[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012051113A - Heat controllable sheet - Google Patents

Heat controllable sheet Download PDF

Info

Publication number
JP2012051113A
JP2012051113A JP2010193290A JP2010193290A JP2012051113A JP 2012051113 A JP2012051113 A JP 2012051113A JP 2010193290 A JP2010193290 A JP 2010193290A JP 2010193290 A JP2010193290 A JP 2010193290A JP 2012051113 A JP2012051113 A JP 2012051113A
Authority
JP
Japan
Prior art keywords
heat
sheet
oxide
resin
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010193290A
Other languages
Japanese (ja)
Inventor
Tamotsu Gomibuchi
保 五味渕
Toshiya Karino
俊也 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2010193290A priority Critical patent/JP2012051113A/en
Publication of JP2012051113A publication Critical patent/JP2012051113A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat controllable sheet that has superior heat shielding properties in summer, prevents excessive rise of temperature of sheet, has temperature storage properties in winter, and has a degree of freedom of lighting property and coloring.SOLUTION: The heat controllable sheet is a flexible sheet containing near infrared rays shielding layer, and is obtained by the near infrared ray shielding layer being non-compatible resin layer formed of sea-island dispersed structure comprising mixture of synthetic resin containing metal-insulator transition substance particle, and synthetic resin containing near infrared rays scattering coloring agent.

Description

本発明は熱制御性を有するシートに関するものである。更に詳しく述べるならば、本発明は、夏季の炎天下においては熱エネルギーを遠赤外線として放射してシートの過度の温度上昇を防ぎ、かつ、太陽光に含まれる近赤外線を遮蔽することでこのシートにより構成した膜構造物内部の温度上昇を抑制し、冬季の低温時には、太陽光線や暖房などにより暖められたシートからの熱の放射が少なく蓄温性を有し、特にテント倉庫、イベント用大型テント、農園芸用ハウス、日除けテント、日除けモニュメント、装飾テント、ブラインド、シートシャッター、間仕切りやトラック幌等に好適に用いることの出来る、熱制御性シートに関するものである。   The present invention relates to a sheet having thermal controllability. More specifically, the present invention provides heat energy as far-infrared rays under the hot sun in summer to prevent excessive temperature rise of the sheet and shields near-infrared rays contained in sunlight. Suppresses the temperature rise inside the constructed membrane structure, and at low temperatures in winter, it emits less heat from the seats heated by sunlight and heating, etc., and has a heat storage property, especially in tent warehouses and large tents for events The present invention relates to a thermally controllable sheet that can be suitably used for agricultural and horticultural houses, awning tents, awning monuments, decorative tents, blinds, seat shutters, partitions, truck hoods, and the like.

繊維基布に可撓性樹脂が被覆されてなる光透過性または半透過性のシートは、テント倉庫、イベント用大型テント、農園芸用ハウス、日除けテント、日除けモニュメント、装飾テント、ブラインド、シートシャッター、間仕切りやトラック幌等、日常生活に係わる屋外用途に広く利用されている。しかしながら、これらのシートは、太陽光線に含まれる近赤外線を遮蔽する能力が低いため、テント倉庫では内部の気温が夏季に極度に上昇して、作業環境を過酷なものとしている。また日除けテントでは、まぶしさを防ぎ、紫外線を減少させるには効果的であるが、冷涼効果には乏しいのが実情である。また、最近薄型フレキシブル太陽電池と可撓性膜材との複合による屋外施設用材料が注目されているが、この用途では夏季の日射によってシートと太陽電池素子とが高温となり易いことで、発電効率や実用性に影響を及ぼす問題があった。   Light transmissive or semi-transparent sheet with flexible resin coated fiber base fabric, tent warehouse, event tent, agricultural / horticultural house, awning tent, awning monument, decorative tent, blind, sheet shutter It is widely used for outdoor applications related to daily life, such as partitions and truck hoods. However, since these sheets have a low ability to shield near infrared rays contained in sunlight, the internal temperature of the tent warehouse is extremely high in the summer, and the working environment is severe. An awning tent is effective in preventing glare and reducing ultraviolet rays, but has a poor cooling effect. Recently, materials for outdoor facilities that are a combination of thin flexible solar cells and flexible membrane materials have attracted attention. In this application, the sheet and solar cell elements tend to become hot due to solar radiation in the summer, generating power efficiency. And there was a problem affecting practicality.

この様なシートにおいて、酸化チタン等の無機白色顔料を含有する白色のシートを用いることによって、太陽光線が含む近赤外線を散乱させてその透過を防ぎ、またシート自体の温度上昇を抑えられることが知られている。しかし、十分な温度上昇抑制効果を得るためには、多量の白色顔料を用いる必要があり、そのためこの様なシートを用いた構造体の内部環境が暗くなり、日中でも照明が必要となる。   In such a sheet, by using a white sheet containing an inorganic white pigment such as titanium oxide, it is possible to scatter near-infrared rays contained in sunlight and prevent its transmission, and to suppress an increase in temperature of the sheet itself. Are known. However, in order to obtain a sufficient temperature rise suppressing effect, it is necessary to use a large amount of white pigment. For this reason, the internal environment of the structure using such a sheet becomes dark, and illumination is necessary even during the day.

これに対して本発明者は、屈折率1.8以上、粒子径分布0.3〜3.0μm、アスペクト比1.0〜3.0不定形無機化合物粒子を用いた採光性を有する遮熱シートを提案した。(特許文献1参照)この不定形無機化合物粒子は近赤外線を選択的に散乱しながら、可視光は透過することで遮熱性と採光性を同時に得る事を可能とし、また、遮熱性をさほど失うことなく彩色使用することもできる。しかし、この技術によって得られる遮熱シートであっても、真夏の強い日射しの下ではシート自体の温度が60℃近くまで上昇することがあるので、この遮熱シートを薄型太陽電池の支持体として用いるにはまだ要求性能に不満足であり、またこのシートによるテント構造物においても、内部の温度環境を大幅に改善するまでには至っていない。この遮熱シートは従来のシートに比べ10〜15℃レベルの高い熱制御機能を発現するものであるが、エアコン不使用の省エネルギーの観点から、さらなる熱制御効果の向上が望まれている。一方、この遮熱シートは近赤外線を散乱して透過しないため冬季に太陽熱をテント構造物内に取り込んで構造体内部を蓄温するための機能には適していない。   On the other hand, the inventor of the present invention has a light shielding property using a refractive index of 1.8 or more, a particle size distribution of 0.3 to 3.0 μm, and an aspect ratio of 1.0 to 3.0 amorphous inorganic compound particles. Proposed sheet. (See Patent Document 1) This amorphous inorganic compound particle selectively scatters near-infrared rays and transmits visible light, thereby making it possible to obtain heat shielding properties and daylighting properties at the same time, and to lose much of the heat shielding properties. It can also be used without coloring. However, even in the heat shield sheet obtained by this technology, the temperature of the sheet itself may rise to close to 60 ° C. under strong summer sunshine, so this heat shield sheet can be used as a support for thin solar cells. The required performance is still unsatisfactory for use, and the internal temperature environment has not been improved significantly even in the tent structure of this sheet. This heat shield sheet expresses a higher heat control function at a level of 10 to 15 ° C. than a conventional sheet, but further improvement of the heat control effect is desired from the viewpoint of energy saving without using an air conditioner. On the other hand, since this thermal insulation sheet scatters near-infrared rays and does not transmit it, it is not suitable for the function of taking solar heat into the tent structure and storing the inside of the structure in winter.

タングステン酸化物を含有することで、可視光を透過して透光性を有し、近赤外線を吸収して遮熱性を有するシートを得る試みも行われている。(例えば特許文献2参照)しかし、タングステン酸化物は近赤外線だけでなく可視光の一部(赤〜黄)にも吸収を有するため、これを含有するシートが着色(青または緑)され彩色の自由度が得られない。また、吸収による近赤外線遮蔽であるため、夏季にシート自体の温度上昇を抑える事ができず、薄型太陽電池に用いるには不向きなシートである。   By containing tungsten oxide, an attempt has been made to obtain a sheet that transmits visible light and has translucency and absorbs near-infrared rays and has heat shielding properties. However, since tungsten oxide absorbs not only near infrared rays but also part of visible light (red to yellow), the sheet containing this is colored (blue or green) and colored. There is no degree of freedom. Moreover, since it is near-infrared shielding by absorption, the temperature rise of a sheet | seat itself cannot be suppressed in the summer and is a sheet | seat unsuitable for using for a thin-film solar cell.

LaBやCeB等の6ホウ化物と、酸化チタン等の無機白色顔料とを併用し、6ホウ化物を含むフィルムと無機白色顔料を含むフィルムの積層体、或いは、6ホウ化物と無機白色顔料を併せて含むフィルムに関する技術も開示されている。(例えば特許文献3参照)この方法によれば、優れた近赤外線遮蔽性を得る事ができるが、可視光も同時に遮蔽されるため採光性は得られない。また、夏季にシート自体の温度上昇を抑える事ができず、薄型太陽電池に用いるには不向きなシートである。 A hexaboride such as LaB 6 and CeB 6, in combination with inorganic white pigments such as titanium oxide, laminate film comprising a film and an inorganic white pigment containing hexaboride, or the hexaboride and an inorganic white pigment The technique regarding the film containing this together is also disclosed. (For example, see Patent Document 3) According to this method, excellent near-infrared shielding properties can be obtained, but no visible light can be obtained because visible light is also shielded at the same time. In addition, the temperature rise of the sheet itself cannot be suppressed in summer, and the sheet is not suitable for use in a thin solar cell.

温度を調節するために、高温では熱放射率が大きく、低温では熱放射率が小さい物質を繊維や塗料組成物に含有させる方法が開示されている(例えば、特許文献4及び5参照)。この様な性質を有する物質として、A1 - XX MnO3 で表されるMnを含んだペロブスカイト酸化物(AはLa,Pr,Nd,Smの希土類イオンの中の少なくとも一つ、BはCa,Sr,Baのアルカリ土類金属イオンの中の少なくとも一つ)、やCrを含んだコランダムバナジウム酸化物が開示されている。これらの物質は280K〜300K(約7℃〜約27℃)において金属−絶縁体転移を起こし、転移温度以上では絶縁体性質で熱放射率が大きく、転移温度より低い温度では金属的性質で熱放射率が小さい性質を有する。これらの複合酸化物をテント構造物用のシートに応用すれば、夏季にシートの温度が転移温度以上に上昇した際には、遠赤外線として熱エネルギーを放射してシート温度を下げる効果が期待され、冬季は、天気の良い日であれば日射を受けてシート温度が上昇し、転移温度付近に保つ効果が期待される。しかし、単にこれらの複合酸化物の粒子を可撓性樹脂中に混ぜ込んだだけでは、近赤外線の透過を十分に防ぐことが出来ず、夏季にシート自体の温度をある程度低く保つことが出来ても、近赤外線が一部透過することでテント構造体内部の温度上昇を防ぐ効果が十分ではなかった。 In order to adjust the temperature, a method has been disclosed in which a material having a high thermal emissivity at a high temperature and a low thermal emissivity at a low temperature is contained in a fiber or a coating composition (see, for example, Patent Documents 4 and 5). As a substance having such a property, a perovskite oxide containing Mn represented by A 1 -X B X MnO 3 (A is at least one of rare earth ions of La, Pr, Nd, and Sm, B is Corundum vanadium oxides containing at least one of alkaline earth metal ions of Ca, Sr, and Ba) and Cr are disclosed. These materials undergo a metal-insulator transition at 280 K to 300 K (about 7 ° C. to about 27 ° C.), and have a high thermal emissivity due to the insulating properties above the transition temperature, and heat due to the metallic properties below the transition temperature. It has the property of low emissivity. If these composite oxides are applied to a sheet for a tent structure, when the temperature of the sheet rises above the transition temperature in summer, an effect of lowering the sheet temperature by radiating thermal energy as far infrared rays is expected. In winter, if the weather is fine, the seat temperature rises due to solar radiation, and the effect of keeping it near the transition temperature is expected. However, simply mixing these composite oxide particles into a flexible resin does not sufficiently prevent the transmission of near-infrared rays, and the temperature of the sheet itself can be kept somewhat low in summer. However, the effect of preventing the temperature inside the tent structure from being increased by partially transmitting near infrared rays was not sufficient.

以上の様に現在までのところ、夏季には遮熱性を有し、かつ、シートの過度の温度上昇を防ぎ、冬季の晴天時に一定の熱を取り入れる事が出来、さらに採光性と彩色の自由度を有する熱制御性シートは提供されていなかった。   As described above, so far it has heat insulation in the summer, prevents excessive temperature rise of the seat, can take in a certain amount of heat in clear weather in winter, and also has the freedom of lighting and coloring No heat controllable sheet having

特開2007−055177号公報JP 2007-055177 A 特開2009−144037号公報JP 2009-144037 A 特開2006−340675号公報JP 2006-340675 A 特開2006−342450号公報JP 2006-342450 A 特許第3221412号公報Japanese Patent No. 3221412

本発明は、夏季の炎天下においては熱エネルギーを遠赤外線として放射することでシートの過度の温度上昇を防ぎ、かつ、近赤外線を遮蔽して、高い遮熱性を示し、冬季の低温時には、太陽光線や暖房などにより暖められた熱の放射が少なく蓄温性を有し、さらに採光性と彩色の自由度を有する熱制御性シートを提供しようとするものである。   The present invention prevents excessive heating of the sheet by radiating thermal energy as far-infrared rays in the hot weather in summer and shields near infrared rays to show high heat shielding properties. It is intended to provide a heat-controllable sheet that has little heat radiation by heating or heating, has a heat storage property, and further has daylighting and coloring freedom.

本発明者らは、上記の課題を解決するために、鋭意検討の結果、10〜60℃の範囲に転移温度を有する金属−絶縁体転移物質粒子を含む合成樹脂と、近赤外線散乱着色剤を含む合成樹脂との混合体からなる海島分散構造によって形成された非相溶樹脂層を近赤外線遮蔽層として含むことで、夏季の遮熱性を有し、シート自体の過度な温度上昇を防ぎ、かつ、冬季の蓄温性を有するシートが得られる事を見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventors have intensively studied, as a result, a synthetic resin containing metal-insulator transition material particles having a transition temperature in the range of 10 to 60 ° C., and a near-infrared scattering colorant. By including an incompatible resin layer formed by a sea-island dispersion structure made of a mixture with a synthetic resin as a near-infrared shielding layer, it has summer heat shielding properties, prevents excessive temperature rise of the sheet itself, and The present inventors have found that a sheet having a thermal storage property in winter can be obtained and completed the present invention.

すなわち本発明の熱制御性シートは、近赤外線遮蔽層を含む可撓性シートであって、前記近赤外線遮蔽層が、金属−絶縁体転移物質粒子を含む合成樹脂と、近赤外線散乱着色剤を含む合成樹脂との混合体からなる海島分散構造によって形成された非相溶樹脂層からなるものである。本発明の熱制御性シートは、海島分散構造において、海成分が前記金属−絶縁体転移物質粒子を含み、島成分が前記近赤外線散乱着色剤を含んでいても良い。本発明の熱制御性シートは、前記海島分散構造において、海成分が前記近赤外線散乱着色剤を含み、島成分が前記金属−絶縁体転移物質粒子を含んでいても良い。本発明の熱制御性シートにおいて、前記金属−絶縁体転移物質粒子が、ペロブスカイト構造を有しマンガンを含む金属複合酸化物粒子、及びコランダム構造を有しクロムとバナジウムを含む金属複合酸化物粒子、から選ばれる一種以上を含み、10〜60℃の範囲に転移温度を有することが好ましい。本発明の熱制御性シートにおいて、前記近赤外線散乱着色剤が、チタン酸化物、亜鉛酸化物、スズ酸化物、ジルコニウム酸化物、インジウム酸化物、三酸化アンチモン、クロム酸化物、鉄酸化物、スズドープ酸化インジウム、インジウムドープ酸化スズ、アンチモンドープ酸化スズから選ばれた金属酸化物、及び、ルチル型、ヘマタイト型、またはスピネル型構造を有し、チタン、亜鉛、アンチモン、鉄、ニッケル、コバルト、クロム、マグネシウム、銅、マンガン、アルミニウム、ニオブ、及びケイ素の内2種以上の成分を含んでなる金属複合酸化物、から選ばれた1種以上を含むことが好ましい。本発明の熱制御性シートにおいて、前記可撓性シートが、繊維基布を含む積層体であることが好ましい。本発明の熱制御性シートは、可撓性シートの最外面に、可撓性太陽電池モジュールが積層されてもよい。   That is, the heat-controllable sheet of the present invention is a flexible sheet containing a near-infrared shielding layer, and the near-infrared shielding layer comprises a synthetic resin containing metal-insulator transition material particles and a near-infrared scattering colorant. It consists of an incompatible resin layer formed by a sea-island dispersion structure made of a mixture with a synthetic resin. In the heat-controllable sheet of the present invention, the sea component may include the metal-insulator transition material particles and the island component may include the near-infrared scattering colorant in the sea-island dispersion structure. In the heat-controllable sheet of the present invention, in the sea-island dispersion structure, the sea component may include the near-infrared scattering colorant, and the island component may include the metal-insulator transition material particles. In the thermally controllable sheet of the present invention, the metal-insulator transition material particles include a metal composite oxide particle having a perovskite structure and containing manganese, and a metal composite oxide particle having a corundum structure and containing chromium and vanadium, It is preferable that it has a transition temperature in the range of 10-60 degreeC including 1 or more types chosen from these. In the heat-controllable sheet of the present invention, the near-infrared scattering colorant comprises titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, chromium oxide, iron oxide, tin-doped. Metal oxide selected from indium oxide, indium-doped tin oxide, antimony-doped tin oxide, and a rutile, hematite, or spinel structure, titanium, zinc, antimony, iron, nickel, cobalt, chromium, It is preferable to include one or more selected from metal composite oxides containing two or more components of magnesium, copper, manganese, aluminum, niobium, and silicon. In the heat-controllable sheet of the present invention, it is preferable that the flexible sheet is a laminate including a fiber base fabric. In the heat-controllable sheet of the present invention, a flexible solar cell module may be laminated on the outermost surface of the flexible sheet.

本発明の熱制御性シートは、近赤外線を遮蔽し、かつ、高温時には熱放射率が高いことで、真夏の炎天下において太陽光線から受けた熱を速やかに放射してシートの温度上昇を防ぎ、冬の低温時には熱放射率が低いため、太陽光線や暖房などにより暖められた熱の放射が少なく蓄温性を有し、さらに採光性と、彩色の自由度を有するものである。最外層に可撓性太陽電池モジュールが積層された熱制御性シートは、夏季に太陽電池素子の温度が上昇して発電効率が低下するのを抑制したり、膨張・収縮の繰り返しにより太陽電池の寿命が短くなることを防止する事ができる。また、この熱制御性シートをテント倉庫、イベント用大型テント、農園芸用ハウス、日除けテント、日除けモニュメント、装飾テント、ブラインド、シートシャッター、間仕切りやトラック幌等に用いることで、夏は涼しく、冬は暖かく、日中は照明を点灯する必要の無い程度の採光性を有する膜構造物を提供する事ができる。   The heat-controllable sheet of the present invention shields near infrared rays and has a high thermal emissivity at high temperatures, thereby quickly radiating heat received from sunlight under the hot summer sun to prevent the temperature of the sheet from increasing. Since the thermal emissivity is low at low temperatures in winter, there is little radiation of heat warmed by sunlight or heating, etc., and it has a heat storage property, and it has daylighting and coloring freedom. The heat controllable sheet with the flexible solar cell module laminated on the outermost layer suppresses the decrease in power generation efficiency due to the temperature rise of the solar cell element in summer, or the expansion and contraction of the solar cell It is possible to prevent the life from being shortened. In addition, this heat-controllable sheet is used in tent warehouses, large tents for events, agricultural and horticultural houses, awning tents, awning monuments, decorative tents, blinds, seat shutters, partitions, truck hoods, etc. It is possible to provide a film structure having a daylighting property that is warm and does not require lighting during the day.

本発明の熱制御性シートの一例を示す図The figure which shows an example of the heat-controllable sheet | seat of this invention 本発明の熱制御性シートの一例を示し、海成分が金属−絶縁体転移物質粒 子を含み、島成分が近赤外線散乱着色剤を含む状態を示す図The figure which shows an example of the heat-controllable sheet | seat of this invention, and shows the state which a sea component contains a metal-insulator transition material particle and an island component contains a near-infrared-scattering colorant. 本発明の熱制御性シートの一例を示し、海成分が近赤外線散乱着色剤を含 み、島成分が金属−絶縁体転移物質粒子を含む状態を示す図The figure which shows an example of the heat-controllable sheet of this invention, and shows the state which a sea component contains a near-infrared scattering colorant and an island component contains metal-insulator transition material particles. 最外面に積層された可撓性太陽電池モジュールを含む本発明の熱制御性シー トの一例を示す図The figure which shows an example of the heat-controllable sheet | seat of this invention containing the flexible solar cell module laminated | stacked on the outermost surface. 実施例・比較例において低温環境の昇温と降温を評価した構成を示す図The figure which shows the structure which evaluated the temperature rise and temperature fall of the low temperature environment in an Example and a comparative example

本発明の熱制御性シートは、近赤外線遮蔽層を含む可撓性シートであって、その形態は、樹脂シート(樹脂フィルム)、ターポリン、帆布等の防水性シート、またはメッシュシートである。このうち樹脂シートは、カレンダー成型法、Tダイス押出法、あるいはキャスティング法により製造することができ、近赤外線遮蔽層単層であっても良く、近赤外線遮蔽層を含む複数の樹脂シートを積層した積層体であっても良い。ターポリン、帆布等の防水性シート、およびメッシュシートは、近赤外線遮蔽層と繊維基布とを含む積層体であり、近赤外線遮蔽層は繊維基布の一方の面のみに形成されても良く、両面に形成されても良い。帆布やメッシュシートは、有機溶剤に可溶化した可撓性樹脂、水中で乳化重合された可撓性樹脂エマルジョン(ラテックス)、あるいは可撓性樹脂を水中に強制分散させ安定化したディスパージョン樹脂などの水分散樹脂、軟質ポリ塩化ビニル樹脂ペーストゾル、等を用いるディッピング加工(繊維布帛への両面加工)、及びコーティング加工(繊維布帛への片面加工、または両面加工)等によって製造することができる。ターポリンはカレンダー成型法、Tダイス押出法またはキャスティング法により成型された樹脂フィルム又は樹脂シートを、繊維基布の片面または両面に接着層を介在して積層する方法、あるいは粗目状の繊維基布の両面に目抜け空隙部を介して熱ラミネート積層する方法により製造することが好ましく、さらにディッピング加工、またはコーティング加工と、樹脂フィルム積層の組み合わせによっても実施可能である。本発明の熱制御性シートは、樹脂シート、ターポリン、および帆布の場合、その可視光透過率(JISZ8722.5.4(条件g))は3〜35%、透明樹脂シート、透明ターポリン、およびメッシュシートの場合10〜80%であることが好ましい。   The heat-controllable sheet of the present invention is a flexible sheet including a near-infrared shielding layer, and the form thereof is a resin sheet (resin film), a tarpaulin, a waterproof sheet such as canvas, or a mesh sheet. Among these, the resin sheet can be produced by a calendar molding method, a T-die extrusion method, or a casting method, and may be a single near-infrared shielding layer, or a plurality of resin sheets including a near-infrared shielding layer are laminated. A laminated body may be sufficient. Tarpaulins, waterproof sheets such as canvas, and mesh sheets are laminates including a near-infrared shielding layer and a fiber base fabric, and the near-infrared shielding layer may be formed only on one surface of the fiber base fabric, It may be formed on both sides. Canvas and mesh sheets include flexible resins solubilized in organic solvents, flexible resin emulsions (latex) emulsion-polymerized in water, or dispersion resins stabilized by forcibly dispersing flexible resins in water Can be produced by dipping using a water-dispersed resin, soft polyvinyl chloride resin paste sol, etc. (double-sided processing on a fiber fabric), coating processing (single-sided processing or double-sided processing on a fiber fabric), and the like. Tarpaulin is a method of laminating a resin film or resin sheet molded by a calendar molding method, a T-die extrusion method or a casting method with an adhesive layer on one or both sides of a fiber base fabric, or a coarse fiber base fabric. It is preferable to manufacture by the method of carrying out heat lamination lamination | stacking through a void | interval void | hole part on both surfaces, and also it can implement by the combination of dipping processing or coating processing, and resin film lamination. In the case of the resin sheet, tarpaulin, and canvas, the heat-controllable sheet of the present invention has a visible light transmittance (JISZ8722.5.4 (condition g)) of 3 to 35%, and is a transparent resin sheet, a transparent tarpaulin, and a mesh sheet. In some cases, 10 to 80% is preferable.

本発明の熱制御性シートは、強度、耐久性、寸法安定性などを付与するために、繊維基布を含む積層体、具体的には上述のターポリン、帆布、およびメッシュシートである事が好ましい。繊維基布に用いられる繊維としては、ポリプロピレン繊維、ポリエチレン繊維、ポリエステル繊維、ナイロン繊維、ビニロン繊維などの合成繊維、木綿、麻などの天然繊維、アセテートなどの半合成繊維、ガラス繊維、シリカ繊維、アルミナ繊維、炭素繊維などの無機繊維が挙げられ、これらは単独または2種以上からなる混用繊維によって構成されていてもよい。その形状はマルチフィラメント糸条、短繊維紡績糸条、モノフィラメント糸条、スプリットヤーン糸条、テープヤーン糸条などいずれであってもよい。本発明に使用される繊維基布は、織布、編布、不織布のいずれでもよい。織布を用いる場合、平織、綾織、繻子織、模紗織などいずれの構造をとるものでもよいが、平織織物は、得られる熱制御性シートの経緯物性バランスに優れているため好ましく用いられる。編布を用いるときはラッセル編の緯糸挿入トリコットが好ましく用いられる。これら編織物は、少なくともそれぞれ、糸間間隙をおいて平行に配置された経糸及び緯糸を含む糸条により構成された粗目状の編織物(空隙率は最大90%、好ましくは5〜50%)、及び非粗目状編織物(糸条間に実質上間隙が形成されていない編織物)を包含する。不織布としてはスパンボンド不織布などが使用できる。繊維基布には必要に応じて撥水処理、吸水防止処理、接着処理、難燃処理などが施されていても良い。   In order to impart strength, durability, dimensional stability, etc., the heat-controllable sheet of the present invention is preferably a laminate containing a fiber base fabric, specifically, the above-mentioned tarpaulin, canvas, and mesh sheet. . As fibers used for the fiber base fabric, polypropylene fibers, polyethylene fibers, polyester fibers, nylon fibers, vinylon fibers and other synthetic fibers, cotton, hemp and other natural fibers, acetate and other semi-synthetic fibers, glass fibers, silica fibers, Examples thereof include inorganic fibers such as alumina fibers and carbon fibers, and these may be composed of single or a mixture of two or more kinds. The shape may be any of multifilament yarn, short fiber spun yarn, monofilament yarn, split yarn yarn, tape yarn yarn and the like. The fiber base fabric used in the present invention may be any of woven fabric, knitted fabric and non-woven fabric. When a woven fabric is used, it may have any structure such as a plain weave, twill weave, satin weave, or patterned weave, but a plain weave fabric is preferably used because it has an excellent balance of physical properties of the resulting heat-controllable sheet. When using a knitted fabric, a weft insertion tricot of Russell knitting is preferably used. These knitted fabrics are each a coarse knitted fabric composed of yarns including warps and wefts arranged in parallel with a gap between yarns (the porosity is 90% at maximum, preferably 5 to 50%) And non-coarse knitted fabric (knitted fabric with substantially no gap formed between yarns). As the nonwoven fabric, a spunbond nonwoven fabric can be used. The fiber base fabric may be subjected to water repellent treatment, water absorption prevention treatment, adhesion treatment, flame retardant treatment, and the like as necessary.

上記の内特にガラス繊維、シリカ繊維、アルミナ繊維などの無機繊維からなる非粗目状の編織物を繊維基布として用いることで、建築基準法に規定される不燃性を有する熱制御性シートを得ることが可能となる。具体的には、輻射電気ヒーターを用いて50kW/mの輻射熱を照射する発熱性試験(ASTM−E1354:コーンカロリーメーター試験法)において、加熱開始後20分間の総発熱量が8MJ/m以下であり、かつ加熱開始後20分間、最高発熱速度が10秒以上継続して200kW/mを超えないことを満足する不燃性を有する熱制御性シートであり、例えばガラス繊維織布(目付質量200〜300g/m、空隙率1%以下の非目抜け平織)を繊維基布として、この1面以上に近赤外線遮蔽層を設けることで得られる。また、無機繊維からなる繊維基材を用いる事で寸法安定性が向上し、熱制御性シートが可撓性太陽電池モジュールを含む場合、温度の変化により膨張・収縮を起こしてモジュールが損傷することを抑制する事が出来る。 Of these, a non-coarse knitted fabric made of inorganic fibers such as glass fiber, silica fiber, and alumina fiber is used as a fiber base fabric, thereby obtaining a heat-controllable sheet having incombustibility as defined in the Building Standards Act. It becomes possible. Specifically, in an exothermic test (ASTM-E1354: corn calorimeter test method) in which radiant heat of 50 kW / m 2 is irradiated using a radiant electric heater, the total calorific value for 20 minutes after the start of heating is 8 MJ / m 2. And a non-flammable heat controllable sheet satisfying that the maximum heat generation rate continues for 10 seconds or more and does not exceed 200 kW / m 2 for 20 minutes after the start of heating. It can be obtained by providing a near-infrared shielding layer on one or more sides of a fiber base fabric having a mass of 200 to 300 g / m 2 and a porosity of 1% or less. In addition, the use of a fiber base made of inorganic fibers improves dimensional stability, and when the heat-controllable sheet contains a flexible solar cell module, the module may be damaged by expansion and contraction due to temperature changes. Can be suppressed.

本発明において、近赤外線遮蔽層は、合成樹脂ブレンドの溶融、または合成樹脂ブレンドの液状合成樹脂の攪拌混合物により公知の加工方法によって成型される。本発明で好ましく用いられる合成樹脂としては、例えば、塩化ビニル樹脂、塩化ビニル系共重合体樹脂、オレフィン樹脂(ポリエチレン、ポリプロピレンなど)、オレフィン系共重合体樹脂、ウレタン樹脂、ウレタン系共重合体樹脂、アクリル樹脂、アクリル系共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル系共重合体樹脂、スチレン樹脂、スチレン系共重合体樹脂、ポリエステル樹脂(PET,PEN,PBTなど)、ポリエステル系共重合体樹脂、フッ素含有共重合体樹脂、シリコーン樹脂、シリコーンゴム、ポリカーボネート、ポリアミド、ポリエーテル、ポリエステルアミド、ポリフェニレンスルフィド、ポリエーテルエステル、ビニルエステル樹脂、不飽和ポリエステル樹脂など、可視光透過率が高く可撓性のある熱可塑性樹脂および硬化性樹脂が好ましく用いられる。   In the present invention, the near-infrared shielding layer is molded by a known processing method by melting a synthetic resin blend or by stirring a liquid synthetic resin in a synthetic resin blend. Synthetic resins preferably used in the present invention include, for example, vinyl chloride resins, vinyl chloride copolymer resins, olefin resins (polyethylene, polypropylene, etc.), olefin copolymer resins, urethane resins, and urethane copolymer resins. , Acrylic resin, acrylic copolymer resin, vinyl acetate resin, vinyl acetate copolymer resin, styrene resin, styrene copolymer resin, polyester resin (PET, PEN, PBT, etc.), polyester copolymer resin Fluorine-containing copolymer resin, silicone resin, silicone rubber, polycarbonate, polyamide, polyether, polyesteramide, polyphenylene sulfide, polyetherester, vinylester resin, unsaturated polyester resin, etc. Thermoplastic resin with Curable resin is preferably used.

本発明の近赤外線遮蔽層は、合成樹脂の混合体からなる海島分散構造によって形成された非相溶樹脂層であり、混合する合成樹脂の組み合わせについて、非相溶であれば特に制限はない。非相溶の組合せとしては、塩化ビニル樹脂とポリエチレン、塩化ビニル樹脂とポリプロピレン、塩化ビニル樹脂とスチレン樹脂、塩化ビニル樹脂とスチレン系共重合体樹脂、塩化ビニル樹脂とシリコーン樹脂、塩化ビニル樹脂とフッ素含有共重合体樹脂、塩化ビニル樹脂とビニルエステル樹脂、スチレン樹脂とポリエチレン、スチレン樹脂とポリプロピレン、ウレタン樹脂とポリエチレン、ウレタン樹脂とポリプロピレン、ポリエステル樹脂とポリエチレン、ポリエステル樹脂とポリプロピレン、ポリアミドとポリカーボネート、アクリル樹脂とスチレン樹脂、アクリル樹脂とポリカーボネート、ポリアミドとスチレン樹脂、ポリアミドとポリプロピレンなど、非相溶の可撓性樹脂対が例示される。また、これらの非相溶の可撓性樹脂対に対して、さらに別種の可撓性樹脂を含有することもできる。   The near-infrared shielding layer of the present invention is an incompatible resin layer formed by a sea-island dispersion structure made of a synthetic resin mixture, and the combination of synthetic resins to be mixed is not particularly limited as long as it is incompatible. Incompatible combinations include vinyl chloride resin and polyethylene, vinyl chloride resin and polypropylene, vinyl chloride resin and styrene resin, vinyl chloride resin and styrene copolymer resin, vinyl chloride resin and silicone resin, vinyl chloride resin and fluorine. Containing copolymer resin, vinyl chloride resin and vinyl ester resin, styrene resin and polyethylene, styrene resin and polypropylene, urethane resin and polyethylene, urethane resin and polypropylene, polyester resin and polyethylene, polyester resin and polypropylene, polyamide and polycarbonate, acrylic resin And incompatible flexible resin pairs such as styrene resin, acrylic resin and polycarbonate, polyamide and styrene resin, and polyamide and polypropylene. Moreover, another kind of flexible resin can also be contained with respect to these incompatible flexible resin pairs.

これらの非相溶樹脂層は相分離構造を示す白濁概観の海島分散構造であることが好ましい。この海島分散構造において海成分と島成分は種類の異なる樹脂で構成され、例えば合成樹脂Aと合成樹脂Bからなる非相溶混合物において、合成樹脂Aと合成樹脂Bとの比率設定により、海成分を合成樹脂Aで構成し、島成分を合成樹脂Bで構成することができ、また海成分を合成樹脂Bで構成し、島成分を合成樹脂Aで構成することもできる。ここで、近赤外線遮蔽層が海島分散構造を有し、海成分または島成分のいずれか一方が金属−絶縁体転移物質粒子を含み、もう一方が近赤外線散乱着色剤を含んでいることで、夏季においては太陽光線から受けた熱を放射してシートの過度の温度上昇を防ぎ、かつ、近赤外線を遮蔽して遮熱性を示し、冬季にはシートが太陽光線や暖房などにより暖められた熱の放射が少なく、蓄温性を有し、さらに採光性と、彩色の自由度を有する熱制御性シートが得られる。島成分を構成する合成樹脂の比率は、海成分を構成する合成樹脂の体積に対して3〜50体積%が好ましく、5〜40体積%がより好ましい。海島分散構造を有する近赤外線遮蔽層全体に対する島成分含有率は2.9〜33.3体積%が好ましく、4.7〜28.6体積%がより好ましい。海島分散構造を有する近赤外線遮蔽層全体に対する島成分含有率が2.9体積%未満では、海島分散構造を有さない場合との差が無くなり、本発明の効果を十分に得る事が出来ない。即ち、海成分に金属−絶縁体転移物質粒子を含む場合の近赤外線遮蔽性が不足することがあり、海成分に近赤外線散乱着色剤を含む場合には熱エネルギーを遠赤外線として放射する効果が不足する事がある。一方近赤外線遮蔽層全体に対する島成分含有率が33.3体積%を超えると、近赤外線遮蔽層の樹脂強度が低下し、得られるシートの強度や耐久性が低くなるので好ましくない。また、本発明において、海島分散構造における島成分の平均粒子径は0.4〜20μmであることが好ましい。島成分の平均粒子径がこの範囲にあることで、海成分と島成分の界面において近赤外線の屈折散乱現象を生じ、近赤外線遮蔽層中での近赤外線の散乱が増大する。島成分の平均粒子径が0.4μm未満であると、界面における屈折散乱現象により可視光の一部で光の散乱が大きくなり、可視光透過率が低下したり、可視光領域の内特定波長の光を散乱することで、近赤外線遮蔽層が着色されているように見えることがある。島成分の平均粒子径が20μmを超えると、可視光全域に亘る散乱を起こし可視光透過率が低下することがある。また非相溶の可撓性樹脂対A−Bに対して、さらに別種の可撓性樹脂Cを含有する場合、海島分散構造において島成分が可撓性樹脂Bによる島成分と可撓性樹脂Cによる島成分で構成されてもよく、同様に島成分が可撓性樹脂Aによる島成分と可撓性樹脂Cによる島成分で構成されてもよい。本発明において海島分散構造を有する近赤外線遮蔽層の厚さは、0.03〜1.0mmが好ましく、0.05〜0.5mmがさらに好ましい。近赤外線遮蔽層の厚さが0.03mm未満では、十分な熱制御性が得られないことがあり、1.0mmを超えると、可視光透過率が低下したり、柔軟なシートが得られなくなることがある。   These incompatible resin layers preferably have a sea-island dispersion structure with a cloudy appearance showing a phase separation structure. In this sea-island dispersion structure, the sea component and the island component are composed of different types of resins. For example, in an incompatible mixture composed of synthetic resin A and synthetic resin B, the sea component is set by setting the ratio of synthetic resin A and synthetic resin B. Can be composed of the synthetic resin A, the island component can be composed of the synthetic resin B, the sea component can be composed of the synthetic resin B, and the island component can be composed of the synthetic resin A. Here, the near-infrared shielding layer has a sea-island dispersion structure, and either the sea component or the island component contains metal-insulator transition material particles, and the other contains a near-infrared scattering colorant, In summer, heat received from sunlight is radiated to prevent excessive temperature rise of the sheet, and near-infrared rays are shielded to show heat insulation. In winter, the sheet is heated by sunlight or heating. Therefore, a heat controllable sheet having a low heat radiation property, a heat storage property, a daylighting property, and a coloring degree of freedom can be obtained. The ratio of the synthetic resin constituting the island component is preferably 3 to 50% by volume, more preferably 5 to 40% by volume with respect to the volume of the synthetic resin constituting the sea component. 2.9-33.3 volume% is preferable and, as for the island component content rate with respect to the whole near-infrared shielding layer which has a sea-island dispersion | distribution structure, 4.7-28.6 volume% is more preferable. If the island component content relative to the entire near-infrared shielding layer having a sea-island dispersion structure is less than 2.9% by volume, there is no difference from the case without the sea-island dispersion structure, and the effects of the present invention cannot be sufficiently obtained. . That is, when the sea component contains metal-insulator transition material particles, the near-infrared shielding property may be insufficient, and when the sea component contains a near-infrared scattering colorant, the effect of radiating thermal energy as far-infrared rays is effective. There may be a shortage. On the other hand, if the island component content with respect to the entire near-infrared shielding layer exceeds 33.3% by volume, the resin strength of the near-infrared shielding layer is lowered, and the strength and durability of the resulting sheet are lowered. Moreover, in this invention, it is preferable that the average particle diameter of the island component in a sea-island dispersion structure is 0.4-20 micrometers. When the average particle diameter of the island component is within this range, a near-infrared refractive scattering phenomenon occurs at the interface between the sea component and the island component, and the near-infrared scattering in the near-infrared shielding layer increases. When the average particle size of the island component is less than 0.4 μm, the light scattering increases in part of the visible light due to the refraction and scattering phenomenon at the interface, and the visible light transmittance decreases, or a specific wavelength within the visible light region. The near-infrared shielding layer may appear to be colored by scattering the light. When the average particle diameter of the island component exceeds 20 μm, the visible light transmittance may be lowered due to scattering over the entire visible light region. In addition, when another type of flexible resin C is contained in the incompatible flexible resin pair AB, the island component is composed of the flexible resin B and the flexible resin in the sea-island dispersion structure. The island component by C may be comprised, and the island component by the flexible resin A and the island component by the flexible resin C may be comprised similarly. In the present invention, the thickness of the near-infrared shielding layer having a sea-island dispersion structure is preferably 0.03 to 1.0 mm, and more preferably 0.05 to 0.5 mm. If the thickness of the near-infrared shielding layer is less than 0.03 mm, sufficient thermal controllability may not be obtained, and if it exceeds 1.0 mm, the visible light transmittance is reduced or a flexible sheet cannot be obtained. Sometimes.

本発明に用いられる金属−絶縁体転移物質粒子としては、以下の(A)及び(B)から1種以上を選択して用いる事が出来る。
(A)ペロブスカイト構造を有しマンガン(Mn)を含み、
(A1−x)Mn1+y(但し、AはLa,Pr,Nd,Smの希土類元素の
内から選択される1種または2種以上、BはCa,Sr,Baのアルカリ土類金属の内
から選択される1種または2種以上である)で表される金属複合酸化物粒子。
(B)コランダム構造を有しクロム(Cr)とバナジウム(V)を含み、
(V1−XCr3で表され、0≦x<1である金属複合酸化物粒子。
本発明に用いる金属−絶縁体転移物質粒子とは、特定の温度を境に、その温度よりも高温側では絶縁体的な性質を発現して熱放射量が増大し、低温側では金属的な性質を発現して熱放射量が減少する特性を有する金属複合酸化物粒子である。本発明において、これらの金属−絶縁体転移物質粒子を、海島分散構造における海成分または島成分に含む樹脂層は、夏季に日射を受けて、この粒子を含有する樹脂の温度が転移温度よりも高温になると、その熱を遠赤外線として放射して樹脂の温度を下げ、冬季は、樹脂の温度が転移温度に達しない範囲では放射量が少ないため、日射から受けた熱を逃がしにくい、熱制御性を示すことができる。本発明において、金属−絶縁体転移物質粒子の転移温度は、10〜60℃の範囲にあることが好ましい。転移温度は、選択する元素の種類や上記式におけるx及びyの値により変化させることが出来、この範囲に転移温度を有するために、xとyをそれぞれ、0≦x<1、0≦y≦0.1とする事が好ましい。本発明において、金属−絶縁体転移物質粒子は、海成分または島成分を構成する合成樹脂に対して0.01〜30質量%含まれる事が好ましく、0.1〜15質量%である事がより好ましい。0.01質量%未満では添加による効果が不足し、充分な熱制御性が得られないことがある。30質量%を超えて添加すると、加工性や樹脂強度が低下したり、得られる熱制御性シートの可視光透過率が低下することがある。本発明において、用いる金属−絶縁体転移物質粒子の粒径について特に制限は無いが、樹脂への分散性、シートの加工性などを勘案して、平均粒子径1〜1000nmの粒子から、適宜選択して用いることができる。特に可視光の透過性を高めるためには、平均粒子径2〜400nmの粒子が好ましく、2〜200nmであることがより好ましい。これらの金属−絶縁体転移物質粒子は、その表面に近赤外線領域に吸収が少なく、可視光領域に吸収を有するアゾ系、アンスラキノン系、フタロシアニン系、ペリノン・ペリレン系、インジゴ・チオインジゴ系、ジオキサジン系、キナクリドン系、イソインドリノン系、イソインドリン系、ジケトピロロピロール系、アゾメチン系およびアゾメチンアゾ系の有機色素からなる群から選ばれた少なくとも一種を被覆したものであっても良い。また、樹脂への分散性を向上させるために、表面をSi、Zr、Alから選ばれる一種または2種以上の金属を含有する酸化物、或いは、高級脂肪酸等で被覆したものを用いても良い。
As the metal-insulator transition material particles used in the present invention, one or more of the following (A) and (B) can be selected and used.
(A) has a perovskite structure and contains manganese (Mn);
(A 1-x B x ) Mn 1 + y O 3 (where A is one or more selected from the group consisting of La, Pr, Nd and Sm rare earth elements, and B is an alkaline earth of Ca, Sr and Ba) 1 or 2 or more selected from the group of metals).
(B) has a corundum structure and contains chromium (Cr) and vanadium (V);
Metal composite oxide particles represented by (V 1-X Cr X ) 2 O 3 and 0 ≦ x <1.
The metal-insulator transition material particles used in the present invention express an insulating property at a temperature higher than that temperature at a specific temperature, and increase the amount of heat radiation. This is a metal composite oxide particle that exhibits properties and reduces the amount of heat radiation. In the present invention, the resin layer containing these metal-insulator transition material particles in the sea component or island component in the sea-island dispersion structure is exposed to solar radiation in summer, and the temperature of the resin containing these particles is higher than the transition temperature. When the temperature rises, the heat is emitted as far-infrared rays to lower the resin temperature. In winter, the amount of radiation is small in the range where the resin temperature does not reach the transition temperature, making it difficult to release the heat received from solar radiation. Can show gender. In the present invention, the transition temperature of the metal-insulator transition material particles is preferably in the range of 10 to 60 ° C. The transition temperature can be changed according to the type of element to be selected and the values of x and y in the above formula. In order to have the transition temperature within this range, x and y are respectively 0 ≦ x <1, 0 ≦ y. It is preferable that ≦ 0.1. In the present invention, the metal-insulator transition material particles are preferably contained in an amount of 0.01 to 30% by mass and preferably 0.1 to 15% by mass with respect to the synthetic resin constituting the sea component or island component. More preferred. If it is less than 0.01% by mass, the effect of addition is insufficient, and sufficient thermal controllability may not be obtained. When it exceeds 30 mass%, workability and resin strength may decrease, or the visible light transmittance of the resulting heat-controllable sheet may decrease. In the present invention, the particle size of the metal-insulator transition material particles to be used is not particularly limited, but is appropriately selected from particles having an average particle size of 1 to 1000 nm in consideration of dispersibility in a resin, processability of a sheet, and the like. Can be used. In particular, in order to increase the transmittance of visible light, particles having an average particle diameter of 2 to 400 nm are preferable, and 2 to 200 nm is more preferable. These metal-insulator transition material particles have an azo, anthraquinone, phthalocyanine, perinone / perylene, indigo / thioindigo, dioxazine that has little absorption in the near infrared region on its surface and absorption in the visible light region. It may be coated with at least one selected from the group consisting of organic, quinacridone, isoindolinone, isoindoline, diketopyrrolopyrrole, azomethine and azomethine azo organic dyes. In order to improve the dispersibility in the resin, the surface may be coated with an oxide containing one or more metals selected from Si, Zr, and Al, or a higher fatty acid. .

本発明に用いられる近赤外線散乱着色剤は、近赤外線を散乱させる特性を有する無機の着色剤から適宜選択して用いる事ができ、例えば金属粒子、金属酸化物粒子、及び金属複合酸化物粒子などを例示することができる。これらの粒子を、海島分散構造における海成分または島成分に含むことで、近赤外線遮蔽層内部で近赤外線を散乱させ、シートの近赤外線透過率を低下させると共に、海島分散構造におけるもう一方の側の樹脂に日射からの熱を取り込み易くして、熱制御性を向上させる。金属粒子および金属酸化物粒子としては、アルミニウム、ステンレス、チタン酸化物、亜鉛酸化物、アルミニウム酸化物、マグネシウム酸化物、マンガン酸化物、バリウム酸化物、スズ酸化物、ジルコニウム酸化物、インジウム酸化物、三酸化アンチモン、クロム酸化物、鉄酸化物、銅酸化物、モリブデン酸化物、コバルト酸化物、イットリウム酸化物、セリウム酸化物、ビスマス酸化物、ケイ素酸化物、スズドープ酸化インジウム、インジウムドープ酸化スズ、及びアンチモンドープ酸化スズなどからなる粒子が例示され、これらの内特にチタン酸化物、亜鉛酸化物、スズ酸化物、ジルコニウム酸化物、インジウム酸化物、三酸化アンチモン、クロム酸化物、鉄酸化物、スズドープ酸化インジウム、インジウムドープ酸化スズ及びアンチモンドープ酸化スズの赤外線散乱効果が高く、好ましく用いられる。これらの金属粒子および金属酸化物粒子は、その表面に近赤外線領域に吸収が少なく、可視光領域に吸収を有するアゾ系、アンスラキノン系、フタロシアニン系、ペリノン・ペリレン系、インジゴ・チオインジゴ系、ジオキサジン系、キナクリドン系、イソインドリノン系、イソインドリン系、ジケトピロロピロール系、アゾメチン系およびアゾメチンアゾ系の有機色素からなる群から選ばれた少なくとも一種を被覆したものであっても良い。また、光触媒活性を有する粒子の光触媒活性を抑制したり、樹脂への分散性を向上させたりするために、表面をSi、Zr、Alから選ばれる一種または2種以上の金属を含有する酸化物、或いは、高級脂肪酸等で被覆したものを用いても良い。金属複合酸化物粒子としては、チタン(Ti)、亜鉛(Zn)、アンチモン(Sb)、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、マグネシウム(Mg)、銅(Cu)、マンガン(Mn)、アルミニウム(Al)、ニオブ(Nb)、及びケイ素(Si)の内2種以上の成分を含む金属複合酸化物粒子、から選択して用いることができ、これらを2種以上含むものであれば、上記以外の成分を更に含む金属複合酸化物粒子を用いることもできる。具体的には、例えばCo−Al、Co−Al−Cr、Co−Al−Cr−Ti、Co−Mg−Sn、Co−Ni−Ti、Co−Zn−Ni−Ti、Co−Zn−Cr−Ti、Co−Sb−Ni−Ti、Co−Nb−Ni−Ti、Nb−Ni−Ti、Co−Si、Sn−Cr−Ti、Zn−Cr−Ti、Zn−Cr−Fe、Co−Zn−Cr−Fe、Co−Ni−Cr−Fe−Si、Co−Cr−Mg−Zn−Al、Co−Mn−Cr−Fe、Co−Fe−Cr、Co−Cr−Ni、Co−Cr、Cu−Mn−Cr、Cu−Mn−Fe、Cu−Cr、Mn−Fe、Zn−Fe、Cr−Fe、Cr−Fe−Zn−Ti、Pb−Sb−Fe、Pb−Sb−Al、Ni−Sb、Fe−Zn−Ti、Fe−Al−Ti、Fe−Ti、Fe−Mo、Cr−Sb、Cr−Sb−Ti、Mn−Sb−Ti、Ti−Sb−Ni、Cr−Sn、Fe−Co−Mn−Ni、Ti−Sb−CrおよびZr−Feなどの成分からなる複合酸化物粒子を例示することができる。これらの金属複合酸化物粒子は、ルチル型、ヘマタイト型、またはスピネル型構造を有し、赤外線反射性の顔料として市販されており、所望の色相を有する粒子を単独で、または2種以上を併用して用いることができ、光触媒性の抑制や、樹脂への分散性向上のために、表面をSi、Zr、Alから選ばれる一種または2種以上の金属を含有する酸化物、或いは、高級脂肪酸等で被覆したものを用いても良い。   The near-infrared scattering colorant used in the present invention can be appropriately selected from inorganic colorants having the property of scattering near-infrared rays, such as metal particles, metal oxide particles, and metal composite oxide particles. Can be illustrated. By including these particles in the sea component or island component in the sea-island dispersion structure, near-infrared rays are scattered inside the near-infrared shielding layer, reducing the near-infrared transmittance of the sheet, and the other side of the sea-island dispersion structure. This makes it easy to incorporate heat from solar radiation into the resin and improves the heat controllability. Metal particles and metal oxide particles include aluminum, stainless steel, titanium oxide, zinc oxide, aluminum oxide, magnesium oxide, manganese oxide, barium oxide, tin oxide, zirconium oxide, indium oxide, Antimony trioxide, chromium oxide, iron oxide, copper oxide, molybdenum oxide, cobalt oxide, yttrium oxide, cerium oxide, bismuth oxide, silicon oxide, tin-doped indium oxide, indium-doped tin oxide, and Examples include particles made of antimony-doped tin oxide, among which titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, chromium oxide, iron oxide, tin-doped oxide Indium, indium doped tin oxide and antimony Infrared scattering effect of doped tin oxide is high, is preferably used. These metal particles and metal oxide particles are azo, anthraquinone, phthalocyanine, perinone / perylene, indigo / thioindigo, dioxazine that has little absorption in the near infrared region on the surface and absorption in the visible light region. It may be coated with at least one selected from the group consisting of organic, quinacridone, isoindolinone, isoindoline, diketopyrrolopyrrole, azomethine and azomethine azo organic dyes. In addition, in order to suppress the photocatalytic activity of particles having photocatalytic activity or to improve the dispersibility in the resin, the surface of the oxide contains one or more metals selected from Si, Zr, and Al. Or what was coat | covered with the higher fatty acid etc. may be used. Examples of the metal composite oxide particles include titanium (Ti), zinc (Zn), antimony (Sb), iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), magnesium (Mg), copper ( Cu), manganese (Mn), aluminum (Al), niobium (Nb), and metal composite oxide particles containing two or more components of silicon (Si) can be used. As long as it contains more than one species, metal composite oxide particles further containing components other than those described above can also be used. Specifically, for example, Co-Al, Co-Al-Cr, Co-Al-Cr-Ti, Co-Mg-Sn, Co-Ni-Ti, Co-Zn-Ni-Ti, Co-Zn-Cr- Ti, Co-Sb-Ni-Ti, Co-Nb-Ni-Ti, Nb-Ni-Ti, Co-Si, Sn-Cr-Ti, Zn-Cr-Ti, Zn-Cr-Fe, Co-Zn- Cr-Fe, Co-Ni-Cr-Fe-Si, Co-Cr-Mg-Zn-Al, Co-Mn-Cr-Fe, Co-Fe-Cr, Co-Cr-Ni, Co-Cr, Cu- Mn—Cr, Cu—Mn—Fe, Cu—Cr, Mn—Fe, Zn—Fe, Cr—Fe, Cr—Fe—Zn—Ti, Pb—Sb—Fe, Pb—Sb—Al, Ni—Sb, Fe-Zn-Ti, Fe-Al-Ti, Fe-Ti, Fe-Mo, Cr- b, composite oxide particles comprising components such as Cr—Sb—Ti, Mn—Sb—Ti, Ti—Sb—Ni, Cr—Sn, Fe—Co—Mn—Ni, Ti—Sb—Cr and Zr—Fe Can be illustrated. These metal composite oxide particles have a rutile type, hematite type, or spinel type structure and are commercially available as infrared reflective pigments, and particles having a desired hue are used alone or in combination of two or more. In order to suppress the photocatalytic property and improve the dispersibility in the resin, the surface of the oxide contains one or more metals selected from Si, Zr and Al, or higher fatty acids. You may use what was coat | covered with etc.

本発明において、近赤外線散乱着色剤は、海成分または島成分を構成する合成樹脂に対して0.05〜20質量%含まれる事が好ましく、0.1〜10質量%である事がより好ましい。0.05質量%未満では添加による効果が不足し、充分な熱制御性が得られないことがある。20質量%を超えて添加すると、加工性や樹脂強度が低下し、得られる熱制御性シートの可視光透過率が低下することがある。本発明において、用いる近赤外線散乱着色剤の粒径については特に制限は無いが、樹脂への分散性、シートの加工性などを勘案して、平均粒子径1〜3000nmの粒子から適宜選択して用いることができる。特に近赤外線の散乱をより高めるためには、平均粒子径350〜2000nmの粒子が好ましく、400〜1600nmであることがより好ましい。また、可視光透過率を高め、かつ透視性のある近赤外線遮蔽層を得るには、平均粒子径20〜100nmの粒子が好ましく用いられる。   In the present invention, the near-infrared scattering colorant is preferably contained in an amount of 0.05 to 20% by mass, more preferably 0.1 to 10% by mass with respect to the synthetic resin constituting the sea component or the island component. . If it is less than 0.05% by mass, the effect of addition is insufficient and sufficient thermal controllability may not be obtained. When it exceeds 20 mass%, workability and resin strength are reduced, and the visible light transmittance of the resulting heat-controllable sheet may be reduced. In the present invention, the particle diameter of the near-infrared scattering colorant to be used is not particularly limited, but is appropriately selected from particles having an average particle diameter of 1 to 3000 nm in consideration of dispersibility in a resin, processability of a sheet, and the like. Can be used. In particular, in order to further increase near-infrared scattering, particles having an average particle diameter of 350 to 2000 nm are preferable, and 400 to 1600 nm is more preferable. Moreover, particles having an average particle diameter of 20 to 100 nm are preferably used in order to increase the visible light transmittance and obtain a transparent near-infrared shielding layer.

本発明の近赤外線遮蔽層の海島分散構造において、(i)海成分が金属−絶縁体転移物質粒子を含み、島成分が近赤外線散乱着色剤を含む構成、(ii)海成分が近赤外線散乱着色剤を含み、島成分が金属−絶縁体転移物質粒子を含む構成、の何れであっても良い。これらの構成により熱制御性が得られる要因については定かではないが、例えば上記(i)の構成の場合、以下の様に推察される。
(a)近赤外線遮蔽層が太陽光を受けると、太陽光に含まれる近赤外線は海成分に含ま
れる金属−絶縁体転移物質粒子で一部が吸収され、一部が散乱され、残りは海成分を
透過する。
(b)海成分で散乱された近赤外線及び海成分を透過した近赤外線の多くは、近赤外線
散乱着色剤を含む島成分で散乱され、海成分に返される。海成分に返された近赤外線
は、再び一部が吸収され、一部が散乱され、残りが海成分を透過する。これを繰り返
すことで、多くの近赤外線が海成分で吸収され、近赤外線遮蔽層を透過する近赤外線
は僅かとなり遮熱性が得られる。
(c)近赤外線遮蔽層は、海成分が近赤外線を吸収することで徐々に温度が上昇し、
それが金属−絶縁体転移物質の転移温度に達するまでは、熱の放射が少なく蓄温性を
有する。
(d)近赤外線遮蔽層の温度が転移温度を超えると遠赤外線として放射する熱エネルギー
量が増加して、一定の温度で太陽光から吸収する熱量と平衡に達し、熱制御性シート
の温度がそれ以上上昇するのを防ぐ。
上記(i)および(ii)の構成は、それぞれ夏季の炎天下ではシートの過度の温度上昇を防ぎ、近赤外線を遮蔽して、優れた遮熱性を有し、冬季に熱制御性シートの温度が低い時には、シートからの熱の放射が少なく蓄温性を有するが、両者の比較において、(i)は(ii)より冬季の蓄温性が優れ、(ii)は(i)より夏季の遮熱性が優れる特性を有する。従って、本発明の熱制御性シートを使用する地域や用途に応じて、上記(i)および(ii)の構成から適宜選択して採用すればよい。
In the sea-island dispersion structure of the near-infrared shielding layer of the present invention, (i) the sea component contains metal-insulator transition material particles, the island component contains a near-infrared scattering colorant, and (ii) the sea component scatters near-infrared. Any of the constitutions including a colorant and the island component including metal-insulator transition material particles may be employed. Although it is not certain about the factor which can obtain thermal controllability by these structures, in the case of the structure of (i), for example, it is guessed as follows.
(A) When the near-infrared shielding layer receives sunlight, the near-infrared light contained in the sunlight is partially absorbed by the metal-insulator transition material particles contained in the sea component, partially scattered, and the rest is the sea Permeates the component.
(B) Most of the near infrared light scattered by the sea component and the near infrared light transmitted through the sea component are scattered by the island component containing the near infrared scattering colorant and returned to the sea component. Near-infrared rays returned to the sea component are partly absorbed again, partly scattered, and the rest penetrating the sea component. By repeating this, a lot of near infrared rays are absorbed by the sea component, and only a small amount of near infrared rays are transmitted through the near infrared shielding layer, so that a heat shielding property is obtained.
(C) The near-infrared shielding layer gradually increases in temperature as the sea component absorbs near-infrared rays,
Until it reaches the transition temperature of the metal-insulator transition material, there is little heat radiation and it has thermal storage properties.
(D) When the temperature of the near-infrared shielding layer exceeds the transition temperature, the amount of heat energy radiated as far-infrared rays increases, reaches an equilibrium with the amount of heat absorbed from sunlight at a certain temperature, and the temperature of the heat-controllable sheet Prevent further rise.
The configurations (i) and (ii) described above prevent excessive temperature rise of the sheet under the hot weather in summer, shield near-infrared rays, have excellent heat shielding properties, and the temperature of the heat-controllable sheet in winter When the temperature is low, there is little heat radiation from the sheet and it has a heat storage property. However, in the comparison between the two, (i) has better winter heat storage property than (ii), and (ii) has a better summer barrier than (i). It has excellent thermal properties. Therefore, it is only necessary to appropriately select and employ the configurations (i) and (ii) according to the region and application in which the heat-controllable sheet of the present invention is used.

本発明の熱制御性シートは、熱制御性を維持し、採光性の低下を防ぎ、美観を維持するため、可撓性シート最外表面に防汚層を有する事が好ましい。防汚層は熱制御性及び採光性を損なわず、極度の隠蔽性を伴わないものである限り、その形成方法及び素材に特に限定はない。このような防汚層は例えば、溶剤に可溶化されたアクリル系樹脂もしくはフッ素系樹脂の少なくとも1種以上からなる樹脂溶液あるいは樹脂分散液を塗布して形成した塗膜、これらにシリカ微粒子、またはコロイダルシリカを含む塗膜、オルガノシリケート及び/又はその縮合体を含む塗布剤で塗布し親水性被膜層を形成したもの、光触媒性無機材料(例えば光触媒性酸化チタン)と結着剤とを含む塗布剤を塗布し光触媒層を形成したもの、少なくとも最外表面がフッ素系樹脂により形成されたフィルムを接着剤もしくは熱溶融加工により積層したもの、等から適宜選択することができる。   The heat-controllable sheet of the present invention preferably has an antifouling layer on the outermost surface of the flexible sheet in order to maintain heat-controllability, prevent deterioration of daylighting, and maintain aesthetics. The antifouling layer is not particularly limited in its formation method and material as long as it does not impair thermal controllability and daylighting property and does not have extreme concealing properties. Such an antifouling layer is, for example, a coating film formed by applying a resin solution or a resin dispersion composed of at least one of an acrylic resin or a fluorine resin solubilized in a solvent, silica fine particles, or A coating containing colloidal silica, a coating containing an organosilicate and / or its condensate to form a hydrophilic coating layer, a coating containing a photocatalytic inorganic material (eg photocatalytic titanium oxide) and a binder It can be appropriately selected from those in which a photocatalyst layer is formed by applying an agent, and those obtained by laminating a film having at least the outermost surface formed of a fluororesin by an adhesive or hot melt processing.

本発明の熱制御性シートにおいて、上記防汚層の他に必要に応じて、防汚層の接着性を向上させるための接着層、防汚層が光触媒層である場合に光触媒による樹脂の分解を妨げるための保護層、近赤外線遮蔽層及び/またはその他の樹脂層に含まれる添加剤が防汚層に移行するのを妨げるための添加剤移行防止層、等が形成されていてもよい。また、本発明の熱制御性シートの、防汚層が形成された面とは反対の面に、防汚層との高周波加熱融着性及び熱風融着性を付与するための裏面接着層が形成されていてもよい。あるいは、熱制御性シートをロール状に巻き取って保管している間に、裏面側の樹脂層に含まれる添加剤が、防汚層上に移行して防汚性が低下するのを防ぐために、裏面側(防汚層とは反対の面)に添加剤移行防止層が形成されていても良い。   In the heat-controllable sheet of the present invention, if necessary, in addition to the antifouling layer, an adhesive layer for improving the adhesion of the antifouling layer, and when the antifouling layer is a photocatalytic layer, the resin is decomposed by the photocatalyst. A protective layer for preventing the additive, an additive transfer preventing layer for preventing the additive contained in the near-infrared shielding layer and / or other resin layer from transferring to the antifouling layer, and the like may be formed. Further, a back surface adhesive layer for imparting high-frequency heat fusion property and hot air fusion property to the antifouling layer on the surface opposite to the surface on which the antifouling layer is formed of the heat controllable sheet of the present invention. It may be formed. Alternatively, in order to prevent the additive contained in the resin layer on the back side from moving on the antifouling layer and reducing the antifouling property while the heat controllable sheet is wound and stored in a roll shape In addition, an additive migration preventing layer may be formed on the back surface side (the surface opposite to the antifouling layer).

本発明の熱制御性シートにおいて、近赤外線遮蔽層はこの他に、海成分と島成分それぞれ独立して、必要に応じて公知の添加剤を含んでいても良い。添加剤としては、例えば、有機顔料、蓄光顔料、蛍光増白剤、蛍光顔料、帯電防止剤、難燃剤、可塑剤、可撓性付与剤、充填剤、接着剤、架橋剤、紫外線吸収剤、酸化防止剤、安定剤、滑剤、加工助剤、レベリング剤、消泡剤、抗菌剤、防黴剤などが例示される。   In the heat-controllable sheet of the present invention, the near-infrared shielding layer may additionally contain a known additive as required independently of each of the sea component and the island component. Examples of additives include organic pigments, phosphorescent pigments, fluorescent whitening agents, fluorescent pigments, antistatic agents, flame retardants, plasticizers, flexibility imparting agents, fillers, adhesives, cross-linking agents, UV absorbers, Examples thereof include antioxidants, stabilizers, lubricants, processing aids, leveling agents, antifoaming agents, antibacterial agents, and antifungal agents.

次に、図を用いて、本発明の熱制御性シートの構成例と、それを構造物に応用した場合の効果について述べる。   Next, a configuration example of the heat controllable sheet of the present invention and effects when it is applied to a structure will be described with reference to the drawings.

本発明の熱制御性シートを農園芸用ハウスに用いる場合、図1の様に近赤外線遮蔽層(2)のみからなるものが可視光透過率を高める上で有利であるが、耐引裂性を付与するために、目合いの大きな基布を含んでも良い。近赤外線遮蔽層の海島分散構造において、海成分(4−2)に転移温度が10〜60℃の金属−絶縁体転移物質粒子を含み、島成分(3−1)に近赤外線散乱着色剤を含むことで、夏季はハウス内部の温度上昇を抑制して、遮光シート展張等の手間を軽減し、冬季は太陽光からの熱エネルギーや暖房によって温められたハウス内部の熱が熱制御性シート表面から放射されるのを抑制する。さらに、可視光線を透過することで1年を通して植物の育成を行うことができる。また、低温から暖められていく段階で、金属−絶縁体転移物質の転移温度以下では熱の放射が少なく、朝日を浴びて熱制御性シートが早く昇温するため、朝方の結露を短時間で解消する。必要に応じて暖房装置、好ましくは近赤外線を照射する暖房装置を熱制御性シートに向けて使用すれば、シート温度が上昇し易く、夜間或いは曇天時の結露を防止する事ができる。なお、図1とは逆に、海成分に近赤外線散乱着色剤を含み、島成分に転移温度が10〜60℃の金属−絶縁体転移物質粒子を含んでも良い。   When the heat-controllable sheet of the present invention is used for an agricultural or horticultural house, as shown in FIG. 1, only the near-infrared shielding layer (2) is advantageous in increasing the visible light transmittance. In order to give, you may include a base fabric with a large mesh. In the sea-island dispersion structure of the near-infrared shielding layer, the sea component (4-2) contains metal-insulator transition material particles having a transition temperature of 10 to 60 ° C., and the near-infrared scattering colorant is contained in the island component (3-1). Including in summer the temperature inside the house is suppressed to reduce the work of extending the shading sheet, etc., and in the winter the heat inside the house heated by solar energy or heating is heated to the surface of the heat-controllable sheet Suppresses radiation. Furthermore, the plant can be grown throughout the year by transmitting visible light. In addition, in the stage of warming from a low temperature, heat radiation is low below the transition temperature of the metal-insulator transition material, and the heat-controllable sheet heats up quickly in the morning sun, so morning dew condensation can be done in a short time. Eliminate. If a heating device, preferably a heating device that irradiates near infrared rays, is used for the heat-controllable sheet as necessary, the sheet temperature is likely to rise, and condensation at night or in cloudy weather can be prevented. In contrast to FIG. 1, the sea component may include a near-infrared scattering colorant, and the island component may include metal-insulator transition material particles having a transition temperature of 10 to 60 ° C.

本発明の熱制御性シートをテント倉庫に用いる場合、図2及び図3の様に繊維基布(5)を含む熱制御性シート(1)を用いることで、強度、耐久性に優れたテント倉庫が得られる。本発明の熱制御性シートは、近赤外線を反射する従来の遮熱シートとは異なり、近赤外線を吸収して遮熱性を示し、その熱エネルギーを遠赤外線として放射してシート温度の過度の上昇を防ぐものであるため、夏季の遮熱性に関しては表面に汚れが付着してもあまり影響は無い。しかし、汚れが付着すると低温時に遠赤外線放射を抑制する効果が損なわれる事があり、更に採光性が低下し美観も損なわれるため、最外面に更に防汚層(8)を有することが好ましい。近赤外線遮蔽層の海島分散構造において、海成分または島成分中に転移温度が10〜60℃の金属−絶縁体転移物質粒子を含み、海成分または島成分のもう一方の側に近赤外線散乱着色剤を含むことで、夏季の日照時にはテント倉庫内部の温度上昇を防いで作業環境が改善される。また、本発明の熱制御性シートは金属−絶縁体転移物質粒子の転移温度以下では放射が少なくシート温度の低下が緩やかであるため、夜間の結露を生じにくい。一方、冬季は太陽光からの熱エネルギーをテント倉庫内部に取り込み、日照時には暖かい環境を得る事ができ、曇天時や夜間には暖房を用いれば、暖房によって温まった熱が熱制御性シート表面から放射されるのを抑制し、暖房効率を高める事ができる。   When the heat-controllable sheet of the present invention is used in a tent warehouse, a tent having excellent strength and durability can be obtained by using the heat-controllable sheet (1) including the fiber base fabric (5) as shown in FIGS. A warehouse is obtained. The heat controllable sheet of the present invention, unlike a conventional heat shield sheet that reflects near infrared rays, absorbs near infrared rays and exhibits heat shielding properties, and radiates its thermal energy as far infrared rays to excessively increase the sheet temperature. Therefore, even if dirt is attached to the surface, there is not much influence on the heat insulation in summer. However, when dirt adheres, the effect of suppressing far-infrared radiation at low temperatures may be impaired, and further, the daylighting property is lowered and the aesthetic appearance is also impaired. Therefore, it is preferable to further have an antifouling layer (8) on the outermost surface. In the sea-island dispersion structure of the near-infrared shielding layer, the sea component or island component contains metal-insulator transition material particles having a transition temperature of 10 to 60 ° C., and the other side of the sea component or island component is colored by near-infrared scattering The inclusion of the agent improves the working environment by preventing the temperature inside the tent warehouse from rising during summer sunshine. Further, since the heat-controllable sheet of the present invention has less radiation below the transition temperature of the metal-insulator transition material particles and the decrease in the sheet temperature is gradual, condensation at night hardly occurs. On the other hand, heat energy from sunlight is taken into the tent warehouse during the winter, and a warm environment can be obtained during sunshine. Heating during heating is used from the surface of the heat-controllable sheet when heating is used during cloudy weather or at night. Radiation is suppressed and heating efficiency can be increased.

図4は、本発明の可撓性シート最外面に可撓性太陽電池モジュール(7)が積層された熱制御性シート(1)の一例である(可撓性太陽電池モジュールの詳細は省略した)。可撓性太陽電池モジュールに含まれる太陽電池素子には、結晶シリコンタイプと非結晶シリコンタイプとがありそれぞれに特性が異なるため、それぞれの特性に合わせた熱制御性シートが求められる。まず結晶シリコンタイプは温度が上昇すると出力が低下する問題を有するため、熱制御性シートには、特に夏季において温度の上昇を抑制する事が求められる。そのため、10〜60℃の範囲で転移温度が比較的低い、例えば30℃以下の金属−絶縁体転移物質粒子を海成分に含み、島成分に近赤外線散乱着色剤を含む近赤外線遮蔽層を有する構成とすれば、30℃を超える温度において遠赤外線として放射される熱エネルギー量が増大して、熱制御性シートの温度を低く(例えば60℃以下に)保ち、温度上昇による出力低下を抑制する事ができる。一方、非晶質シリコンタイプは、低温では出力が低く、温度の上昇につれて出力が上昇するため、冬季に日射を浴びて温度を上昇させる事が求められる。そのため、10〜60℃の範囲で転移温度が比較的高く、例えば30℃を超える金属−絶縁体転移物質粒子を海成分に含み、島成分に近赤外線散乱着色剤を含む近赤外線遮蔽層を有する構成とすれば、30℃以下の温度において日射に含まれる近赤外線を吸収して温度が上がりやすく、出力を高く保つ事ができる。また、繊維基布(5)を含む熱制御性シートであれば、繊維基布により補強されているため、日中と夜間の温度差が大きくても、膨張と収縮の繰り返しにより太陽電池モジュールが損傷を受ける事を防ぎ、太陽電池としての寿命を長くする事が出来、テント倉庫、イベント用大型テント、日除けなどの膜構造物の一部として使用することも可能となる。   FIG. 4 is an example of a thermally controllable sheet (1) in which a flexible solar cell module (7) is laminated on the outermost surface of the flexible sheet of the present invention (details of the flexible solar cell module are omitted). ). The solar cell elements included in the flexible solar cell module are of a crystalline silicon type and an amorphous silicon type and have different characteristics. Therefore, a thermally controllable sheet that matches each characteristic is required. First, since the crystalline silicon type has a problem that the output decreases when the temperature rises, the heat controllable sheet is required to suppress the temperature rise particularly in summer. Therefore, it has a near-infrared shielding layer that contains metal-insulator transition material particles having a relatively low transition temperature in the range of 10 to 60 ° C., for example, 30 ° C. or less as a sea component and a near-infrared scattering colorant as an island component. If it comprises, the amount of thermal energy radiated | emitted as a far infrared ray in the temperature exceeding 30 degreeC will increase, the temperature of a heat-controllable sheet will be kept low (for example, 60 degrees C or less), and the output fall by a temperature rise will be suppressed. I can do things. On the other hand, the amorphous silicon type has a low output at a low temperature, and the output increases as the temperature rises. Therefore, it is required to raise the temperature by being exposed to sunlight in winter. Therefore, the transition temperature is relatively high in the range of 10 to 60 ° C., for example, it has a near-infrared shielding layer containing metal-insulator transition material particles exceeding 30 ° C. as a sea component and an island component containing a near-infrared scattering colorant. If it is set as a structure, near infrared rays contained in solar radiation will be absorbed at a temperature of 30 ° C. or lower, and the temperature will easily rise, and the output can be kept high. In addition, since the heat-controllable sheet including the fiber base fabric (5) is reinforced by the fiber base fabric, the solar cell module can be repeatedly expanded and contracted even if the temperature difference between daytime and nighttime is large. It is possible to prevent damage and prolong the life as a solar cell, and it can be used as a part of a film structure such as a tent warehouse, a large tent for an event, and an awning.

本発明を下記実施例、および比較例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。   The present invention will be specifically described with reference to the following examples and comparative examples, but the present invention is not limited thereto.

下記実施例・比較例において得られたシートについて下記の試験方法により、遮熱率、表面温度、蓄温性、近赤外線遮蔽性、及び、可視光透過率を評価した。
<遮熱率>
試験環境:内径が高さ45cm×幅35cm×長さ35cmで、外気温遮断性と気密性とを有
し、側面に開閉可能な扉を有する箱型構造体の天井部中央に白熱ランプ(100V,5
00Wのフォトリフレクタランプ:デイライトカラー用:東芝(株)製)を取り付け、
箱型構造体の底面部中央には熱流量計(Shothrm HFM熱流量計:昭和電工
(株)製)のセンサーを取り付けて固定し、この箱型構造体を20℃の恒温室内に設置
して、遮熱性評価の試験環境を構成した。
試験:たて・よこともに0.5cmの正方形の断面を有するアクリル樹脂製角材棒を柱及
び梁として、瞬間接着剤で固定する事で、高さ5cm×幅10cm×長さ15cmの外径を有
する箱型フレームを組み立て、この箱型フレームを箱型構造体の底面部中央(熱流量計
センサー上)に取り付け、箱型構造体の扉を閉めて密閉状態とし、シート無しの熱流量
(kcal/m2h)を1分ごとに測定し、30分後の熱流量qn(kcal/m2h)を測定した。
熱流量qn測定後、内部の温度が恒温室と同じ20℃で安定するまで、箱型構造体の扉
を開放した。次に、箱型フレームの4側面、及び上面(天井)部に、そのおもて面が外
向きとなるように、実施例及び比較例で作成したシートを、両面テープで貼り付けて固
定し、底面があいた試験箱を準備した。シートを貼り付けた試験箱を、箱型構造体の底
面部の中央に取り付けて、ランプの中心点と試験箱の中心点とを結ぶ直線の方向が鉛直
方向に重なるように固定した。この箱型構造体内部におけるランプ先端から試験箱の天
井部(シートおもて面)までの距離は35cmであった。箱型構造体の扉を閉めて密閉
状態に置き、ランプを点灯し、熱流量(kcal/m2h)を1分ごとに測定し、30分後の
熱流量qc(kcal/m2h)を測定し、下記式により遮熱率を求めた。遮熱率は、数値が
大きい程、遮熱性が高いものと判断した。
遮熱率(%)=〔(qn−qc)/qn〕×100
なお、繊維基布を含むシートに関しては、初期の遮熱性に加え、屋外曝露1年後につい
ても測定した。
屋外曝露:
屋外曝露台上に、実施例及び比較例で作成したシートのおもて面を上にして南向きに傾
斜角30度に設置して1年間の屋外曝露試験を行った。
場所:埼玉県草加市
期間:平成21年6月1日〜平成22年5月31日
<表面温度>
試験:上記遮熱率の熱流量qc測定後、速やかに天井部のシートおもて側中心部表面の温
度を熱伝対センサを用いた接触式の表面温度計((株)テストー社製TT−905−T
2)により測定した。
<低温環境での昇温と降温(蓄温性)>
試験環境(図5参照):実施例及び比較例で作成したシート(1)を20cm四方に裁断
し、その裏面側中央に表面温度センサー(9:三菱マテリアル(株)STS−60)を
粘着テープ(図示しない)で固定した。次に、たて20cmよこ20cm厚さ5cmの
発泡スチロール板(10)を用意し、シート(1)のおもて面側を上にして、4辺が浮
かないように発泡スチロール板に粘着テープ(図示しない)で固定して、測定用サンプ
ル(11)とし、5℃の保冷倉庫内に24時間以上静置した。測定用サンプル(11)
のシート(1)を固定した側を上にして、保冷倉庫床面上に水平に置き、シートおもて
面とランプ先端の距離が30cmとなり、ランプの中心点とシートの中心点とを結ぶ直
線の方向が垂直方向に重なる様に、ハロゲンランプ(12:100V、85Wのレフラ
ンプ型、ウシオライティング(株)製)を固定した。
試験:ハロゲンランプを点灯し、シート裏面に貼り付けた表面温度センサーで温度を観察
し、30℃に達するまでの昇温時間を計測し、さらに、30℃に達した段階で速やかに
ハロゲンランプを消灯し、15℃に下がるまでの降温時間(分)を計測した。
昇温時間が短く、降温時間が長いものが蓄温性の高いシートであると判断した。
なお、繊維基布を含むシートに関しては、初期の蓄温性に加え、屋外曝露1年後につい
ても測定した。(曝露は上記<遮熱率>と同様の条件で行った)
<近赤外線遮蔽性>
島津製作所UV−3600を用いて、シートおもて面を光源に向けて、波長1000n
mの近赤外線の透過率を測定した。
透過率が低いほど近赤外線遮蔽性が高いものと判断した。
<可視光透過率(採光性)>
JIS Z8722.5.4(条件g)に従い、ミノルタ分光測色計CM−3600dを用いて、
可視光透過率を測定した。
可視光透過率が高いものが、採光性に優れるものと判断した。
With respect to the sheets obtained in the following examples and comparative examples, the heat shielding rate, the surface temperature, the heat storage property, the near-infrared shielding property, and the visible light transmittance were evaluated by the following test methods.
<Heat insulation rate>
Test environment: An incandescent lamp (100V) at the center of the ceiling of a box-type structure that has an inner diameter of 45cm x width 35cm x length 35cm, has an outside temperature blocking property and airtightness, and has a door that can be opened and closed on the side. , 5
Attach a 00W photo reflector lamp (for daylight color: manufactured by Toshiba Corporation)
At the center of the bottom of the box structure, a sensor of a heat flow meter (Shotrm HFM heat flow meter: Showa Denko Co., Ltd.) is attached and fixed, and this box structure is installed in a constant temperature room at 20 ° C. The test environment for thermal insulation evaluation was configured.
Test: The outer diameter of 5cm in height x 10cm in width x 15cm in length by fixing a square rod made of acrylic resin with a square section of 0.5cm as a pillar and beam with instantaneous adhesive. Assemble the box-type frame that has the structure, attach this box-type frame to the center of the bottom part of the box-type structure (on the heat flow meter sensor), close the door of the box-type structure to make it sealed, and heat flow without seat (Kcal / m 2 h) was measured every minute, and the heat flow qn (kcal / m 2 h) after 30 minutes was measured.
After measuring the heat flow qn, the box-type structure door was opened until the internal temperature was stabilized at 20 ° C., which is the same as the temperature-controlled room. Next, the sheets created in the examples and comparative examples are affixed to the four side surfaces of the box-type frame and the top surface (ceiling) with double-sided tape so that the front surface faces outward. A test box with a bottom surface was prepared. The test box with the sheet attached was attached to the center of the bottom of the box-type structure, and fixed so that the direction of the straight line connecting the center point of the lamp and the center point of the test box overlapped in the vertical direction. The distance from the lamp tip inside the box structure to the ceiling part (sheet front surface) of the test box was 35 cm. Close the door of the box structure and place it in a sealed state, turn on the lamp, measure the heat flow (kcal / m 2 h) every minute, heat flow after 30 minutes qc (kcal / m 2 h) Was measured, and the heat shielding rate was determined by the following formula. The heat insulation rate was judged to be higher as the value was higher.
Heat shielding rate (%) = [(qn−qc) / qn] × 100
In addition to the initial heat insulation, the sheet containing the fiber base fabric was also measured one year after outdoor exposure.
Outdoor exposure:
On the outdoor exposure table, a one-year outdoor exposure test was conducted with the sheet prepared in the example and the comparative example facing upward with an inclination angle of 30 degrees facing south.
Location: Soka, Saitama Period: June 1, 2009 to May 31, 2010 <Surface temperature>
Test: After measuring the heat flow rate qc of the above heat insulation rate, the surface temperature of the center part of the front side of the ceiling is promptly measured using a contact type surface thermometer using a thermocouple sensor (manufactured by Testo Co., Ltd.). TT-905-T
It was measured by 2).
<Temperature rise and fall in low-temperature environments (thermal storage)>
Test environment (see FIG. 5): Sheet (1) prepared in Examples and Comparative Examples was cut into a 20 cm square, and a surface temperature sensor (9: Mitsubishi Materials Corp. STS-60) was attached to the center of the back side. (Not shown). Next, prepare a 20 cm wide, 20 cm wide, 5 cm thick foamed polystyrene board (10), with the front side of the sheet (1) facing up, and stick it to the foamed polystyrene board so that the four sides do not float. The sample for measurement (11) was left standing in a cold storage warehouse at 5 ° C. for 24 hours or longer. Sample for measurement (11)
Place the sheet (1) on the floor and place it horizontally on the floor of the cold storage warehouse. The distance between the sheet front surface and the lamp tip is 30 cm, and the lamp center point and the sheet center point are connected. A halogen lamp (12: 100 V, 85 W relamp type, manufactured by Ushio Lighting Co., Ltd.) was fixed so that the direction of the straight line overlapped with the vertical direction.
Test: Turn on the halogen lamp, observe the temperature with the surface temperature sensor attached to the back of the sheet, measure the temperature rise time until it reaches 30 ° C, and then quickly turn on the halogen lamp when it reaches 30 ° C. The temperature was lowered until the temperature decreased to 15 ° C. (minutes).
It was judged that a sheet having a high temperature storage time and a long temperature decrease time was a sheet having a high temperature storage property.
In addition to the initial heat storage, the sheet containing fiber base fabric was also measured one year after outdoor exposure. (Exposure was performed under the same conditions as the above <heat shielding rate>)
<Near-infrared shielding>
Using Shimadzu UV-3600, with the sheet front facing the light source, the wavelength 1000n
The near infrared transmittance of m was measured.
It was judged that the near-infrared shielding property was higher as the transmittance was lower.
<Visible light transmittance (lighting property)>
According to JIS Z8722.5.4 (condition g), using a Minolta spectrocolorimeter CM-3600d,
Visible light transmittance was measured.
A material having a high visible light transmittance was judged to be excellent in daylighting.

[実施例1]
下記配合1の金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂の熱溶融混練物に、下記配合2の近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマー(SBS)の熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えてバンバリーミキサーで熱溶融混練し、軟質塩化ビニル樹脂中にスチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物1を得た。配合1には金属−絶縁体転移物質粒子として平均粒子径200nmのペロブスカイト酸化物(La0.825Sr0.175MnO:転移温度17℃)粒子を用い、配合2には近赤外線散乱着色剤として平均粒子径1000nmの酸化チタン粒子を用いた。この非相溶樹脂混合物1を180℃設定のカレンダーロール4本を通過させて厚さ0.3mmの近赤外線遮蔽層からなる白色の熱制御性シートを成型した。この近赤外線遮蔽層を顕微鏡観察すると、近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーが島成分を構成しており、金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂が海成分を構成していた。海島分散構造における島成分の平均粒子径は7.2μmであった。この熱制御性シートは表裏に差を有さないため、一方の面にしるしを付け、その面をおもて面として各種評価を行った。結果を表1に示す。
<配合1>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 60質量部
リン酸トリクレジル(可塑剤) 10質量部
三酸化アンチモン(難燃剤) 10質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
La0.825Sr0.175MnO3:平均粒子径200nm 5質量部

<配合2>
スチレン・ブタジエンブロックコポリマー 100質量部
(旭化成ケミカルズ(株)社製、商品名:アサフレックス830)
酸化チタン:平均粒子径1000nm 5質量部
[Example 1]
A hot-melt kneaded product of a styrene butadiene block copolymer (SBS) containing a near-infrared scattering colorant of the following formulation 2 was added to a soft-melt kneaded product of the following compound 1 containing metal-insulator transition material particles-containing soft vinyl chloride resin. An incompatible resin mixture 1 was obtained in which 20% by mass relative to the mass of the single substance was added and heat-melted and kneaded with a Banbury mixer to uniformly disperse the styrene-butadiene block copolymer in the soft vinyl chloride resin. Formula 1 uses perovskite oxide (La 0.825 Sr 0.175 MnO 3 : transition temperature 17 ° C.) particles having an average particle size of 200 nm as metal-insulator transition material particles, and Formula 2 uses near-infrared scattering colorants. The titanium oxide particles having an average particle diameter of 1000 nm were used. This incompatible resin mixture 1 was passed through four calendar rolls set at 180 ° C. to mold a white heat-controllable sheet comprising a near-infrared shielding layer having a thickness of 0.3 mm. When this near-infrared shielding layer was observed with a microscope, the near-infrared scattering colorant-containing styrene butadiene block copolymer constituted an island component, and the metal-insulator transition material particle-containing soft vinyl chloride resin constituted a sea component. The average particle size of the island components in the sea-island dispersion structure was 7.2 μm. Since this heat-controllable sheet has no difference between the front and back, various evaluations were performed with a mark on one surface and the surface as the front surface. The results are shown in Table 1.
<Formulation 1>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 60 parts by mass Tricresyl phosphate (plasticizer) 10 parts by mass Antimony trioxide (flame retardant) 10 parts by mass Zinc stearate ( Stabilizer) 2 parts by mass Barium stearate (stabilizer) 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 part by mass La 0.825 Sr 0.175 MnO 3: Average particle diameter 200 nm 5 parts by mass

<Formulation 2>
100 parts by mass of styrene / butadiene block copolymer (product name: Asaflex 830, manufactured by Asahi Kasei Chemicals Corporation)
Titanium oxide: average particle size 1000 nm 5 parts by mass

[実施例2]
下記配合3の近赤外線散乱着色剤含有軟質塩化ビニル樹脂の熱溶融混練物に、下記配合4の金属−絶縁体転移物質粒子含有スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えてバンバリーミキサーで熱溶融混練し、スチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物2を得た。配合3には近赤外線散乱着色剤として平均粒子径1000nmの酸化チタンを用い、配合4には金属−絶縁体転移物質粒子として平均粒子径200nmのペロブスカイト酸化物(La0.825Sr0.175MnO:転移温度17℃)粒子を用いた。この非相溶樹脂混合物2を180℃設定のカレンダーロール4本を通過させて厚さ0.3mmの近赤外線遮蔽層からなる白色の熱制御性シートを成型した。この近赤外線遮蔽層を顕微鏡観察すると、金属−絶縁体転移物質粒子含有スチレンブタジエンブロックコポリマーが島成分を構成しており、近赤外線散乱着色剤含有軟質塩化ビニル樹脂が海成分を構成していた。海島分散構造における島成分の平均粒子径は7.2μmであった。この熱制御性シートは表裏に差を有さないため、一方の面にしるしを付け、その面をおもて面として各種評価を行った。結果を表1に示す。
<配合3>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 60質量部
リン酸トリクレジル(可塑剤) 10質量部
三酸化アンチモン(難燃剤) 10質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
酸化チタン:平均粒子径1000nm 3質量部

<配合4>
スチレン・ブタジエンブロックコポリマー 100質量部
(旭化成ケミカルズ(株)社製、商品名:アサフレックス830)
La0.825Sr0.175MnO3:平均粒子径200nm 10質量部
[Example 2]
The heat-melt kneaded product of the soft vinyl chloride resin containing the near-infrared scattering colorant containing the following formulation 3 and the styrene-butadiene block copolymer containing the metal-insulator transition material particles shown in the following formulation 4 are added to the mass of the vinyl chloride resin alone. 20 mass% was added, and it was heat-melt-kneaded with the Banbury mixer, and the incompatible resin mixture 2 in which the styrene butadiene block copolymer was uniformly dispersed was obtained. Formulation 3 uses titanium oxide with an average particle size of 1000 nm as a near-infrared scattering colorant, and Formulation 4 uses a perovskite oxide (La 0.825 Sr 0.175 MnO with an average particle size of 200 nm as metal-insulator transition material particles). 3 : transition temperature 17 ° C.) particles were used. This incompatible resin mixture 2 was passed through four calender rolls set at 180 ° C. to mold a white heat-controllable sheet comprising a near-infrared shielding layer having a thickness of 0.3 mm. When the near-infrared shielding layer was observed with a microscope, the styrene-butadiene block copolymer containing metal-insulator transition material particles constituted an island component, and the near-infrared scattering colorant-containing soft vinyl chloride resin constituted a sea component. The average particle size of the island components in the sea-island dispersion structure was 7.2 μm. Since this heat-controllable sheet has no difference between the front and back, various evaluations were performed with a mark on one surface and the surface as the front surface. The results are shown in Table 1.
<Formulation 3>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 60 parts by mass Tricresyl phosphate (plasticizer) 10 parts by mass Antimony trioxide (flame retardant) 10 parts by mass Zinc stearate ( Stabilizer) 2 parts by weight Barium stearate (stabilizer) 2 parts by weight UV absorber: benzotriazole series 0.5 parts by weight Titanium oxide: average particle size 1000 nm 3 parts by weight

<Formulation 4>
100 parts by mass of styrene / butadiene block copolymer (product name: Asaflex 830, manufactured by Asahi Kasei Chemicals Corporation)
La 0.825 Sr 0.175 MnO 3: average particle diameter 200 nm 10 parts by mass

[実施例3]
配合1の金属−絶縁体転移物質粒子を転移温度47℃、平均粒子径200nmのペロブスカイト酸化物((La0.78Sr0.12Ca0.1)MnO)粒子に置き換えた以外は、実施例1と同様にして熱制御性シートを得た。この熱制御性シートは表裏に差を有さないため、一方の面にしるしを付け、その面をおもて面として各種評価を行った。結果を表1に示す。
[Example 3]
Implementation was performed except that the metal-insulator transition material particles in Formula 1 were replaced with perovskite oxide ((La 0.78 Sr 0.12 Ca 0.1 ) MnO 3 ) particles having a transition temperature of 47 ° C. and an average particle size of 200 nm. A thermally controllable sheet was obtained in the same manner as in Example 1. Since this heat-controllable sheet has no difference between the front and back, various evaluations were performed with a mark on one surface and the surface as the front surface. The results are shown in Table 1.

実施例1〜3の熱制御性シートは、金属−絶縁体転移物質粒子を含む合成樹脂と、近赤外線散乱着色剤を含む合成樹脂との混合体からなる海島分散構造によって形成された非相溶樹脂層を有することで、いずれも熱制御性、採光性に優れたシートであった。金属−絶縁体転移物質粒子を海成分に含む実施例1と、島成分に含む実施例2を比較すると、実施例1は実施例2に比べて遮熱率測定後の表面温度が低く、低温時の昇温が優れ、実施例2は実施例1に比べて遮熱性が高い結果であった。また、転移温度の高い金属−絶縁体転移物質を用いた実施例3は、実施例1に比べて低温時の昇温・降温が優れており、一方実施例1は実施例3に比べて遮熱性が優れ、遮熱率測定後の表面温度が低い結果であった。   The heat-controllable sheets of Examples 1 to 3 are incompatible with each other formed by a sea-island dispersion structure composed of a mixture of a synthetic resin containing metal-insulator transition material particles and a synthetic resin containing a near-infrared scattering colorant. By having a resin layer, all were sheets excellent in heat controllability and daylighting. Comparing Example 1 in which the metal-insulator transition material particles are included in the sea component and Example 2 in which the island component is included in the island component, Example 1 has a lower surface temperature after the measurement of the heat shielding rate than Example 2, and the low temperature. The temperature rise at the time was excellent, and Example 2 was a result of higher heat shielding properties than Example 1. In addition, Example 3 using a metal-insulator transition material having a high transition temperature is superior in temperature rising / falling at a low temperature as compared to Example 1, while Example 1 is shielded compared to Example 3. The results were excellent in thermal properties, and the surface temperature after the measurement of the heat shielding rate was low.

[比較例1]
配合1の金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂の熱溶融混練物を、180℃設定のカレンダーロール4本を通過させて、厚さ0.3mmの乳白のシートを成型した。このシートは表裏に差を有さないため、一方の面にしるしを付け、その面をおもて面として各種評価を行った。結果を表1に示す。
[Comparative Example 1]
A hot melt kneaded product of the soft vinyl chloride resin containing metal-insulator transition material particles of Formulation 1 was passed through four calender rolls set at 180 ° C. to form a milky white sheet having a thickness of 0.3 mm. Since this sheet does not have a difference between the front and back sides, a mark was provided on one surface, and various evaluations were performed using that surface as a front surface. The results are shown in Table 1.

比較例1のシートは海島構造を有さず、全体に金属−絶縁体転移物質粒子を含むシートであり、実施例1〜3に比べて採光性は高いものの、近赤外線遮蔽性が低く、遮熱性が劣っていた。   The sheet of Comparative Example 1 does not have a sea-island structure, and is a sheet containing metal-insulator transition material particles as a whole. Although the daylighting property is higher than those of Examples 1 to 3, the near-infrared shielding property is low. Thermal properties were inferior.

[比較例2]
配合3の近赤外線散乱着色剤含有軟質塩化ビニル樹脂の熱溶融混練物を、180℃設定のカレンダーロール4本を通過させて、厚さ0.3mmの白色のシートを成型した。このシートは表裏に差を有さないため、一方の面にしるしを付け、その面をおもて面として各種評価を行った。結果を表1に示す。
[Comparative Example 2]
A hot melt kneaded product of the near-infrared scattering colorant-containing soft vinyl chloride resin of Formulation 3 was passed through four calendar rolls set at 180 ° C. to form a white sheet having a thickness of 0.3 mm. Since this sheet does not have a difference between the front and back sides, a mark was provided on one surface, and various evaluations were performed using that surface as a front surface. The results are shown in Table 1.

比較例2のシートは、海島構造を有さず、全体に近赤外線散乱着色剤を含むシートであり、近赤外線遮蔽性が高く遮熱性は実施例1と同等であったが、近赤外線を散乱することによって得られる遮熱性であるため、シートが近赤外線をあまり吸収せず、低温時の昇温に時間を要した。   The sheet of Comparative Example 2 does not have a sea-island structure and is a sheet containing a near-infrared scattering colorant as a whole and has a high near-infrared shielding property and a thermal insulation property equivalent to that of Example 1, but scatters near-infrared rays. Therefore, the sheet did not absorb near infrared rays so much, and it took time to raise the temperature at a low temperature.

[比較例3]
下記配合5の金属−絶縁体転移物質粒子・近赤外線散乱着色剤含有軟質塩化ビニル樹脂の熱溶融混練物を、180℃設定のカレンダーロール4本を通過させて、厚さ0.3mmの白色のシートを成型した。配合5には金属−絶縁体転移物質粒子として平均粒子径200nmのペロブスカイト酸化物(La0.825Sr0.175MnO:転移温度17℃)粒子を、近赤外線散乱着色剤として平均粒子径1000nmの酸化チタンを用いた。このシートは表裏に差を有さないため、一方の面にしるしを付け、その面をおもて面として各種評価を行った。結果を表1に示す。
<配合5>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 60質量部
リン酸トリクレジル(可塑剤) 10質量部
三酸化アンチモン(難燃剤) 10質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
La0.825Sr0.175MnO:平均粒子径200nm 4.3質量部
酸化チタン:平均粒子径1000nm 0.9質量部
[Comparative Example 3]
Heat-kneaded kneaded product of metal-insulator transition material particles / near-infrared scattering colorant-containing soft vinyl chloride resin of the following formulation 5 was passed through four calendar rolls set at 180 ° C. A sheet was molded. In Formula 5 , perovskite oxide (La 0.825 Sr 0.175 MnO 3 : transition temperature 17 ° C.) particles having an average particle size of 200 nm as metal-insulator transition material particles, and an average particle size of 1000 nm as a near-infrared scattering colorant. Titanium oxide was used. Since this sheet does not have a difference between the front and back sides, a mark was provided on one surface, and various evaluations were performed using that surface as a front surface. The results are shown in Table 1.
<Formulation 5>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 60 parts by mass Tricresyl phosphate (plasticizer) 10 parts by mass Antimony trioxide (flame retardant) 10 parts by mass Zinc stearate ( Stabilizer) 2 parts by mass Barium stearate (stabilizer) 2 parts by mass UV absorber: benzotriazole 0.5 part by mass La 0.825 Sr 0.175 MnO 3 : average particle size 200 nm 4.3 parts by mass Titanium oxide : Average particle size 1000 nm 0.9 parts by mass

比較例3のシートは海島構造を有さず、全体に金属−絶縁体転移物質粒子と近赤外線散乱着色剤を含有するシートであり、シートの単位面積あたりのそれぞれの含有量は実施例1と同等であるが、遮熱性・低温時の昇温ともに実施例1よりも劣る結果であった。これは、比較例3ではシート内での近赤外線の散乱が近赤外線散乱着色剤によるもののみであるのに対して、実施例1においては、海島界面においても近赤外線が散乱されるため、シートを透過する近赤外線量は比較例3の方が多くなり、シートが吸収する近赤外線量は実施例1の方が多くなるためであると考えられる。   The sheet of Comparative Example 3 does not have a sea-island structure, and is a sheet containing metal-insulator transition material particles and a near-infrared scattering colorant as a whole, and the content per unit area of the sheet is as in Example 1. Although it was equivalent, both the heat shielding properties and the temperature rise at low temperatures were inferior to those of Example 1. This is because, in Comparative Example 3, near-infrared scattering in the sheet is only due to the near-infrared scattering colorant, whereas in Example 1, near-infrared light is scattered also at the sea-island interface. It is considered that the amount of near-infrared rays that pass through is greater in Comparative Example 3, and the amount of near-infrared absorbed by the sheet is greater in Example 1.

[実施例4]
下記配合6の金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂ペーストの攪拌混合物に、下記配合7の近赤外線散乱着色剤含有ビニルエステル樹脂攪拌混合物を、塩化ビニル樹脂単体の質量に対して20質量%加えて撹拌し、近赤外線散乱着色剤含有ビニルエステル樹脂を均一分散させた非相溶樹脂混合物液4を得た。配合6において、金属−絶縁体転移物質粒子として平均粒子径200nmのペロブスカイト酸化物(La0.825Sr0.175MnO:転移温度17℃)粒子を用い、配合7には近赤外線散乱着色剤として平均粒子径600nmのCr−Sb−Tiの複合酸化物(黄色:ルチル型)を用いた。この樹脂混合物液4の液バス中に下記基布1を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行い、さらにその片面に鏡面エンボス処理を施した。これにより基布1の両面への付着、および内部含浸した状態で、黄色に着色された非相溶樹脂混合物液4が320g/m付着して、海島構造を有する近赤外線遮蔽層が形成された帆布状のシートを得た。この近赤外線遮蔽層を顕微鏡観察すると、近赤外線散乱着色剤含有ビニルエステル樹脂が黄色の島成分を構成しており、金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂が乳白の海成分を構成していた。海島分散構造における島成分の平均粒子径は8.5μmであった。このシートの、鏡面エンボス処理を施した平滑な側の近赤外線遮蔽層上に、下記配合8の防汚層塗工液をグラビアコーターによりコーティング加工し、120℃で1分間乾燥した。これによって片面に塗布量:5g/mの防汚層が形成された黄色い帆布状の熱制御性シートを得た。この熱制御性シートについて、防汚層が形成された側をおもて面として各種評価を行った。結果を表2に示す。
<配合6>
乳化重合ポリ塩化ビニル樹脂(重合度1600) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 20質量部
三酸化アンチモン(難燃剤) 10質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
La0.825Sr0.175MnO3:平均粒子径200nm 5質量部
<配合7>
ビニルエステル樹脂 100質量部
(商標:ネオポール8319:日本ユピカ(株) )
硬化剤 1質量部
(ジ−(4−tert−ブチルシクロヘキシル)パ−オキシジカ-ボネ-ト)
Cr−Sb−Tiの複合酸化物:平均粒子径600nm 5質量部
<配合8>
商標:アクリプレン ペレットHBS001(三菱レイヨン(株)製) 20質量部
トルエン−MEK(50/50重量比)(溶剤) 80質量部

(基布1)
ポリエステル295.3dtex(20番手)短繊維紡績糸を用いた非粗目状平織布
密度 たて(経糸) 55本/インチ よこ(緯糸) 48本/インチ
[Example 4]
To the stirring mixture of the metal-insulator transition material particle-containing soft vinyl chloride resin paste of the following formulation 6, the near-infrared scattering colorant-containing vinyl ester resin stirring mixture of the following formulation 7 is 20 masses relative to the mass of the vinyl chloride resin alone. % And stirring to obtain an incompatible resin mixture liquid 4 in which the near-infrared scattering colorant-containing vinyl ester resin was uniformly dispersed. In Formulation 6, perovskite oxide (La 0.825 Sr 0.175 MnO 3 : transition temperature 17 ° C.) particles having an average particle size of 200 nm were used as metal-insulator transition material particles, and Formula 7 used a near-infrared scattering colorant. A Cr—Sb—Ti complex oxide (yellow: rutile type) having an average particle diameter of 600 nm was used. The following base fabric 1 is dipped in the liquid bath of the resin mixture liquid 4, pulled up, and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, heat-treated at 190 ° C. for 1 minute, and further One side was mirror-embossed. Thereby, 320 g / m 2 of the incompatible resin mixture liquid 4 colored in yellow adheres to both surfaces of the base fabric 1 and is impregnated inside, and a near-infrared shielding layer having a sea-island structure is formed. A canvas-like sheet was obtained. When this near-infrared shielding layer is observed with a microscope, the near-infrared scattering colorant-containing vinyl ester resin constitutes a yellow island component, and the metal-insulator transition material particle-containing soft vinyl chloride resin constitutes a milky white sea component. It was. The average particle size of the island components in the sea-island dispersion structure was 8.5 μm. An antifouling layer coating solution of the following formulation 8 was coated on the smooth near-infrared shielding layer of the sheet that had been mirror-embossed with a gravure coater and dried at 120 ° C. for 1 minute. As a result, a yellow canvas-like heat-controllable sheet having an antifouling layer with a coating amount of 5 g / m 2 formed on one side was obtained. The heat controllable sheet was subjected to various evaluations with the side on which the antifouling layer was formed as the front surface. The results are shown in Table 2.
<Formulation 6>
Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1600) 100 parts by weight Di-2-ethylhexyl phthalate (plasticizer) 50 parts by weight tricresyl phosphate (plasticizer) 20 parts by weight Antimony trioxide (flame retardant) 10 parts by weight Stearic acid Zinc (stabilizer) 2 parts by weight Barium stearate (stabilizer) 2 parts by weight UV absorber: benzotriazole 0.5 part by weight La 0.825 Sr 0.175 MnO 3: average particle diameter 200 nm 5 parts by weight 7>
100 parts by weight of vinyl ester resin (Trademark: Neopol 8319: Nippon Iupika Co., Ltd.)
1 part by weight of curing agent (di- (4-tert-butylcyclohexyl) peroxydicarbonate)
Cr-Sb-Ti composite oxide: 5 parts by mass of an average particle size of 600 nm <Formulation 8>
Trademark: Acryprene Pellets HBS001 (Mitsubishi Rayon Co., Ltd.) 20 parts by mass Toluene-MEK (50/50 weight ratio) (solvent) 80 parts by mass

(Base fabric 1)
Non-coarse plain woven fabric using polyester 295.3dtex (20th) short fiber spun yarn Density Warp (warp) 55 / inch Weft (weft) 48 / inch

[実施例5]
下記配合9の金属−絶縁体転移物質粒子含有軟質フッ素樹脂の熱溶融混練物に、下記配合10の近赤外線散乱着色剤含有軟質塩化ビニル樹脂の熱溶融混練物を軟質フッ素樹脂単体の質量に対して10質量%加えてバンバリーミキサーで熱溶融混練し、近赤外線散乱着色剤含有塩化ビニル樹脂を均一分散させ非相溶樹脂混合物5を得た。配合9において、金属−絶縁体転移物質粒子として平均粒子径200nmのペロブスカイト酸化物(La0.825Sr0.175MnO:転移温度17℃)粒子を用い、配合10には近赤外線散乱着色剤として平均粒子径1000nmの酸化チタン粒子を用いた。この樹脂混合物5を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの近赤外線遮蔽層用フィルム5−1を成型した。一方、配合9から金属−絶縁体転移物質粒子を省略した透明な軟質フッ素樹脂の熱溶融混練物を、180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム5−2を成型した。次いで、得られたフィルム5−1とフィルム5−2の中間に下記基布2を挿入し、熱圧着により積層して、一方の面が近赤外線遮蔽層であるターポリン状の白色の熱制御性シートを得た。フィルム5−1からなる近赤外線遮蔽層を顕微鏡観察すると、近赤外線散乱着色剤含有軟質塩化ビニル樹脂が白色の島成分を構成しており、金属−絶縁体転移物質粒子含有軟質フッ素樹脂が乳白の海成分を構成していた。海島分散構造における島成分の平均粒子径は2.1μmであった。この近赤外線遮蔽性シートについて、フィルム5−1を積層した側をおもて面として各種評価を行った。結果を表2に示す。
<配合9>
軟質フッ素樹脂 100質量部
(四フッ化エチレン−六フッ化プロピレン−フッ化ビニリデン三元共重合体樹脂)
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
La0.825Sr0.175MnO3:平均粒子径200nm 5質量部

<配合10>
ポリ塩化ビニル樹脂(重合度1300) 100質量部
リン酸トリクレジル(可塑剤) 50質量部
リン酸クレジルフェニル(可塑剤) 46質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
酸化チタン:平均粒子径1000nm 5質量部

(基布2)
ポリエステル833dtexマルチフィラメントを用いた平織り布
密度 たて(経糸) 19本/インチ よこ(緯糸) 20本/インチ
[Example 5]
The hot-melt kneaded material of the following blend 9 containing the metal-insulator transition material particle-containing soft fluororesin is mixed with the near-infrared scattering colorant-containing soft vinyl chloride resin of the following blend 10 based on the mass of the soft fluororesin alone. 10 mass%, and heat-melt-kneading with a Banbury mixer, the near-infrared-scattering colorant containing vinyl chloride resin was disperse | distributed uniformly, and the incompatible resin mixture 5 was obtained. In Formula 9, perovskite oxide (La 0.825 Sr 0.175 MnO 3 : transition temperature 17 ° C.) particles having an average particle size of 200 nm were used as metal-insulator transition material particles, and near-infrared scattering colorant was used in Formula 10 The titanium oxide particles having an average particle diameter of 1000 nm were used. This resin mixture 5 was passed through four calendar rolls set at 180 ° C. to form a near infrared ray shielding layer film 5-1 having a thickness of 0.25 mm. On the other hand, a transparent soft fluororesin hot-melt kneaded product from which the metal-insulator transition material particles are omitted from Formulation 9 is passed through four calendar rolls set at 180 ° C. to form a film 5-2 having a thickness of 0.25 mm. Molded. Next, the following base fabric 2 is inserted between the obtained film 5-1 and film 5-2, laminated by thermocompression bonding, and a tarpaulin-like white thermal controllability whose one surface is a near-infrared shielding layer. A sheet was obtained. When the near-infrared shielding layer made of film 5-1 is observed with a microscope, the near-infrared scattering colorant-containing soft vinyl chloride resin constitutes a white island component, and the metal-insulator transition material particle-containing soft fluororesin is milky white. Consists of sea components. The average particle size of the island components in the sea-island dispersion structure was 2.1 μm. About this near-infrared shielding sheet | seat, various evaluation was performed by making the side which laminated | stacked the film 5-1 into the front surface. The results are shown in Table 2.
<Formulation 9>
100 parts by mass of soft fluororesin (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer resin)
UV absorber: benzotriazole-based 0.5 part by mass La 0.825 Sr 0.175 MnO 3: Average particle size 200 nm 5 parts by mass

<Formulation 10>
Polyvinyl chloride resin (degree of polymerization 1300) 100 parts by mass Tricresyl phosphate (plasticizer) 50 parts by mass Cresylphenyl phosphate (plasticizer) 46 parts by mass Zinc stearate (stabilizer) 2 parts by mass Barium stearate (stabilizer) ) 2 parts by weight UV absorber: 0.5 parts by weight of benzotriazole series Titanium oxide: 5 parts by weight of an average particle size of 1000 nm

(Base fabric 2)
Plain woven fabric using polyester 833dtex multifilament Density Warp (warp) 19 / inch Weft (weft) 20 / inch

[実施例6]
配合1の金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂の熱溶融混練物に、下記配合11の近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えてバンバリーミキサーで熱溶融混練し、近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物6を得た。配合11の近赤外線散乱着色剤として平均粒子径50nmのCr−Sb−Tiの複合酸化物(黄色:ルチル型)を用いた。この非相溶樹脂混合物6を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmの近赤外線遮蔽層用フィルム6−1を成型した。一方、配合1から金属−絶縁体転移物質粒子を省略した軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム6−2を成型した。次いで、得られたフィルム6−1とフィルム6−2の中間に基布2を挿入し、熱圧着により積層して、一方の面が近赤外線遮蔽層であるターポリン状のシートを得た。フィルム6−1からなる近赤外線遮蔽層を顕微鏡観察すると、近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーが黄色の島成分を構成しており、金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂が乳白の海成分を構成していた。海島分散構造における島成分の平均粒子径は7.1μmであった。次いで、実施例4と同様にして、フィルム6−1上に防汚層を形成して熱制御性シートを得た。この熱制御性シートについて、防汚層が形成された側をおもて面として各種評価を行った。結果を表2に示す。

<配合11>
スチレン・ブタジエンブロックコポリマー 100質量部
(旭化成ケミカルズ(株)社製、商品名:アサフレックス830)
Cr−Sb−Tiの複合酸化物:平均粒子径50nm 10質量部
[Example 6]
To the heat-melt kneaded product of the soft vinyl chloride resin containing the metal-insulator transition material particles of Formulation 1 and the hot-melt kneaded product of the near-infrared scattering colorant-containing styrene butadiene block copolymer of Formula 11 below to the mass of the vinyl chloride resin alone 20 mass% was added and heat-melt-kneaded with the Banbury mixer, and the incompatible resin mixture 6 in which the near-infrared scattering colorant-containing styrene butadiene block copolymer was uniformly dispersed was obtained. As the near-infrared scattering colorant of Formulation 11, a Cr—Sb—Ti complex oxide (yellow: rutile type) having an average particle diameter of 50 nm was used. This incompatible resin mixture 6 was passed through four calender rolls set at 180 ° C. to form a near-infrared shielding layer film 6-1 having a thickness of 0.25 mm. On the other hand, a film 6-2 having a thickness of 0.25 mm was formed by passing a hot-melt kneaded product of soft vinyl chloride resin from which the metal-insulator transition material particles were omitted from formulation 1 through four calendar rolls set at 180 ° C. . Next, the base fabric 2 was inserted between the obtained film 6-1 and film 6-2 and laminated by thermocompression to obtain a tarpaulin-like sheet having one surface being a near-infrared shielding layer. When the near-infrared shielding layer composed of the film 6-1 is observed with a microscope, the near-infrared scattering colorant-containing styrene butadiene block copolymer constitutes a yellow island component, and the metal-insulator transition material particle-containing soft vinyl chloride resin is milky white. Of the sea component. The average particle size of the island components in the sea-island dispersion structure was 7.1 μm. Next, in the same manner as in Example 4, an antifouling layer was formed on the film 6-1 to obtain a heat controllable sheet. The heat controllable sheet was subjected to various evaluations with the side on which the antifouling layer was formed as the front surface. The results are shown in Table 2.

<Formulation 11>
100 parts by mass of styrene / butadiene block copolymer (product name: Asaflex 830, manufactured by Asahi Kasei Chemicals Corporation)
Cr—Sb—Ti composite oxide: average particle size 50 nm 10 parts by mass

[実施例7]
下記配合12の液バス中に下記基布3を浸漬し、これを引き上げると同時にマングルロールで圧搾し、150℃で1分間ゲル化した後、190℃で1分間熱処理を行い、基布に対し樹脂を70g/m付着させて、接着樹脂層を形成した。次に配合1の金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂の熱溶融混練物に、下記配合13の近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えてバンバリーミキサーで熱溶融混練し、近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物7を得た。配合13の近赤外線散乱着色剤として平均粒子径50nmのCo−Alの複合酸化物(青色:スピネル型)を用いた。この非相溶樹脂混合物7を180℃設定のカレンダーロール4本を通過させて厚さ0.15mmの近赤外線遮蔽層用フィルム7を2枚成型した。次いで、得られた2枚のフィルム7の中間に接着樹脂層を形成した基布3を挿入し、熱圧着により積層して、両面に近赤外線遮蔽層を有するガラス基布入りのシートを得た。フィルム7からなる近赤外線遮蔽層を顕微鏡観察すると、近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーが青色の島成分を構成しており、金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂が乳白の海成分を構成していた。海島分散構造における島成分の平均粒子径は7.1μmであった。次いで、下記配合14の組成物液をグラビアコーターで塗布し、120℃で1分間乾燥後冷却し、5g/mの樹脂中間層を両面に形成した。さらに前記樹脂中間層の上に、配合14の樹脂組成物からシリカを除いた溶剤希釈液を、グラビヤコーターを用いて塗布し、120℃で1分間乾燥後冷却して追加樹脂層を形成し、それによって、樹脂中間層と追加樹脂層とからなる、合計10g/mの添加剤移行防止層を両面に形成した。次に、一方の面の添加剤移行防止層上に下記配合15の接着・保護層形成用塗布液をグラビアコーターで塗布し、100℃×1分乾燥後冷却して、1.5g/mの接着・保護層を形成し、さらに、その接着・保護層上に下記配合16の防汚層形成用塗布液をグラビアコーターで塗布し、120℃で2分間乾燥後冷却して1.5g/mの光触媒性物質含有防汚層が形成された熱制御性シートを得た。この熱制御性シートについて、光触媒性物質含有防汚層が形成された側をおもて面として各種評価を行った。結果を表2に示す。
<配合12>
乳化重合ポリ塩化ビニル樹脂(重合度1600) 100質量部
ジ−2−エチルヘキシルフタレート(可塑剤) 50質量部
熱架橋性接着剤 10質量部
三酸化アンチモン(難燃剤) 10質量部
エポキシ化大豆油(安定剤) 4質量部
ステアリン酸亜鉛(安定剤) 2質量部
ステアリン酸バリウム(安定剤) 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
トルエン(溶剤) 20質量部

<配合13>
スチレン・ブタジエンブロックコポリマー 100質量部
(旭化成ケミカルズ(株)社製、商品名:アサフレックス830)
Co−Alの複合酸化物:平均粒子径50nm 10質量部

<配合14>
ビニリデンフルオライド−テトラフルオロエチレン共重合体樹脂 20質量部
(商標:カイナー7201:エルフ・アトケム・ジャパン(株))
シリカ:(商標:ニップシールE−75:東ソー・シリカ(株)) 5質量部
MEK(溶剤) 80質量部

<配合15>
シリコン含有量3mol%のアクリルシリコン樹脂を8質量%(固形分)含有する
エタノール−酢酸エチル(50/50質量比)溶液 100質量部
メチルシリケートMS51(コルコート(株))の
20%エタノール溶液(ポリシロキサン) 8質量部
γ−グリシドキシプロピルトリメトキシシラン(シランカップリング剤) 1質量部

<配合16>
酸化チタン含有量10質量%に相当する硝酸酸性酸化チタンゾルを分散させた
水−エタノール(50/50質量比)溶液 50質量部
酸化珪素含有量10質量%に相当する硝酸酸性シリカゾルを分散させた
水−エタノール(50/50質量比)溶液 50質量部

(基布3)
フィラメント直径9μm/75texのガラス繊維を用いた平織り布
密度 たて(経糸) 40本/インチ よこ(緯糸) 30本/インチ
精練(ヒートクリーニング)
シランカップリング処理 メタクリロキシプロピルトリメトキシシラン(東レ・ダウ
コーニング社製Z6030)
[Example 7]
The following base fabric 3 is immersed in a liquid bath of the following formulation 12, pulled up and simultaneously pressed with a mangle roll, gelled at 150 ° C. for 1 minute, and then heat treated at 190 ° C. for 1 minute. Resin was adhered to 70 g / m 2 to form an adhesive resin layer. Next, the hot-melt kneaded product of the blended metal-insulator transition material particle-containing soft vinyl chloride resin and the near-infrared scattering colorant-containing styrene butadiene block copolymer of the following formula 13 are mixed with the vinyl chloride resin alone. 20 mass% was added to the mass, and it was heat-melt-kneaded with a Banbury mixer to obtain an incompatible resin mixture 7 in which the near-infrared scattering colorant-containing styrene butadiene block copolymer was uniformly dispersed. A Co—Al composite oxide (blue: spinel type) having an average particle diameter of 50 nm was used as the near-infrared scattering colorant of Formulation 13. This incompatible resin mixture 7 was passed through four calender rolls set at 180 ° C. to form two near infrared shielding layer films 7 having a thickness of 0.15 mm. Next, the base fabric 3 having an adhesive resin layer formed between the two obtained films 7 was inserted and laminated by thermocompression to obtain a sheet containing a glass base fabric having a near-infrared shielding layer on both sides. . When the near-infrared shielding layer made of the film 7 is observed with a microscope, the near-infrared scattering colorant-containing styrene butadiene block copolymer constitutes a blue island component, and the metal-insulator transition material particle-containing soft vinyl chloride resin is milky white sea. Consists of ingredients. The average particle size of the island components in the sea-island dispersion structure was 7.1 μm. Subsequently, the composition liquid of the following mixing | blending 14 was apply | coated with the gravure coater, it dried for 1 minute at 120 degreeC, and it cooled, and formed the resin intermediate | middle layer of 5 g / m < 2 > on both surfaces. Furthermore, on the resin intermediate layer, a solvent diluted solution obtained by removing silica from the resin composition of Formulation 14 was applied using a gravure coater, dried at 120 ° C. for 1 minute and then cooled to form an additional resin layer, Thereby, a total of 10 g / m 2 of additive migration preventing layers composed of a resin intermediate layer and an additional resin layer were formed on both surfaces. Next, a coating solution for forming an adhesion / protection layer having the following formulation 15 was applied on the additive migration preventing layer on one surface with a gravure coater, dried at 100 ° C. for 1 minute, cooled, and 1.5 g / m 2. Further, an antifouling layer-forming coating solution of the following formulation 16 was applied on the adhesion / protective layer with a gravure coater, dried at 120 ° C. for 2 minutes, cooled and 1.5 g / A heat-controllable sheet on which an antifouling layer containing a photocatalytic substance of m 2 was formed was obtained. The heat controllable sheet was subjected to various evaluations with the side on which the photocatalytic substance-containing antifouling layer was formed as the front surface. The results are shown in Table 2.
<Formulation 12>
Emulsion polymerization polyvinyl chloride resin (degree of polymerization 1600) 100 parts by weight Di-2-ethylhexyl phthalate (plasticizer) 50 parts by weight Thermally crosslinkable adhesive 10 parts by weight Antimony trioxide (flame retardant) 10 parts by weight Epoxidized soybean oil ( Stabilizer) 4 parts by weight Zinc stearate (stabilizer) 2 parts by weight Barium stearate (stabilizer) 2 parts by weight UV absorber: benzotriazole 0.5 part by weight Toluene (solvent) 20 parts by weight

<Formulation 13>
100 parts by mass of styrene / butadiene block copolymer (product name: Asaflex 830, manufactured by Asahi Kasei Chemicals Corporation)
Co-Al composite oxide: average particle size 50 nm 10 parts by mass

<Formulation 14>
20 parts by mass of vinylidene fluoride-tetrafluoroethylene copolymer resin (Trademark: Kyner 7201: Elf Atchem Japan Co., Ltd.)
Silica: (Trademark: NipSeal E-75: Tosoh Silica Co., Ltd.) 5 parts by mass MEK (solvent) 80 parts by mass

<Formulation 15>
Ethanol-ethyl acetate (50/50 mass ratio) solution containing 8 mass% (solid content) of acrylic silicon resin having a silicon content of 3 mol% 100 mass parts 20% ethanol solution of methyl silicate MS51 (Colcoat Co., Ltd.) Siloxane) 8 parts by mass γ-glycidoxypropyltrimethoxysilane (silane coupling agent) 1 part by mass

<Formulation 16>
Water-ethanol (50/50 mass ratio) solution in which a nitric acid acidic titanium oxide sol corresponding to a titanium oxide content of 10% by mass is dispersed 50 parts by mass Water in which a nitric acid acidic silica sol corresponding to a silicon oxide content of 10% by mass is dispersed -50 parts by mass of ethanol (50/50 mass ratio) solution

(Base fabric 3)
Plain woven fabric using glass fiber with filament diameter 9μm / 75tex Density Warp (warp) 40 / inch Weft (weft) 30 / inch Scouring (heat cleaning)
Silane coupling treatment Methacryloxypropyltrimethoxysilane (Toray Dow Corning Z6030)

実施例4〜7の熱制御性シートは、金属−絶縁体転移物質粒子を含む合成樹脂と、近赤外線散乱着色剤を含む合成樹脂との混合体からなる海島分散構造を有する近赤外線遮蔽層を有し、いずれも遮熱性、低温時の昇温・降温、採光性に優れたシートであった。また、繊維基布を含む積層体であるため、高い強度を要求されるテント倉庫、イベント用大型テント、日除けテント、日除けモニュメント、装飾テント、ブラインド、シートシャッター、間仕切りやトラック幌等の膜構造物を構成するのに好適な熱制御性シートである。実施例4、6、7はそれぞれ防汚層を有し、実施例5は海成分が軟質フッ素樹脂であるため、いずれも防汚性に優れており、屋外で使用した場合に、経時的な汚れの付着による採光性の低下が防止され、且つ美観が維持される。更に汚れの付着が防止されることで、1年曝露後も低温時の降温が緩やかであり、蓄温性も長期間維持されるシートであった。   The heat-controllable sheets of Examples 4 to 7 have a near-infrared shielding layer having a sea-island dispersion structure composed of a mixture of a synthetic resin containing metal-insulator transition material particles and a synthetic resin containing a near-infrared scattering colorant. Each of them was a sheet excellent in heat shielding, temperature rising / falling at low temperature, and daylighting. In addition, because it is a laminated body including fiber base fabric, membrane structures such as tent warehouses, large event tents, awning tents, awning monuments, decorative tents, blinds, seat shutters, partitions and truck hoods that require high strength are required. It is a heat-controllable sheet suitable for constituting. Examples 4, 6, and 7 each have an antifouling layer, and since Example 5 is a soft fluororesin, the sea component is excellent in antifouling properties. A decrease in daylighting due to the adhesion of dirt is prevented, and the beauty is maintained. Further, by preventing the adhesion of dirt, the sheet had a gentle temperature drop at low temperatures even after 1 year exposure, and maintained heat storage for a long time.

[比較例4]
配合7から近赤外線散乱着色剤を省略し、防汚層を設けなかった以外は実施例4と同様にして、一方の面に鏡面エンボスを施した乳白の帆布状のシートを得た。基布1の両面および内部含浸した樹脂層を顕微鏡観察すると、透明なビニルエステル樹脂が島成分を構成しており、金属−絶縁体転移物質粒子含有軟質塩化ビニル樹脂が乳白の海成分を構成していた。海島分散構造における島成分の平均粒子径は8.5μmであった。このシートについて、鏡面エンボスを施した側をおもて面として各種評価を行った。結果を表3に示す。
[Comparative Example 4]
A milky white canvas-like sheet having a mirror embossed surface on one side was obtained in the same manner as in Example 4 except that the near-infrared scattering colorant was omitted from Formulation 7 and the antifouling layer was not provided. When the both sides of the base fabric 1 and the resin layer impregnated therein are observed with a microscope, a transparent vinyl ester resin constitutes an island component, and a soft vinyl chloride resin containing metal-insulator transition material particles constitutes a milky white sea component. It was. The average particle size of the island components in the sea-island dispersion structure was 8.5 μm. The sheet was subjected to various evaluations with the side subjected to mirror embossing as the front surface. The results are shown in Table 3.

比較例4のシートは、基布1両面への付着、および内部含浸した樹脂層が海島構造を有し、その海成分が金属−絶縁体転移物質粒子を含んでいるが、島成分が近赤外線散乱着色剤を含んでいないため、実施例4に比べて採光性は高いものの近赤外線遮蔽性が低く、初期の遮熱性に劣るシートであった。1年曝露後には遮熱性が僅かに向上しているが、これは、比較例4のシートは防汚層を有さず、表面に付着した汚れが近赤外線を吸収して遮蔽し、その熱エネルギーを金属−絶縁体転移物質を含む海成分が遠赤外線として放射したためであると考えられる。また低温時の昇温と降温について、初期は実施例4に比べて何れも劣り、1年曝露後は昇温が実施例4と同程度であり、降温は比較例4の初期よりも更に劣っていた。これもやはり表面に付着した汚れが、ランプから照射された近赤外線を吸収して昇温が早まり、ランプ消灯後には汚れが遠赤外線を放射することで降温が早まっていたものと考えられる。   In the sheet of Comparative Example 4, the resin layer adhered to both surfaces of the base fabric 1 and the resin layer impregnated therein has a sea-island structure, and the sea component contains metal-insulator transition material particles, but the island component is near-infrared. Since it did not contain a scattering colorant, it was a sheet inferior in the near-infrared shielding property but inferior to the initial heat shielding property, although it had higher daylighting performance than Example 4. Although the heat-shielding property is slightly improved after 1 year exposure, the sheet of Comparative Example 4 does not have an antifouling layer, and dirt adhered to the surface absorbs near-infrared rays and shields it. This is probably because the sea component containing the metal-insulator transition material radiated energy as far infrared rays. Further, regarding the temperature rise and temperature drop at low temperatures, both are inferior to Example 4 in the initial stage, and after one year exposure, the temperature rise is about the same as Example 4, and the temperature drop is further inferior to that in Comparative Example 4. It was. Again, it can be considered that the dirt adhering to the surface absorbed near infrared rays emitted from the lamp to increase the temperature, and after the lamp was extinguished, the dirt emitted far infrared rays, so that the temperature decrease was accelerated.

[比較例5]
配合1から金属−絶縁体転移物質粒子を省略した軟質塩化ビニル樹脂の熱溶融混練物に、配合11の近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーの熱溶融混練物を、塩化ビニル樹脂単体の質量に対して20質量%加えてバンバリーミキサーで熱溶融混練し、近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーを均一分散させた非相溶樹脂混合物比−5を得た。この非相溶樹脂混合物比−5を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム比5−1を成型した。一方、配合1から金属−絶縁体転移物質粒子を省略した軟質塩化ビニル樹脂の熱溶融混練物を180℃設定のカレンダーロール4本を通過させて厚さ0.25mmのフィルム比5−2を成型した。次いで、得られたフィルム比5−1とフィルム比5−2の中間に基布2を挿入し、熱圧着により積層してターポリン状のシートを得た。フィルム比5−1からなる層を顕微鏡観察すると、近赤外線散乱着色剤含有スチレンブタジエンブロックコポリマーが黄色の島成分を構成しており、軟質塩化ビニル樹脂が海成分を構成していた。海島分散構造における島成分の平均粒子径は7.1μmであった。このシートについて、フィルム比5−1を積層した側をおもて面として各種評価を行った。結果を表3に示す。
[Comparative Example 5]
The heat-melt kneaded material of the styrene butadiene block copolymer containing the near-infrared scattering colorant of the compound 11 is added to the heat-melt kneaded material of the soft vinyl chloride resin from which the metal-insulator transition material particles are omitted from the compound 1, and the mass of the vinyl chloride resin alone. 20 mass% was added, and it heat-kneaded and kneaded with the Banbury mixer, and obtained the incompatible resin mixture ratio -5 which disperse | distributed the near-infrared-scattering coloring agent containing styrene butadiene block copolymer uniformly. This incompatible resin mixture ratio -5 was passed through four calender rolls set at 180 ° C. to form a film ratio 5-1 having a thickness of 0.25 mm. On the other hand, hot melt kneaded material of soft vinyl chloride resin from which the metal-insulator transition material particles are omitted from formulation 1 is passed through four calender rolls set at 180 ° C. to form a film ratio 5-2 with a thickness of 0.25 mm. did. Next, the base fabric 2 was inserted between the obtained film ratio 5-1 and film ratio 5-2, and laminated by thermocompression to obtain a tarpaulin-like sheet. When a layer having a film ratio of 5-1 was observed with a microscope, the near-infrared scattering colorant-containing styrene butadiene block copolymer constituted a yellow island component, and the soft vinyl chloride resin constituted a sea component. The average particle size of the island components in the sea-island dispersion structure was 7.1 μm. About this sheet | seat, various evaluation was performed by making the side which laminated | stacked film ratio 5-1 into the front surface. The results are shown in Table 3.

比較例5のシートは、海島構造の樹脂層を有し、島成分が近赤外線散乱着色剤を含んでいるが、海成分が金属−絶縁体転移物質粒子を含んでおらず、採光性と遮熱性は優れるものの、低温時の昇温に劣るシートであった。1年曝露後には遮熱性が低下しているが、これは比較例5のシートは防汚層を有さず、汚れが表面に付着することで近赤外線の反射が低下したためであると考えられる。   The sheet of Comparative Example 5 has a resin layer with a sea-island structure, and the island component contains a near-infrared scattering colorant, but the sea component does not contain metal-insulator transition material particles, so that the light-collecting property and the shielding property are not affected. The sheet was inferior in temperature rise at low temperatures, although it was excellent in heat. Although the heat-shielding property is reduced after exposure for one year, it is considered that the sheet of Comparative Example 5 does not have an antifouling layer, and the reflection of near infrared rays is reduced due to the adhesion of dirt to the surface. .

本発明の熱制御性シートは、夏季の炎天下においては熱エネルギーを遠赤外線として放射することでシートの過度の温度上昇を防ぎ、かつ、近赤外線を遮蔽して、高い遮熱性を示し、冬季の低温時には、太陽光線や暖房などにより暖められた熱の放射が少なく蓄温性を有し、さらに採光性と彩色の自由度を有するため、テント倉庫、イベント向けテント、災害時用テント、農園芸用ハウス、トラック幌、フレキシブルコンテナ、日除けテント、日除けモニュメント、装飾テント、ブラインド、シートシャッター、または間仕切りなどの膜構造物に好適に用いることができる。また、可撓性太陽電池モジュールを含む熱制御性シートは、出力の安定したシート状太陽電池として有益に用いることができる。   The heat-controllable sheet of the present invention prevents excessive temperature rise of the sheet by radiating thermal energy as far-infrared rays under hot weather in summer, and shields near-infrared rays to show high heat-shielding properties. At low temperatures, there is little radiation of heat heated by sunlight, heating, etc., and it has heat storage properties, and it has daylighting and coloring freedom, so it is a tent warehouse, event tent, disaster tent, agriculture and horticulture It can be suitably used for a membrane structure such as a house, a truck hood, a flexible container, a awning tent, a awning monument, a decorative tent, a blind, a sheet shutter, or a partition. Moreover, the heat-controllable sheet containing a flexible solar cell module can be beneficially used as a sheet-like solar cell with stable output.

1:熱制御性シート
2:海島構造を有する近赤外線遮蔽層
3:島成分
3−1:近赤外線散乱着色剤を含有する島成分
3−2:金属−絶縁体転移物質粒子を含有する島成分
4:海成分
4−1:近赤外線散乱着色剤を含有する含有する海成分
4−2:金属−絶縁体転移物質粒子を含有する海成分
5:繊維基布
6:海島構造を有さない樹脂層
7:可撓性太陽電池モジュール
8:防汚層
9:表面温度センサー
10:発泡スチロール板
11:測定用サンプル
12: ハロゲンランプ
1: Thermally controllable sheet 2: Near-infrared shielding layer having sea-island structure 3: Island component 3-1: Island component containing near-infrared scattering colorant 3-2: Island component containing metal-insulator transition material particles 4: Sea component 4-1: Sea component containing near-infrared scattering colorant 4-2: Sea component containing metal-insulator transition material particles 5: Fiber base fabric 6: Resin having no sea-island structure Layer 7: Flexible solar cell module 8: Antifouling layer 9: Surface temperature sensor 10: Styrofoam plate 11: Sample for measurement 12: Halogen lamp

Claims (7)

近赤外線遮蔽層を含む可撓性シートであって、前記近赤外線遮蔽層が、金属−絶縁体転移物質粒子を含む合成樹脂と、近赤外線散乱着色剤を含む合成樹脂との混合体からなる海島分散構造によって形成された非相溶樹脂層であることを特徴とする、熱制御性シート。   A flexible sheet comprising a near-infrared shielding layer, wherein the near-infrared shielding layer comprises a mixture of a synthetic resin containing metal-insulator transition material particles and a synthetic resin containing a near-infrared scattering colorant. A heat-controllable sheet, which is an incompatible resin layer formed by a dispersion structure. 前記海島分散構造において、海成分が前記金属−絶縁体転移物質粒子を含み、島成分が前記近赤外線散乱着色剤を含んでいる、請求項1に記載の熱制御性シート。   The heat-controllable sheet according to claim 1, wherein in the sea-island dispersion structure, a sea component includes the metal-insulator transition material particles, and an island component includes the near-infrared scattering colorant. 前記海島分散構造において、海成分が前記近赤外線散乱着色剤を含み、島成分が前記金属−絶縁体転移物質粒子を含んでいる、請求項1に記載の熱制御性シート。   The heat-controllable sheet according to claim 1, wherein in the sea-island dispersion structure, a sea component includes the near-infrared scattering colorant, and an island component includes the metal-insulator transition material particles. 前記金属−絶縁体転移物質粒子が、ペロブスカイト構造を有しマンガンを含む金属複合酸化物粒子、及びコランダム構造を有しクロムとバナジウムを含む金属複合酸化物粒子、から選ばれる1種以上を含み、10〜60℃の範囲に転移温度を有する、請求項1〜3の何れか1項に記載の熱制御性シート。   The metal-insulator transition material particles include one or more selected from metal composite oxide particles having a perovskite structure and containing manganese, and metal composite oxide particles having a corundum structure and containing chromium and vanadium, The heat-controllable sheet according to any one of claims 1 to 3, which has a transition temperature in a range of 10 to 60 ° C. 前記近赤外線散乱着色剤が、チタン酸化物、亜鉛酸化物、スズ酸化物、ジルコニウム酸化物、インジウム酸化物、三酸化アンチモン、クロム酸化物、鉄酸化物、スズドープ酸化インジウム、インジウムドープ酸化スズ、アンチモンドープ酸化スズから選ばれた金属酸化物、及び、ルチル型、ヘマタイト型、またはスピネル型構造構造を有し、チタン、亜鉛、アンチモン、鉄、ニッケル、コバルト、クロム、マグネシウム、銅、マンガン、アルミニウム、ニオブ、及びケイ素の内2種以上の成分を含む金属複合酸化物、から選ばれた1種以上を含む、請求項1〜3の何れか1項に記載の熱制御性シート。   The near infrared scattering colorant is titanium oxide, zinc oxide, tin oxide, zirconium oxide, indium oxide, antimony trioxide, chromium oxide, iron oxide, tin-doped indium oxide, indium-doped tin oxide, antimony. A metal oxide selected from doped tin oxide, and a rutile, hematite, or spinel structure, titanium, zinc, antimony, iron, nickel, cobalt, chromium, magnesium, copper, manganese, aluminum, The heat-controllable sheet according to any one of claims 1 to 3, comprising at least one selected from niobium and a metal composite oxide containing at least two components of silicon. 前記可撓性シートが、繊維基布を含む積層体である、請求項1〜5いずれか1項に記載の熱制御性シート。   The heat-controllable sheet according to any one of claims 1 to 5, wherein the flexible sheet is a laminate including a fiber base fabric. 前記可撓性シートの最外面に、可撓性太陽電池モジュールが積層された請求項1〜6いずれか1項に記載の熱制御性シート。   The heat-controllable sheet according to any one of claims 1 to 6, wherein a flexible solar cell module is laminated on the outermost surface of the flexible sheet.
JP2010193290A 2010-08-31 2010-08-31 Heat controllable sheet Pending JP2012051113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193290A JP2012051113A (en) 2010-08-31 2010-08-31 Heat controllable sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193290A JP2012051113A (en) 2010-08-31 2010-08-31 Heat controllable sheet

Publications (1)

Publication Number Publication Date
JP2012051113A true JP2012051113A (en) 2012-03-15

Family

ID=45905080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193290A Pending JP2012051113A (en) 2010-08-31 2010-08-31 Heat controllable sheet

Country Status (1)

Country Link
JP (1) JP2012051113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088102A1 (en) * 2012-12-07 2014-06-12 中興化成工業株式会社 Solar cell integrated film material
JP2015093392A (en) * 2013-11-11 2015-05-18 平岡織染株式会社 Heat shield mesh shade
JPWO2013150983A1 (en) * 2012-04-02 2015-12-17 大日精化工業株式会社 Composite oxide black pigment and method for producing the same
JP2019011525A (en) * 2017-06-29 2019-01-24 信越石英株式会社 Light reflecting glass cloth
JP2021011546A (en) * 2019-07-08 2021-02-04 ダイワボウホールディングス株式会社 Resin composition, resin molding, and method for producing resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013150983A1 (en) * 2012-04-02 2015-12-17 大日精化工業株式会社 Composite oxide black pigment and method for producing the same
US9732230B2 (en) 2012-04-02 2017-08-15 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Composite oxide black pigment and method for producing same
WO2014088102A1 (en) * 2012-12-07 2014-06-12 中興化成工業株式会社 Solar cell integrated film material
JP2014116427A (en) * 2012-12-07 2014-06-26 Fuji Electric Co Ltd Solar cell built-in film material
US10396224B2 (en) 2012-12-07 2019-08-27 Chukoh Chemical Industries, Ltd. Solar cell integrated film material
JP2015093392A (en) * 2013-11-11 2015-05-18 平岡織染株式会社 Heat shield mesh shade
JP2019011525A (en) * 2017-06-29 2019-01-24 信越石英株式会社 Light reflecting glass cloth
JP2021011546A (en) * 2019-07-08 2021-02-04 ダイワボウホールディングス株式会社 Resin composition, resin molding, and method for producing resin composition
JP7450347B2 (en) 2019-07-08 2024-03-15 大和紡績株式会社 Resin composition, resin molded article, and method for producing resin composition

Similar Documents

Publication Publication Date Title
JP5768253B2 (en) Variable heat shielding daylighting sheet
JP5493225B2 (en) Near-infrared shielding sheet and manufacturing method thereof
JP5360656B2 (en) Heat shielding daylighting film material and manufacturing method thereof
JP5146962B2 (en) Thermal barrier film material
JP2014040035A (en) Heat control sheet
JP5126792B2 (en) High translucent film material
JP2012140753A (en) Transmissive film material with heat-shielding and heat-generating properties and structure with film roof
JP2012051113A (en) Heat controllable sheet
CN104093781B (en) Fluororesin film
JP2012097183A (en) Heat insulation lighting sheet
JP5422836B2 (en) Exothermic translucent sheet and exothermic translucent membrane roof structure
Heo et al. Heat-shedding with photonic structures: radiative cooling and its potential
JP2011133586A (en) Near infrared ray shielding highly translucent sheet, and near infrared ray noise shielding material
Wang et al. Passive daytime radiative cooling materials toward real-world applications
JP3994189B2 (en) Daylighting thermal barrier film material
JP4517178B2 (en) Daylighting film material with excellent thermal insulation effect
JP3994191B2 (en) Thermal barrier antifouling film material
JP3129145U (en) Heat shield sheet
JP5062615B2 (en) Natural fiber-like mesh sheet with excellent heat insulation
JP6212822B2 (en) Thermal barrier film material with excellent daylighting
JP2011195792A (en) Exothermic light-transmitting sheet and exothermic light-transmitting film roof structure
JP6368913B2 (en) Highly translucent film material with heat insulation and heat retention
JP5760219B2 (en) Solar heat control membrane material
JP2012140754A (en) Variable lighting-sheet with heat-shielding and heat-releasing properties
JP2012140805A (en) Membrane material for solar radiation heat control