[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009250566A - Multitubular heat exchanger - Google Patents

Multitubular heat exchanger Download PDF

Info

Publication number
JP2009250566A
JP2009250566A JP2008101327A JP2008101327A JP2009250566A JP 2009250566 A JP2009250566 A JP 2009250566A JP 2008101327 A JP2008101327 A JP 2008101327A JP 2008101327 A JP2008101327 A JP 2008101327A JP 2009250566 A JP2009250566 A JP 2009250566A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
liquid
heat transfer
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008101327A
Other languages
Japanese (ja)
Inventor
Rikiya Fujiwara
力弥 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008101327A priority Critical patent/JP2009250566A/en
Publication of JP2009250566A publication Critical patent/JP2009250566A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat transferring efficiency by increasing a refrigerant flow rate of heat transfer tubes in a multitubular heat exchanger. <P>SOLUTION: In this multitubular heat exchanger in which a number of heat transfer tubes 2, 2, ... are horizontally arranged in a barrel body 1 in which a cooled fluid W is circulated, and both ends of the barrel body 1 are respectively provided with a refrigerant inlet/outlet section 3 as a refrigerant inlet 4 and a refrigerant outlet 5 to the heat transfer tubes 2, and a refrigerant flow-back section 6 for allowing the refrigerant flowing into the heat transfer tubes 2 to flow back therein, the refrigerant flow-back section 6 includes a liquid storing section 7 for storing a liquid refrigerant X, and a flow-back pathway 8 for allowing the liquid refrigerant X of the liquid storing section 7 to flow back to the refrigerant inlet 4, and the liquid refrigerant X stored in the liquid storing section 7 of the refrigerant flow-back section 6 flows back to the refrigerant inlet 4 through the flow-back pathway 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、乾式水クーラとして使用されるシェルアンドチューブタイプの多管式熱交換器に関するものである。   The present invention relates to a shell and tube type multi-tube heat exchanger used as a dry water cooler.

例えば、シェルアンドチューブタイプの多管式熱交換器は、図3に示すように、被冷却流体が流通する胴体1内に多数の伝熱管2,2・・を水平に配設し、該胴体1の両端に、前記伝熱管2,2・・内への冷媒入口4および冷媒出口5となる冷媒出入口部3と、前記伝熱管2,2・・内を流れる冷媒が還流する冷媒還流部6とを配設して構成されている。   For example, as shown in FIG. 3, a shell-and-tube type multi-tube heat exchanger has a large number of heat transfer tubes 2, 2... Horizontally disposed in a body 1 through which a fluid to be cooled flows. 1 at both ends, a refrigerant inlet / outlet portion 3 serving as a refrigerant inlet 4 and a refrigerant outlet 5 into the heat transfer tubes 2,..., And a refrigerant reflux portion 6 through which the refrigerant flowing through the heat transfer tubes 2, 2. Are arranged.

この種の多管式熱交換器は、特許文献1にも開示されているように、従来からよく知られている。   This type of multi-tube heat exchanger has been well known as disclosed in Patent Document 1.

特開2000−227299号公報。JP 2000-227299 A.

上記構成の多管式熱交換器を乾式水クーラとして使用する場合、図3に示すように、圧縮機11、凝縮器12、膨張機構13および多管式熱交換器14からなる冷凍サイクルに組み込んで使用される。図3において、符号15は水入口、16は水出口である。   When the multi-tube heat exchanger having the above configuration is used as a dry water cooler, it is incorporated into a refrigeration cycle comprising a compressor 11, a condenser 12, an expansion mechanism 13 and a multi-tube heat exchanger 14 as shown in FIG. Used in. In FIG. 3, reference numeral 15 is a water inlet, and 16 is a water outlet.

上記冷凍サイクルの場合、圧縮機11で圧縮されたガス冷媒が凝縮器12において凝縮液化されて液冷媒となり、該液冷媒が膨張機構13にて減圧された後、蒸発器として機能する多管式熱交換器14に導かれ、該多管式熱交換器14において蒸発気化する過程で水入口15から供給され、水出口16から導出される水Wを冷却することとなっているが、冷媒循環量が十分でないと、図4に示すように、伝熱管2内を流れる液冷媒Xが下部に偏ってしまい、伝熱管2内面の濡れ面が少なくなってしまう。すると、伝熱管2内を流れる液冷媒Xから伝熱管2外を流れる被冷却流体(例えば、水W)への伝熱効率が悪くなってしまうという不具合が発生する。   In the case of the refrigeration cycle, the gas refrigerant compressed by the compressor 11 is condensed and liquefied in the condenser 12 to become liquid refrigerant, and the liquid refrigerant is decompressed by the expansion mechanism 13 and then functions as an evaporator. In the process of being led to the heat exchanger 14 and evaporating and evaporating in the multi-tube heat exchanger 14, the water W supplied from the water inlet 15 and led out from the water outlet 16 is cooled. If the amount is not sufficient, the liquid refrigerant X flowing in the heat transfer tube 2 is biased downward as shown in FIG. 4, and the wetted surface of the inner surface of the heat transfer tube 2 is reduced. Then, the malfunction that the heat transfer efficiency to the to-be-cooled fluid (for example, water W) which flows out of the heat exchanger tube 2 from the liquid refrigerant X which flows in the heat exchanger tube 2 will generate | occur | produce will generate | occur | produce.

本願発明は、上記の点に鑑みてなされたもので、多管式熱交換器における伝熱管の冷媒流量を増加させることにより、伝熱効率の向上を図ることを目的としている。   This invention is made | formed in view of said point, and aims at improving a heat transfer efficiency by increasing the refrigerant | coolant flow rate of the heat exchanger tube in a multi-tube heat exchanger.

本願発明では、上記課題を解決するための第1の手段として、被冷却流体Wが流通する胴体1内に多数の伝熱管2,2・・を水平に配設し、該胴体1の両端に、前記伝熱管2,2・・内への冷媒入口4および冷媒出口5となる冷媒出入口部3と、前記伝熱管2,2・・内を流れる冷媒が還流する冷媒還流部6とを配設してなる多管式熱交換器において、前記冷媒還流部6に、液冷媒Xが貯溜される液溜まり部7を設けるとともに、該液溜まり部7の液冷媒Xを前記冷媒入口4へ還流させる還流通路8を形成している。   In the present invention, as a first means for solving the above problems, a large number of heat transfer tubes 2, 2... Are horizontally disposed in the body 1 through which the fluid W to be cooled flows, The refrigerant inlet / outlet part 3 serving as the refrigerant inlet 4 and the refrigerant outlet 5 into the heat transfer tubes 2, 2... And the refrigerant reflux unit 6 through which the refrigerant flowing through the heat transfer tubes 2, 2. In the multi-tube heat exchanger formed as described above, the refrigerant recirculation unit 6 is provided with a liquid reservoir 7 in which the liquid refrigerant X is stored, and the liquid refrigerant X in the liquid reservoir 7 is recirculated to the refrigerant inlet 4. A reflux passage 8 is formed.

上記のように構成したことにより、多管式熱交換器における冷媒還流部6の液溜まり部7に貯溜された液冷媒Xが還流通路8を介して多管式熱交換器における冷媒入口4に還流されることとなり、多管式熱交換器における伝熱管2,2・・に供給される冷媒循環量が液溜まり部8から還流される液冷媒Xの分だけ増加することとなる。従って、各伝熱管2の内面での濡れ面が増加することとなり、伝熱管2内を流れる液冷媒Xから伝熱管2外を流れる被冷却流体水Wへの伝熱効率が向上することとなる。   With the configuration described above, the liquid refrigerant X stored in the liquid reservoir 7 of the refrigerant recirculation unit 6 in the multi-tube heat exchanger enters the refrigerant inlet 4 in the multi-tube heat exchanger via the recirculation passage 8. As a result, the refrigerant circulation amount supplied to the heat transfer tubes 2, 2... In the multi-tube heat exchanger increases by the amount of the liquid refrigerant X that is recirculated from the liquid reservoir 8. Therefore, the wetting surface on the inner surface of each heat transfer tube 2 increases, and the heat transfer efficiency from the liquid refrigerant X flowing in the heat transfer tube 2 to the cooled fluid water W flowing outside the heat transfer tube 2 is improved.

本願発明では、さらに、上記課題を解決するための第2の手段として、上記第1の手段を備えた多管式熱交換器において、前記液溜まり部7の液冷媒Xを前記冷媒入口4へ還流させる冷媒送給手段9を付設することもでき、そのように構成した場合、液溜まり部7に貯溜された液冷媒Xが冷媒送給手段9の送給作用により冷媒入口4へ円滑かつ確実に還流されることとなる。   In the present invention, as a second means for solving the above problem, in the multi-tube heat exchanger provided with the first means, the liquid refrigerant X in the liquid reservoir portion 7 is supplied to the refrigerant inlet 4. Refrigerant feeding means 9 for recirculation can be provided. In such a case, the liquid refrigerant X stored in the liquid reservoir 7 is smoothly and reliably supplied to the refrigerant inlet 4 by the feeding action of the refrigerant feeding means 9. Will be refluxed.

本願発明では、さらに、上記課題を解決するための第3の手段として、上記第2の手段を備えた多管式熱交換器において、前記冷媒送給手段9として、前記冷媒入口4に連通する入口管10における前記還流通路8の接続部に介設されるエゼクタを採用することもでき、そのように構成した場合、エゼクタ9において生ずる負圧により液溜まり部7に貯溜された液冷媒Xが還流通路8を介して入口管10に供給されることとなり、なんら動力を用いることなく、多管式熱交換器における伝熱管2,2・・への冷媒循環量を増加させることが可能となる。   In the present invention, as a third means for solving the above problems, in the multitubular heat exchanger provided with the second means, the refrigerant feeding means 9 communicates with the refrigerant inlet 4. An ejector interposed in the connection portion of the reflux passage 8 in the inlet pipe 10 can also be adopted. In such a configuration, the liquid refrigerant X stored in the liquid storage portion 7 due to the negative pressure generated in the ejector 9 is obtained. The refrigerant is supplied to the inlet pipe 10 through the reflux passage 8, and the circulation amount of the refrigerant to the heat transfer pipes 2, 2,... In the multi-tube heat exchanger can be increased without using any power. .

本願発明の第1の手段によれば、被冷却流体Wが流通する胴体1内に多数の伝熱管2,2・・を水平に配設し、該胴体1の両端に、前記伝熱管2,2・・内への冷媒入口4および冷媒出口5となる冷媒出入口部3と、前記伝熱管2,2・・内を流れる冷媒が還流する冷媒還流部6とを配設してなる多管式熱交換器において、前記冷媒還流部6に、液冷媒Xが貯溜される液溜まり部7を設けるとともに、該液溜まり部7の液冷媒Xを前記冷媒入口4へ還流させる還流通路8を形成して、冷媒還流部6の液溜まり部7に貯溜された液冷媒Xが還流通路8を介して冷媒入口4に還流されるようにしたので、伝熱管2,2・・に供給される冷媒循環量が液溜まり部8から還流される液冷媒Xの分だけ増加することとなり、各伝熱管2の内面での濡れ面が増加することとなって、伝熱管2内を流れる液冷媒Xから伝熱管2外を流れる被冷却流体Wへの伝熱効率が向上するという効果がある。   According to the first means of the present invention, a plurality of heat transfer tubes 2, 2... Are horizontally disposed in the body 1 through which the fluid W to be cooled flows, and the heat transfer tubes 2, 2 are disposed at both ends of the body 1. 2. A multi-tube type in which a refrigerant inlet / outlet part 3 serving as a refrigerant inlet 4 and a refrigerant outlet 5 to the inside and a refrigerant recirculation part 6 through which the refrigerant flowing in the heat transfer pipes 2, 2,. In the heat exchanger, a liquid reservoir portion 7 in which the liquid refrigerant X is stored is provided in the refrigerant recirculation portion 6, and a reflux passage 8 for recirculating the liquid refrigerant X in the liquid reservoir portion 7 to the refrigerant inlet 4 is formed. Since the liquid refrigerant X stored in the liquid reservoir 7 of the refrigerant recirculation part 6 is recirculated to the refrigerant inlet 4 through the recirculation passage 8, the refrigerant circulation supplied to the heat transfer tubes 2, 2,. The amount increases by the amount of the liquid refrigerant X recirculated from the liquid reservoir 8, and the wetted surface on the inner surface of each heat transfer tube 2. It becomes possible to increase an effect of improving the heat transfer efficiency from the liquid refrigerant X flowing in the heat exchanger tube 2 to the fluid to be cooled W flowing through the heat transfer tubes 2 outside.

本願発明の第2の手段におけるように、上記第1の手段を備えた多管式熱交換器において、前記液溜まり部7の液冷媒Xを前記冷媒入口4へ還流させる冷媒送給手段9を付設することもでき、そのように構成した場合、液溜まり部7に貯溜された液冷媒Xが冷媒送給手段9の送給作用により冷媒入口4へ円滑かつ確実に還流されることとなる。   As in the second means of the present invention, in the multi-tube heat exchanger provided with the first means, a refrigerant feeding means 9 for recirculating the liquid refrigerant X in the liquid reservoir 7 to the refrigerant inlet 4 is provided. In this case, the liquid refrigerant X stored in the liquid reservoir 7 is smoothly and reliably recirculated to the refrigerant inlet 4 by the feeding action of the refrigerant feeding means 9.

本願発明の第3の手段におけるように、上記第2の手段を備えた多管式熱交換器において、前記冷媒送給手段9として、前記冷媒入口4に連通する入口管10における前記還流通路8の接続部に介設されるエゼクタを採用することもでき、そのように構成した場合、エゼクタ9において生ずる負圧により液溜まり部7に貯溜された液冷媒Xが還流通路8を介して入口管10に供給されることとなり、なんら動力を用いることなく、多管式熱交換器における伝熱管2,2・・への冷媒循環量を増加させることが可能となる。   As in the third means of the present invention, in the multi-tubular heat exchanger provided with the second means, the reflux passage 8 in the inlet pipe 10 communicating with the refrigerant inlet 4 as the refrigerant feeding means 9. It is also possible to employ an ejector interposed in the connecting portion of the liquid crystal. In such a configuration, the liquid refrigerant X stored in the liquid reservoir portion 7 by the negative pressure generated in the ejector 9 is introduced into the inlet pipe via the reflux passage 8. Thus, the refrigerant circulation amount to the heat transfer tubes 2, 2... In the multi-tube heat exchanger can be increased without using any power.

以下、添付の図面を参照して、本願発明の好適な実施の形態について説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

この多管式熱交換器は、図1に示すように、被冷却流体である水Wが流通する胴体1内に多数の伝熱管2,2・・を水平に配設し、該胴体1の両端に、前記伝熱管2,2・・内への冷媒入口4および冷媒出口5となる冷媒出入口部である前蓋3と、前記伝熱管2,2・・内を流れる冷媒が還流する冷媒還流部である後蓋6とを配設して構成されている。   As shown in FIG. 1, this multitubular heat exchanger has a number of heat transfer tubes 2, 2... Horizontally disposed in a body 1 through which water W as a fluid to be cooled flows. At both ends, a front lid 3 which is a refrigerant inlet / outlet part serving as a refrigerant inlet 4 and a refrigerant outlet 5 into the heat transfer tubes 2, 2... And a refrigerant reflux through which the refrigerant flowing through the heat transfer tubes 2, 2. A rear lid 6 as a part is arranged.

上記構成の多管式熱交換器を乾式水クーラとして使用する場合、図1に示すように、圧縮機11、凝縮器12、膨張機構13および多管式熱交換器14からなる冷凍サイクルに組み込んで使用される。図1において、符号15は水入口、16は水出口である。   When the multi-tube heat exchanger having the above configuration is used as a dry water cooler, it is incorporated into a refrigeration cycle comprising a compressor 11, a condenser 12, an expansion mechanism 13 and a multi-tube heat exchanger 14 as shown in FIG. Used in. In FIG. 1, reference numeral 15 is a water inlet, and 16 is a water outlet.

本実施の形態においては、冷媒還流部である後蓋6には、液冷媒Xが貯溜される液溜まり部7が設けられており、該液溜まり部7の液冷媒Xを前記冷媒入口4へ還流させる還流通路8が形成されている。そして、前記冷媒入口4に連通する入口管10における前記還流通路8の接続部には、前記液溜まり部7の液冷媒Xを前記冷媒入口4へ還流させる冷媒送給手段として機能するエゼクタ9が介設されている。該エゼクタ9は、前記入口管10を流れる液冷媒Xの流速を加速する加速部9aを備えており、該加速部9aの直下流側に前記還流通路8が接続されている。従って、このエゼクタ9においては、前記加速部9aの直下流側に負圧が生ずることとなり、該負圧により還流通路8を介して液溜まり部7の液冷媒Xが冷媒入口4へ還流されることとなる。   In the present embodiment, the rear lid 6 which is a refrigerant recirculation part is provided with a liquid reservoir part 7 for storing the liquid refrigerant X, and the liquid refrigerant X of the liquid reservoir part 7 is supplied to the refrigerant inlet 4. A reflux passage 8 for reflux is formed. An ejector 9 functioning as a refrigerant feeding means for refluxing the liquid refrigerant X in the liquid reservoir 7 to the refrigerant inlet 4 is connected to the reflux passage 8 in the inlet pipe 10 communicating with the refrigerant inlet 4. It is installed. The ejector 9 includes an accelerating portion 9a for accelerating the flow rate of the liquid refrigerant X flowing through the inlet pipe 10, and the reflux passage 8 is connected to the downstream side of the accelerating portion 9a. Accordingly, in this ejector 9, a negative pressure is generated immediately downstream of the acceleration portion 9 a, and the liquid refrigerant X in the liquid reservoir portion 7 is returned to the refrigerant inlet 4 through the reflux passage 8 due to the negative pressure. It will be.

上記冷凍サイクルの場合、圧縮機11で圧縮されたガス冷媒が凝縮器12において凝縮液化されて液冷媒となり、該液冷媒が膨張機構13にて減圧された後、蒸発器として機能する多管式熱交換器14に導かれ、該多管式熱交換器14において蒸発気化する過程で水入口15から供給され、水出口16から導出される水Wを冷却することとなっている。   In the case of the refrigeration cycle, the gas refrigerant compressed by the compressor 11 is condensed and liquefied in the condenser 12 to become liquid refrigerant, and the liquid refrigerant is decompressed by the expansion mechanism 13 and then functions as an evaporator. In the process of being led to the heat exchanger 14 and evaporating and evaporating in the multitubular heat exchanger 14, the water W supplied from the water inlet 15 and led out from the water outlet 16 is cooled.

ところで、本実施の形態においては、後蓋6の液溜まり部7に貯溜された液冷媒Xがエゼクタ9の下流側に生ずる負圧により還流通路8を介して冷媒入口4に還流されることとなっているので、伝熱管2,2・・に供給される冷媒循環量が液溜まり部8から還流される液冷媒Xの分だけ増加することとなる。つまり、冷凍サイクルにおける冷媒循環量Gと還流通路8を介して還流する冷媒還流量gとの合計が多管式熱交換器における冷媒供給量となり、図2に示すように、各伝熱管2の内面での濡れ面が増加することとなる。その結果、伝熱管2内を流れる液冷媒Xから伝熱管2外を流れる水Wへの伝熱効率が向上する。   By the way, in the present embodiment, the liquid refrigerant X stored in the liquid reservoir portion 7 of the rear lid 6 is recirculated to the refrigerant inlet 4 via the recirculation passage 8 due to the negative pressure generated on the downstream side of the ejector 9. Therefore, the refrigerant circulation amount supplied to the heat transfer tubes 2, 2... Increases by the amount of the liquid refrigerant X recirculated from the liquid reservoir 8. That is, the sum of the refrigerant circulation amount G in the refrigeration cycle and the refrigerant recirculation amount g that recirculates through the recirculation passage 8 becomes the refrigerant supply amount in the multi-tube heat exchanger, and as shown in FIG. The wetted surface on the inner surface will increase. As a result, the heat transfer efficiency from the liquid refrigerant X flowing inside the heat transfer tube 2 to the water W flowing outside the heat transfer tube 2 is improved.

しかも、液溜まり部7の液冷媒Xを前記冷媒入口4へ還流させる冷媒送給手段として、冷媒入口4に連通する入口管10における還流通路8の接続部に介設されるエゼクタ9を採用したことにより、エゼクタ9において生ずる負圧により液溜まり部7に貯溜された液冷媒Xが還流通路8を介して入口管10に供給されることとなり、なんら動力を用いることなく、多管式熱交換器における伝熱管2,2・・への冷媒循環量を増加させることが可能となる。   In addition, an ejector 9 interposed in the connection portion of the reflux passage 8 in the inlet pipe 10 communicating with the refrigerant inlet 4 is employed as a refrigerant feeding means for refluxing the liquid refrigerant X in the liquid reservoir 7 to the refrigerant inlet 4. As a result, the liquid refrigerant X stored in the liquid reservoir 7 due to the negative pressure generated in the ejector 9 is supplied to the inlet pipe 10 via the recirculation passage 8, and the multi-tube heat exchange is performed without using any power. It is possible to increase the amount of refrigerant circulation to the heat transfer tubes 2, 2.

上記実施の形態においては、冷媒送給手段としてエゼクタを採用しているが、還流通路の途中にポンプを介設して冷媒送給手段とすることもできる。   In the above embodiment, an ejector is employed as the refrigerant feeding means. However, a pump may be provided in the middle of the recirculation passage to serve as the refrigerant feeding means.

なお、上記実施の形態においては、冷媒が胴体内を1往復することとなっているが、胴体内を冷媒が2往復する場合にも本願発明は適用可能である。その場合においても、液溜まり部は、冷媒還流部に設けられる。   In the above embodiment, the refrigerant reciprocates once in the body, but the present invention can also be applied to the case where the refrigerant reciprocates twice in the body. Even in that case, the liquid reservoir is provided in the refrigerant recirculation part.

本願発明は、上記実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲において適宜設計変更可能なことは勿論である。   The invention of the present application is not limited to the above-described embodiment, and it is needless to say that the design can be appropriately changed without departing from the gist of the invention.

本願発明の実施の形態にかかる多管式熱交換器を用いた冷凍サイクルが示されている。A refrigeration cycle using a multi-tube heat exchanger according to an embodiment of the present invention is shown. 本願発明の実施の形態にかかる多管式熱交換器における伝熱管の拡大断面図である。It is an expanded sectional view of the heat exchanger tube in the multitubular heat exchanger concerning an embodiment of the invention of this application. 従来の多管式熱交換器を用いた冷凍サイクルが示されている。A refrigeration cycle using a conventional multi-tube heat exchanger is shown. 従来の多管式熱交換器における伝熱管の拡大断面図である。It is an expanded sectional view of the heat exchanger tube in the conventional multitubular heat exchanger.

符号の説明Explanation of symbols

1は胴体
2は伝熱管
3は冷媒出入口部(前蓋)
4は冷媒入口
5は冷媒出口
6は冷媒還流部(後蓋)
7は液溜まり部
8は還流通路
9は冷媒送給手段(エゼクタ)
10は入口管
Wは被冷却流体(水)
Xは液冷媒
1 is a fuselage 2 is a heat transfer tube 3 is a refrigerant inlet / outlet part (front cover)
4 is a refrigerant inlet 5 is a refrigerant outlet 6 is a refrigerant recirculation part (rear cover)
7 is a liquid reservoir 8 is a reflux passage 9 is a refrigerant feeding means (ejector)
10 is the inlet pipe W is the fluid to be cooled (water)
X is liquid refrigerant

Claims (3)

被冷却流体(W)が流通する胴体(1)内に多数の伝熱管(2),(2)・・を水平に配設し、該胴体(1)の両端には、前記伝熱管(2),(2)・・内への冷媒入口(4)および冷媒出口(5)となる冷媒出入口部(3)と、前記伝熱管(2),(2)・・内を流れる冷媒が還流する冷媒還流部(6)とを配設してなる多管式熱交換器であって、前記冷媒還流部(6)には、液冷媒(X)が貯溜される液溜まり部(7)を設けるとともに、該液溜まり部(7)の液冷媒(X)を前記冷媒入口(4)へ還流させる還流通路(8)を形成したことを特徴とする多管式熱交換器。   A large number of heat transfer tubes (2), (2),... Are horizontally disposed in the body (1) through which the fluid to be cooled (W) flows, and the heat transfer tubes (2) are disposed at both ends of the body (1). ), (2) .. Refrigerant inlet / outlet part (3) serving as a refrigerant inlet (4) and refrigerant outlet (5), and the refrigerant flowing through the heat transfer tubes (2), (2). A multi-tube heat exchanger comprising a refrigerant recirculation part (6), wherein the refrigerant recirculation part (6) is provided with a liquid reservoir part (7) in which liquid refrigerant (X) is stored. In addition, a multi-pipe heat exchanger is characterized in that a reflux passage (8) for returning the liquid refrigerant (X) in the liquid reservoir (7) to the refrigerant inlet (4) is formed. 前記還流通路(8)には、前記液溜まり部(7)の液冷媒(X)を前記冷媒入口(4)へ還流させる冷媒送給手段(9)を付設したことを特徴とする請求項1記載の多管式熱交換器。   The refrigerant circulation means (9) for recirculating the liquid refrigerant (X) in the liquid reservoir (7) to the refrigerant inlet (4) is attached to the recirculation passage (8). The multitubular heat exchanger described. 前記冷媒送給手段(9)として、前記冷媒入口(4)に供給される冷媒を加速するエゼクタを採用したことを特徴とする請求項2記載の多管式熱交換器。   The multi-tube heat exchanger according to claim 2, wherein an ejector for accelerating the refrigerant supplied to the refrigerant inlet (4) is adopted as the refrigerant feeding means (9).
JP2008101327A 2008-04-09 2008-04-09 Multitubular heat exchanger Pending JP2009250566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101327A JP2009250566A (en) 2008-04-09 2008-04-09 Multitubular heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101327A JP2009250566A (en) 2008-04-09 2008-04-09 Multitubular heat exchanger

Publications (1)

Publication Number Publication Date
JP2009250566A true JP2009250566A (en) 2009-10-29

Family

ID=41311464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101327A Pending JP2009250566A (en) 2008-04-09 2008-04-09 Multitubular heat exchanger

Country Status (1)

Country Link
JP (1) JP2009250566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241910A (en) * 2011-05-13 2012-12-10 Mayekawa Mfg Co Ltd Dry type evaporator, and method for improving cop of existing dry type evaporator
WO2022113815A1 (en) * 2020-11-27 2022-06-02 三菱重工サーマルシステムズ株式会社 Refrigeration machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241910A (en) * 2011-05-13 2012-12-10 Mayekawa Mfg Co Ltd Dry type evaporator, and method for improving cop of existing dry type evaporator
WO2022113815A1 (en) * 2020-11-27 2022-06-02 三菱重工サーマルシステムズ株式会社 Refrigeration machine
JP7566597B2 (en) 2020-11-27 2024-10-15 三菱重工サーマルシステムズ株式会社 Freezer

Similar Documents

Publication Publication Date Title
JP4866416B2 (en) Heat exchanger
CN100575813C (en) Multi-part heat exchanger
JP4324187B2 (en) Heat storage device
KR100816605B1 (en) Two-phase refrigerant distribution system for multiple pass evaporator coils
US20100162749A1 (en) Heat exchanger and refrigerating air conditioner
JP5194868B2 (en) Boiling cooler
JPH10176874A (en) Heat-exchanger
JP2010078268A (en) Evaporator
JP2007232287A (en) Heat exchanger and integral type heat exchanger
EP2282140B1 (en) Heat exchanger and hot-water supply device using same
US20100126213A1 (en) Liquid-Vapor Separating Method and a Liquid-Vapor Separating Type Evaporator
CN104854410A (en) Low pressure chiller
CN108885064A (en) The reservoir of the phase-change material of heat exchanger for motor vehicle air conditioners, equipped with the filling pipe for filling the reservoir
US9777964B2 (en) Micro-port shell and tube heat exchanger
JP2009250566A (en) Multitubular heat exchanger
JP2009058181A (en) Absorption type refrigerating apparatus
US20110024083A1 (en) Heat exchanger
JP2008533430A (en) Accumulator integrated with heat exchanger header
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP4903743B2 (en) Absorption refrigerator
CN105444467A (en) Absorption type heat pump
JP2007333319A (en) Heat exchanger
CN216048500U (en) Supercooling type efficient evaporative condenser
JP2007285531A (en) Heat exchange tube, evaporator and heat pump
JP2009168383A (en) Heat exchanger and heat pump type water heater using the same