[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009266706A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2009266706A
JP2009266706A JP2008116632A JP2008116632A JP2009266706A JP 2009266706 A JP2009266706 A JP 2009266706A JP 2008116632 A JP2008116632 A JP 2008116632A JP 2008116632 A JP2008116632 A JP 2008116632A JP 2009266706 A JP2009266706 A JP 2009266706A
Authority
JP
Japan
Prior art keywords
negative electrode
discharge capacity
positive electrode
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008116632A
Other languages
Japanese (ja)
Other versions
JP5433164B2 (en
Inventor
Yoshin Yagi
陽心 八木
Hiroshi Morikawa
拓是 森川
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008116632A priority Critical patent/JP5433164B2/en
Publication of JP2009266706A publication Critical patent/JP2009266706A/en
Application granted granted Critical
Publication of JP5433164B2 publication Critical patent/JP5433164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery that prevents the decrease in battery output so as to improve life characteristics. <P>SOLUTION: The lithium-ion secondary battery 20 includes an electrode group 6 in which a positive electrode plate W1 and a negative electrode plate W3 are winded via a separator W5 not so as to directly contact each other. The positive electrode plate W1 has positive-electrode active material compound W2 which contains lithium manganate used as positive-electrode active material and which is painted on both side of an aluminum foil thereof. The negative electrode plate W3 has negative-electrode active material compound W4 which contains an easily graphitizable carbon as negative-electrode active material and which is painted on both side of a rolling copper foil thereof. Thickness of the negative electrode plate W3 is manufactured such that the ratio of the discharge capacity of the negative electrode plate W3 to that of the positive electrode plate W1 is ≥1.0 and ≤1.3 after initial charging. In charging, the easily graphitizable carbon is used up to the low potential region, which reduces the expansion and contraction of the easily graphitizable carbon. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はリチウムイオン二次電池に係り、特に、正極活物質としてリチウム遷移金属複合酸化物を含む活物質合剤が正極集電体に塗着された正極と、負極活物質を含む活物質合剤が負極集電体に塗着された負極とを有するリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery, and in particular, a positive electrode in which an active material mixture containing a lithium transition metal composite oxide as a positive electrode active material is applied to a positive electrode current collector, and an active material mixture containing a negative electrode active material. The present invention relates to a lithium ion secondary battery having a negative electrode in which an agent is applied to a negative electrode current collector.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。しかしながら、地球温暖化や燃料枯渇の問題から電気自動車や駆動の一部を電気モータで補助するハイブリッド自動車が着目されるようになり、その電源に用いられる電池には、一層高容量で高入出力な電池が求められるようになってきた。このような要求に合致する電池として、高電圧特性を有する非水溶液系のリチウムイオン二次電池が注目されている。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. However, due to global warming and fuel depletion problems, electric vehicles and hybrid vehicles that use electric motors to assist a part of the drive have attracted attention, and the batteries used for the power supply have higher capacity and higher input / output. A new battery has been demanded. As a battery that meets such requirements, a non-aqueous lithium ion secondary battery having high voltage characteristics has attracted attention.

一般に、リチウムイオン二次電池の正極材には、リチウム遷移金属複合酸化物が用いられており、中でも容量やサイクル特性等のバランスからコバルト酸リチウムが用いられている。ところが、コバルト酸リチウムでは原料であるコバルトの資源量が少なくコスト高ともなることから、電気自動車用やハイブリッド電気自動車用電池の正極材として、マンガン酸リチウムが有望視され開発が進められている。   Generally, a lithium transition metal composite oxide is used as a positive electrode material of a lithium ion secondary battery, and lithium cobalt oxide is used among them in terms of balance of capacity and cycle characteristics. However, since lithium cobaltate has a small amount of cobalt as a raw material and is expensive, lithium manganate is considered promising as a positive electrode material for batteries for electric vehicles and hybrid electric vehicles.

一方、電気自動車やハイブリッド電気自動車用のリチウムイオン二次電池の負極材には、高入出力特性が要求されるため、フルフリルアルコール等のフラン樹脂等を焼成した難黒鉛化炭素材が一般的に用いられている。合成樹脂を焼成した難黒鉛化炭素材は、黒鉛系材料の理論容量値以上の容量が得られ、サイクル特性にも優れるという特徴を有し、かつ、高入出力特性を有するため、非常に注目されている材料である。難黒鉛化炭素材を特定の結晶構造とすることで電池のエネルギー密度や容量の向上を図る技術が開示されている(例えば、特許文献1参照)。   On the other hand, negative electrode materials for lithium ion secondary batteries for electric vehicles and hybrid electric vehicles are required to have high input / output characteristics. Therefore, non-graphitizable carbon materials obtained by firing furan resins such as furfuryl alcohol are generally used. It is used for. The non-graphitizable carbon material fired from synthetic resin has a feature that it has a capacity higher than the theoretical capacity value of graphite-based materials, has excellent cycle characteristics, and has high input / output characteristics. It is a material that has been. A technique for improving the energy density and capacity of a battery by making a non-graphitizable carbon material into a specific crystal structure is disclosed (for example, see Patent Document 1).

特開平11−339795号公報Japanese Patent Application Laid-Open No. 11-337995

しかしながら、特許文献1の技術では、負極活物質に用いた難黒鉛化炭素材の不可逆容量が大きくなるため、電池での高容量化が難しい、という欠点がある。また、難黒鉛化炭素材の充放電特性には、容量変化に対して電位がほぼ一定の定電圧領域と、容量増加に対して電位が上昇する定電流領域とがあるが、サイクル寿命特性の向上を図るため、充放電の利用範囲が定電圧領域を避けて定電流領域となるように設定されている。この場合、定電圧領域の大きな材料であると、この部分が使われないため無駄な仕込みをすることとなり電池として放電容量が小さくなる。さらには、定電流領域を使うことにより負極の電位が上昇し電池として開回路電圧が低下するため、下限電圧までの電圧差が小さくなり出力も低下する。電解液中に添加剤を加え、難黒鉛化炭素材の不可逆容量低減や電解液の分解抑制を図ることで、放電容量や寿命特性を向上させる一応の効果は認められるものの、添加剤が高価なものが多く、高コストの電池となってしまう。このような難黒鉛化炭素材に代えて、易黒鉛化炭素材を負極活物質に用いた場合は、不可逆容量は小さくなるものの、単位重量あたりの容量が難黒鉛化炭素材より小さく、サイクル寿命特性も低下することとなる。   However, the technique of Patent Document 1 has a drawback that it is difficult to increase the capacity of the battery because the irreversible capacity of the non-graphitizable carbon material used as the negative electrode active material increases. The charge / discharge characteristics of non-graphitizable carbon materials include a constant voltage region where the potential is almost constant with respect to capacity change and a constant current region where the potential increases with increasing capacity. In order to improve, the charging / discharging range is set to a constant current region while avoiding the constant voltage region. In this case, if the material has a large constant voltage region, this portion is not used, so that unnecessary preparation is made and the discharge capacity of the battery is reduced. Furthermore, since the potential of the negative electrode is increased by using the constant current region and the open circuit voltage is decreased as a battery, the voltage difference up to the lower limit voltage is reduced and the output is also decreased. Although an additive is added to the electrolyte to reduce the irreversible capacity of the non-graphitizable carbon material and to suppress the decomposition of the electrolyte, a temporary effect to improve the discharge capacity and life characteristics is recognized, but the additive is expensive. Many of them are expensive. When an easily graphitizable carbon material is used as the negative electrode active material instead of such a non-graphitizable carbon material, the capacity per unit weight is smaller than that of the non-graphitizable carbon material, but the cycle life is reduced. The characteristics will also deteriorate.

本発明は上記事案に鑑み、電池出力の低下を抑制し寿命特性を向上させることができるリチウムイオン二次電池を提供することを課題とする。   An object of the present invention is to provide a lithium ion secondary battery that can suppress a decrease in battery output and improve life characteristics.

上記課題を解決するために、本発明は、正極活物質としてリチウム遷移金属複合酸化物を含む活物質合剤が正極集電体に塗着された正極と、負極活物質を含む活物質合剤が負極集電体に塗着された負極とを有するリチウムイオン二次電池において、前記負極活物質には易黒鉛化炭素材が用いられており、初回充電後の前記正極の放電容量に対する前記負極の放電容量の比率が1.0以上1.3以下であることを特徴とする。   In order to solve the above problems, the present invention provides a positive electrode in which an active material mixture including a lithium transition metal composite oxide as a positive electrode active material is applied to a positive electrode current collector, and an active material mixture including a negative electrode active material In a lithium ion secondary battery having a negative electrode coated on a negative electrode current collector, a graphitizable carbon material is used as the negative electrode active material, and the negative electrode with respect to the discharge capacity of the positive electrode after initial charge The ratio of the discharge capacity is 1.0 or more and 1.3 or less.

本発明では、負極活物質に易黒鉛化炭素材を用いて正極の放電容量に対する負極の放電容量の比率を1.0以上1.3以下とすることで、易黒鉛化炭素材の低電位領域まで充放電に使用され、正極と負極との電位差で電池電圧が上昇し電池出力を向上させることができ、低電位領域で易黒鉛化炭素材の膨張収縮を抑制し電池寿命を向上させることができる。   In the present invention, an easily graphitizable carbon material is used as the negative electrode active material, and the ratio of the discharge capacity of the negative electrode to the discharge capacity of the positive electrode is 1.0 or more and 1.3 or less, so that the low potential region of the graphitizable carbon material is reduced. Can be used for charging and discharging, the battery voltage can be increased by the potential difference between the positive electrode and the negative electrode to improve the battery output, and the expansion and shrinkage of the graphitizable carbon material can be suppressed in the low potential region to improve the battery life. it can.

この場合において、易黒鉛化炭素材の初回充電容量が250mAh/g以上350mAh/g以下であり、初回充電容量に対する放電容量の比率を0.85以上とすれば、易黒鉛化炭素材の使用電位領域が適正化されるため、出力、サイクル特性の向上を図ることができる。また、易黒鉛化炭素材の0.2V〜1.0Vの放電容量に対する0V〜0.2Vの放電容量の比率を1.0以下とすれば、負極における電解液分解が抑制され、サイクル特性を一層向上させることができる。   In this case, if the graphitizable carbon material has an initial charge capacity of 250 mAh / g or more and 350 mAh / g or less, and the ratio of the discharge capacity to the initial charge capacity is 0.85 or more, the working potential of the graphitizable carbon material is used. Since the area is optimized, the output and cycle characteristics can be improved. Moreover, if the ratio of the discharge capacity of 0 V to 0.2 V to the discharge capacity of 0.2 V to 1.0 V of the graphitizable carbon material is 1.0 or less, decomposition of the electrolyte in the negative electrode is suppressed, and cycle characteristics are improved. This can be further improved.

本発明によれば、負極活物質に易黒鉛化炭素材を用いて正極の放電容量に対する負極の放電容量の比率を1.0以上1.3以下とすることで、易黒鉛化炭素材の低電位領域まで充放電に使用され、正極と負極との電位差で電池電圧が上昇し電池出力を向上させることができ、低電位領域で易黒鉛化炭素材の膨張収縮を抑制し電池寿命を向上させることができる、という効果を得ることができる。   According to the present invention, an easily graphitizable carbon material is used as the negative electrode active material, and the ratio of the discharge capacity of the negative electrode to the discharge capacity of the positive electrode is 1.0 or more and 1.3 or less. Used for charging / discharging up to the potential range, the battery voltage rises due to the potential difference between the positive and negative electrodes, and the battery output can be improved, and the expansion and contraction of the graphitizable carbon material is suppressed and the battery life is improved in the low potential range. Can be obtained.

以下、図面を参照して、本発明を適用した円筒型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、帯状の正負極板がセパレータを介して断面渦巻状に捲回された電極群6を備えている。電極群6は、有底円筒状でニッケルメッキが施された鉄製の電池容器7に収容されている。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of this embodiment includes an electrode group 6 in which strip-like positive and negative electrode plates are wound in a spiral shape with a separator interposed therebetween. The electrode group 6 is housed in an iron battery container 7 having a bottomed cylindrical shape and nickel plating.

電極群6の上側には、ポリプロピレン製で中空円筒状の軸芯1のほぼ延長線上に正極板W1からの電位を集電するためのアルミニウム製の正極集電リング4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板W1から導出された正極リード片2の端部が超音波溶接で接合されている。正極集電リング4の上方には、正極外部端子となる円盤状の電池蓋が配置されている。電池蓋は、アルミニウム製の蓋ケース12と、蓋キャップ13と、気密を保つ弁押え14と、内圧上昇により開裂する開裂弁11とで構成されており、これらが積層されて蓋ケース12の周縁をカシメ固定することで組立てられている。正極集電リング4の上部には複数枚のアルミニウム製リボンを重ね合わせて構成した2本の正極リード板9のうち1本の一端が固定されており、蓋ケース12の下面には他の1本の一端が溶接されている。2本の正極リード板9の他端同士は溶接で接続されている。   On the upper side of the electrode group 6, an aluminum positive electrode current collecting ring 4 for collecting the electric potential from the positive electrode plate W <b> 1 is disposed substantially on the extension line of the hollow cylindrical shaft core 1 made of polypropylene. The positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1. The edge part of the positive electrode lead piece 2 led out from the positive electrode plate W1 is joined to the periphery of the flange part integrally protruding from the periphery of the positive electrode current collecting ring 4 by ultrasonic welding. A disc-shaped battery lid serving as a positive electrode external terminal is disposed above the positive electrode current collecting ring 4. The battery lid includes an aluminum lid case 12, a lid cap 13, a valve retainer 14 that keeps airtightness, and a cleavage valve 11 that is cleaved by an increase in internal pressure, and these are laminated to form a peripheral edge of the lid case 12. It is assembled by caulking and fixing. One end of two positive electrode lead plates 9 formed by stacking a plurality of aluminum ribbons is fixed to the upper portion of the positive electrode current collecting ring 4, and another one is fixed to the lower surface of the lid case 12. One end of the book is welded. The other ends of the two positive electrode lead plates 9 are connected by welding.

一方、電極群6の下側には負極板W3からの電位を集電するための銅製の負極集電リング5が配置されている。負極集電リング5の内周面には軸芯1の下端部外周面が固定されている。負極集電リング5の外周縁には、負極板W3から導出された負極リード片3の端部が溶接されている。負極集電リング5の下部には電気的導通のための銅製の負極リード板8が溶接されており、負極リード板8は電池容器7の内底部に溶接されている。電池容器7の寸法は、本例では、外径40mm、内径39mmに設定されている。   On the other hand, a negative electrode current collector ring 5 made of copper for collecting the electric potential from the negative electrode plate W3 is disposed below the electrode group 6. The outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 5. The outer peripheral edge of the negative electrode current collecting ring 5 is welded with the end of the negative electrode lead piece 3 led out from the negative electrode plate W3. A copper negative electrode lead plate 8 for electrical conduction is welded to the lower portion of the negative electrode current collecting ring 5, and the negative electrode lead plate 8 is welded to the inner bottom portion of the battery container 7. In this example, the dimensions of the battery container 7 are set to an outer diameter of 40 mm and an inner diameter of 39 mm.

電池蓋は、絶縁性および耐熱性のEPDM樹脂製ガスケット10を介して電池容器7の上部にカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池容器7内には、図示を省略した非水電解液が注液されている。非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを体積比1:1:1の割合で混合した混合溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。 The battery lid is caulked and fixed to the upper part of the battery container 7 via an insulating and heat resistant EPDM resin gasket 10. For this reason, the inside of the lithium ion secondary battery 20 is sealed. Further, a non-aqueous electrolyte solution (not shown) is injected into the battery container 7. Non-aqueous electrolyte includes hexafluorophosphoric acid as a lithium salt in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1: 1. lithium (LiPF 6) which was dissolved 1 mol / l is used.

電極群6は、正極板W1と負極板W3とがこれら両極板が直接接触しないように、セパレータW5を介して捲回されている。このとき、正極リード片2と負極リード片3とが、それぞれ電極群6の互いに反対側の両端面に位置するように捲回されている。セパレータW5には、ポリエチレン製フィルムが使用されており、本例では、幅が90mm、厚さが40μmに設定されている。また、電極群6および正極集電リング4の鍔部周面全周には、絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。粘着テープは鍔部周面から電極群6の外周面に亘って一重以上巻かれている。正極板W1、負極板W3、セパレータW5の長さを調整することで、電極群6の直径が38±0.1mmに設定されている。   The electrode group 6 is wound through a separator W5 so that the positive electrode plate W1 and the negative electrode plate W3 are not in direct contact with each other. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 are wound so as to be located on both end surfaces of the electrode group 6 on the opposite sides. For the separator W5, a polyethylene film is used, and in this example, the width is set to 90 mm and the thickness is set to 40 μm. In addition, an insulation coating is applied to the entire circumference of the collar portion peripheral surface of the electrode group 6 and the positive electrode current collecting ring 4. For the insulation coating, an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used. The pressure-sensitive adhesive tape is wound one or more times from the collar surface to the outer circumferential surface of the electrode group 6. The diameter of the electrode group 6 is set to 38 ± 0.1 mm by adjusting the lengths of the positive electrode plate W1, the negative electrode plate W3, and the separator W5.

電極群6を構成する正極板W1は、正極集電体としてのアルミニウム箔を有している。アルミニウム箔は、本例では、厚さ20μmに設定されている。アルミニウム箔の両面には、正極活物質のリチウム遷移金属複合酸化物としてのマンガン酸リチウムを含む正極活物質合剤W2が塗着されている。正極活物質合剤W2には、例えば、マンガン酸リチウムの100重量部に対して、導電材の鱗片状黒鉛の10重量部およびバインダ(結着材)のポリフッ化ビニリデン(以下、PVDFと略記する。)の5重量部が配合されている。アルミニウム箔に正極活物質合剤W2を塗着するときには、分散溶媒のN−メチルピロリドン(以下、NMPと略記する。)が用いられる。アルミニウム箔の長寸方向一側の側縁には、幅30mmの正極活物質合剤W2の未塗着部が形成されている。未塗着部は櫛状(矩形状)に切り欠かれており、切り欠き残部で正極リード片2が形成されている。隣り合う正極リード片2の間隔が50mm、正極リード片2の幅が5mmに設定されている。正極板W1は、乾燥後、厚さが90μmとなるように、加熱可能なロールプレス機でプレス加工され、幅が82mmに裁断されている。   The positive electrode plate W1 constituting the electrode group 6 has an aluminum foil as a positive electrode current collector. In this example, the aluminum foil is set to a thickness of 20 μm. A positive electrode active material mixture W2 containing lithium manganate as a lithium transition metal composite oxide of the positive electrode active material is applied to both surfaces of the aluminum foil. In the positive electrode active material mixture W2, for example, 10 parts by weight of a conductive graphite flake graphite and a binder (binder) polyvinylidene fluoride (hereinafter abbreviated as PVDF) with respect to 100 parts by weight of lithium manganate. 5) parts by weight. When the positive electrode active material mixture W2 is applied to the aluminum foil, a dispersion solvent N-methylpyrrolidone (hereinafter abbreviated as NMP) is used. An uncoated portion of the positive electrode active material mixture W2 having a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the aluminum foil. The uncoated portion is cut out in a comb shape (rectangular shape), and the positive electrode lead piece 2 is formed in the remaining portion of the cutout. The interval between the adjacent positive electrode lead pieces 2 is set to 50 mm, and the width of the positive electrode lead piece 2 is set to 5 mm. After drying, the positive electrode plate W1 is pressed by a heatable roll press so that the thickness becomes 90 μm, and the width is cut to 82 mm.

一方、負極板W3は、負極集電体としての圧延銅箔を有している。圧延銅箔は、本例では、厚さ10μmに設定されている。圧延銅箔の両面には、負極活物質としてリチウムイオンを吸蔵、放出可能な易黒鉛化炭素材を含む負極活物質合剤W4が塗着されている。負極活物質合剤W4には、例えば、易黒鉛化炭素材の90重量部に対して、バインダのPVDFの10重量部が配合されている。圧延銅箔に負極活物質合剤W4を塗着するときには、分散溶媒のNMPが用いられる。圧延銅箔の長寸方向一側の側縁には、正極板W1と同様に、幅30mmの負極活物質合剤W4の未塗着部が形成されており、負極リード片3が形成されている。隣り合う負極リード片3の間隔が50mm、負極リード片3の幅が5mmに設定されている。負極板W3は、乾燥後、正極板W1と同様にプレス加工され、幅が86mmに裁断されている。負極板W3の厚さは、初回充電後の正極板W1の放電容量に対する負極板W3の放電容量の比率(負極放電容量/正極放電容量比率)が1.0以上1.3以下となるように調製されている。   On the other hand, the negative electrode plate W3 has a rolled copper foil as a negative electrode current collector. In this example, the rolled copper foil is set to a thickness of 10 μm. A negative electrode active material mixture W4 containing an easily graphitizable carbon material capable of occluding and releasing lithium ions as a negative electrode active material is applied to both surfaces of the rolled copper foil. In the negative electrode active material mixture W4, for example, 10 parts by weight of PVDF as a binder is blended with 90 parts by weight of the graphitizable carbon material. When the negative electrode active material mixture W4 is applied to the rolled copper foil, NMP as a dispersion solvent is used. An uncoated portion of the negative electrode active material mixture W4 with a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the rolled copper foil, and the negative electrode lead piece 3 is formed. Yes. The interval between the adjacent negative electrode lead pieces 3 is set to 50 mm, and the width of the negative electrode lead piece 3 is set to 5 mm. The negative electrode plate W3 is dried and then pressed in the same manner as the positive electrode plate W1, and the width is cut to 86 mm. The thickness of the negative electrode plate W3 is such that the ratio of the discharge capacity of the negative electrode plate W3 to the discharge capacity of the positive electrode plate W1 after the initial charge (negative electrode discharge capacity / positive electrode discharge capacity ratio) is 1.0 or more and 1.3 or less. Has been prepared.

また、負極活物質合剤W4には、初回充電容量が250mAh/g以上350mAh/g以下、初回充電容量に対する放電容量の比率(放電容量/初回充電容量比率)が0.85以上、0.2V〜1.0Vの放電容量に対する0V〜0.2Vの放電容量の比率(0V〜0.2Vの放電容量/0.2V〜1.0Vの放電容量比率)が1.0以下の易黒鉛化炭素材が用いられている。なお、易黒鉛化炭素材は、ピッチ(pitch)を約1000℃で熱処理して得られるものである。ピッチの成分や熱処理条件により、得られる易黒鉛化炭素材の容量特性が変わることから、上述した各比率を満たす材料を選別することができる。   The negative electrode active material mixture W4 has an initial charge capacity of 250 mAh / g or more and 350 mAh / g or less, and a ratio of the discharge capacity to the initial charge capacity (discharge capacity / initial charge capacity ratio) of 0.85 or more, 0.2 V Graphitized charcoal having a ratio of 0 V to 0.2 V discharge capacity to 0 V to 1.0 V discharge capacity (0 V to 0.2 V discharge capacity / 0.2 V to 1.0 V discharge capacity ratio) of 1.0 or less The material is used. The graphitizable carbon material is obtained by heat-treating a pitch at about 1000 ° C. Since the capacity characteristics of the graphitizable carbon material obtained vary depending on the pitch components and heat treatment conditions, materials satisfying the above-described ratios can be selected.

(電池組立)
リチウムイオン二次電池20の組立は以下の手順で行う。すなわち、正極板W1および負極板W3をセパレータW5を介して軸芯1の周囲に捲回装置で捲回し電極群6を作製する。このとき、正極リード片2と負極リード片3とが、それぞれ捲回群6の互いに反対側の両端面に位置するようにする。正極リード片2および負極リード片3を正極集電リング4および負極集電リング5にそれぞれ溶接する。このとき、正極リード片2、負極リード片3をそれぞれ変形させ、正極集電リング4、負極集電リング5の周囲から一体に張り出している鍔部周辺付近に集合、接触させた後、超音波溶接で接合させた。正極集電リング4の鍔部周面全周に絶縁被覆を施した後、捲回群6を電池容器7内に挿入した。負極集電リング5に予め溶接した負極リード板8を電池容器7の内底部に溶接する。電池容器7の上端部から9mm分下側の位置に電池蓋をカシメ固定するため、段付け加工を施して段付け部を形成する。正極集電リング4および電池蓋を正極リード板9で接続した後、電池容器7内に非水電解液を軸芯1の中空部分から注液して電極群6を非水電解液に浸潤させる。その後、正極リード9を折りたたむようにして電池蓋で電池容器7に蓋をし、ガスケット10と電池蓋とを段付け部の上にカシメ固定することで、リチウムイオン二次電池20の組立を完成させる。
(Battery assembly)
The lithium ion secondary battery 20 is assembled in the following procedure. That is, the positive electrode plate W1 and the negative electrode plate W3 are wound around the shaft core 1 by the winding device through the separator W5 to produce the electrode group 6. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 are respectively positioned on opposite end surfaces of the wound group 6. The positive electrode lead piece 2 and the negative electrode lead piece 3 are welded to the positive electrode current collecting ring 4 and the negative electrode current collecting ring 5, respectively. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 are respectively deformed, gathered and brought into contact with the vicinity of the buttocks integrally projecting from the periphery of the positive electrode current collecting ring 4 and the negative electrode current collecting ring 5, and then subjected to ultrasonic waves They were joined by welding. After the insulating coating was applied to the entire circumference of the collar peripheral surface of the positive electrode current collecting ring 4, the wound group 6 was inserted into the battery container 7. A negative electrode lead plate 8 pre-welded to the negative electrode current collecting ring 5 is welded to the inner bottom portion of the battery container 7. In order to crimp and fix the battery lid at a position 9 mm below the upper end of the battery container 7, a stepped portion is formed to form a stepped portion. After connecting the positive electrode current collecting ring 4 and the battery lid with the positive electrode lead plate 9, a nonaqueous electrolytic solution is injected into the battery container 7 from the hollow portion of the shaft core 1 to infiltrate the electrode group 6 into the nonaqueous electrolytic solution. . Thereafter, the battery container 7 is covered with a battery lid so that the positive electrode lead 9 is folded, and the gasket 10 and the battery lid are caulked and fixed on the stepped portion to complete the assembly of the lithium ion secondary battery 20. Let

次に、本実施形態に従って作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、負極放電容量/正極放電容量比率を1.0、易黒鉛化炭素の初回充電容量を350mAh/g、易黒鉛化炭素の放電容量/初回充電容量比率を0.85、易黒鉛化炭素の0V〜0.2Vの放電容量/0.2V〜1.0Vの放電容量比率を0.8とし、リチウムイオン二次電池20を作製した。
Example 1
As shown in Table 1 below, in Example 1, the ratio of negative electrode discharge capacity / positive electrode discharge capacity was 1.0, initial charge capacity of graphitizable carbon was 350 mAh / g, discharge capacity of graphitizable carbon / initial charge capacity The lithium ion secondary battery 20 was fabricated with a ratio of 0.85 and a graphitized carbon discharge capacity of 0 V to 0.2 V / discharge capacity ratio of 0.2 V to 1.0 V of 0.8.

Figure 2009266706
Figure 2009266706

(実施例2)
表1に示すように、実施例2では、負極放電容量/正極放電容量比率を1.1、易黒鉛化炭素の0V〜0.2Vの放電容量/0.2V〜1.0Vの放電容量比率を1.0とする以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。
(Example 2)
As shown in Table 1, in Example 2, the negative electrode discharge capacity / positive electrode discharge capacity ratio was 1.1, the graphitized carbon 0 V to 0.2 V discharge capacity / 0.2 V to 1.0 V discharge capacity ratio. A lithium ion secondary battery 20 was produced in the same manner as in Example 1 except that the value was 1.0.

(実施例3〜実施例4)
表1に示すように、実施例3〜実施例4では、負極放電容量/正極放電容量比率を変える以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。すなわち、負極放電容量/正極放電容量比率を、実施例3では1.2とし、実施例4では1.3とした。
(Example 3 to Example 4)
As shown in Table 1, in Examples 3 to 4, lithium ion secondary batteries 20 were produced in the same manner as in Example 1 except that the negative electrode discharge capacity / positive electrode discharge capacity ratio was changed. That is, the negative electrode discharge capacity / positive electrode discharge capacity ratio was 1.2 in Example 3 and 1.3 in Example 4.

(実施例5)
表1に示すように、実施例5では、負極放電容量/正極放電容量比率を1.2、易黒鉛化炭素の初回充電容量を250mAh/gとする以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。
(Example 5)
As shown in Table 1, in Example 5, lithium ion was the same as in Example 1 except that the negative electrode discharge capacity / positive electrode discharge capacity ratio was 1.2 and the initial charge capacity of graphitizable carbon was 250 mAh / g. A secondary battery 20 was produced.

(実施例6)
表1に示すように、実施例6では、易黒鉛化炭素の初回充電容量を450mAh/gとする以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。
(Example 6)
As shown in Table 1, in Example 6, a lithium ion secondary battery 20 was produced in the same manner as in Example 1 except that the initial charge capacity of graphitizable carbon was 450 mAh / g.

(実施例7)
表1に示すように、実施例7では、易黒鉛化炭素の初回充電容量を230mAh/g、易黒鉛化炭素の放電容量/初回充電容量比率を0.90とする以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。
(Example 7)
As shown in Table 1, Example 7 is the same as Example 1 except that the graphitizable carbon initial charge capacity is 230 mAh / g and the graphitizable carbon discharge capacity / initial charge capacity ratio is 0.90. Thus, a lithium ion secondary battery 20 was produced.

(実施例8)
表1に示すように、実施例8では、易黒鉛化炭素の放電容量/初回充電容量比率を0.80とする以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。
(Example 8)
As shown in Table 1, in Example 8, a lithium ion secondary battery 20 was produced in the same manner as in Example 1 except that the ratio of discharge capacity / initial charge capacity of graphitizable carbon was 0.80.

(実施例9)
表1に示すように、実施例9では、易黒鉛化炭素の放電容量/初回充電容量比率を0.90、易黒鉛化炭素の0V〜0.2Vの放電容量/0.2V〜1.0Vの放電容量比率を1.2とする以外は実施例1と同様にしてリチウムイオン二次電池20を作製した。
Example 9
As shown in Table 1, in Example 9, the ratio of the discharge capacity / initial charge capacity of graphitizable carbon is 0.90, the discharge capacity of graphitized carbon is 0V to 0.2V / 0.2V to 1.0V. A lithium ion secondary battery 20 was produced in the same manner as in Example 1 except that the discharge capacity ratio was 1.2.

(比較例1〜比較例2)
表1に示すように、比較例1〜比較例2では、負極放電容量/正極放電容量比率を変える以外は実施例1と同様にしてリチウムイオン二次電池を作製した。すなわち、負極放電容量/正極放電容量比率を、比較例1では0.9とし、比較例2では1.4とした。
(Comparative Examples 1 to 2)
As shown in Table 1, in Comparative Examples 1 and 2, lithium ion secondary batteries were produced in the same manner as in Example 1 except that the negative electrode discharge capacity / positive electrode discharge capacity ratio was changed. That is, the ratio of negative electrode discharge capacity / positive electrode discharge capacity was 0.9 in Comparative Example 1 and 1.4 in Comparative Example 2.

(評価)
以上のように作製した実施例および比較例の各リチウムイオン二次電池の複数個ずつについて、初期出力およびサイクル試験後の出力維持率を測定し、充放電特性を評価した。初期出力の測定では、25±2℃の雰囲気において4.1Vの満充電状態から10A、30A、90Aの電流値で各10秒間放電し、各5秒目の電池電圧を測定した。横軸電流値に対して電池電圧を縦軸にプロットし、3点を直線近似した直線が終止電圧である2.7Vと交差する点の電流値を読み取り、この電流値と2.7Vとの積をそのリチウムイオン二次電池の出力とした。また、サイクル試験では、50±3℃の雰囲気において、約50Aの高負荷電流を充電方向および放電方向ともに約5秒間通電し、休止時間も含め1サイクル約30秒間のパルスサイクル試験を連続して10万回繰り返した。サイクル試験後の出力を初期出力の測定と同様にして測定し、初期出力に対するサイクル試験後の出力の割合を百分率で求め、10万サイクル時の出力維持率とした。初期出力および10万サイクル時の出力維持率の結果を表1にあわせて示した。
(Evaluation)
With respect to a plurality of each of the lithium ion secondary batteries of Examples and Comparative Examples produced as described above, the initial output and the output retention rate after the cycle test were measured, and the charge / discharge characteristics were evaluated. In the measurement of the initial output, the battery was discharged for 10 seconds at a current value of 10 A, 30 A, and 90 A from a fully charged state of 4.1 V in an atmosphere of 25 ± 2 ° C., and the battery voltage at each 5 second was measured. The battery voltage is plotted on the vertical axis against the current value on the horizontal axis, and the current value at the point where the straight line approximating the three points intersects the final voltage of 2.7 V is read, and this current value and 2.7 V The product was the output of the lithium ion secondary battery. In the cycle test, a high load current of about 50 A was applied for about 5 seconds in both the charging direction and the discharging direction in an atmosphere of 50 ± 3 ° C., and a pulse cycle test of about 30 seconds per cycle including the rest time was continuously performed. Repeated 100,000 times. The output after the cycle test was measured in the same manner as the measurement of the initial output, and the ratio of the output after the cycle test to the initial output was obtained as a percentage, and the output retention rate at 100,000 cycles was obtained. The results of the initial output and the output maintenance ratio at 100,000 cycles are shown together in Table 1.

表1に示すように、負極放電容量/正極放電容量比率を0.9とした比較例1のリチウムイオン二次電池では、初期出力は820Wと優れているものの、10万サイクル時の出力維持率が65%となり十分なサイクル特性を得ることができなかった。また、負極放電容量/正極放電容量比率を1.4とした比較例2のリチウムイオン二次電池では、初期出力、10万サイクル時の出力維持率がそれぞれ650W、68%となり十分な出力特性およびサイクル特性を得ることができなかった。これに対して、負極放電容量/正極放電容量比率を1.0以上1.3以下とした実施例1〜実施例9のリチウムイオン二次電池20では、いずれも、初期出力が750W以上、10万サイクル時の出力維持率が80%以上となり優れた電池となった。従って、負極放電容量/正極放電容量比率を1.0以上1.3以下とすることで、出力およびサイクル特性の優れたリチウムイオン二次電池20を得られることが判った。負極放電容量/正極放電容量比率をそれぞれ1.2、1.3とした実施例3、実施例4のリチウムイオン二次電池20では、初期出力に若干の低下が認められたことを考慮すれば、負極放電容量/正極放電容量比率を1.0〜1.1とすることで、初期出力およびサイクル特性を一層向上させることができることが判明した。   As shown in Table 1, in the lithium ion secondary battery of Comparative Example 1 in which the negative electrode discharge capacity / positive electrode discharge capacity ratio was 0.9, the initial output was excellent at 820 W, but the output maintenance rate at 100,000 cycles Was 65%, and sufficient cycle characteristics could not be obtained. Further, in the lithium ion secondary battery of Comparative Example 2 in which the negative electrode discharge capacity / positive electrode discharge capacity ratio was 1.4, the initial output and the output maintenance rate at 100,000 cycles were 650 W and 68%, respectively, and sufficient output characteristics and Cycle characteristics could not be obtained. On the other hand, in the lithium ion secondary batteries 20 of Examples 1 to 9 in which the negative electrode discharge capacity / positive electrode discharge capacity ratio was 1.0 or more and 1.3 or less, all of the initial outputs were 750 W or more, 10 The output retention rate at 10,000 cycles was over 80%, and the battery was excellent. Therefore, it was found that the lithium ion secondary battery 20 having excellent output and cycle characteristics can be obtained by setting the negative electrode discharge capacity / positive electrode discharge capacity ratio to 1.0 or more and 1.3 or less. In the lithium ion secondary batteries 20 of Example 3 and Example 4 in which the negative electrode discharge capacity / positive electrode discharge capacity ratios were 1.2 and 1.3, respectively, considering that a slight decrease in the initial output was recognized. It was found that the initial output and cycle characteristics can be further improved by setting the negative electrode discharge capacity / positive electrode discharge capacity ratio to 1.0 to 1.1.

また、易黒鉛化炭素の初回充電容量を450mAh/g、放電容量/初回充電容量比率を0.85とした実施例6、および、初回充電容量を230mAh/g、放電容量/初回充電容量比率を0.90とした実施例7のリチウムイオン二次電池20では、初期出力がそれぞれ800W、750Wを示したものの、10万サイクル時の出力維持率がいずれも80%にとどまり、サイクル特性に若干の低下がみられた。さらに、易黒鉛化炭素の放電容量/初回充電容量比率を0.80とした実施例8のリチウムイオン二次電池20では、10万サイクル時の出力維持率が80%、初期出力が750Wを示し、サイクル特性、初期出力に若干の低下がみられた。また、易黒鉛化炭素の0V〜0.2Vの放電容量/0.2V〜1.0Vの放電容量比率を1.2、放電容量/初回充電容量比率を0.90とした実施例9のリチウムイオン二次電池20では、初期出力が820Wを示したものの、10万サイクル時の出力維持率が83%にとどまり、サイクル特性に若干の低下がみられた。   In addition, Example 6 in which the initial charge capacity of graphitizable carbon was 450 mAh / g and the discharge capacity / initial charge capacity ratio was 0.85, and the initial charge capacity was 230 mAh / g, and the discharge capacity / initial charge capacity ratio was In the lithium ion secondary battery 20 of Example 7 with 0.90, the initial output showed 800 W and 750 W, respectively, but the output retention rate at 100,000 cycles was only 80%, and the cycle characteristics were slightly A decrease was observed. Further, in the lithium ion secondary battery 20 of Example 8 in which the graphitized carbon discharge capacity / initial charge capacity ratio was 0.80, the output retention rate at 100,000 cycles was 80%, and the initial output was 750 W. There was a slight decrease in cycle characteristics and initial output. Further, the lithium of Example 9 in which the graphitized carbon has a discharge capacity ratio of 0V to 0.2V / discharge capacity ratio of 0.2V to 1.0V of 1.2 and a discharge capacity / initial charge capacity ratio of 0.90. In the ion secondary battery 20, although the initial output showed 820W, the output maintenance rate at the time of 100,000 cycles was only 83%, and the cycle characteristics were slightly reduced.

これらの結果から、リチウムイオン二次電池20の出力およびサイクル特性を向上させるためには、初回充電容量が250mAh/g以上350mAh/g以下、放電容量/初回充電容量比率が0.85以上の易黒鉛化炭素を用いることが好ましいことが判った。さらに、0V〜0.2Vの放電容量/0.2V〜1.0Vの放電容量比率が1.0以下の易黒鉛化炭素を用いることで、リチウムイオン二次電池20の出力およびサイクル特性をさらに向上させることができることが判明した。   From these results, in order to improve the output and cycle characteristics of the lithium ion secondary battery 20, the initial charge capacity is easily 250 mAh / g or more and 350 mAh / g or less, and the discharge capacity / initial charge capacity ratio is 0.85 or more. It has been found preferable to use graphitized carbon. Further, by using graphitizable carbon having a discharge capacity ratio of 0 V to 0.2 V / discharge capacity ratio of 0.2 V to 1.0 V of 1.0 or less, the output and cycle characteristics of the lithium ion secondary battery 20 are further improved. It has been found that it can be improved.

以上説明したように、本実施形態のリチウムイオン二次電池20では、負極活物質に易黒鉛化炭素材が用いられている。易黒鉛化炭素材では、不可逆容量が難黒鉛化炭素材と比較して小さく、また、定電圧領域(低電位領域)での寿命がよいことから、この領域も有効に利用することができる。難黒鉛化炭素材、易黒鉛化炭素材をそれぞれ用いて最適化したリチウムイオン二次電池を作製し電池容量を比較したところ、難黒鉛化炭素材を用いた場合は6.25Ah、易黒鉛化炭素材を用いた場合は6.92Ahの結果が得られた。従って、負極活物質に易黒鉛化炭素材を用いることで、約10%の電池容量向上効果を得ることができる。   As described above, in the lithium ion secondary battery 20 of the present embodiment, the graphitizable carbon material is used as the negative electrode active material. In the graphitizable carbon material, the irreversible capacity is smaller than that of the non-graphitizable carbon material, and since the lifetime in the constant voltage region (low potential region) is good, this region can also be used effectively. A lithium ion secondary battery optimized using a non-graphitizable carbon material and a graphitizable carbon material was prepared, and the battery capacities were compared. When the non-graphitizable carbon material was used, 6.25 Ah, graphitizable When the carbon material was used, a result of 6.92 Ah was obtained. Therefore, by using an easily graphitized carbon material for the negative electrode active material, an effect of improving the battery capacity of about 10% can be obtained.

また、本実施形態のリチウムイオン二次電池20では、負極放電容量/正極放電容量比率が1.0以上1.3以下に設定されている。このため、充放電時には、易黒鉛化炭素材の低電位領域まで使用されることとなり、正負極の電位差の関係から電池電圧が上昇し、電池出力を向上させることができる。さらに、易黒鉛化炭素材の低電位領域が使用されるため、一般的には寿命低下が懸念されるが、易黒鉛化炭素材では低電位領域における充放電時の膨張収縮が低減することから、劣化を抑制し寿命特性を向上させることができる。また、低電位領域が使用されることで、一定の電池電圧を得るときに正極板の高電位化を抑制することができるため、更なる寿命向上を期待することができる。   Moreover, in the lithium ion secondary battery 20 of this embodiment, the negative electrode discharge capacity / positive electrode discharge capacity ratio is set to 1.0 or more and 1.3 or less. For this reason, at the time of charging / discharging, it will be used to the low potential area | region of a graphitizable carbon material, a battery voltage rises from the relationship of the electrical potential difference of a positive electrode, and a battery output can be improved. Furthermore, since the low potential region of graphitizable carbon material is used, there is a general concern that the lifetime will be reduced. However, with graphitizable carbon material, expansion and contraction during charge / discharge in the low potential region is reduced. Deterioration can be suppressed and life characteristics can be improved. Moreover, since a high potential of the positive electrode plate can be suppressed when a constant battery voltage is obtained by using the low potential region, further improvement in life can be expected.

更に、本実施形態のリチウムイオン二次電池20では、初回充電容量が250mAh/g以上350mAh/g以下、放電容量/初回充電容量比率が0.85以上の易黒鉛化炭素材が用いられている。これにより、易黒鉛化炭素材の使用電位領域が適正化されるため、さらに高出力でサイクル特性に優れたリチウムイオン二次電池とすることができる。   Further, in the lithium ion secondary battery 20 of the present embodiment, a graphitizable carbon material having an initial charge capacity of 250 mAh / g or more and 350 mAh / g or less and a discharge capacity / initial charge capacity ratio of 0.85 or more is used. . Thereby, since the use electric potential area | region of an easily graphitized carbon material is optimized, it can be set as the lithium ion secondary battery which was further excellent in cycling characteristics with high output.

また更に、本実施形態のリチウムイオン二次電池20では、0V〜0.2Vの放電容量/0.2V〜1.0Vの放電容量比率が1.0以下の易黒鉛化炭素材が使用されている。これにより、負極における非水電解液の分解等の副反応も抑制できるため、さらにサイクル特性に優れた電池を実現することができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, a graphitizable carbon material having a discharge capacity ratio of 0 V to 0.2 V / 0.2 V to 1.0 V and a discharge capacity ratio of 1.0 or less is used. Yes. As a result, side reactions such as decomposition of the non-aqueous electrolyte in the negative electrode can be suppressed, so that a battery having further excellent cycle characteristics can be realized.

なお、本実施形態では、円筒型リチウムイオン二次電池20を例示したが、本発明は電池形状に制限されるものではなく、角形、その他の多角形のリチウムイオン二次電池にも適用可能である。また、本発明の適用可能な電池構造としては、電池容器が電池蓋をカシメ固定することにより封口されている構造以外であっても構わない。このような構造の一例として、正負外部端子が電池蓋を貫通し、電池容器内で軸芯を介して正負外部端子が押し合っている状態の構造を挙げることができる。更に、本実施形態では、正極板および負極板を捲回した電極群を有する捲回式の構造を例示したが、本発明はこれに限定されるものではなく、積層式の構造としたリチウムイオン二次電池にも適用可能である。   In the present embodiment, the cylindrical lithium ion secondary battery 20 is illustrated, but the present invention is not limited to the battery shape, and can be applied to a rectangular or other polygonal lithium ion secondary battery. is there. The battery structure to which the present invention can be applied may be other than a structure in which the battery container is sealed by caulking and fixing the battery lid. As an example of such a structure, a structure in which the positive and negative external terminals pass through the battery lid and the positive and negative external terminals are pressed against each other through the shaft core in the battery container can be exemplified. Furthermore, in the present embodiment, a wound structure having an electrode group in which a positive electrode plate and a negative electrode plate are wound is illustrated, but the present invention is not limited to this, and lithium ions having a stacked structure are used. It is applicable also to a secondary battery.

また、本実施形態では、正極活物質としてマンガン酸リチウムを例示したが、本発明はこれに限定されるものではない。本実施形態以外で用いることのできる正極活物質としては、リチウムイオンを挿入・脱離可能な材料であり、予め十分な量のリチウムイオンを挿入したリチウム遷移金属複合酸化物であればよく、結晶中のリチウムや遷移金属の一部をそれら以外の元素で置換またはドープした材料を用いるようにしてもよい。更に、結晶構造についても特に制限はなく、例えば、スピネル構造、層状構造等の材料を用いることができる。   In this embodiment, lithium manganate is exemplified as the positive electrode active material, but the present invention is not limited to this. The positive electrode active material that can be used in other embodiments is a material capable of inserting / extracting lithium ions, and may be any lithium transition metal composite oxide in which a sufficient amount of lithium ions has been inserted in advance. A material obtained by substituting or doping a part of lithium or transition metal therein with other elements may be used. Furthermore, there is no restriction | limiting in particular also about crystal structure, For example, materials, such as a spinel structure and a layered structure, can be used.

更に、本実施形態では、導電材やバインダを例示したが、本発明はこれらの導電材、バインダに限定されるものではなく、通常リチウムイオン二次電池に用いられるいずれのものも使用可能である。本実施形態以外で用いることのできるバインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体およびこれらの混合体を挙げることができる。   Furthermore, in this embodiment, although the electrically conductive material and the binder were illustrated, this invention is not limited to these electrically conductive materials and a binder, Any thing normally used for a lithium ion secondary battery can be used. . As binders that can be used other than the present embodiment, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, Examples thereof include polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof.

また更に、本実施形態では、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートを体積比1:1:1で混合した混合溶媒にLiPFを溶解させた非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は、用いられるリチウム塩や有機溶媒に特に制限されるものではない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を挙げることができる。また、有機溶媒としては、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等、またはこれらの2種以上を混合した混合溶媒を挙げることができる。更に、混合配合比についても限定されるものではない。 Furthermore, in the present embodiment, a nonaqueous electrolytic solution in which LiPF 6 is dissolved in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate are mixed at a volume ratio of 1: 1: 1 is exemplified. A nonaqueous electrolytic solution obtained by dissolving the above in an organic solvent may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used. For example, examples of the electrolyte include LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, and a mixture thereof. Examples of the organic solvent include propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, Examples include sulfolane, methyl sulfolane, acetonitrile, propionitrile, and a mixed solvent in which two or more of these are mixed. Furthermore, the mixing ratio is not limited.

本発明は電池出力の低下を抑制し寿命特性を向上させることができるリチウムイオン二次電池を提供するため、リチウムイオン二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a lithium ion secondary battery that can suppress a decrease in battery output and improve life characteristics, and contributes to the manufacture and sale of lithium ion secondary batteries, it has industrial applicability. .

本発明を適用した実施形態の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of embodiment to which this invention is applied.

符号の説明Explanation of symbols

6 電極群
20 円筒型リチウムイオン二次電池(リチウムイオン二次電池)
W1 正極板(正極)
W2 正極活物質合剤(活物質合剤)
W3 負極板(負極)
W4 負極活物質合剤(活物質合剤)
6 Electrode group 20 Cylindrical lithium ion secondary battery (lithium ion secondary battery)
W1 positive plate (positive electrode)
W2 Cathode active material mixture (active material mixture)
W3 Negative electrode plate (negative electrode)
W4 Negative electrode active material mixture (active material mixture)

Claims (3)

正極活物質としてリチウム遷移金属複合酸化物を含む活物質合剤が正極集電体に塗着された正極と、負極活物質を含む活物質合剤が負極集電体に塗着された負極とを有するリチウムイオン二次電池において、前記負極活物質には易黒鉛化炭素材が用いられており、初回充電後の前記正極の放電容量に対する前記負極の放電容量の比率が1.0以上1.3以下であることを特徴とするリチウムイオン二次電池。   A positive electrode in which an active material mixture containing a lithium transition metal composite oxide as a positive electrode active material is applied to the positive electrode current collector; and a negative electrode in which an active material mixture containing a negative electrode active material is applied to the negative electrode current collector; In the lithium ion secondary battery having the above, an easily graphitizable carbon material is used as the negative electrode active material, and the ratio of the discharge capacity of the negative electrode to the discharge capacity of the positive electrode after the initial charge is 1.0 or more and 1. A lithium ion secondary battery characterized by being 3 or less. 前記易黒鉛化炭素材は、初回充電容量が250mAh/g以上350mAh/g以下であり、前記初回充電容量に対する放電容量の比率が0.85以上であることを特徴とする請求項1に記載のリチウムイオン二次電池。   The said graphitizable carbon material has an initial charge capacity of 250 mAh / g or more and 350 mAh / g or less, and a ratio of a discharge capacity to the initial charge capacity of 0.85 or more. Lithium ion secondary battery. 前記易黒鉛化炭素材は、0.2V〜1.0Vの放電容量に対する0V〜0.2Vの放電容量の比率が1.0以下であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池。   The ratio of the discharge capacity of 0V to 0.2V to the discharge capacity of 0.2V to 1.0V in the graphitizable carbon material is 1.0 or less. Lithium ion secondary battery.
JP2008116632A 2008-04-28 2008-04-28 Lithium ion secondary battery Expired - Fee Related JP5433164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116632A JP5433164B2 (en) 2008-04-28 2008-04-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116632A JP5433164B2 (en) 2008-04-28 2008-04-28 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009266706A true JP2009266706A (en) 2009-11-12
JP5433164B2 JP5433164B2 (en) 2014-03-05

Family

ID=41392263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116632A Expired - Fee Related JP5433164B2 (en) 2008-04-28 2008-04-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5433164B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169063A (en) * 2011-02-10 2012-09-06 Hitachi Vehicle Energy Ltd Cylindrical secondary battery
WO2015190482A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion cell
WO2015190480A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion secondary cell
JP2016072226A (en) * 2014-09-25 2016-05-09 東莞新能源科技有限公司Dongguan Amperex Technology Limited Lithium ion battery
WO2016080128A1 (en) * 2014-11-18 2016-05-26 国立研究開発法人産業技術総合研究所 Lithium ion cell
WO2023082918A1 (en) * 2021-11-15 2023-05-19 宁德时代新能源科技股份有限公司 Lithium ion battery, battery module, battery pack, and electric apparatus
WO2023087241A1 (en) * 2021-11-19 2023-05-25 宁德时代新能源科技股份有限公司 Battery group, battery pack, electrical apparatus, manufacturing method and manufacturing device for battery group, and control method for battery group

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332298A (en) * 2000-05-19 2001-11-30 Sony Corp Electrolyte and secondary battery
JP2002203608A (en) * 2000-11-01 2002-07-19 Nissan Motor Co Ltd Nonaqueous secondary battery for car use
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2005243448A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2005098999A1 (en) * 2004-04-05 2005-10-20 Kureha Corporation Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332298A (en) * 2000-05-19 2001-11-30 Sony Corp Electrolyte and secondary battery
JP2002203608A (en) * 2000-11-01 2002-07-19 Nissan Motor Co Ltd Nonaqueous secondary battery for car use
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2005243448A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2005098999A1 (en) * 2004-04-05 2005-10-20 Kureha Corporation Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169063A (en) * 2011-02-10 2012-09-06 Hitachi Vehicle Energy Ltd Cylindrical secondary battery
US10090521B2 (en) 2014-06-10 2018-10-02 Hitachi Chemical Company, Ltd. Lithium ion battery with negative electrode in which state of charge at a potential to be 0.1 V with respect lithium potential is 60% or more, and positive electrode having a density positive electrode composite of 2.4 to 2.7 g/cm3
WO2015190480A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion secondary cell
CN106463765A (en) * 2014-06-10 2017-02-22 日立化成株式会社 Lithium ion cell
JPWO2015190480A1 (en) * 2014-06-10 2017-04-20 日立化成株式会社 Lithium ion secondary battery
JPWO2015190482A1 (en) * 2014-06-10 2017-04-20 日立化成株式会社 Lithium ion battery
WO2015190482A1 (en) * 2014-06-10 2015-12-17 新神戸電機株式会社 Lithium ion cell
JP2016072226A (en) * 2014-09-25 2016-05-09 東莞新能源科技有限公司Dongguan Amperex Technology Limited Lithium ion battery
WO2016080128A1 (en) * 2014-11-18 2016-05-26 国立研究開発法人産業技術総合研究所 Lithium ion cell
JP2016100054A (en) * 2014-11-18 2016-05-30 国立研究開発法人産業技術総合研究所 Lithium ion battery
US11088391B2 (en) 2014-11-18 2021-08-10 National Institute Of Advanced Industrial Science And Technology Lithium ion battery
WO2023082918A1 (en) * 2021-11-15 2023-05-19 宁德时代新能源科技股份有限公司 Lithium ion battery, battery module, battery pack, and electric apparatus
WO2023087241A1 (en) * 2021-11-19 2023-05-25 宁德时代新能源科技股份有限公司 Battery group, battery pack, electrical apparatus, manufacturing method and manufacturing device for battery group, and control method for battery group
US11749999B2 (en) 2021-11-19 2023-09-05 Contemporary Amperex Technology Co., Limited Battery unit, battery pack, electrical device, method and apparatus for manufacturing battery unit, and method for controlling battery unit

Also Published As

Publication number Publication date
JP5433164B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5286200B2 (en) Lithium ion secondary battery
JP5165482B2 (en) Winding type secondary battery
KR101275677B1 (en) lithium secondary battery
JP4305111B2 (en) Battery pack and electric vehicle
JP2001143762A (en) Cylindrical lithium ion battery
JP5433164B2 (en) Lithium ion secondary battery
JP2004006264A (en) Lithium secondary battery
JP2019207755A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP2009224070A (en) Lithium secondary battery
JP2001229970A (en) Cylindrical lithium battery
JP4934318B2 (en) Secondary battery
JP2003243036A (en) Cylindrical lithium secondary battery
CN111183542B (en) Nonaqueous electrolyte secondary battery
JP5882697B2 (en) Prismatic lithium-ion battery
JP5254910B2 (en) Lithium ion secondary battery
JP2007165114A (en) Lithium secondary battery
JP2001185220A (en) Cylindrical lithium ion battery
JP5433484B2 (en) Lithium ion secondary battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP4548070B2 (en) Secondary battery
JP4211542B2 (en) Lithium secondary battery
JP2016105415A (en) Square lithium ion battery
JP4688527B2 (en) Lithium secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP5254722B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5433164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees