, etc., and coating processing (single-sided processing or double-sided processing to fiber fabric) are used. be able to. Tarpaulin is a method of laminating a film or sheet formed by a calender molding method or a T-die extrusion method with an adhesive layer interposed on one or both sides of the fiber base fabric, or via a void space on both sides of the fiber fabric. It is preferable to manufacture by a method of heat laminating and laminating, and further, it can be manufactured by a combination of dipping or coating and film lamination.

本発明を下記実施例、および比較例により更に説明する。
下記実施例において、初期および屋外曝露1年後の可視光透過率、日射熱取得率評価に用いた試験方法は下記の通りである。
(1)可視光透過率
膜材料の可視光透過率を、分光測色計CM−3600d(コニカミノルタ(株)製)を使用し、JIS Z8722に従って測定した。
(2)日射熱取得率
膜材料の日射熱取得率は、分光光度計V−670型(日本分光(株)製)を使用し、日射透過率、日射吸収率を測定し、JIS R3106に準拠し式(1)に従って算出した。
日射熱取得率:η=a+b(1/αti)/(1/αti+1/αto) …(1)
αto : 屋外側表面の総合熱伝達率(常用値25W/m2K)
αti : 室内側表面の総合熱伝達率(常用値9W/m2K)
a : 日射透過率
b : 日射吸収率
(3)屋外曝露試験
屋外曝露台上に、試験膜材の表面を上にして南向きに傾斜角30度に設置して屋外曝露試験(1年間)を行った。
The present invention is further illustrated by the following examples and comparative examples.
In the following Examples, the test methods used for evaluating the visible light transmittance and solar heat acquisition rate at the initial stage and after one year of outdoor exposure are as follows.
(1) Visible light transmittance The visible light transmittance of the film material was measured according to JIS Z8722 using a spectrocolorimeter CM-3600d (manufactured by Konica Minolta Co., Ltd.).
(2) Solar heat acquisition rate The solar heat acquisition rate of the membrane material is measured in accordance with JIS R3106 using a spectrophotometer V-670 (manufactured by JASCO Corporation) to measure solar transmittance and solar absorption rate. Calculated according to the equation (1).
Solar heat acquisition rate: η = a + b (1 / αti) / (1 / αti + 1 / αto) (1)
αto: Overall heat transfer coefficient on the outdoor surface (normal value 25 W / m 2 K)
αti: Total heat transfer coefficient on the indoor side surface (normal value 9 W / m 2 K)
a: Solar radiation transmittance
b: Solar radiation absorptivity (3) Outdoor exposure test An outdoor exposure test (one year) was performed on an outdoor exposure table by setting the surface of the test membrane material facing upward and an inclination angle of 30 degrees southward.

実施例1
(1)シート基体の作製(下塗り層及び塩化ビニル系赤外線反射樹脂層の形成)
(A)下塗り層の形成
基布として、下記組織のポリエステルフィラメント平織物を用いた。
(1000d×1000d)/(22本/2.54cm×25本/2.54cm)
質量:215g/m2
この基布を、ペースト塩化ビニル樹脂を含む下記配合1の樹脂組成物の溶剤希釈液中に浸漬して、基布に樹脂液を含浸し、絞り、150℃で1分間乾燥後、185℃で1分間熱処理し、基布に対し、樹脂を145g/m2付着させて、下塗り層を形成した。
<配合1>下塗り層
ペースト塩化ビニル樹脂 100質量部
DOP(可塑剤) 70質量部
エポキシ化大豆油 4質量部
炭酸カルシウム 10質量部
Ba−Zn系安定剤 2質量部
トルエン(溶剤) 20質量部
(B)塩化ビニル系赤外線反射樹脂層の形成
次に、ストレート塩化ビニル樹脂を含む、下記配合2の樹脂組成物からなる、おもて面用の赤外線反射樹脂フィルム(0.16mm厚)と、下記配合3の樹脂組成物からなるうら面用の樹脂フィルム(0.16mm厚)とを、カレンダーで作成し、それぞれ前記下塗り層含浸基布のおもて面及びうら面上に貼着して、おもて面及びうら面にそれぞれに200g/m2の赤外線反射樹脂層及び樹脂層を形成し、合計重量760g/m2の遮熱性膜材料を作製した。
<配合2>塩化ビニル系赤外線反射樹脂層(おもて面用)
軟質塩化ビニル樹脂 90質量%
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン(防炎剤) 6質量部
Ba−Zn系安定剤 2質量部
質量平均粒子径0.8〜1.2μmの粗粒酸化チタン 8質量%
(酸化アルミニウムによる表面被覆率:2.4質量%)
干渉雲母粒子 2質量%
(粒子径:25〜65μm、TiO2/SiO2/TiO2による複層構造を有する薄 膜による被覆率:45質量%)
<配合3>塩化ビニル系樹脂フィルム(うら面)
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン(防炎剤) 6質量部
Ba−Zn系安定剤 2質量部
この遮熱性膜材料を前記試験に供した。試験結果を表1に示す。
Example 1
(1) Production of sheet substrate (formation of undercoat layer and vinyl chloride infrared reflective resin layer)
(A) Formation of undercoat layer As a base fabric, a polyester filament plain fabric having the following structure was used.
(1000d x 1000d) / (22 / 2.54cm x 25 / 2.54cm)
Mass: 215 g / m 2
This base fabric is immersed in a solvent diluted solution of a resin composition of the following formulation 1 containing a paste vinyl chloride resin, the base fabric is impregnated with the resin solution, squeezed, dried at 150 ° C. for 1 minute, and then at 185 ° C. After heat treatment for 1 minute, 145 g / m 2 of resin was adhered to the base fabric to form an undercoat layer.
<Formulation 1> Undercoat layer Paste vinyl chloride resin 100 parts by mass DOP (plasticizer) 70 parts by mass Epoxidized soybean oil 4 parts by mass Calcium carbonate 10 parts by mass Ba-Zn stabilizer 2 parts by mass Toluene (solvent) 20 parts by mass ( B) Formation of vinyl chloride-based infrared reflective resin layer Next, an infrared reflective resin film (0.16 mm thick) for the front surface comprising a resin composition of the following formulation 2 containing a straight vinyl chloride resin, A backside resin film (0.16 mm thick) made of the resin composition of Formulation 3 was prepared with a calender and adhered to the front and back surfaces of the undercoat layer-impregnated base fabric, respectively. A 200 g / m 2 infrared reflective resin layer and a resin layer were formed on the front surface and the back surface, respectively, to produce a heat shielding film material having a total weight of 760 g / m 2 .
<Formulation 2> Vinyl chloride-based infrared reflective resin layer (for front surface)
Soft vinyl chloride resin 90% by mass
Straight vinyl chloride resin 100 parts by mass DOP (plasticizer) 55 parts by mass Epoxidized soybean oil 4 parts by mass Antimony trioxide (flameproofing agent) 6 parts by mass Ba-Zn stabilizer 2 parts by mass Mass average particle size 0.8 to 1.2μm coarse titanium oxide 8% by mass
(Surface coverage by aluminum oxide: 2.4% by mass)
Interference mica particles 2% by mass
(Particle size: 25 to 65 μm, coverage with a thin film having a multilayer structure of TiO 2 / SiO 2 / TiO 2 : 45% by mass)
<Formulation 3> Vinyl chloride resin film (back side)
Straight vinyl chloride resin 100 parts by mass DOP (plasticizer) 55 parts by mass Epoxidized soybean oil 4 parts by mass Antimony trioxide (flameproofing agent) 6 parts by mass Ba-Zn stabilizer 2 parts by mass It was used for. The test results are shown in Table 1.

実施例2
実施例1と同様にして遮熱性膜材料を作製した。但し、赤外線反射樹脂層の上に次のように防汚層を形成した。
実施例1で作製した膜材料の、おもて面側赤外線反射樹脂層の上に、アクリル樹脂として下記配合4の樹脂組成物の溶剤希釈液を、グラビヤコーターを用いて、塗布量が25g/m2になるように塗布し、120℃で1分間乾燥後冷却し、5g/m2の防汚層を形成した。
<配合4>アクリル樹脂防汚層
商標:アクリプレン ペレットHBS001(三菱レイヨン(株)製) 20質量部
トルエン−MEK(50/50重量比)(溶剤) 80質量部
得られた遮熱性膜材料を前記試験に供した。試験結果を表1に示す。
Example 2
A heat shielding film material was produced in the same manner as in Example 1. However, an antifouling layer was formed on the infrared reflective resin layer as follows.
On the front surface side infrared reflecting resin layer of the film material prepared in Example 1, a solvent dilution solution of a resin composition of the following formulation 4 as an acrylic resin was applied using a gravure coater to a coating amount of 25 g / The coating was applied to m 2 , dried at 120 ° C. for 1 minute, and then cooled to form a 5 g / m 2 antifouling layer.
<Formulation 4> Acrylic resin antifouling layer Trademark: Acryprene Pellets HBS001 (Mitsubishi Rayon Co., Ltd.) 20 parts by mass Toluene-MEK (50/50 weight ratio) (solvent) 80 parts by mass It used for the test. The test results are shown in Table 1.

実施例3
実施例1と同様にして遮熱性膜材料を作製した。但し、おもて面側塩化ビニル系赤外線反射樹脂層の組成を下記配合5の樹脂組成に変更し、更にこのおもて面側赤外線反射樹脂層の上に、接着保護層を介して光触媒防汚層を形成した。
<配合5>塩化ビニル系赤外線反射樹脂層(おもて面用)
軟質塩化ビニル樹脂 84質量%
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン 6質量部
Ba−Zn系安定剤 2質量部
質量平均粒子径0.8〜1.2μmの粗粒酸化チタン 12質量%
(酸化アルミニウムによる表面被覆率:2.4質量%)
干渉雲母粒子 4質量%
(粒子径:25〜65μm、TiO2/SiO2/TiO2による複数構造を有する薄 膜被覆率:45質量%)
前記おもて面側赤外線反射樹脂層の上に、光触媒防汚層を形成するために下記配合6,7の接着保護層用、及び光触媒防汚層用樹脂組成物の溶剤希釈液を、それぞれ、グラビヤコーターを用いて、塗布量が15g/m2になるように塗布し、100℃で1分間乾燥後冷却し、1.5g/m2の接着保護層および光触媒防汚層を形成し、遮熱性膜材料を作製した。
<配合6>光触媒防汚層の接着保護層
シリコン含有量3mol%のアクリルシリコン樹脂を8重量%(固形分)
の含有量で含有するエタノール−酢酸エチル(50/50重量比)
溶液 100質量部
ポリシロキサンとしてメチルシリケートMS51(コルコート(株))
の20%エタノール溶液 8質量部
シランカップリング剤としてγ−グリシドキシプロピルトリメトキシ
シラン 1質量部
<配合7>光触媒防汚層
酸化チタン含有量10重量%に相当する硝酸酸性酸化チタンゾルを
分散させた水−エタノール(50/50重量比)溶液 50質量部
酸化珪素含有量10重量%に相当する硝酸酸性シリカゾルを
分散させた水−エタノール(50/50重量比)溶液 50質量部
得られた遮熱性膜材料を前記試験に供した。試験結果を表1に示す。
Example 3
A heat shielding film material was produced in the same manner as in Example 1. However, the composition of the front surface side vinyl chloride infrared reflective resin layer was changed to the resin composition of the following formulation 5, and further on the front surface side infrared reflective resin layer, a photocatalyst protection was provided via an adhesive protective layer. A dirty layer was formed.
<Formulation 5> Vinyl chloride-based infrared reflective resin layer (for front surface)
84% by mass of soft vinyl chloride resin
Straight vinyl chloride resin 100 parts by mass DOP (plasticizer) 55 parts by mass Epoxidized soybean oil 4 parts by mass Antimony trioxide 6 parts by mass Ba-Zn stabilizer 2 parts by mass Coarse with a mean particle diameter of 0.8 to 1.2 μm Granular titanium oxide 12% by mass
(Surface coverage by aluminum oxide: 2.4% by mass)
Interference mica particles 4% by mass
(Particle size: 25-65 μm, thin film coverage with multiple structures of TiO 2 / SiO 2 / TiO 2 : 45% by mass)
In order to form a photocatalyst antifouling layer on the front side infrared reflection resin layer, solvent dilutions of the following resin compositions for formulation 6 and 7, and a photocatalyst antifouling layer resin composition, Using a gravure coater, the coating amount was 15 g / m 2 , dried at 100 ° C. for 1 minute and then cooled to form a 1.5 g / m 2 adhesion protective layer and a photocatalytic antifouling layer, A thermal barrier film material was prepared.
<Formulation 6> Adhesive protective layer for photocatalytic antifouling layer 8% by weight (solid content) of acrylic silicon resin having a silicon content of 3 mol%
Ethanol-ethyl acetate (50/50 weight ratio)
Solution 100 parts by weight Methyl silicate MS51 (Colcoat Co., Ltd.) as polysiloxane
8 parts by weight of ethanol solution 8 parts by weight γ-glycidoxypropyltrimethoxy silane 1 part by weight as a silane coupling agent <Formulation 7> Photocatalytic antifouling layer Disperse an acidic titanium oxide sol corresponding to a titanium oxide content of 10% by weight 50 parts by weight of water-ethanol (50/50 weight ratio) solution 50 parts by weight of water-ethanol (50/50 weight ratio) solution in which a nitric acid acidic silica sol corresponding to a silicon oxide content of 10% by weight is dispersed is obtained. A thermal membrane material was subjected to the test. The test results are shown in Table 1.

実施例4
(1)シート基体の作製(下塗り層及び赤外線反射樹脂層の形成)
(A)下塗り層の形成
基布として、下記組織のポリエステルフィラメント平織物を用いた。
(1000d×1000d)/(22本/2.54cm×25本/2.54cm)
質量:215g/m2
この基布を、ポリウレタン系樹脂を含む下記配合8の樹脂組成物の溶剤希釈液中に浸漬して、基布に樹脂液を含浸し、絞り、150℃で1分間乾燥後、185℃で1分間熱処理し、基布に対し樹脂を145g/m2付着させて、下塗り層を形成した。
<配合8>ポリウレタン系樹脂下塗り層
ポリカーボネート系ポリウレタン樹脂ディスパージョン 100質量部
(商標:レザミンD−9075E:固形分濃度38質量%:大日精化工業(株))
環式ホスホン酸エステル化合物 5質量部
(商品名:K−19A:明成化学工業(株))
メラミン被覆ポリリン酸アンモニウム(重合度n=1000) 10質量部
(商標:エクソリットAP462:クラリアントジャパン(株))
メラミンシアヌレート(商標:MC640:日産化学(株)) 10質量部
カルボジイミド化合物(硬化剤) 5質量部
(商標:カルボジライトV−02:有効成分40質量%:日清紡績(株))
パラフィン系撥水剤(吸水防止剤) 10質量部
(商標:TH−44、日華化学(株))
(B)オレフィン系赤外線反射樹脂層の形成
次に、オレフィン系樹脂を含む、下記配合9の樹脂組成物からなるおもて面用赤外線反射樹脂フィルム(0.16mm厚)と、下記配合10の樹脂組成物からなるうら面用樹脂フィルム(0.16mm厚)とをカレンダーで作成し、それぞれ前記下塗り層含浸基布のおもて面及びうら面に貼着して、おもて面及びうら面のそれぞれに200g/m2の赤外線反射樹脂層及び樹脂層を形成し、合計重量760g/m2の遮熱性膜材料を作製した。
<配合9>オレフィン系赤外線反射樹脂層(おもて面)
オレフィン系樹脂 84質量%
ポリプロピレン樹脂 50質量部
(商標:キャタロイKS−353P:サンアロマー(株))
スチレン系共重合体樹脂 25質量部
(商標:ハイブラー7125(HVS−3):(株)クラレ)
エチレン−酢酸ビニル共重合体樹脂 25質量部
(商標:エバスレン410P:大日本インキ化学工業(株))
塩基性ヒンダードアミン化合物 1質量部
熱劣化防止剤 0.2質量部
メラミン被覆ポリリン酸アンモニウム(重合度n=1000)
20質量部
メラミンシアヌレート 20質量部
質量平均粒子径0.8〜1.2μmの粗粒酸化チタン 12質量%
(酸化アルミニウムによる被覆率:2.4質量%)
干渉雲母粒子 4質量%
(粒子径:25〜65μm、TiO2/SiO2/TiO2による複層構造を有する薄 膜による被覆率:45質量%)
<配合10>オレフィン系樹脂フィルム(うら面)
ポリプロピレン樹脂 50質量部
(商標:キャタロイKS−353P:サンアロマー(株))
スチレン系共重合体樹脂 25質量部
(商標:ハイブラー7125(HVS−3):(株)クラレ)
エチレン−酢酸ビニル共重合体樹脂 25質量部
(商標:エバスレン410P:大日本インキ化学工業(株))
塩基性ヒンダードアミン化合物 1質量部
熱劣化防止剤 0.2質量部
メラミン被覆ポリリン酸アンモニウム(重合度n=1000)
20質量部
メラミンシアヌレート 20質量部
得られた遮熱性膜材料を前記試験に供した。試験結果を表1に示す。
表1から明らかなように、実施例1〜4で得られた膜材料は、日射熱取得率が10%以下の優れた遮熱性と10〜20%の可視光透過率を示し、まぶしくなく柔らかい快適な明るさを示す膜材料であった。また、さらに実施例2,3は赤外線反射樹脂層の上に防汚層が形成されており、屋外曝露1年後も初期の遮熱性、透光性を維持していた。
Example 4
(1) Production of sheet substrate (formation of undercoat layer and infrared reflective resin layer)
(A) Formation of undercoat layer As a base fabric, a polyester filament plain fabric having the following structure was used.
(1000d x 1000d) / (22 / 2.54cm x 25 / 2.54cm)
Mass: 215 g / m 2
This base fabric is dipped in a solvent diluted solution of a resin composition of the following formulation 8 containing a polyurethane resin, the base fabric is impregnated with the resin solution, squeezed, dried at 150 ° C. for 1 minute, and 1 at 185 ° C. Heat treatment was performed for minutes, and 145 g / m 2 of resin was adhered to the base fabric to form an undercoat layer.
<Formulation 8> Polyurethane-based resin undercoat layer Polycarbonate-based polyurethane resin dispersion 100 parts by mass (Trademark: Rezamin D-9075E: Solid content concentration 38% by mass: Dainichi Seika Kogyo Co., Ltd.)
5 parts by mass of cyclic phosphonate compound (trade name: K-19A: Meisei Chemical Co., Ltd.)
Melamine-coated ammonium polyphosphate (degree of polymerization n = 1000) 10 parts by mass (Trademark: Exorit AP462: Clariant Japan Co., Ltd.)
Melamine cyanurate (Trademark: MC640: Nissan Chemical Co., Ltd.) 10 parts by mass Carbodiimide compound (curing agent) 5 parts by mass (Trademark: Carbodilite V-02: Active ingredient 40% by mass: Nisshinbo Industries, Ltd.)
10 parts by mass of paraffinic water repellent (water absorption inhibitor) (trademark: TH-44, Nikka Chemical Co., Ltd.)
(B) Formation of Olefin-Based Infrared Reflective Resin Layer Next, an infrared reflective resin film for a front surface (0.16 mm thickness) comprising a resin composition of the following formulation 9 containing an olefin-based resin, and the following formulation 10 A backside resin film (0.16 mm thick) made of a resin composition was prepared with a calender and adhered to the front and back surfaces of the undercoat layer-impregnated base fabric, respectively. A 200 g / m 2 infrared reflective resin layer and a resin layer were formed on each of the surfaces to produce a heat shielding film material having a total weight of 760 g / m 2 .
<Formulation 9> Olefin-based infrared reflective resin layer (front surface)
84% by mass of olefin resin
Polypropylene resin 50 parts by mass (Trademark: Catalloy KS-353P: Sun Allomer Co., Ltd.)
25 parts by mass of styrene-based copolymer resin (Trademark: Hibler 7125 (HVS-3): Kuraray Co., Ltd.)
25 parts by mass of ethylene-vinyl acetate copolymer resin (Trademark: Ebaslene 410P: Dainippon Ink & Chemicals, Inc.)
Basic hindered amine compound 1 part by mass Thermal degradation inhibitor 0.2 part by mass Melamine-coated ammonium polyphosphate (degree of polymerization n = 1000)
20 parts by mass Melamine cyanurate 20 parts by mass Coarse-grained titanium oxide having a mass average particle diameter of 0.8 to 1.2 μm 12% by mass
(Cover rate with aluminum oxide: 2.4% by mass)
Interference mica particles 4% by mass
(Particle size: 25 to 65 μm, coverage with a thin film having a multilayer structure of TiO 2 / SiO 2 / TiO 2 : 45% by mass)
<Formulation 10> Olefin-based resin film (back side)
Polypropylene resin 50 parts by mass (Trademark: Catalloy KS-353P: Sun Allomer Co., Ltd.)
25 parts by mass of styrene-based copolymer resin (Trademark: Hibler 7125 (HVS-3): Kuraray Co., Ltd.)
25 parts by mass of ethylene-vinyl acetate copolymer resin (Trademark: Ebaslene 410P: Dainippon Ink & Chemicals, Inc.)
Basic hindered amine compound 1 part by mass Thermal degradation inhibitor 0.2 part by mass Melamine-coated ammonium polyphosphate (degree of polymerization n = 1000)
20 mass parts Melamine cyanurate 20 mass parts The obtained heat-shielding film | membrane material was used for the said test. The test results are shown in Table 1.
As is apparent from Table 1, the film materials obtained in Examples 1 to 4 have excellent heat shielding properties with a solar heat gain of 10% or less and visible light transmittances of 10 to 20%, and are not dull and soft. It was a film material showing comfortable brightness. Further, in Examples 2 and 3, an antifouling layer was formed on the infrared reflective resin layer, and the initial heat shielding and translucency were maintained even after one year of outdoor exposure.

比較例1
実施例1と同様にして遮熱性膜材料を作製した。但し、実施例1の赤外線反射樹脂層の配合を下記配合11のように変更して、干渉雲母粒子を配合せず粗粒酸化チタンのみを10質量%配合した。
<配合11>塩化ビニル系赤外線反射樹脂層(おもて面)
軟質塩化ビニル樹脂 90質量%
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン(防炎剤) 6質量部
Ba−Zn系安定剤 2質量部
質量平均粒子径0.8〜1.2μmの粗粒酸化チタン 10質量%
(酸化アルミニウムによる被覆率:2.4質量%)
得られた膜材料を前記試験に供した。試験結果を表1に示す。
表1に示されているように、比較例1の膜材料は、実施例1で得られた膜材料に比べ、可視光透過率は同レベルであるが、日射熱取得率は10%を越え遮熱性が劣り、優れた遮熱性と快適な明るさを両立できない膜材料であった。
Comparative Example 1
A heat shielding film material was produced in the same manner as in Example 1. However, the composition of the infrared reflective resin layer of Example 1 was changed as shown in the following composition 11, and only 10% by mass of coarse titanium oxide was blended without blending the interference mica particles.
<Formulation 11> Vinyl chloride-based infrared reflective resin layer (front surface)
Soft vinyl chloride resin 90% by mass
Straight vinyl chloride resin 100 parts by mass DOP (plasticizer) 55 parts by mass Epoxidized soybean oil 4 parts by mass Antimony trioxide (flameproofing agent) 6 parts by mass Ba-Zn stabilizer 2 parts by mass Mass average particle size 0.8 to 1.2μm coarse titanium oxide 10% by mass
(Cover rate with aluminum oxide: 2.4% by mass)
The obtained membrane material was subjected to the test. The test results are shown in Table 1.
As shown in Table 1, the film material of Comparative Example 1 has the same level of visible light transmittance as the film material obtained in Example 1, but the solar heat gain rate exceeds 10%. The film material was inferior in heat-shielding property and could not achieve both excellent heat-shielding property and comfortable brightness.

比較例2
実施例1と同様にして遮熱性膜材料を作製した。但し、実施例1の赤外線反射樹脂層の配合を下記配合12のように変更して、干渉雲母粒子を配合せず粗粒酸化チタンのみを15質量%配合した。
<配合12>塩化ビニル系赤外線反射樹脂層(おもて面)
軟質塩化ビニル樹脂 85質量%
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン(防炎剤) 6質量部
Ba−Zn系安定剤 2質量部
質量平均粒子径0.8〜1.2μmの粗粒酸化チタン 15質量%
(酸化アルミニウム被覆率:2.4質量%)
得られた膜材料を前記試験に供した。試験結果を表1に示す。
表1から明らかなように、比較例2の膜材料は、実施例1で得られた膜材料に比べ、可視光透過率は低く、日射熱取得率も10%を越え遮熱性が劣り、遮熱性と快適な明るさを両立できない膜材料であった。
Comparative Example 2
A heat shielding film material was produced in the same manner as in Example 1. However, the composition of the infrared reflective resin layer of Example 1 was changed as shown in the following composition 12, and only 15% by mass of coarse titanium oxide was blended without blending the interference mica particles.
<Formulation 12> Vinyl chloride-based infrared reflective resin layer (front surface)
Soft vinyl chloride resin 85% by mass
Straight vinyl chloride resin 100 parts by mass DOP (plasticizer) 55 parts by mass Epoxidized soybean oil 4 parts by mass Antimony trioxide (flameproofing agent) 6 parts by mass Ba-Zn stabilizer 2 parts by mass Mass average particle size 0.8 to 1.2μm coarse titanium oxide 15% by mass
(Aluminum oxide coverage: 2.4% by mass)
The obtained membrane material was subjected to the test. The test results are shown in Table 1.
As is clear from Table 1, the film material of Comparative Example 2 has a lower visible light transmittance, a solar heat gain rate of more than 10%, and a poor heat shielding property compared to the film material obtained in Example 1. It was a film material that could not achieve both heat and comfortable brightness.

比較例3
実施例1と同様にして遮熱性膜材料を作製した。但し、実施例1の赤外線反射樹脂層の配合を下記配合13のように変更して、干渉雲母粒子を配合せず粗粒酸化チタンのみを20質量%配合した。
<配合13>塩化ビニル系赤外線反射樹脂層(おもて面)
軟質塩化ビニル樹脂 80質量%
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン(防炎剤) 6質量部
Ba−Zn系安定剤 2質量部
質量平均粒子径0.8〜1.2μmの粗粒酸化チタン 20質量%
(酸化アルミニウムによる被覆率:2.4質量%)
得られた膜材料を前記試験に供した。試験結果を表1に示す。
表1から明らかなように、比較例3の膜材料は、実施例1で得られた膜材料に比べ、日射熱取得率は同レベルであるが、赤外線反射樹脂層の隠蔽性が強く、可視光透過率は10%未満で低く、遮熱性と快適な明るさを両立できない膜材料であった。
比較例1〜3に示すように、赤外線反射樹脂層に、干渉雲母粒子を配合せず粗粒酸化チタンのみを単独で使用した場合は、含有部数を増やせば遮熱性は向上するが、同時に透光性も低下するため、優れた遮熱性と快適な明るさを両立できなかった。
Comparative Example 3
A heat shielding film material was produced in the same manner as in Example 1. However, the composition of the infrared reflecting resin layer of Example 1 was changed as shown in the following composition 13, and only 20% by mass of coarse titanium oxide was blended without blending the interference mica particles.
<Formulation 13> Vinyl chloride-based infrared reflective resin layer (front surface)
Soft vinyl chloride resin 80% by mass
Straight vinyl chloride resin 100 parts by mass DOP (plasticizer) 55 parts by mass Epoxidized soybean oil 4 parts by mass Antimony trioxide (flameproofing agent) 6 parts by mass Ba-Zn stabilizer 2 parts by mass Mass average particle size 0.8 to 1.2μm coarse titanium oxide 20% by mass
(Cover rate with aluminum oxide: 2.4% by mass)
The obtained membrane material was subjected to the test. The test results are shown in Table 1.
As is clear from Table 1, the film material of Comparative Example 3 has the same level of solar heat acquisition rate as that of the film material obtained in Example 1, but the concealability of the infrared reflective resin layer is strong and visible. The light transmittance was low, less than 10%, and it was a film material that could not achieve both heat shielding and comfortable brightness.
As shown in Comparative Examples 1 to 3, when only the coarse titanium oxide was used alone without blending the interference mica particles in the infrared reflective resin layer, the heat shielding property was improved by increasing the content, but at the same time, Since the light properties also deteriorated, it was not possible to achieve both excellent heat shielding properties and comfortable brightness.

比較例4
実施例1と同様にして遮熱性膜材料を作製した。但し、実施例1の赤外線反射樹脂層の配合を下記配合14のように変更して、粗粒酸化チタンを配合せず干渉雲母粒子のみを3質量%配合した。
<配合14>塩化ビニル系赤外線反射樹脂層(おもて面)
軟質塩化ビニル樹脂 97質量%
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン(防炎剤) 6質量部
Ba−Zn系安定剤 2質量部
干渉雲母粒子 3質量%
(粒子径:25〜65μm、TiO2/SiO2/TiO2による複層構造を有する薄 膜による被覆率:45質量%)
得られた膜材料を前記試験に供した。試験結果を表1に示す。
表1から明らかなように、比較例4の膜材料は、実施例1で得られた膜材料に比べ、可視光透過率は20%を超え、まぶしく、また、日射熱取得率も20%と高く遮熱性は劣り、遮熱性と快適な明るさを共に両立できない膜材料であった。
Comparative Example 4
A heat shielding film material was produced in the same manner as in Example 1. However, the composition of the infrared reflective resin layer of Example 1 was changed as shown in the following composition 14 so that only 3% by mass of interference mica particles was blended without blending coarse titanium oxide.
<Formulation 14> Vinyl chloride-based infrared reflective resin layer (front surface)
Soft vinyl chloride resin 97% by mass
Straight vinyl chloride resin 100 parts by mass DOP (plasticizer) 55 parts by mass Epoxidized soybean oil 4 parts by mass Antimony trioxide (flameproofing agent) 6 parts by mass Ba-Zn stabilizer 2 parts by mass Interference mica particles 3% by mass
(Particle size: 25 to 65 μm, coverage with a thin film having a multilayer structure of TiO 2 / SiO 2 / TiO 2 : 45% by mass)
The obtained membrane material was subjected to the test. The test results are shown in Table 1.
As is clear from Table 1, the film material of Comparative Example 4 has a visible light transmittance of more than 20% compared with the film material obtained in Example 1, and the solar heat acquisition rate is also 20%. The film material was high and inferior in heat insulation, and could not achieve both heat insulation and comfortable brightness.

比較例5
実施例1と同様にして遮熱性膜材料を作製した。但し、実施例1の赤外線反射樹脂層の配合を下記配合15のように変更して、粗粒酸化チタンを配合せず干渉雲母粒子のみを10質量%配合した。
<配合15>赤外線反射樹脂層
軟質塩化ビニル樹脂 90質量%
ストレート塩化ビニル樹脂 100質量部
DOP(可塑剤) 55質量部
エポキシ化大豆油 4質量部
三酸化アンチモン(防炎剤) 6質量部
Ba−Zn系安定剤 2質量部
干渉雲母粒子 10質量%
(粒子径:25〜65μm、TiO2/SiO2/TiO2による複層構造を有する薄 膜による被覆率:45質量%)
得られたこの膜材料を前記試験に供した。試験結果を表1に示す。
表1から明らかなように、比較例5の膜材料は、実施例1で得られた膜材料に比べ、可視光透過率は同レベルであるが、膜材料表面色や透過色が虹彩色をおびて快適な明るさを示さなかった。また、日射熱取得率は10%を大きく越え遮熱性が劣り、優れた遮熱性と快適な明るさを両立できない膜材料であった。
比較例4,5に示すように、赤外線反射樹脂層に、粗粒酸化チタンを配合せず干渉雲母粒子のみを単独で使用した場合は、含有部数を増やしても透光性の低下は少ないが、一方、遮熱性のレベルは低く、優れた遮熱性と快適な明るさを両立できなかった。
Comparative Example 5
A heat shielding film material was produced in the same manner as in Example 1. However, the composition of the infrared reflective resin layer of Example 1 was changed as shown in Formula 15 below, and only 10% by mass of interference mica particles were blended without blending coarse titanium oxide.
<Formulation 15> Infrared reflective resin layer Soft vinyl chloride resin 90% by mass
Straight vinyl chloride resin 100 parts by weight DOP (plasticizer) 55 parts by weight Epoxidized soybean oil 4 parts by weight Antimony trioxide (flameproofing agent) 6 parts by weight Ba-Zn-based stabilizer 2 parts by weight Interference mica particles 10% by weight
(Particle size: 25 to 65 μm, coverage with a thin film having a multilayer structure of TiO 2 / SiO 2 / TiO 2 : 45% by mass)
The obtained membrane material was subjected to the test. The test results are shown in Table 1.
As is clear from Table 1, the film material of Comparative Example 5 has the same level of visible light transmittance as the film material obtained in Example 1, but the film material surface color and transmission color are iris colors. It was scary and did not show comfortable brightness. Further, the solar heat gain rate exceeded 10%, and the heat shielding property was inferior, and it was a film material that could not achieve both excellent heat shielding property and comfortable brightness.
As shown in Comparative Examples 4 and 5, when only the interference mica particles are used alone in the infrared reflective resin layer without blending coarse titanium oxide, the decrease in translucency is small even if the content is increased. On the other hand, the level of heat insulation was low, and it was not possible to achieve both excellent heat insulation and comfortable brightness.

Figure 2009279814
Figure 2009279814

本発明の遮熱性膜材料は、従来両立が困難とされていて優れた遮熱性と快適な明るさとの両方を併せ持ち、特にテント倉庫、中・大型テントや、トラック幌、日除けテント等の膜構造物の形成に使用することにより、遮熱性があり且つ心地よい明るさのある快適な空間を提供することが可能となり、また、夏場の作業環境を改善し、照明、冷房などに費やすエネルギーを削減する事が可能となる。   The heat-insulating film material of the present invention has both excellent heat-insulating properties and comfortable brightness, both of which have been difficult to achieve in the past. Especially, film structures such as tent warehouses, medium and large tents, truck hoods, and sunshade tents. By using it for forming objects, it is possible to provide a comfortable space with heat insulation and comfortable brightness, and also improve the work environment in summer and reduce the energy consumed for lighting, cooling, etc. Things will be possible.

Claims (5)

繊維材料より形成された基布と、その少なくとも1面に形成された赤外線反射樹脂層とからなり、かつ10〜20%の可視光透過率(JIS Z8722)を有する膜材料であって、前記赤外線反射樹脂層が、重量平均粒子径0.6〜1.5μmの粗粒酸化チタンと、干渉雲母粒子とを含む熱可塑性樹脂により構成されていることを特徴とする遮熱性膜材料。   A film material comprising a base fabric made of a fiber material and an infrared reflecting resin layer formed on at least one surface thereof, and having a visible light transmittance (JIS Z8722) of 10 to 20%, the infrared ray A heat-shielding film material, wherein the reflective resin layer is composed of a thermoplastic resin including coarse titanium oxide having a weight average particle diameter of 0.6 to 1.5 μm and interference mica particles. 前記赤外線反射樹脂層が、前記赤外線反射樹脂層の質量に対して、5〜15質量%の前記粗粒酸化チタンと、1〜5質量%の前記干渉雲母粒子とを含む、請求項1に記載の遮熱性膜材料。   The said infrared reflective resin layer contains 5-15 mass% of the said coarse grain titanium oxide with respect to the mass of the said infrared reflective resin layer, and the said interference mica particle of 1-5 mass%. Thermal barrier film material. 前記干渉雲母粒子が、酸化チタン薄膜、又は、酸化チタン/酸化ケイ素/酸化チタンによる複層構造を有する薄膜により被覆されている、請求項1又は2に記載の遮熱性膜材料。   The thermal barrier film material according to claim 1 or 2, wherein the interference mica particles are coated with a titanium oxide thin film or a thin film having a multilayer structure of titanium oxide / silicon oxide / titanium oxide. 前記赤外線反射樹脂層の上に防汚層がさらに形成されている、請求項1〜3のいずれか1項に記載の遮熱性膜材料。   The thermal barrier film material according to any one of claims 1 to 3, wherein an antifouling layer is further formed on the infrared reflective resin layer. 10%以下の日射熱取得率(JIS R3106)を有する、請求項1〜4のいずれか1項に記載の遮熱性膜材料。   The heat-shielding film | membrane material of any one of Claims 1-4 which has a solar-heat acquisition rate (JIS R3106) of 10% or less.
JP2008133408A 2008-05-21 2008-05-21 Thermal barrier film material Expired - Fee Related JP5146962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133408A JP5146962B2 (en) 2008-05-21 2008-05-21 Thermal barrier film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133408A JP5146962B2 (en) 2008-05-21 2008-05-21 Thermal barrier film material

Publications (2)

Publication Number Publication Date
JP2009279814A true JP2009279814A (en) 2009-12-03
JP5146962B2 JP5146962B2 (en) 2013-02-20

Family

ID=41450798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133408A Expired - Fee Related JP5146962B2 (en) 2008-05-21 2008-05-21 Thermal barrier film material

Country Status (1)

Country Link
JP (1) JP5146962B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148923A (en) * 2010-01-22 2011-08-04 Okamoto Kk Heat shield sheet
JP2012184520A (en) * 2011-03-04 2012-09-27 Teijin Fibers Ltd Infrared ray shielding fabric and textile product
WO2013002335A1 (en) * 2011-06-29 2013-01-03 株式会社エフコンサルタント Laminate body
WO2013136552A1 (en) 2012-03-16 2013-09-19 日東紡績株式会社 Resin-coated flame-retardant fiber yarn and resin-coated flame-retardant fiber woven fabric
WO2014069025A1 (en) 2013-05-10 2014-05-08 日東紡績株式会社 Resin-coated fire-resistant fibre thread, and resin-coated fire-resistant woven fabric using same
WO2014185440A1 (en) * 2013-05-16 2014-11-20 東レ株式会社 Sun-blocking multilayered sheet and hand-held parasol, tent, tarp, canopy, hat, and fixed parasol comprising said sun-blocking multilayered sheet
JP2015063494A (en) * 2013-09-26 2015-04-09 平岡織染株式会社 Mesh sheet
JP2015093392A (en) * 2013-11-11 2015-05-18 平岡織染株式会社 Heat shield mesh shade
JP2015100942A (en) * 2013-11-22 2015-06-04 平岡織染株式会社 Heat insulating film material excellent in daylighting property
CN115521634A (en) * 2022-10-15 2022-12-27 温州市和沐环保科技有限公司 Regenerated flame-retardant plastic particle and processing technology thereof

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153868A (en) * 1991-12-03 1993-06-22 Kanebo Ltd Covering material for thermal insulation and its production
JPH0881567A (en) * 1994-09-13 1996-03-26 Bando Chem Ind Ltd Heat-shielding sheet
JPH0999510A (en) * 1995-10-06 1997-04-15 Nippon Shokubai Co Ltd Laminate
JPH10290635A (en) * 1997-04-18 1998-11-04 Daio Kasei Kk Heat-shielding sheet for agriculture
JP2000071858A (en) * 1998-09-01 2000-03-07 Sapporo Breweries Ltd Sheet for constant temperature/light shielding transportation
JP2001220502A (en) * 1999-12-02 2001-08-14 Du Pont Toray Co Ltd Thermoplastic resin composition
JP2002060698A (en) * 2000-08-15 2002-02-26 Origin Electric Co Ltd Infrared transmitting layer-forming composition, infrared reflector and treated matter
JP2003145661A (en) * 2001-11-07 2003-05-20 Ntt Advanced Technology Corp Glare protecting member
JP2004004840A (en) * 2002-05-14 2004-01-08 Merck Patent Gmbh Infrared reflective material
JP2004010903A (en) * 2003-10-06 2004-01-15 Nagashima Tokushu Toryo Kk Thermal insulation coating
JP2005206641A (en) * 2004-01-20 2005-08-04 Fumihiro Morishima Coloring composition and printed fabric
JP2006009452A (en) * 2004-06-28 2006-01-12 Hagihara Industries Inc Snow sliding sheet
JP2006233139A (en) * 2005-02-28 2006-09-07 Achilles Corp Sheet capable of reflecting sunlight
JP2006314218A (en) * 2005-05-11 2006-11-24 Achilles Corp Agricultural film
JP2006335949A (en) * 2005-06-03 2006-12-14 Hitachi Chem Co Ltd Heat insulation coating composition and constructed material having coated film of the same
JP2007055177A (en) * 2005-08-26 2007-03-08 Hiraoka & Co Ltd Lighting film material superior in heat insulation effect retention
JP2007111002A (en) * 2005-10-21 2007-05-10 Sekisui Film Kk Heat-insulating agricultural film
JP2007295858A (en) * 2006-05-01 2007-11-15 Achilles Corp Agricultural coating material
JP2008068482A (en) * 2006-09-13 2008-03-27 Teijin Fibers Ltd Film material

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153868A (en) * 1991-12-03 1993-06-22 Kanebo Ltd Covering material for thermal insulation and its production
JPH0881567A (en) * 1994-09-13 1996-03-26 Bando Chem Ind Ltd Heat-shielding sheet
JPH0999510A (en) * 1995-10-06 1997-04-15 Nippon Shokubai Co Ltd Laminate
JPH10290635A (en) * 1997-04-18 1998-11-04 Daio Kasei Kk Heat-shielding sheet for agriculture
JP2000071858A (en) * 1998-09-01 2000-03-07 Sapporo Breweries Ltd Sheet for constant temperature/light shielding transportation
JP2001220502A (en) * 1999-12-02 2001-08-14 Du Pont Toray Co Ltd Thermoplastic resin composition
JP2002060698A (en) * 2000-08-15 2002-02-26 Origin Electric Co Ltd Infrared transmitting layer-forming composition, infrared reflector and treated matter
JP2003145661A (en) * 2001-11-07 2003-05-20 Ntt Advanced Technology Corp Glare protecting member
JP2004004840A (en) * 2002-05-14 2004-01-08 Merck Patent Gmbh Infrared reflective material
JP2004010903A (en) * 2003-10-06 2004-01-15 Nagashima Tokushu Toryo Kk Thermal insulation coating
JP2005206641A (en) * 2004-01-20 2005-08-04 Fumihiro Morishima Coloring composition and printed fabric
JP2006009452A (en) * 2004-06-28 2006-01-12 Hagihara Industries Inc Snow sliding sheet
JP2006233139A (en) * 2005-02-28 2006-09-07 Achilles Corp Sheet capable of reflecting sunlight
JP2006314218A (en) * 2005-05-11 2006-11-24 Achilles Corp Agricultural film
JP2006335949A (en) * 2005-06-03 2006-12-14 Hitachi Chem Co Ltd Heat insulation coating composition and constructed material having coated film of the same
JP2007055177A (en) * 2005-08-26 2007-03-08 Hiraoka & Co Ltd Lighting film material superior in heat insulation effect retention
JP2007111002A (en) * 2005-10-21 2007-05-10 Sekisui Film Kk Heat-insulating agricultural film
JP2007295858A (en) * 2006-05-01 2007-11-15 Achilles Corp Agricultural coating material
JP2008068482A (en) * 2006-09-13 2008-03-27 Teijin Fibers Ltd Film material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148923A (en) * 2010-01-22 2011-08-04 Okamoto Kk Heat shield sheet
JP2012184520A (en) * 2011-03-04 2012-09-27 Teijin Fibers Ltd Infrared ray shielding fabric and textile product
CN103313853B (en) * 2011-06-29 2016-10-12 F顾问株式会社 Laminate
WO2013002335A1 (en) * 2011-06-29 2013-01-03 株式会社エフコンサルタント Laminate body
CN103313853A (en) * 2011-06-29 2013-09-18 F顾问株式会社 Laminate body
WO2013136552A1 (en) 2012-03-16 2013-09-19 日東紡績株式会社 Resin-coated flame-retardant fiber yarn and resin-coated flame-retardant fiber woven fabric
WO2014069025A1 (en) 2013-05-10 2014-05-08 日東紡績株式会社 Resin-coated fire-resistant fibre thread, and resin-coated fire-resistant woven fabric using same
WO2014185440A1 (en) * 2013-05-16 2014-11-20 東レ株式会社 Sun-blocking multilayered sheet and hand-held parasol, tent, tarp, canopy, hat, and fixed parasol comprising said sun-blocking multilayered sheet
JPWO2014185440A1 (en) * 2013-05-16 2017-02-23 東レ株式会社 Multi-layer sheet for sunshade and parasol, tent awning, tarp, hood, hat and parasol made using the same
JP2015063494A (en) * 2013-09-26 2015-04-09 平岡織染株式会社 Mesh sheet
JP2015093392A (en) * 2013-11-11 2015-05-18 平岡織染株式会社 Heat shield mesh shade
JP2015100942A (en) * 2013-11-22 2015-06-04 平岡織染株式会社 Heat insulating film material excellent in daylighting property
CN115521634A (en) * 2022-10-15 2022-12-27 温州市和沐环保科技有限公司 Regenerated flame-retardant plastic particle and processing technology thereof

Also Published As

Publication number Publication date
JP5146962B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5146962B2 (en) Thermal barrier film material
JP5126792B2 (en) High translucent film material
JP5493225B2 (en) Near-infrared shielding sheet and manufacturing method thereof
JP5768253B2 (en) Variable heat shielding daylighting sheet
JP5360656B2 (en) Heat shielding daylighting film material and manufacturing method thereof
JP5922312B2 (en) Laminated sheet
JP2014040035A (en) Heat control sheet
JP4517178B2 (en) Daylighting film material with excellent thermal insulation effect
JP5062615B2 (en) Natural fiber-like mesh sheet with excellent heat insulation
JP3994189B2 (en) Daylighting thermal barrier film material
JP2003266612A (en) Heat barrier anti-staining film material
JP2012097183A (en) Heat insulation lighting sheet
KR101633058B1 (en) A composition for coating fiber and a fabric using the same
JP5422836B2 (en) Exothermic translucent sheet and exothermic translucent membrane roof structure
JP2012140753A (en) Transmissive film material with heat-shielding and heat-generating properties and structure with film roof
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
JP2012051113A (en) Heat controllable sheet
JP6368913B2 (en) Highly translucent film material with heat insulation and heat retention
JP5760219B2 (en) Solar heat control membrane material
JP2008068482A (en) Film material
JP2012140805A (en) Membrane material for solar radiation heat control
JP2011195792A (en) Exothermic light-transmitting sheet and exothermic light-transmitting film roof structure
EP2789732B1 (en) Resin-coated flame-retardant glass fiber bundle and resin-coated flame-retardant fiber woven fabric
JP2012140754A (en) Variable lighting-sheet with heat-shielding and heat-releasing properties
JP2010030203A (en) Thermally insulative film material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

R150 Certificate of patent or registration of utility model

Ref document number: 5146962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees