[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009250075A - 燃料噴射量制御装置及び燃料噴射システム - Google Patents

燃料噴射量制御装置及び燃料噴射システム Download PDF

Info

Publication number
JP2009250075A
JP2009250075A JP2008096487A JP2008096487A JP2009250075A JP 2009250075 A JP2009250075 A JP 2009250075A JP 2008096487 A JP2008096487 A JP 2008096487A JP 2008096487 A JP2008096487 A JP 2008096487A JP 2009250075 A JP2009250075 A JP 2009250075A
Authority
JP
Japan
Prior art keywords
fuel
temperature
injection amount
detection value
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096487A
Other languages
English (en)
Inventor
Masahiko Yamaguchi
正彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008096487A priority Critical patent/JP2009250075A/ja
Publication of JP2009250075A publication Critical patent/JP2009250075A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】空燃比を目標値に近づけるよう精度良く燃料噴射量を制御できる、燃料噴射量制御装置及び燃料噴射システムを提供する。
【解決手段】車両用の内燃機関に搭載されたインジェクタ(燃料噴射弁)に供給される燃料の温度を燃温検出値として取得する燃温取得手段B20と、吸入空気の温度を吸気温検出値として取得する吸気温取得手段B40とを備える。そして、取得した燃温検出値及び吸気温検出値に基づきインジェクタの温度を推定し、エンジンの運転状態に基づき算出した燃料の基本噴射量を、推定したインジェクタ温度に基づき補正する。
【選択図】 図2

Description

本発明は、車両用の内燃機関に搭載された燃料噴射弁に適用され、燃料噴射弁からの燃料の噴射量を制御する燃料噴射量制御装置に関する。
内燃機関を高負荷で継続して運転した直後に内燃機関を停止させると、内燃機関の雰囲気温度上昇に伴い燃料噴射弁の温度が上昇し、ひいては燃料噴射弁に供給された燃料が高温化して気泡が発生する場合がある。この気泡発生状態で内燃機関を再始動させると、気泡の分だけ燃料噴射量が少なくなってしまい、所望のトルクが得られない、空燃比がリーン化する等の不具合が生じる。この問題に対し特許文献1記載の制御では、燃料噴射弁に供給される燃料の温度を検出し、検出した燃料温度に基づき前記気泡の発生分を見越して燃料の噴射量指令値を増量補正させている。
特開平1−177438号公報
しかしながら、上述の如く燃料温度に基づき噴射量指令値を補正する従来制御では、次の問題が生じることが分かった。すなわち、車両を走行発進させることに伴い吸気管に外気が導入されると、吸入空気温度が急激に低くなる場合があり、その場合には燃料噴射弁の温度が急激に低下することとなる。すると、前記気泡の発生量が少なくなるため、前述した燃料の増量補正では過補正となり、空燃比がリッチ側にずれるという問題が生じる。
特に、内燃機関を高負荷で継続して運転した直後に内燃機関を停止させると、吸気管内の空気(管内空気)は内燃機関により暖められて高温になっているため、この状態で内燃機関を再始動させて車両を発進させると、外気導入により管内空気の温度が急激に低下することとなり、上記過補正が顕著となってしまう。
図4は、このような管内空気の温度変化を示す試験結果であり、内燃機関を停止させてから(図4中のt0時点から)、例えば約20分経過したt1時点で管内空気温度はピーク(例えば約85℃)となる。なお、図4中の一点鎖線は内燃機関の冷却水の温度変化を示しており、車両を発進させなければ、t1時点以降は冷却水温度と管内空気温度とはほぼ一致する。その後、t2時点で内燃機関を始動させてアイドル運転状態とし、t3時点で車両を発進させると、外気導入により管内空気温度は急激に低下する。したがって、外気温度が30℃であったとしても、管内空気温度は85℃から30℃まで急激に低下することとなる。
本発明は、上記課題を解決するためになされたものであり、その目的は、空燃比を目標値に近づけるよう精度良く燃料噴射量を制御できる、燃料噴射量制御装置及び燃料噴射システムを提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
請求項1記載の発明では、
車両用の内燃機関に搭載された燃料噴射弁に供給される燃料の温度、又はその温度と相関のある温度を燃温検出値として取得する燃温取得手段と、
前記内燃機関の燃焼室へ吸入される吸入空気の温度を吸気温検出値として取得する吸気温取得手段と、
前記内燃機関の運転状態に加え、取得した前記燃温検出値及び前記吸気温検出値に基づき、前記燃料噴射弁からの燃料の噴射量指令値を算出する噴射量算出手段と、
を備えることを特徴とする。
これによれば、燃温検出値のみならず吸気温検出値にも基づいて燃料の噴射量指令値を算出するので、先述の如く車両発進時における外気導入に伴い吸気管内の空気温度が急激に低下した場合であっても、気泡発生状態に合った噴射量指令値を精度良く算出でき、実空燃比を目標値に近づけることを精度良くできる。
ここで、内燃機関の運転状態(例えば吸入空気の流量)によって、燃温検出値が気泡発生に与える影響度合い、及び吸気温検出値が気泡発生に与える影響度合いは異なる。この点に鑑みた請求項2記載の発明では、前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値のそれぞれに重み付けをした値に基づき、前記噴射量指令値を算出することを特徴とする。よって、内燃機関の運転状態に応じて気泡発生状態に合った噴射量指令値を算出することを、より一層精度良くできる。
ここで、両検出値が気泡発生に与える影響度合いは吸入空気の流量によって大きく変化する。例えば、発進時における外気導入に伴う燃料噴射弁の冷却度合いは、吸気量が多いほど大きくなるので、気泡発生量も少なくなる。この点に鑑みた請求項3記載の発明では、前記燃温検出値に対する重み付け係数、及び前記吸気温検出値に対する重み付け係数は、前記吸入空気の流量(以下、「吸気量」と呼ぶ)又はその流量と相関のある物理量に基づき可変設定されることを特徴とする。よって、気泡発生状態に合った噴射量指令値を算出することを、より一層精度良くできる。
請求項4記載の発明では、前記燃温取得手段は、前記内燃機関を冷却する冷却水の温度を前記燃温検出値として取得することを特徴とする。内燃機関の温度が高いほどその雰囲気温度上昇に伴い燃料温度も高くなる。そこで、内燃機関の温度と相関の高い冷却水温度を燃温検出値としても噴射量指令値の算出精度はそれほど低下しない。よって、燃料温度を検出する手段を備えていない内燃機関においては、却水温度を燃温検出値として取得することで、専用の燃温検出センサを備えさせることを不要にできる。
請求項5記載の発明では、前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値に基づき前記燃料噴射弁の温度を推定する噴射弁温度推定手段を有し、推定した噴射弁温度に基づき前記噴射量指令値を算出することを特徴とする。このように、両検出値に基づき噴射弁温度を一旦推定しておき、その推定した噴射弁温度に基づき噴射量指令値を算出してもよいし、上記請求項1〜4に記載の発明を実施するにあたり、このような噴射弁温度の推定を廃止して、両検出値に基づき噴射量指令値を直接算出してもよい。
請求項6記載の発明では、前記噴射量算出手段による前記噴射量指令値の算出に対し、前記噴射量指令値の変化量が所定量以下となるよう制限するフィルタ補正手段を備えることを特徴とする。これによれば、吸気温検出値が急激に低下する等に起因して噴射量指令値が急激に変化することを抑制でき、実空燃比を目標値に近づけるにあたり、実空燃比がハンチングしてしまうことを抑制できる。
ところで、燃料の性状に応じて気泡発生量は変化する。例えば、夏用のガソリンは冬用に比べて揮発性が低い性状であるため、気泡発生量は少なくなる。また、ガソリンにアルコールを混合させた燃料の場合にはアルコール濃度に応じて気泡発生量が異なる。したがって、噴射弁温度が所定値以上の場合であり、気泡発生量を見越して噴射量指令値を増量させる度合いが大きい場合には、燃料性状による噴射量の算出誤差が大きいことが懸念される。
この点を鑑み、請求項7記載の発明では、前記噴射量算出手段により算出した噴射量に基づき前記燃料噴射弁の作動を制御した時の実際の空燃比と、前記目標空燃比との偏差を記憶して学習する学習手段を備え、推定した前記噴射弁温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止することを特徴とする。よって、算出誤差が大きい時の空燃比偏差に基づく記憶更新量を制限した上記請求項7記載の発明によれば、学習値に基づく噴射量算出の精度悪化を抑制できる。
請求項8記載の発明では、前記噴射量算出手段は、前記内燃機関の運転状態に基づき基本噴射量を算出する基本噴射量算出手段と、前記燃温検出値及び前記吸気温検出値に基づき前記基本噴射量を補正する補正手段とを有することを特徴とする。このように、回転速度及び負荷に基づき基本噴射量を一旦算出しておき、その算出した基本噴射量を両検出値に基づき補正することで噴射量指令値を算出してもよいし、上記請求項1〜7に記載の発明を実施するにあたり、このような基本噴射量の算出を廃止して、少なくとも回転速度、負荷及び両検出値に基づき、噴射量指令値を直接算出してもよい。
請求項9記載の発明は、車両用の内燃機関に搭載された燃料噴射弁、吸入空気の温度を検出する吸気温センサ、及び燃料の温度を検出する燃温センサの少なくとも1つと、上記燃料噴射量制御装置と、を備えることを特徴とする燃料噴射システムである。この燃料噴射システムによれば、上述の各種効果を同様に発揮することができる。
以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態では、内燃機関であるガソリンエンジンを走行駆動源とした四輪車両を対象としており、はじめに、エンジン及び電子制御ユニット(以下、ECUという)を中心としたエンジン制御システムの全体概略構成を、図1を用いて説明する。
図1に示すエンジン10において、吸気管11の最上流部にはエアクリーナ12が設けられ、このエアクリーナ12の下流側には吸入空気量を検出するためのエアフローメータ13が設けられている。このエアフローメータ13は吸入空気の温度を検出する吸気温センサ13aが内蔵されている。エアフローメータ13の下流側には、DCモータ等のアクチュエータによって開度調節されるスロットルバルブ14と、スロットルバルブ開度を検出するためのスロットルバルブ開度センサ15とが設けられている。
吸気管11のうちスロットルバルブ14の下流側には、吸気管圧力を検出するための吸気管圧力センサ16が設けられている。エンジン10は多気筒エンジンであり、吸気管11のうち吸気管圧力センサ16の下流側部分には、エンジン10の各気筒に空気を導入する吸気マニホールド17が接続されている。吸気マニホールド17のうち各気筒の吸気ポート近傍部分には、燃料を噴射供給する電磁駆動式のインジェクタ18(燃料噴射弁)が各々取り付けられている。
車両に搭載された燃料タンク19内の燃料は、燃料ポンプ20によりデリバリパイプ21(燃料配管)に供給され、デリバリパイプ21から各インジェクタ18に分配供給される。デリバリパイプ21には、燃料の温度を検出する燃温センサ22が取り付けられている。
エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ23及び排気バルブ24が設けられており、吸気バルブ23の開動作により空気と燃料との混合気が燃焼室内に導入され、排気バルブ24の開動作により燃焼後の排ガスが吸気マニホールド25に排出される。
吸気マニホールド25の下流側に位置して各気筒からの排気が集合する部分には、排ガス中のCO,HC,NOx等を浄化するための三元触媒等の触媒装置26が設けられ、この触媒装置26の上流側には排ガスを検出対象として混合気の空燃比を検出するための空燃比センサ27が設けられている。
エンジン10には、吸気バルブ23と排気バルブ24の開閉タイミングをそれぞれ可変する可変バルブタイミング機構23a,24aが設けられている。更に、エンジン10には、吸気カム軸と排気カム軸の回転に同期してカム角信号を出力する吸気カム角センサ23b及び排気カム角センサ24bが設けられ、エンジン10のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ28が設けられている。また、エンジン10のシリンダブロック10aには、主にエンジン10内を循環する冷却水の温度を検出するための冷却水温センサ29が取り付けられている。
エンジン10のシリンダヘッドには気筒毎にそれぞれ点火プラグ(図示せず)が取り付けられており、点火プラグには、点火コイル等よりなる点火装置を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグの対向電極間に火花放電が発生し、燃焼室内に導入した混合気が着火され燃焼に供される。
ECU40(噴射量算出手段)は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されている。ECU40には、前記各種センサ13a,15,22,23b,24b,27,28,29の他、車両に搭載される各種センサから随時入力される各種の検出信号等に基づいてエンジン運転状態や運転者の要求(アクセル操作量等)を把握し、それに応じた各種制御を制御プログラムに従って実行している。
具体的に、ECU40は、前記空燃比センサ27からの検出信号に基づいて空燃比を検出している。この空燃比の検出に基づいて、ECU40は、通常、目標空燃比がストイキ(理論空燃比)であって、その都度の空燃比と目標空燃比との偏差に応じて空燃比補正係数FAFを算出し、算出した空燃比補正係数FAFを基本噴射量に乗算して次回の燃料噴射量を設定する空燃比フィードバック制御を行っている。すなわち、空燃比がリッチ側にシフトすると、ECU40は、空燃比をストイキに維持しようと空燃比補正係数FAFを小さくし、次回の燃料噴射量を減少させる。空燃比がリーン側にシフトすると、ECU40は、空燃比をストイキに維持しようと空燃比補正係数FAFを大きくし、次回の燃料噴射量を増量させる。
ECU40のマイコンが有するEEPROM等のメモリには、空燃比センサ27により検出された実際の空燃比と目標空燃比との偏差と、空燃比補正係数FAFとの関係を特定するマップが記憶されている。そして、マップに記憶された前記偏差を更新することで、学習制御を実行している。但し、後述するインジェクタの推定温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止させている。
また、ECU40は、以下の如く基本噴射量に各種補正を行って燃料の目標噴射量(噴射量指令値)を算出する。すなわち、クランク角センサ28の検出値から算出されるエンジン回転速度(エンジン運転状態)と、エンジン負荷(エンジン運転状態)に基づいて基本噴射量を算出する。エンジン負荷は、スロットルバルブ開度センサ15の検出値から算出されるスロットルバルブ開度や、エアフローメータ13の検出値から算出される吸入空気量等から算出する。基本噴射量に対する補正には、加速応答性を向上させるための加速増量の他、始動後増量、暖気増量等の他、以下に説明する気泡発生分増量補正が挙げられる。
ここで、エンジン10を高負荷で継続して運転した直後にエンジン10を停止させると、エンジン10の雰囲気温度上昇に伴いインジェクタ18のボディの温度やデリバリパイプ21の温度が上昇し、ひいてはインジェクタ18に分配供給された燃料が高温化して気泡が発生する場合がある。そして、この気泡発生状態でエンジン10を再始動させると、気泡の分だけ燃料噴射量が少なくなってしまい、所望のトルクが得られない、空燃比がリーン化する等の不具合が生じる。
そこで本実施形態では、インジェクタの温度を推定し、推定したインジェクタ温度が高いほど気泡発生量が多いとみなして基本噴射量を増量補正(気泡発生分増量補正)している。また、インジェクタの温度を推定するにあたり、吸気温センサ13aの検出値である吸気温検出値と、燃温センサ22の検出値である燃温検出値に基づき、インジェクタ温度を推定している。また、当該推定では、燃温検出値及び吸気温検出値のそれぞれに重み付けをしており、エアフローメータ13の検出値である吸気量検出値に応じてそれぞれの重み付け係数A,B(以下、重み係数と呼ぶ)を可変設定している。
図2を用いてより詳細に説明すると、図2は、ECU40のマイクロコンピュータが上記気泡発生分増量補正を実行する時の機能ブロック図であり、まずブロックB10において、エアフローメータ13による吸気量検出値を取得し、取得した吸気量検出値に基づき燃温検出値に対する前記重み係数A(0≦A≦1)を算出する。換言すれば、ブロックB10は吸気量検出値を重み係数Aに変換する機能ブロックであり、吸気量検出値が大きい値であるほど、その検出値に比例して重み係数Aを小さくするよう設定する。ブロックB20(燃温取得手段)、燃温センサ22による燃温検出値を取得し、取得した燃温検出値に前記重み係数Aを乗算する。
ブロックB30では、吸気温検出値に対する前記重み係数B(0≦B≦1)を、両重み係数A,Bの和が1となるよう算出する(A+B=1)。ブロックB40(吸気温取得手段)、吸気温センサ13aによる吸気温検出値を取得し、取得した吸気温検出値に前記重み係数Bを乗算する。ブロックB50(噴射弁温度推定手段)では、ブロックB20,B40の各々で算出した値を加算することで、インジェクタ18の温度を推定する。但し、ここで推定した温度に対してはブロックB70(フィルタ補正手段)によるフィルタリング処理(なまし処理)が為されることで、ブロックB50で推定した温度の変化量を小さくさせるよう、インジェクタ18の推定温度を補正する。
ブロックB80では、ブロックB70にてフィルタリング処理されたインジェクタ推定温度に基づき、先述した基本噴射量に対する補正量を算出する。換言すれば、ブロックB80はインジェクタ推定温度をインジェクタ補正量に変換する機能ブロックであり、インジェクタ推定温度と補正量との関係は、図3に示す関係となるよう試験等により予め設定されている。そして、例えば前記関係をマップに記憶させ、ブロックB80においてそのマップに基づき補正量を算出すればよい。ちなみに、インジェクタ温度がある程度高温(例えば図3中の符号T10に示す温度)になるまでは、燃料中に気泡は発生しないので、インジェクタ温度上昇に対する補正量の増大量(つまり図3中の曲線の傾き)を小さく設定し、気泡が発生開始する温度T10を超えると、インジェクタ温度上昇に伴い補正量も急激に上昇させるよう(つまり傾きを大きくするよう)マップを設定している。
ブロックB90(基本噴射量算出手段)では、先述した通り、エンジン回転速度及び吸気量(エンジン負荷)に基づいて燃料の基本噴射量を算出する。そして、ブロックB90にて算出した基本噴射量は、先述した加速増量、始動後増量及び暖気増量等の補正が為されるとともに、ブロックB100(補正手段)において、ブロックB90で算出したインジェクタ補正量を加算する補正を行うことで、燃料の最終的な目標噴射量を決定する。そして40は、ブロックB100にて決定した最終目標噴射量となるようインジェクタ18の開弁時間を制御することで、1燃焼サイクル中に噴射される燃料噴射量を制御する。
ここで、図4に示す如く、エンジン10を高負荷で継続して運転した直後にエンジン10を停止させると、吸気管11や吸気マニホールド17内の空気(管内空気)はエンジン10により暖められて高温(例えば約85℃)になる。そして、この状態でエンジン10を再始動させて車両を発進させると、吸気管11や吸気マニホールド17に外気が導入されることに伴い管内空気の温度は急激に低下(例えば約30℃)し、その場合にはインジェクタ18の温度が急激に低下することとなる。すると、燃料中の気泡発生量が少なくなるため、ブロックB50において燃温検出値のみに基づきインジェクタ温度を推定して補正量を算出してしまうと、過補正により空燃比がリッチ側にずれるという問題が生じる。
この問題に対し、以上詳述した本実施形態によれば、燃温検出値のみならず吸気温検出値にも基づいてインジェクタ18の温度を推定し(B50参照)、その推定した温度に基づき基本噴射量を補正する(B80,B100参照)ので、車両発進時における外気導入に伴い管内空気温度が急激に低下した場合であっても、その温度低下を考慮してインジェクタ18の温度を推定するので、気泡発生状態に合った最終的な目標噴射量を精度良く算出でき、実空燃比を目標値に近づけることを精度良くできる。
また、本実施形態によれば、燃温検出値及び吸気温検出値に基づきインジェクタ温度を推定するにあたり、吸気量検出値が大きい値であるほど、吸気温検出値の重み係数Bを大きくしてその重み付けを大きくする。よって、例えば吸気量が多く、吸気温検出値によるインジェクタ温度の影響が大きい場合には、その影響の大きさがインジェクタ温度推定に反映されるので、インジェクタ温度を精度良く推定できる。よって、気泡発生状態に合った補正量を精度良く算出できるので、実空燃比を目標値に近づけることを精度良くできる。
また、本実施形態によれば、燃温検出値及び吸気温検出値に基づきブロックB50にて推定したインジェクタ温度を、ブロックB70によりフィルタリング処理することで推定温度の変化量を小さくさせるので、吸気温検出値が急激に低下する等に起因して目標噴射量が急激に変化することを抑制でき、実空燃比を目標値に近づけるにあたり、実空燃比がハンチングしてしまうことを抑制できる。
ところで、ガソリンの性状やアルコール濃度に応じて気泡発生量は変化する。したがって、インジェクタ温度が高く、気泡発生量を見越して目標噴射量を増量補正させる度合いが大きい場合には、燃料性状による目標噴射量の算出誤差が大きいことが懸念される。この懸念に対し、本実施形態によれば、実際の空燃比と目標空燃比との偏差とその時の空燃比補正係数FAFとの関係を学習するにあたり、インジェクタの推定温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止させるので、このような燃料性状に起因した学習誤差を抑制できる。
(他の実施形態)
上記実施形態は、以下のように変更して実施してもよい。また、本発明は上記実施形態の記載内容に限定されず、以下の各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
・インジェクタ温度を推定するにあたり、燃温センサ22による燃温検出値を用いて推定することに替え、冷却水温センサ29の検出値を用いて推定するようにしてもよい。エンジンを停止させた後、再始動させる時点t2(図4参照)においては、エンジン冷却水の温度と燃料の温度とは相関が高いため、このような冷却水温度を燃温検出値としても目標噴射量の算出精度はそれほど低下しない。そして、燃温センサ22を不要にできる。
・上記実施形態では、燃温センサ22をデリバリパイプ21に取り付けているが、燃料タンク19や燃料ポンプ20、他の配管経路中に取り付けるようにしてもよい。但し、デリバリパイプ21から各気筒に分配されるよりも上流側の部分に取り付けることが望ましい。
・上記実施形態では、吸気量に応じて重み係数A,Bを可変設定しているが、吸気量に替え、吸気量と相関の高いエンジン回転速度や車速等に応じて重み係数A,Bを可変設定するようにしてもよい。
・上記実施形態では、ブロックB50にて推定したインジェクタ温度に対してブロックB70によるフィルタリング処理を行っているが、ブロックB50にて推定したインジェクタ温度に基づきブロックB80において補正量を算出し、その算出した補正量に対してフィルタリング処理を行うようにしてもよい。
・上記実施形態では、点火式のガソリンエンジンに搭載されたインジェクタ18に本発明の制御装置を適用させているが、自己着火式のディーゼルエンジンに搭載されたインジェクタに本発明の制御装置を適用させてもよい。
本発明の一実施形態にかかる燃料噴射量制御装置が適用された、エンジン制御システムの全体概略構成を示す図。 図1中のECUが気泡発生分増量補正を実行する時の機能ブロック図。 図2中のブロックB50における補正量を算出するにあたり、インジェクタ推定温度と補正量との関係を示す図。 車両発進に伴い管内空気が急激に低下する様子を示すタイムチャート。
符号の説明
10…ガソリンエンジン(内燃機関)、13a…吸気温センサ、18…インジェクタ(燃料噴射弁)、22…燃温センサ、40…ECU(噴射量算出手段)、B20…燃温取得手段、B40…吸気温取得手段、B50…噴射弁温度推定手段、B70…フィルタ補正手段、B90…基本噴射量算出手段、B100…補正手段。

Claims (9)

  1. 車両用の内燃機関に搭載された燃料噴射弁に供給される燃料の温度、又はその温度と相関のある温度を燃温検出値として取得する燃温取得手段と、
    前記内燃機関の燃焼室へ吸入される吸入空気の温度を吸気温検出値として取得する吸気温取得手段と、
    前記内燃機関の運転状態に加え、取得した前記燃温検出値及び前記吸気温検出値に基づき、前記燃料噴射弁からの燃料の噴射量指令値を算出する噴射量算出手段と、
    を備えることを特徴とする燃料噴射量制御装置。
  2. 前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値のそれぞれに重み付けをした値に基づき、前記噴射量指令値を算出することを特徴とする請求項1に記載の燃料噴射量制御装置。
  3. 前記燃温検出値に対する重み付け係数、及び前記吸気温検出値に対する重み付け係数は、前記吸入空気の流量又はその流量と相関のある物理量に基づき可変設定されることを特徴とする請求項2に記載の燃料噴射量制御装置。
  4. 前記燃温取得手段は、前記内燃機関を冷却する冷却水の温度を前記燃温検出値として取得することを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射量制御装置。
  5. 前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値に基づき前記燃料噴射弁の温度を推定する噴射弁温度推定手段を有し、推定した噴射弁温度に基づき前記噴射量指令値を算出することを特徴とする請求項1〜4のいずれか1つに記載の燃料噴射量制御装置。
  6. 前記噴射量算出手段による前記噴射量指令値の算出に対し、前記噴射量指令値の変化量が所定量以下となるよう制限するフィルタ補正手段を備えることを特徴とする請求項5に記載の燃料噴射量制御装置。
  7. 前記噴射量算出手段により算出した噴射量に基づき前記燃料噴射弁の作動を制御した時の実際の空燃比と、前記目標空燃比との偏差を記憶して学習する学習手段を備え、
    推定した前記噴射弁温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止することを特徴とする請求項5又は6に記載の燃料噴射量制御装置。
  8. 前記噴射量算出手段は、前記内燃機関の運転状態に基づき基本噴射量を算出する基本噴射量算出手段と、前記燃温検出値及び前記吸気温検出値に基づき前記基本噴射量を補正する補正手段とを有することを特徴とする請求項1〜7のいずれか1つに記載の燃料噴射量制御装置。
  9. 車両用の内燃機関に搭載された燃料噴射弁、吸入空気の温度を検出する吸気温センサ、及び燃料の温度を検出する燃温センサの少なくとも1つと、
    請求項1〜8のいずれか1つに記載の燃料噴射量制御装置と、
    を備えることを特徴とする燃料噴射システム。
JP2008096487A 2008-04-02 2008-04-02 燃料噴射量制御装置及び燃料噴射システム Pending JP2009250075A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096487A JP2009250075A (ja) 2008-04-02 2008-04-02 燃料噴射量制御装置及び燃料噴射システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096487A JP2009250075A (ja) 2008-04-02 2008-04-02 燃料噴射量制御装置及び燃料噴射システム

Publications (1)

Publication Number Publication Date
JP2009250075A true JP2009250075A (ja) 2009-10-29

Family

ID=41311023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096487A Pending JP2009250075A (ja) 2008-04-02 2008-04-02 燃料噴射量制御装置及び燃料噴射システム

Country Status (1)

Country Link
JP (1) JP2009250075A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181490A (ja) * 2012-03-02 2013-09-12 Denso Corp 電子制御装置
KR101544795B1 (ko) * 2014-07-07 2015-08-18 현대오트론 주식회사 차량 엔진의 연료 분사량 보정 방법
JP2017172384A (ja) * 2016-03-22 2017-09-28 株式会社豊田中央研究所 機関燃料系の燃料温度の推定に用いる適合係数の適合方法及び燃料温度推定装置及びポンプ制御装置
CN113700567A (zh) * 2020-05-21 2021-11-26 丰田自动车株式会社 燃料种类推定系统、数据解析装置、燃料供给装置的控制装置
CN117889008A (zh) * 2024-03-14 2024-04-16 潍柴动力股份有限公司 发动机动态烟度控制方法、装置和电子控制装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181490A (ja) * 2012-03-02 2013-09-12 Denso Corp 電子制御装置
DE102013203063B4 (de) * 2012-03-02 2020-11-26 Denso Corporation Elektronisches Regelungssystem
KR101544795B1 (ko) * 2014-07-07 2015-08-18 현대오트론 주식회사 차량 엔진의 연료 분사량 보정 방법
JP2017172384A (ja) * 2016-03-22 2017-09-28 株式会社豊田中央研究所 機関燃料系の燃料温度の推定に用いる適合係数の適合方法及び燃料温度推定装置及びポンプ制御装置
CN113700567A (zh) * 2020-05-21 2021-11-26 丰田自动车株式会社 燃料种类推定系统、数据解析装置、燃料供给装置的控制装置
CN117889008A (zh) * 2024-03-14 2024-04-16 潍柴动力股份有限公司 发动机动态烟度控制方法、装置和电子控制装置

Similar Documents

Publication Publication Date Title
JP2008309036A (ja) 燃料推定装置
JP5927024B2 (ja) エンジンの始動制御装置
JP2009264281A (ja) ディーゼルエンジンの始動後制御装置
JP2009250058A (ja) 酸素濃度センサの劣化判定装置及び劣化判定システム
JP2009250075A (ja) 燃料噴射量制御装置及び燃料噴射システム
JP4322297B2 (ja) 内燃機関の制御装置
JP2005048659A (ja) 燃料温度推定装置
JP4387384B2 (ja) 内燃機関の制御装置
JP2008082227A (ja) 内燃機関の制御装置
JP2002047983A (ja) 内燃機関の高圧燃料供給システムの異常診断装置
JP4052521B2 (ja) 内燃機関の制御装置
JP2019183694A (ja) セタン価推定装置
US20090105931A1 (en) Controller for internal combustion engine
JP4161772B2 (ja) 内燃機関の制御装置
JP4475207B2 (ja) 内燃機関の制御装置
JP2011226350A (ja) 内燃機関の空燃比制御装置
JPH08200166A (ja) 空燃比制御装置
JP4743090B2 (ja) 多気筒エンジンの燃料噴射装置
JP2015140791A (ja) 内燃機関の制御装置
JP5658205B2 (ja) 内燃機関の始動制御装置
JP5637098B2 (ja) 内燃機関の制御装置
JP4371028B2 (ja) エンジンの空燃比制御装置
JP2004190592A (ja) 内燃機関の制御装置
JP2003138961A (ja) 内燃機関の始動制御装置
JP2006183500A (ja) 内燃機関の燃料噴射制御装置