[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009244091A - Substrate inspection apparatus and method - Google Patents

Substrate inspection apparatus and method Download PDF

Info

Publication number
JP2009244091A
JP2009244091A JP2008090816A JP2008090816A JP2009244091A JP 2009244091 A JP2009244091 A JP 2009244091A JP 2008090816 A JP2008090816 A JP 2008090816A JP 2008090816 A JP2008090816 A JP 2008090816A JP 2009244091 A JP2009244091 A JP 2009244091A
Authority
JP
Japan
Prior art keywords
substrate
light
edge
scattered
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008090816A
Other languages
Japanese (ja)
Other versions
JP5178281B2 (en
Inventor
Takashi Ishii
隆嗣 石井
Yuichi Shimoda
勇一 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008090816A priority Critical patent/JP5178281B2/en
Publication of JP2009244091A publication Critical patent/JP2009244091A/en
Application granted granted Critical
Publication of JP5178281B2 publication Critical patent/JP5178281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a detection precision of defects by eliminating the influence of noise at the peripheral section of a substrate in an inspection of defects in the transparent substrate have a large plate thickness. <P>SOLUTION: An inspection table 5 supports the square, transparent substrate 1 only by the two opposing sides. A light projection system obliquely irradiates the surface of the substrate 1 with rays, moves the rays by a prescribed distance in a direction vertical to the two supported sides of the substrate 1, and scans the substrate 1 with the rays. A CPU 60 excludes the irradiation range of rays that are scattered by a taper of the edge of the substrate 1 and generates scattered light to the surface of the substrate 1 and the irradiation range of rays that are scattered by the inspection table 5 and generate scattered light onto the surface of the substrate 1, determines the inspection range of the substrate 1, detects a position on the surface of the substrate 1 irradiated with rays, and detects the position of a defect detected by defect detection circuits 25, 35. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、露光用マスク等に用いられるガラス基板や石英基板等の板厚の大きな基板の欠陥を検出する基板検査装置及び基板検査方法に係り、特に透明な基板を検査するのに好適な基板検査装置及び基板検査方法に関する。   The present invention relates to a substrate inspection apparatus and a substrate inspection method for detecting a defect in a substrate having a large thickness such as a glass substrate or a quartz substrate used for an exposure mask or the like, and particularly suitable for inspecting a transparent substrate. The present invention relates to an inspection apparatus and a substrate inspection method.

表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトマスクのパターンをガラス基板やプラスチック基板等のパネル基板に転写して行われる。フォトマスクは、ガラス基板や石英基板等のマスク基板の表面に、パターンの部分以外の光を遮断するクロム膜等を形成して製造される。マスク基板に傷や異物等の欠陥が存在すると、クロム膜等の形成やパターンの転写が良好に行われず、不良の原因となる。このため、基板検査装置を用いて、マスク基板の欠陥の検査が行われている。   Manufacturing of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electroluminescence) display panel substrates, etc. of liquid crystal display devices used as display panels is performed by using an exposure apparatus and a photomask. This pattern is transferred to a panel substrate such as a glass substrate or a plastic substrate. A photomask is manufactured by forming a chromium film or the like that blocks light other than a pattern portion on the surface of a mask substrate such as a glass substrate or a quartz substrate. If a defect such as a scratch or a foreign substance exists on the mask substrate, the formation of the chromium film or the like and the transfer of the pattern are not performed satisfactorily, causing a defect. For this reason, a defect inspection of a mask substrate is performed using a substrate inspection apparatus.

従来の基板検査装置によるマスク基板の検査では、できるだけマスク基板に接触しない様にするため、四角形のマスク基板の四辺又は四隅を支持しながら検査を行っていた。しかしながら、従来の様に基板の四辺又は四隅を支持する場合、基板の裏面を一切支持しないと、基板がその自重によってすり鉢状にたわみ、特に基板が大型になる程たわみ量が大きくなる。このため、従来の基板検査装置で光学系の焦点位置を基板に合わせるためには、複雑な計算を行って基板のたわみを解析するか、あるいはオートフォーカス機構等を用いて基板の表面の高さを実際に測定し、基板の複雑なたわみに応じて基板又は光学系を上下に移動する必要があった。これに対し、特許文献1には、基板をその向かい合う二辺だけで支持し、支持された基板のたわみに応じて、基板支持手段又は光学系を上下へ移動して、光学系の焦点位置の調整を簡単に行う技術が開示されている。
特開2007−107884号公報
In the inspection of the mask substrate by the conventional substrate inspection apparatus, the inspection is performed while supporting the four sides or the four corners of the rectangular mask substrate so as not to contact the mask substrate as much as possible. However, when supporting the four sides or the four corners of the substrate as in the conventional case, if the back surface of the substrate is not supported at all, the substrate bends in a mortar shape due to its own weight, and the amount of deflection increases especially as the substrate becomes larger. For this reason, in order to adjust the focal position of the optical system to the substrate with a conventional substrate inspection apparatus, a complicated calculation is performed to analyze the deflection of the substrate, or the height of the surface of the substrate using an autofocus mechanism or the like. It was necessary to actually move the substrate or the optical system up and down according to the complicated deflection of the substrate. On the other hand, in Patent Document 1, the substrate is supported by only two sides facing each other, and the substrate support means or the optical system is moved up and down in accordance with the deflection of the supported substrate, so that the focal position of the optical system is determined. A technique for easily performing the adjustment is disclosed.
JP 2007-107884 A

特許文献1に記載の基板検査装置は、クロム膜等によりパターンが形成された膜付きのマスク基板について、異物やクロム膜のピンホール等の欠陥が無いか検査するものであった。マスク基板のクロム膜の部分へ照射された検査光は、クロム膜で反射され、クロム膜にピンホールが存在すると、ピンホールのところだけ検査光が透過する。従って、マスク基板のクロム膜で覆われた周辺部では、クロム膜にピンホールが存在しない限り、検査光がマスク基板の内部へ透過することはなかった。   The substrate inspection apparatus described in Patent Document 1 inspects a mask substrate with a film on which a pattern is formed by a chromium film or the like for defects such as foreign matter and chromium film pinholes. The inspection light applied to the chromium film portion of the mask substrate is reflected by the chromium film, and if there is a pinhole in the chromium film, the inspection light is transmitted only at the pinhole. Therefore, in the peripheral portion of the mask substrate covered with the chromium film, the inspection light did not pass through the inside of the mask substrate unless there was a pinhole in the chromium film.

特許文献1に記載の技術を用いて、クロム膜が付いていない全体に透明なマスク基板の検査を行ったところ、マスク基板の周辺部で、マスク基板の内部へ透過した検査光が、基板の縁のテーパや基板を支持する基板支持体により散乱されて、散乱光が発生し、それらがノイズとして検出されるという問題が発生した。   Using the technique described in Patent Document 1, when the inspection of the transparent mask substrate was performed on the entire surface without the chromium film, the inspection light transmitted to the inside of the mask substrate at the periphery of the mask substrate was Scattered by the edge taper or the substrate support that supports the substrate, scattered light is generated, and these are detected as noise.

本発明の課題は、板厚の大きい透明な基板の欠陥の検査において、基板の周辺部のノイズの影響を無くし、欠陥の検出精度を向上させることである。   An object of the present invention is to eliminate the influence of noise around the periphery of a substrate in a defect inspection of a transparent substrate having a large plate thickness and to improve the defect detection accuracy.

本発明の基板検査装置は、四角形の透明な基板をその向かい合う二辺だけで支持する検査テーブルと、光線を基板の表面へ斜めに照射しながら、光線を基板の支持された二辺と垂直な方向へ所定の距離だけ移動して、基板の走査を行う投光系と、レンズと複数の光ファイバーを束ねた受光部とを有し、光線が基板の欠陥により散乱された散乱光を受光する受光系と、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と平行な方向へ移動する第1の移動手段と、第1の移動手段を制御する第1の制御手段と、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と垂直な方向へ移動して、光線による基板の走査範囲を変更する第2の移動手段と、第2の移動手段を制御する第2の制御手段と、受光系が受光した散乱光から基板の欠陥を検出する検出手段と、基板の検査範囲を決定して第1の制御手段及び第2の制御手段に指示し、光線が照射されている基板の表面上の位置を検出して、検出手段が検出した欠陥の位置を検出する処理手段とを備え、処理手段が、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を除外して、基板の検査範囲を決定するものである。   The substrate inspection apparatus according to the present invention includes an inspection table that supports a rectangular transparent substrate only on two sides facing each other, and a light beam that is perpendicular to the two sides supported by the substrate while obliquely irradiating the surface of the substrate with the light beam. A light receiving system that moves a predetermined distance in the direction and scans the substrate, and a light receiving unit that bundles a lens and a plurality of optical fibers, and receives the scattered light that is scattered by the defect of the substrate. A first moving means for relatively moving the system, the inspection table, the light projecting system and the light receiving system in a direction parallel to the two sides supported by the substrate; and a first control for controlling the first moving means. A second moving means for moving the inspection table, the light projecting system and the light receiving system relative to each other in a direction perpendicular to the two sides supported by the substrate to change the scanning range of the substrate by the light beam; The second control means for controlling the two moving means and the light receiving system Detection means for detecting a defect of the substrate from the scattered light, and determining the inspection range of the substrate and instructing the first control means and the second control means to detect the position on the surface of the substrate irradiated with the light beam And processing means for detecting the position of the defect detected by the detection means, and the processing means irradiates the surface of the substrate with a light beam scattered by the edge taper of the substrate and generates scattered light, and inspection. The inspection range of the substrate is determined by excluding the irradiation range of the light beam scattered by the table and generating scattered light on the surface of the substrate.

また、本発明の基板検査方法は、検査テーブルにより、四角形の透明な基板をその向かい合う二辺だけで支持し、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を除外して、基板の検査範囲を決定し、投光系から光線を基板の表面へ斜めに照射しながら、光線を基板の支持された二辺と垂直な方向へ所定の距離だけ移動して、基板の走査を行い、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と平行な方向へ移動し、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と垂直な方向へ移動して、光線による基板の走査範囲を変更し、これらを繰り返して、検査範囲全体で光線による基板の走査を行い、光線が基板の欠陥により散乱された散乱光を受光系で受光し、受光した散乱光から基板の表面の欠陥を検出し、光線が照射されている基板の表面上の位置を検出して、検出した欠陥の位置を検出するものである。   In the substrate inspection method of the present invention, a rectangular transparent substrate is supported by only two opposite sides by the inspection table, and the light beam scattered by the taper of the edge of the substrate to generate scattered light is applied to the surface of the substrate. Exclude the irradiation range and the irradiation range to the substrate surface of the light beam scattered by the inspection table to generate scattered light, determine the inspection range of the substrate, and irradiate the light beam obliquely from the light projection system to the surface of the substrate While moving the light beam by a predetermined distance in the direction perpendicular to the two sides supported by the substrate, the substrate is scanned, and the inspection table, the light projecting system and the light receiving system are relatively supported by the substrate. Move in the direction parallel to the two sides, move the inspection table, the light projecting system and the light receiving system in a direction relatively perpendicular to the two sides supported by the substrate, change the scanning range of the substrate by the light beam, Repeat these steps to apply light to the entire inspection range. The substrate is scanned, the scattered light scattered by the defects on the substrate is received by the light receiving system, the defect on the surface of the substrate is detected from the received scattered light, and the surface of the substrate irradiated with the light is detected. The position of the detected defect is detected by detecting the position.

検査テーブルにより、四角形の透明な基板をその向かい合う二辺だけで支持し、投光系から光線を基板の表面へ斜めに照射しながら、光線を基板の支持された二辺と垂直な方向へ所定の距離だけ移動して、光線による基板の走査を行い、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と平行な方向へ移動し、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と垂直な方向へ移動して、光線による基板の走査範囲を変更し、これらを繰り返して、検査範囲全体で光線による基板の走査を行う。このとき、基板全体を検査範囲とすると、基板の周辺部において、基板の縁のテーパへ直接照射された光線が、基板の縁のテーパにより散乱されて、散乱光が発生する。また、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパへ照射された光線が、基板の縁のテーパにより散乱されて、散乱光が発生する。基板の支持された二辺と垂直な方向では、さらに、基板の内部へ透過して基板の裏面から射出されて検査テーブルへ照射された光線が、検査テーブルにより散乱されて、散乱光が発生する。そして、これらの散乱光がノイズとして検出され、欠陥の検出精度が低下する。本発明では、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を除外して、基板の検査範囲を決定するので、基板の周辺部のノイズの影響が無くなり、欠陥の検出精度が向上する。   The inspection table supports a rectangular transparent substrate only on its two opposite sides, and irradiates light rays from the light projecting system obliquely onto the surface of the substrate, while irradiating the light rays in a direction perpendicular to the two supported sides of the substrate. The distance between the inspection table, the light projecting system, and the light receiving system is relatively moved in a direction parallel to the two sides supported by the substrate. And the light receiving system is moved in a direction perpendicular to the two sides supported by the substrate, the scanning range of the substrate by the light beam is changed, and these steps are repeated to scan the substrate by the light beam over the entire inspection range. . At this time, when the entire substrate is set as the inspection range, the light beam directly irradiated to the taper at the edge of the substrate is scattered by the taper at the edge of the substrate in the peripheral portion of the substrate, and scattered light is generated. In addition, light rays that have been transmitted into the substrate, reflected by the back surface of the substrate, and applied to the taper at the edge of the substrate are scattered by the taper at the edge of the substrate, generating scattered light. In the direction perpendicular to the two supported sides of the substrate, the light beam that has passed through the substrate, is emitted from the back surface of the substrate, and is irradiated onto the inspection table is scattered by the inspection table to generate scattered light. . And these scattered lights are detected as noise, and the detection accuracy of a defect falls. In the present invention, the irradiation range of the light beam scattered by the edge of the substrate and generating scattered light to the surface of the substrate, and the irradiation range of the light beam scattered by the inspection table and generating the scattered light to the surface of the substrate. Since the inspection range of the substrate is determined by excluding it, the influence of noise around the substrate is eliminated, and the defect detection accuracy is improved.

さらに、本発明の基板検査装置は、検査テーブルが、基板の向かい合う二辺の底に接触する傾斜面を有する基板支持部を有し、処理手段が、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面から射出されて基板支持部の角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と垂直な方向の検査範囲を決定するものである。また、本発明の基板検査方法は、検査テーブルに、基板の向かい合う二辺の底に接触する傾斜面を有する基板支持部を設け、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面から射出されて基板支持部の角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と垂直な方向の検査範囲を決定するものである。   Further, in the substrate inspection apparatus of the present invention, the inspection table has a substrate support portion having an inclined surface that contacts the bottoms of the two opposite sides of the substrate, and the processing means is transmitted to the inside of the substrate and on the back surface of the substrate. The light beam reflected and irradiated to the taper corner of the edge of the substrate passes from the irradiation position on the surface of the substrate to the edge of the substrate, passes through the inside of the substrate and is emitted from the back surface of the substrate to the corner of the substrate support section. The inspection range in the direction perpendicular to the two supported sides of the substrate is determined by excluding the irradiation position of the irradiated light from the surface of the substrate to the edge of the substrate. In the substrate inspection method of the present invention, the inspection table is provided with a substrate support portion having an inclined surface that contacts the bottoms of the two opposite sides of the substrate, and is transmitted to the inside of the substrate and reflected by the back surface of the substrate. From the irradiation position on the front surface of the substrate to the edge of the substrate from the irradiation position of the light beam to the corner of the edge taper, the light beam transmitted to the inside of the substrate and emitted from the back surface of the substrate and irradiated to the corner of the substrate support section The inspection range in the direction perpendicular to the two supported sides of the substrate is determined by excluding from the irradiation position on the surface of the substrate to the edge of the substrate.

基板の支持された二辺と垂直な方向では、光線を所定の距離だけ移動して、光線による基板の走査を行い、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と垂直な方向へ移動して、光線による基板の走査範囲を変更する。このとき、基板の支持された二辺と垂直な方向の幅全体を検査範囲とすると、基板の支持された二辺の周辺部において、基板の縁のテーパの角へ直接照射された光線、及び基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射された光線が、基板の縁のテーパの角により散乱されて、散乱光が発生する。また、基板の内部へ透過して基板の裏面から射出されて検査テーブルの基板支持部の角へ照射された光線が、基板支持部の角により散乱されて、散乱光が発生する。基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置は、基板の縁のテーパの角へ直接照射される光線の基板の表面への照射位置よりも基板の内側にあり、基板の厚さに応じて変化する。基板の内部へ透過して基板の裏面から射出されて基板支持部の角へ照射される光線の基板の表面への照射位置も、基板の厚さに応じて変化する。そこで、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面から射出されて基板支持部の角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と垂直な方向の検査範囲を決定する。基板の支持された二辺と垂直な方向において、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲が、検査範囲から確実に除外される。   In the direction perpendicular to the two sides supported by the substrate, the light beam is moved by a predetermined distance, the substrate is scanned by the light beam, and the inspection table, the light projecting system and the light receiving system are relatively supported by the substrate. Moving in the direction perpendicular to the two sides, the scanning range of the substrate by the light beam is changed. At this time, assuming that the entire width in the direction perpendicular to the two supported sides of the substrate is the inspection range, the light beam directly irradiated to the taper corner of the edge of the substrate in the peripheral portion of the two supported sides of the substrate, and Light rays that are transmitted into the substrate, reflected by the back surface of the substrate, and applied to the taper corner of the substrate edge are scattered by the taper corner of the substrate edge, and scattered light is generated. In addition, light rays that have been transmitted through the substrate and emitted from the back surface of the substrate and applied to the corners of the substrate support portion of the inspection table are scattered by the corners of the substrate support portion, and scattered light is generated. The irradiation position of the light beam that is transmitted into the substrate and reflected by the back surface of the substrate and applied to the taper corner of the substrate edge on the surface of the substrate is the position of the light beam directly applied to the taper corner of the substrate edge. It is inside the substrate with respect to the irradiation position on the surface of the substrate, and changes according to the thickness of the substrate. The irradiation position on the surface of the substrate of the light beam that is transmitted into the substrate and emitted from the back surface of the substrate and irradiated on the corners of the substrate support portion also changes according to the thickness of the substrate. Therefore, the light beam that is transmitted to the inside of the substrate, reflected from the back surface of the substrate, and irradiated to the taper corner of the substrate edge is transmitted from the irradiation position to the substrate edge to the inside of the substrate. Inspection range in the direction perpendicular to the two supported sides of the substrate, excluding from the irradiation position on the surface of the substrate to the edge of the substrate, which is emitted from the back surface of the substrate and irradiated to the corner of the substrate support section To decide. In the direction perpendicular to the two supported sides of the substrate, the irradiation range of the light beam that is scattered by the taper at the edge of the substrate and generates scattered light, and the light beam that is scattered by the inspection table and generates scattered light The irradiation range on the surface of the substrate is surely excluded from the inspection range.

さらに、本発明の基板検査装置は、処理手段が、基板の縁のテーパの角へ直接照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と平行な方向の検査範囲を決定するものである。また、本発明の基板検査方法は、基板の縁のテーパの角へ直接照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と平行な方向の検査範囲を決定するものである。   Further, in the substrate inspection apparatus of the present invention, the processing means transmits the light beam directly irradiated onto the taper corner of the substrate edge from the irradiation position to the edge of the substrate to the edge of the substrate and passes through the inside of the substrate. Inspection in a direction parallel to the two supported sides of the substrate, excluding from the irradiation position on the surface of the substrate to the edge of the substrate, which is reflected from the back surface of the substrate and irradiated to the taper corner of the substrate edge The range is determined. Further, the substrate inspection method of the present invention transmits the light beam directly irradiated to the taper corner of the substrate edge from the irradiation position to the substrate edge to the inside of the substrate and reflects on the back surface of the substrate. The inspection range in the direction parallel to the two supported sides of the substrate is determined by excluding from the irradiation position of the light beam applied to the taper corner of the substrate edge to the edge of the substrate. Is.

基板の支持された二辺と平行な方向では、検査テーブルと投光系及び受光系とを相対的に移動して、光線による基板の走査を行う。このとき、基板の支持された二辺と平行な方向の幅全体を検査範囲とすると、光線を基板の表面へ斜めに照射しているので、基板の支持された二辺と垂直な一方の辺の周辺部では、基板の縁のテーパの角へ直接照射された光線のみが、基板の縁のテーパの角により散乱されて、散乱光が発生する。基板の支持された二辺と垂直な他方の辺の周辺部では、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射された光線と、基板の縁のテーパの角へ直接照射された光線とが、基板の縁のテーパの角により散乱されて、散乱光が発生する。そこで、基板の縁のテーパの角へ直接照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と平行な方向の検査範囲を決定する。基板の支持された二辺と平行な方向において、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲が、検査範囲から確実に除外される。   In the direction parallel to the two sides supported by the substrate, the inspection table, the light projecting system, and the light receiving system are relatively moved, and the substrate is scanned with the light beam. At this time, if the entire width in the direction parallel to the two supported sides of the substrate is the inspection range, the light beam is obliquely applied to the surface of the substrate, so one side perpendicular to the two supported sides of the substrate In the peripheral portion, only the light beam directly irradiated to the taper corner of the substrate edge is scattered by the taper corner of the substrate edge to generate scattered light. At the periphery of the other side perpendicular to the two supported sides of the substrate, the light beam transmitted to the inside of the substrate, reflected by the back surface of the substrate and irradiated to the taper corner of the substrate edge, and the edge of the substrate Light rays directly applied to the taper corner are scattered by the taper corner of the edge of the substrate, and scattered light is generated. Therefore, the light beam directly radiated onto the taper corner of the substrate is transmitted from the irradiation position on the surface of the substrate to the edge of the substrate and transmitted to the inside of the substrate and reflected by the back surface of the substrate, and the taper of the edge of the substrate is reflected. The inspection range in the direction parallel to the two supported sides of the substrate is determined by excluding from the irradiation position of the light beam irradiated to the corner to the edge of the substrate. In the direction parallel to the two supported sides of the substrate, the irradiation range on the surface of the substrate that is scattered by the taper of the edge of the substrate and generates scattered light is reliably excluded from the inspection range.

本発明によれば、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を除外して、基板の検査範囲を決定することにより、板厚の大きい透明な基板の欠陥の検査において、基板の周辺部のノイズの影響を無くし、欠陥の検出精度を向上させることができる。   According to the present invention, the irradiation range of the light beam scattered by the edge taper of the substrate to generate the scattered light on the surface of the substrate, and the irradiation of the light beam scattered by the inspection table to generate the scattered light to the surface of the substrate. By excluding the range and determining the inspection range of the substrate, in the inspection of the defect of the transparent substrate having a large thickness, it is possible to eliminate the influence of the noise in the peripheral portion of the substrate and improve the detection accuracy of the defect. .

さらに、本発明によれば、検査テーブルに、基板の向かい合う二辺の底に接触する傾斜面を有する基板支持部を設け、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面から射出されて基板支持部の角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と垂直な方向の検査範囲を決定することにより、基板の支持された二辺と垂直な方向において、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を、検査範囲から確実に除外することができる。   Further, according to the present invention, the inspection table is provided with a substrate support portion having an inclined surface that contacts the bottoms of the two opposite sides of the substrate, transmitted to the inside of the substrate and reflected by the back surface of the substrate, and From the irradiation position of the light beam irradiated to the corner of the taper to the edge of the substrate to the edge of the substrate, the light beam irradiated to the corner of the substrate support part through the inside of the substrate and emitted from the back surface of the substrate The substrate in the direction perpendicular to the two supported sides of the substrate is determined by determining the inspection range in the direction perpendicular to the two supported sides of the substrate, excluding from the irradiation position on the surface to the edge of the substrate. The irradiation range of the light beam scattered by the edge taper to generate the scattered light on the surface of the substrate and the irradiation range of the light beam scattered by the inspection table to generate the scattered light from the inspection range are surely confirmed. Can be excluded.

さらに、本発明によれば、基板の縁のテーパの角へ直接照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と平行な方向の検査範囲を決定することにより、基板の支持された二辺と平行な方向において、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を、検査範囲から確実に除外することができる。   Further, according to the present invention, the light beam directly radiated to the taper corner of the substrate edge is transmitted from the irradiation position on the substrate surface to the edge of the substrate and is reflected from the back surface of the substrate. By determining the inspection range in the direction parallel to the two supported sides of the substrate, excluding from the irradiation position of the light beam irradiated to the taper corner of the substrate edge to the edge of the substrate The irradiation range of the light beam that is scattered by the taper of the edge of the substrate and generates scattered light in the direction parallel to the two supported sides of the substrate can be reliably excluded from the inspection range.

図1は、本発明の一実施の形態による基板検査装置の概略構成を示す図である。基板検査装置は、検査テーブル5、投光系、角度検出器15、上受光系20、下受光系30、アンプ24,34、欠陥検出回路25,35、焦点調節機構40、焦点調節制御回路41、基板移動機構50、基板移動制御回路51、投光系移動機構52、投光系移動制御回路53、上受光系移動機構54、上受光系移動制御回路55、下受光系移動機構56、下受光系移動制御回路57、CPU60、及びメモリ70を含んで構成されている。   FIG. 1 is a diagram showing a schematic configuration of a substrate inspection apparatus according to an embodiment of the present invention. The substrate inspection apparatus includes an inspection table 5, a light projection system, an angle detector 15, an upper light receiving system 20, a lower light receiving system 30, amplifiers 24 and 34, defect detection circuits 25 and 35, a focus adjustment mechanism 40, and a focus adjustment control circuit 41. , Substrate movement mechanism 50, substrate movement control circuit 51, light projection system movement mechanism 52, light projection system movement control circuit 53, upper light reception system movement mechanism 54, upper light reception system movement control circuit 55, lower light reception system movement mechanism 56, lower The light receiving system movement control circuit 57, the CPU 60, and the memory 70 are included.

検査対象の透明な基板1が、検査テーブル5上に搭載されている。検査テーブル5には、図面横方向に伸びる基板支持部が、図面奥行き方向に2つ平行に配置されている。図2は、検査テーブルに搭載された基板の斜視図である。各基板支持部5aは、その長手方向の長さに渡って、基板1に接触する傾斜面5bを有する。四角形の基板1を検査テーブル5に搭載したとき、基板支持部5aの傾斜面5bが基板1の向かい合う二辺の底に接触して、検査テーブル5は四角形の基板1をその向かい合う二辺だけで支持する。   A transparent substrate 1 to be inspected is mounted on an inspection table 5. On the inspection table 5, two substrate support portions extending in the horizontal direction of the drawing are arranged in parallel in the depth direction of the drawing. FIG. 2 is a perspective view of the substrate mounted on the inspection table. Each board | substrate support part 5a has the inclined surface 5b which contacts the board | substrate 1 over the length of the longitudinal direction. When the square substrate 1 is mounted on the inspection table 5, the inclined surface 5b of the substrate support portion 5a comes into contact with the bottoms of the two opposite sides of the substrate 1, and the inspection table 5 holds the square substrate 1 only on the two opposite sides. To support.

図1において、検査テーブル5に搭載された基板1の上方には、走査部10及びミラー14からなる投光系が配置されている。図3は、走査部の上面図である。走査部10は、レーザー光源11、レンズ12a、fθレンズ12c、及びポリゴンミラー13を含んで構成されている。レーザー光源11は、検査光となるレーザー光線を発生する。レンズ12aは、レーザー光源11から発生されたレーザー光線を集光し、基板1の表面に焦点が合う様に収束する。レンズ12aで集光されたレーザー光線は、ポリゴンミラー13で反射され、fθレンズ12cへ入射する。fθレンズ12cは、ポリゴンミラー13の回転により振られるレーザー光線の焦点面を平面位置に合わせる。fθレンズ12cを透過したレーザー光線は、図1のミラー14へ照射される。ミラー14は、走査部10から照射されたレーザー光線を、基板1の表面へ斜めに照射する。このとき、ポリゴンミラー13が図3の矢印方向へ回転することにより、ミラー14から基板1の表面へ照射されるレーザー光線が図1の図面奥行き方向へ移動して、レーザー光線による基板1の走査が行われる。本実施の形態では、一例として、走査範囲を200mmとする。   In FIG. 1, a light projection system including a scanning unit 10 and a mirror 14 is disposed above the substrate 1 mounted on the inspection table 5. FIG. 3 is a top view of the scanning unit. The scanning unit 10 includes a laser light source 11, a lens 12a, an fθ lens 12c, and a polygon mirror 13. The laser light source 11 generates a laser beam as inspection light. The lens 12 a condenses the laser beam generated from the laser light source 11 and converges so as to be focused on the surface of the substrate 1. The laser beam condensed by the lens 12a is reflected by the polygon mirror 13 and enters the fθ lens 12c. The fθ lens 12c aligns the focal plane of the laser beam shaken by the rotation of the polygon mirror 13 with the planar position. The laser beam transmitted through the fθ lens 12c is applied to the mirror 14 in FIG. The mirror 14 obliquely irradiates the surface of the substrate 1 with the laser beam emitted from the scanning unit 10. At this time, when the polygon mirror 13 rotates in the direction of the arrow in FIG. 3, the laser beam irradiated from the mirror 14 to the surface of the substrate 1 moves in the depth direction of FIG. 1 to scan the substrate 1 with the laser beam. Is called. In the present embodiment, as an example, the scanning range is 200 mm.

図1において、CPU60は、後述する様に基板1の検査範囲を決定して、基板移動制御回路51へ基板1の移動を指示する。基板移動制御回路51は、CPU60の指示により、基板移動機構50を駆動する。基板移動機構50は、例えば直動モータを含んで構成され、検査テーブル5を図面横方向へ移動する。基板移動機構50が検査テーブル5を移動することにより、検査テーブル5に搭載された基板1が矢印に示す基板移動方向へ移動され、投光系からのレーザー光線が基板1の図面横方向の長さに渡って照射される。従って、検査テーブル5の一回の移動により、図面奥行き方向に走査範囲の幅だけ基板1の検査が行われる。   In FIG. 1, the CPU 60 determines the inspection range of the substrate 1 as described later, and instructs the substrate movement control circuit 51 to move the substrate 1. The substrate movement control circuit 51 drives the substrate movement mechanism 50 according to an instruction from the CPU 60. The substrate moving mechanism 50 includes, for example, a linear motor, and moves the inspection table 5 in the lateral direction of the drawing. When the substrate moving mechanism 50 moves the inspection table 5, the substrate 1 mounted on the inspection table 5 is moved in the substrate moving direction indicated by the arrow, and the laser beam from the light projecting system has a length in the horizontal direction of the substrate 1 in the drawing. Irradiated over. Therefore, the substrate 1 is inspected by the width of the scanning range in the drawing depth direction by one movement of the inspection table 5.

続いて、CPU60は、投光系移動制御回路53へ走査範囲の変更を指示する。投光系移動制御回路53は、CPU60の指示により、投光系移動機構52を駆動する。投光系移動機構52は、例えば直動モータを含んで構成され、投光系を図面奥行き方向へ移動する。投光系移動機構52が投光系を移動することにより、投光系からのレーザー光線による基板1の走査範囲が図面奥行き方向へ変更される。そして、レーザー光線による基板1の走査及び検査テーブル5の移動と、走査範囲の変更とを繰り返すことにより、基板1の検査範囲全体の検査が行われる。   Subsequently, the CPU 60 instructs the projection system movement control circuit 53 to change the scanning range. The light projecting system movement control circuit 53 drives the light projecting system moving mechanism 52 according to an instruction from the CPU 60. The light projection system moving mechanism 52 includes, for example, a linear motor, and moves the light projection system in the drawing depth direction. When the light projection system moving mechanism 52 moves in the light projection system, the scanning range of the substrate 1 by the laser beam from the light projection system is changed in the drawing depth direction. Then, the entire inspection range of the substrate 1 is inspected by repeatedly scanning the substrate 1 with the laser beam, moving the inspection table 5, and changing the scanning range.

投光系を図面奥行き方向へ移動する際は、上受光系20及び下受光系30を、投光系と同じだけ移動する。CPU60は、上受光系移動制御回路55及び下受光系移動制御回路57へ移動を指示する。上受光系移動制御回路55及び下受光系移動制御回路57は、CPU60の指示により、上受光系移動機構54及び下受光系移動機構56をそれぞれ駆動する。上受光系移動機構54及び下受光系移動機構56は、例えば直動モータを含んで構成され、上受光系20及び下受光系30を投光系と同じだけそれぞれ移動する。   When moving the light projecting system in the depth direction of the drawing, the upper light receiving system 20 and the lower light receiving system 30 are moved as much as the light projecting system. The CPU 60 instructs the upper light receiving system movement control circuit 55 and the lower light receiving system movement control circuit 57 to move. The upper light reception system movement control circuit 55 and the lower light reception system movement control circuit 57 drive the upper light reception system movement mechanism 54 and the lower light reception system movement mechanism 56, respectively, according to instructions from the CPU 60. The upper light receiving system moving mechanism 54 and the lower light receiving system moving mechanism 56 are configured to include, for example, a linear motor, and move the upper light receiving system 20 and the lower light receiving system 30 as much as the light projecting system.

なお、検査ステージ5を移動する代わりに、投光系を図面横方向へ移動することにより、基板1と投光系とをレーザー光線の走査方向と直交する方向へ相対的に移動してもよい。その場合は、上受光系及び下受光系を、投光系と一緒に移動する。また、投光系を移動する代わりに、検査ステージ5を図面奥行き方向へ移動することにより、基板1と投光系とをレーザー光線の走査方向へ相対的に移動して、レーザー光線による基板の走査範囲を変更してもよい。   Instead of moving the inspection stage 5, the substrate 1 and the light projecting system may be relatively moved in a direction orthogonal to the scanning direction of the laser beam by moving the light projecting system in the lateral direction of the drawing. In that case, the upper light receiving system and the lower light receiving system are moved together with the light projecting system. Further, instead of moving the light projecting system, the inspection stage 5 is moved in the depth direction of the drawing, so that the substrate 1 and the light projecting system are moved relatively in the laser beam scanning direction, thereby scanning the substrate by the laser beam. May be changed.

基板1へ斜めに照射されたレーザー光線の一部は基板1の表面で反射され、一部は基板1の内部へ透過する。基板1の内部へ透過したレーザー光線は、基板1の表面から離れるに従って広がり、その一部は基板1の裏面で反射され、一部は基板1の裏面から基板1の外へ射出される。   A part of the laser beam irradiated obliquely onto the substrate 1 is reflected by the surface of the substrate 1 and a part of the laser beam is transmitted into the substrate 1. The laser beam transmitted to the inside of the substrate 1 spreads away from the surface of the substrate 1, a part of which is reflected by the back surface of the substrate 1, and a part is emitted from the back surface of the substrate 1 to the outside of the substrate 1.

基板1の表面側において、基板1の表面で反射されたレーザー光線の光軸から外れた位置に、上受光系20が配置されている。上受光系20は、レンズ21、受光部22、及び光電子倍増管23を含んで構成されている。図4は、上受光系を上から見た図である。レンズ21は、基板1からの散乱光を集光し、受光部22へ照射する。レンズ21の焦点位置は、基板1の表面に合っている。受光部22は、複数の光ファイバー22aを束ねて構成され、レンズ21で集光した散乱光を受光して光電子倍増管23の受光面へ導く。光電子倍増管23は、受光面で受光した散乱光の強度に応じた検出信号を出力する。図1において、光電子倍増管23の検出信号は、アンプ24で増幅され、欠陥検出回路25へ入力される。   On the surface side of the substrate 1, the upper light receiving system 20 is disposed at a position off the optical axis of the laser beam reflected by the surface of the substrate 1. The upper light receiving system 20 includes a lens 21, a light receiving unit 22, and a photomultiplier tube 23. FIG. 4 is a top view of the upper light receiving system. The lens 21 collects scattered light from the substrate 1 and irradiates the light receiving unit 22. The focal position of the lens 21 matches the surface of the substrate 1. The light receiving unit 22 is configured by bundling a plurality of optical fibers 22 a, receives scattered light collected by the lens 21, and guides it to the light receiving surface of the photomultiplier tube 23. The photomultiplier tube 23 outputs a detection signal corresponding to the intensity of scattered light received by the light receiving surface. In FIG. 1, the detection signal of the photomultiplier tube 23 is amplified by an amplifier 24 and input to the defect detection circuit 25.

基板1の表面に欠陥が存在する場合、基板1の表面へ照射されたレーザー光線が欠陥により散乱されて、散乱光が発生する。また、基板1の内部へ透過して基板1の裏面で反射され、再び基板1の表面へ到達したレーザー光線が欠陥により散乱されて、散乱光が発生する。これらの散乱光が、基板1の表面側に配置された上受光系20で受光される。基板1の内部に欠陥が存在する場合、基板1の内部へ透過したレーザー光線が欠陥により散乱されて、散乱光が発生する。また、基板1の内部へ透過して基板1の裏面で反射されたレーザー光線が欠陥により散乱されて、散乱光が発生する。これらの散乱光が、基板1を透過して、基板1の表面側に配置された上受光系20で受光される。基板1の表面の欠陥により発生した散乱光は、基板1の内部の欠陥により発生した散乱光よりも、上受光系20の受光部22で受光される強度が大きい。欠陥検出回路25は、アンプ24で増幅された検出信号の強度から、基板1の表面の欠陥を検出する。   When a defect exists on the surface of the substrate 1, the laser beam irradiated on the surface of the substrate 1 is scattered by the defect, and scattered light is generated. Further, the laser beam that has been transmitted into the substrate 1 and reflected by the back surface of the substrate 1 and has reached the surface of the substrate 1 again is scattered by defects, and scattered light is generated. These scattered lights are received by the upper light receiving system 20 disposed on the surface side of the substrate 1. When a defect exists inside the substrate 1, the laser beam transmitted to the inside of the substrate 1 is scattered by the defect, and scattered light is generated. Further, the laser beam that has passed through the inside of the substrate 1 and has been reflected by the back surface of the substrate 1 is scattered by the defect, and scattered light is generated. These scattered lights pass through the substrate 1 and are received by the upper light receiving system 20 disposed on the surface side of the substrate 1. Scattered light generated due to defects on the surface of the substrate 1 has a higher intensity received by the light receiving unit 22 of the upper light receiving system 20 than scattered light generated due to defects inside the substrate 1. The defect detection circuit 25 detects a defect on the surface of the substrate 1 from the intensity of the detection signal amplified by the amplifier 24.

基板1の裏面側において、基板1の裏面から基板1の外へ射出されたレーザー光線の光軸から外れた位置に、下受光系30が配置されている。下受光系30は、レンズ31、受光部32、及び光電子倍増管33を含んで構成されている。CPU60は、焦点調節制御回路41へ下受光系30の焦点位置の調節を指示する。焦点調節制御回路41は、CPU60の指示により、焦点調節機構40を駆動する。焦点調節機構40は、例えばパルスモータを含んで構成され、レンズ31及び受光部32を上下に移動する。焦点調節機構40がレンズ31及び受光部32を上下に移動することにより、下受光系30の焦点位置が基板1の内部に合う様に調節される。   On the back side of the substrate 1, the lower light receiving system 30 is disposed at a position off the optical axis of the laser beam emitted from the back surface of the substrate 1 to the outside of the substrate 1. The lower light receiving system 30 includes a lens 31, a light receiving unit 32, and a photomultiplier tube 33. The CPU 60 instructs the focus adjustment control circuit 41 to adjust the focus position of the lower light receiving system 30. The focus adjustment control circuit 41 drives the focus adjustment mechanism 40 according to an instruction from the CPU 60. The focus adjustment mechanism 40 includes, for example, a pulse motor, and moves the lens 31 and the light receiving unit 32 up and down. When the focus adjustment mechanism 40 moves the lens 31 and the light receiving unit 32 up and down, the focus position of the lower light receiving system 30 is adjusted so as to match the inside of the substrate 1.

図5は、下受光系を横から見た図である。レンズ31は、基板1からの散乱光を集光し、受光部32へ照射する。受光部32は、複数の光ファイバー32aを束ねて構成され、レンズ31で集光した散乱光を受光して光電子倍増管33の受光面へ導く。光電子倍増管33は、受光面で受光した散乱光の強度に応じた検出信号を出力する。図1において、光電子倍増管33の検出信号は、アンプ34で増幅され、欠陥検出回路35へ入力される。   FIG. 5 is a side view of the lower light receiving system. The lens 31 collects scattered light from the substrate 1 and irradiates the light receiving unit 32. The light receiving unit 32 is configured by bundling a plurality of optical fibers 32 a, receives the scattered light collected by the lens 31, and guides it to the light receiving surface of the photomultiplier tube 33. The photomultiplier tube 33 outputs a detection signal corresponding to the intensity of scattered light received by the light receiving surface. In FIG. 1, the detection signal of the photomultiplier tube 33 is amplified by an amplifier 34 and input to a defect detection circuit 35.

基板1の表面に欠陥が存在する場合、基板1の表面へ照射されたレーザー光線が欠陥により散乱されて、散乱光が発生する。この散乱光が、基板1を透過して、基板1の裏面側に配置された下受光系30で受光される。複数の光ファイバー32aを束ねた受光部32で受光された散乱光は、欠陥の形状をほぼそのまま表した形状となる。また、基板1の内部へ透過して基板1の裏面で反射され、再び基板1の表面へ到達したレーザー光線が欠陥により散乱されて、散乱光が発生する。基板1の板厚が大きいとき、この散乱光は、レーザー光線が基板1の表面へ照射された位置からかなり離れた位置で発生する。下受光系30のレンズ31による受光領域を最適位置にすると、この散乱光は下受光系30で受光されない。   When a defect exists on the surface of the substrate 1, the laser beam irradiated on the surface of the substrate 1 is scattered by the defect, and scattered light is generated. The scattered light passes through the substrate 1 and is received by the lower light receiving system 30 disposed on the back side of the substrate 1. Scattered light received by the light receiving unit 32 in which a plurality of optical fibers 32a are bundled has a shape that substantially represents the shape of the defect. Further, the laser beam that has been transmitted into the substrate 1 and reflected by the back surface of the substrate 1 and has reached the surface of the substrate 1 again is scattered by defects, and scattered light is generated. When the thickness of the substrate 1 is large, this scattered light is generated at a position far from the position where the surface of the substrate 1 is irradiated with the laser beam. When the light receiving area by the lens 31 of the lower light receiving system 30 is set to the optimum position, the scattered light is not received by the lower light receiving system 30.

基板1の内部に欠陥が存在する場合、基板1の内部へ透過したレーザー光線が欠陥により散乱されて、散乱光が発生する。また、基板1の内部へ透過して基板1の裏面で反射されたレーザー光線が欠陥により散乱されて、散乱光が発生する。これらの散乱光が、基板1を透過して、基板1の裏面側に配置された下受光系30で受光される。複数の光ファイバー32aを束ねた受光部32で受光された散乱光は、欠陥の形状に関わらず、縦横に広がった十字形状となる。欠陥検出回路35は、この散乱光の形状的特徴から、基板1の内部の欠陥を検出する。基板1の裏面側に配置された下受光系30により、基板1を透過した散乱光を受光するので、基板1の表面付近の欠陥だけでなく、基板1の表面から離れた深い位置にある欠陥も検出される。   When a defect exists inside the substrate 1, the laser beam transmitted to the inside of the substrate 1 is scattered by the defect, and scattered light is generated. Further, the laser beam that has passed through the inside of the substrate 1 and has been reflected by the back surface of the substrate 1 is scattered by the defect, and scattered light is generated. These scattered lights pass through the substrate 1 and are received by the lower light receiving system 30 disposed on the back side of the substrate 1. Scattered light received by the light receiving unit 32 in which a plurality of optical fibers 32a are bundled has a cross shape that spreads vertically and horizontally regardless of the shape of the defect. The defect detection circuit 35 detects a defect inside the substrate 1 from the shape characteristic of the scattered light. The scattered light transmitted through the substrate 1 is received by the lower light receiving system 30 disposed on the back side of the substrate 1, so that not only the defect near the surface of the substrate 1 but also the defect located at a deep position away from the surface of the substrate 1 Is also detected.

角度検出器15は、走査部10のポリゴンミラー13の回転角度を検出する。基板移動制御回路51は、基板移動機構50への駆動信号から、検査テーブル5の図面横方向の位置を把握する。CPU60は、投光系の図面奥行き方向の位置、角度検出器15の検出結果及び基板移動制御回路51からの位置情報に基づき、レーザー光線が照射されている基板1の表面上の位置を検出する。そして、CPU60は、欠陥検出回路25,35が欠陥を検出したときレーザー光線が照射されている基板1の表面上の位置を、欠陥の位置として、欠陥検出回路25,35の検出結果と共にメモリ70に記憶する。   The angle detector 15 detects the rotation angle of the polygon mirror 13 of the scanning unit 10. The substrate movement control circuit 51 grasps the position in the drawing horizontal direction of the inspection table 5 from the drive signal to the substrate movement mechanism 50. The CPU 60 detects the position on the surface of the substrate 1 irradiated with the laser beam based on the position of the projection system in the drawing depth direction, the detection result of the angle detector 15 and the position information from the substrate movement control circuit 51. Then, the CPU 60 sets the position on the surface of the substrate 1 irradiated with the laser beam when the defect detection circuits 25 and 35 detect the defect as a defect position in the memory 70 together with the detection result of the defect detection circuits 25 and 35. Remember.

以下、CPU60による基板1の検査範囲の決定方法について説明する。なお、以下に説明する実施の形態におけるXY方向は例示であって、X方向とY方向とを入れ替えてもよい。   Hereinafter, a method for determining the inspection range of the substrate 1 by the CPU 60 will be described. Note that the XY directions in the embodiments described below are examples, and the X direction and the Y direction may be interchanged.

図6は、入射光、反射光、透過光、及び射出光の関係を説明する図である。基板1の表面へ照射された入射光をIA、入射光IAが基板1の表面で反射された反射光をIR0、入射光IAが基板1の内部へ透過した透過光をIA0、透過光IA0が基板1の裏面から射出された射出光をIS1、透過光IA0が基板1の裏面で反射された反射光をIA1、反射光IA1が基板1の表面から射出された射出光をIR1、反射光IA1が基板1の表面で反射された反射光をIA2、反射光IA2が基板1の裏面から射出された射出光をIS2、反射光IA2が基板1の裏面で反射された反射光をIA3、反射光IA3が基板1の表面から射出された射出光をIR2とする。   FIG. 6 is a diagram illustrating the relationship between incident light, reflected light, transmitted light, and emitted light. The incident light irradiated on the surface of the substrate 1 is IA, the incident light IA is reflected light reflected by the surface of the substrate 1, IR0, the transmitted light transmitted through the incident light IA into the substrate 1 is IA0, and the transmitted light IA0 is The emitted light emitted from the back surface of the substrate 1 is IS1, the transmitted light IA0 is reflected light reflected from the back surface of the substrate 1, IA1, the reflected light IA1 is emitted light emitted from the surface of the substrate 1, IR1, and the reflected light IA1. Is reflected light IA2 reflected from the surface of the substrate 1, IS2 is reflected light IA2 emitted from the back surface of the substrate 1, IA3 is reflected light reflected from the back surface of the substrate 1 IA3, reflected light The emitted light emitted from the surface of the substrate 1 by the IA 3 is defined as IR2.

一例として、投光系からのレーザー光線の基板1の表面及び裏面での反射率を5%、基板1の内部におけるレーザー光線の吸収率を0%とすると、入射光IAの光量を100としたとき、反射光IR0、透過光IA0、射出光IS1、反射光IA1、射出光IR1、反射光IA2、射出光IS2、反射光IA3、及び射出光IR2の光量は、それぞれ次の通りとなる。
IR0=5
IA0=95
IS1=90.25
IA1=4.75
IR1=4.5125
IA2=0.2375
IS2=0.225625
IA3=0.011875
IR2=0.0112812
As an example, when the reflectance of the laser beam from the projection system on the front and back surfaces of the substrate 1 is 5%, and the absorption rate of the laser beam inside the substrate 1 is 0%, when the amount of incident light IA is 100, The light amounts of the reflected light IR0, the transmitted light IA0, the emitted light IS1, the reflected light IA1, the emitted light IR1, the reflected light IA2, the emitted light IS2, the reflected light IA3, and the emitted light IR2 are as follows.
IR0 = 5
IA0 = 95
IS1 = 90.25
IA1 = 4.75
IR1 = 4.5125
IA2 = 0.375
IS2 = 0.256625
IA3 = 0.011875
IR2 = 0.0112812

これらの内、基板1の表面で反射された反射光IR0、及び基板1の表面から射出された射出光IR1,IR2は、基板1の縁又は検査テーブル5で散乱されない。また、反射光IA2、射出光IS2、及び反射光IA3の光量は、入射光IAの光量に対して0.3%以下と非常に小さい。そこで、本実施の形態では、入射光IA、透過光IA0、射出光IS1、及び反射光IA1が、基板1の縁又は検査テーブル5の基板支持部5aにより散乱されて発生する散乱光によるノイズを考慮して、基板1の検査範囲を決定する。基板の厚さをT、空気の屈折率をN1、基板の屈折率をN2、レーザー光線の入射角をI、屈折角をRとすると、入射光IAの基板1の表面への照射位置と、反射光IA1の基板1の表面への照射位置とは、図中に示す式で計算される距離Dだけ離れている。   Among these, the reflected light IR0 reflected from the surface of the substrate 1 and the emitted lights IR1 and IR2 emitted from the surface of the substrate 1 are not scattered by the edge of the substrate 1 or the inspection table 5. Further, the light amounts of the reflected light IA2, the emitted light IS2, and the reflected light IA3 are as small as 0.3% or less with respect to the light amount of the incident light IA. Therefore, in the present embodiment, noise due to scattered light generated by the incident light IA, the transmitted light IA0, the emitted light IS1, and the reflected light IA1 being scattered by the edge of the substrate 1 or the substrate support portion 5a of the inspection table 5 is detected. Considering this, the inspection range of the substrate 1 is determined. When the thickness of the substrate is T, the refractive index of air is N1, the refractive index of the substrate is N2, the incident angle of the laser beam is I, and the refractive angle is R, the irradiation position of the incident light IA on the surface of the substrate 1 and the reflection The irradiation position of the light IA1 on the surface of the substrate 1 is separated by a distance D calculated by the equation shown in the drawing.

図7〜図11は、基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板の縁のテーパで発生する散乱光を説明する図である。図7〜図11において、基板1の表面の縁には、テーパが形成されている。投光系からのレーザー光線が、基板1の縁から基板の中央部へ向かって、図面左方向へ移動したとき、まず、図7に示す様に、入射光IAが、基板1の表面の縁のテーパの破線で囲んだ角1aへ照射され、角1aにより散乱されて、散乱光が発生する。   7 to 11 are diagrams for explaining scattered light generated at the taper of the edge of the substrate in scanning in the X direction of the substrate with a laser beam when the entire substrate is set as the inspection range. 7 to 11, a taper is formed on the edge of the surface of the substrate 1. When the laser beam from the light projecting system moves from the edge of the substrate 1 toward the center of the substrate in the left direction in the drawing, first, as shown in FIG. Irradiated to the corner 1a surrounded by the broken line of the taper and scattered by the corner 1a, scattered light is generated.

続いて、入射光IAを図面左方向へ移動すると、図8に示す様に、入射光IAが、基板1の表面の縁のテーパの破線で囲んだ角1bへ照射され、角1bにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離X1は、テーパの大きさによる。   Subsequently, when the incident light IA is moved in the left direction of the drawing, as shown in FIG. 8, the incident light IA is irradiated to the corner 1b surrounded by the broken line of the taper on the surface of the substrate 1, and is scattered by the corner 1b. Scattered light is generated. At this time, the distance X1 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 depends on the size of the taper.

さらに、入射光IAを図面左方向へ移動すると、図9に示す様に、透過光IAOが、基板1の裏面の縁の破線で囲んだ角1cへ照射され、角1cにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離X2は、図8の距離X1より大きく、基板1の厚さに応じて変化する。   Further, when the incident light IA is moved in the left direction of the drawing, as shown in FIG. 9, the transmitted light IAO is irradiated to the corner 1c surrounded by the broken line on the back surface of the substrate 1, and scattered by the corner 1c. Light is generated. At this time, the distance X2 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 is larger than the distance X1 in FIG. 8 and changes according to the thickness of the substrate 1.

さらに、入射光IAを図面左方向へ移動すると、図10に示す様に、反射光IA1が、基板1の表面の縁のテーパの破線で囲んだ角1aへ照射され、角1aにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離X3は、図9の距離X2より大きく、基板1の厚さに応じて変化する。   Further, when the incident light IA is moved in the left direction of the drawing, as shown in FIG. 10, the reflected light IA1 is irradiated to the corner 1a surrounded by the broken line of the taper at the edge of the surface of the substrate 1 and scattered by the corner 1a. , Scattered light is generated. At this time, the distance X3 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 is larger than the distance X2 in FIG. 9 and changes according to the thickness of the substrate 1.

さらに、入射光IAを図面左方向へ移動すると、図11に示す様に、反射光IA1が、基板1の表面の縁のテーパの破線で囲んだ角1bへ照射され、角1bにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離X4は、図10の距離X3より大きく、基板1の厚さに応じて変化する。   Further, when the incident light IA is moved in the left direction of the drawing, as shown in FIG. 11, the reflected light IA1 is irradiated to the corner 1b surrounded by the broken line of the taper on the surface of the substrate 1, and is scattered by the corner 1b. , Scattered light is generated. At this time, the distance X4 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 is larger than the distance X3 in FIG. 10 and changes according to the thickness of the substrate 1.

図12及び図13は、基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板支持部で発生する散乱光を説明する図である。投光系からのレーザー光線が、基板1の縁から基板の中央部へ向かって、図面左方向へ移動したとき、まず、図12に示す様に、射出光IS1が、基板支持部5aの傾斜面5bの破線で囲んだ角5cへ照射され、角5cにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離X5は、基板1の厚さに応じて変化する。   FIG. 12 and FIG. 13 are diagrams for explaining scattered light generated at the substrate support portion when scanning the substrate in the X direction with a laser beam when the entire substrate is in the inspection range. When the laser beam from the light projecting system moves from the edge of the substrate 1 toward the center of the substrate in the left direction in the drawing, first, as shown in FIG. 12, the emitted light IS1 is emitted from the inclined surface of the substrate support portion 5a. Irradiated to the corner 5c surrounded by the broken line 5b and scattered by the corner 5c to generate scattered light. At this time, the distance X5 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 changes according to the thickness of the substrate 1.

さらに、入射光IAを図面左方向へ移動すると、図13に示す様に、射出光IS1が、基板支持部5aの破線で囲んだ角5dへ照射され、角5dにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離X6は、図12の距離X5より大きく、基板1の厚さに応じて変化する。なお、本実施の形態では、基板支持部5aの下側の部分に、射出光IS1と平行な面5eが形成されている。このため、入射光IAをさらに図面左方向へ移動しても、射出光IS1が、基板支持部5aの角5dより下側の部分へ照射されて散乱されることはない。   Further, when the incident light IA is moved in the left direction of the drawing, as shown in FIG. 13, the emitted light IS1 is irradiated to the corner 5d surrounded by the broken line of the substrate support portion 5a, and is scattered by the corner 5d. appear. At this time, the distance X6 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 is larger than the distance X5 in FIG. 12 and changes according to the thickness of the substrate 1. In the present embodiment, a surface 5e parallel to the emission light IS1 is formed in the lower portion of the substrate support portion 5a. For this reason, even if the incident light IA is further moved in the left direction of the drawing, the emitted light IS1 is not irradiated and scattered on the portion below the corner 5d of the substrate support portion 5a.

CPU60は、基板1の検査範囲を決定する際、基板1の内部へ透過して基板1の裏面で反射されて基板1の縁のテーパの角1bへ照射されるレーザー光線の基板1の表面への照射位置から基板1の縁まで(図11の距離X4)と、基板1の内部へ透過して基板1の裏面から射出されて基板支持部5の角5dへ照射されるレーザー光線の基板1の表面への照射位置から基板1の縁まで(図13の距離X6)とを除外して、基板1のX方向の検査範囲を決定する。基板1の支持された二辺と垂直なX方向において、基板1の縁のテーパにより散乱されて散乱光を発生するレーザー光線の基板1の表面への照射範囲、及び検査テーブル5により散乱されて散乱光を発生するレーザー光線の基板1の表面への照射範囲が、検査範囲から確実に除外される。   When the CPU 60 determines the inspection range of the substrate 1, the laser beam transmitted to the inside of the substrate 1, reflected by the back surface of the substrate 1, and irradiated to the taper corner 1 b of the edge of the substrate 1 is applied to the surface of the substrate 1. From the irradiation position to the edge of the substrate 1 (distance X4 in FIG. 11), the surface of the substrate 1 of the laser beam that is transmitted into the substrate 1 and emitted from the back surface of the substrate 1 and irradiated to the corner 5d of the substrate support 5 Excluding from the irradiation position to the edge of the substrate 1 (distance X6 in FIG. 13), the inspection range in the X direction of the substrate 1 is determined. In the X direction perpendicular to the two supported sides of the substrate 1, the irradiation range of the laser beam that is scattered by the taper of the edge of the substrate 1 to generate scattered light and the surface of the substrate 1 is scattered and scattered by the inspection table 5. The irradiation range of the laser beam that generates light to the surface of the substrate 1 is reliably excluded from the inspection range.

図14〜図20は、基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。図14〜図20において、基板1の表面の縁には、テーパが形成されている。検査テーブル5を図面右方向へ移動したとき、まず、図14に示す様に、入射光IAが、基板1の表面の縁のテーパの破線で囲んだ角1aへ照射され、角1aにより散乱されて、散乱光が発生する。   14 to 20 are diagrams for explaining scattered light generated by the taper of the edge of the substrate when the inspection table moves in the Y direction when the entire substrate is set as the inspection range. 14 to 20, a taper is formed at the edge of the surface of the substrate 1. When the inspection table 5 is moved in the right direction in the drawing, first, as shown in FIG. 14, the incident light IA is irradiated to the corner 1a surrounded by the dashed broken line at the edge of the surface of the substrate 1 and scattered by the corner 1a. Scattered light is generated.

続いて、検査テーブル5を図面右方向へ移動すると、図15に示す様に、入射光IAが、基板1の表面の縁のテーパの破線で囲んだ角1bへ照射され、角1bにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離Y1は、テーパの大きさによる。   Subsequently, when the inspection table 5 is moved to the right in the drawing, as shown in FIG. 15, the incident light IA is irradiated to the corner 1b surrounded by the broken line of the taper at the edge of the surface of the substrate 1, and is scattered by the corner 1b. Scattered light is generated. At this time, the distance Y1 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 depends on the taper size.

さらに、検査テーブル5を図面右方向へ移動して検査を続けると、基板1の終端付近において、図16に示す様に、反射光IA1が、基板1の表面の縁のテーパの破線で囲んだ角1bへ照射され、角1bにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離Y2は、基板1の厚さに応じて変化する。   Further, when the inspection table 5 is moved to the right in the drawing and the inspection is continued, the reflected light IA1 is surrounded by a tapered broken line at the edge of the surface of the substrate 1, as shown in FIG. Irradiated to the corner 1b and scattered by the corner 1b to generate scattered light. At this time, the distance Y2 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 changes according to the thickness of the substrate 1.

さらに、検査テーブル5を図面右方向へ移動すると、図17に示す様に、反射光IA1が、基板1の表面の縁のテーパの破線で囲んだ角1aへ照射され、角1aにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離Y3は、図16の距離Y2より小さく、基板1の厚さに応じて変化する。   Further, when the inspection table 5 is moved to the right in the drawing, as shown in FIG. 17, the reflected light IA1 is irradiated to the corner 1a surrounded by the broken line of the taper on the edge of the substrate 1, and is scattered by the corner 1a. , Scattered light is generated. At this time, the distance Y3 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 is smaller than the distance Y2 in FIG. 16 and changes according to the thickness of the substrate 1.

さらに、検査テーブル5を図面右方向へ移動すると、図18に示す様に、透過光IAOが、基板1の裏面の縁の破線で囲んだ角1cへ照射され、角1cにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離Y4は、図17の距離Y3より小さく、基板1の厚さに応じて変化する。   Further, when the inspection table 5 is moved to the right in the drawing, as shown in FIG. 18, the transmitted light IAO is irradiated to the corner 1c surrounded by the broken line on the edge of the back surface of the substrate 1, and scattered by the corner 1c. Light is generated. At this time, the distance Y4 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 is smaller than the distance Y3 in FIG. 17 and changes according to the thickness of the substrate 1.

さらに、検査テーブル5を図面右方向へ移動すると、図19に示す様に、入射光IAが、基板1の表面の縁のテーパの破線で囲んだ角1bへ照射され、角1bにより散乱されて、散乱光が発生する。このとき、入射光IAの基板1の表面への照射位置と基板1の縁との距離Y1は、図18の距離Y4より小さく、テーパの大きさによる。   Further, when the inspection table 5 is moved to the right in the drawing, as shown in FIG. 19, the incident light IA is irradiated to the corner 1b surrounded by the broken line of the taper at the edge of the surface of the substrate 1 and scattered by the corner 1b. , Scattered light is generated. At this time, the distance Y1 between the irradiation position of the incident light IA on the surface of the substrate 1 and the edge of the substrate 1 is smaller than the distance Y4 in FIG. 18 and depends on the taper size.

さらに、検査テーブル5を図面右方向へ移動すると、図20に示す様に、入射光IAが、基板1の表面の縁のテーパの破線で囲んだ角1aへ照射され、角1aにより散乱されて、散乱光が発生する。   Further, when the inspection table 5 is moved to the right in the drawing, as shown in FIG. 20, the incident light IA is irradiated to the corner 1a surrounded by the broken line of the taper at the edge of the surface of the substrate 1 and scattered by the corner 1a. , Scattered light is generated.

CPU60は、基板1の検査範囲を決定する際、基板1の縁のテーパの角1bへ直接照射されるレーザー光線の基板1の表面への照射位置から基板1の縁まで(図15の距離Y1)と、基板1の内部へ透過して基板1の裏面で反射されて基板1の縁のテーパの角1bへ照射されるレーザー光線の基板1の表面への照射位置から基板1の縁まで(図16の距離Y2)とを除外して、基板1のY方向の検査範囲を決定する。基板1の支持された二辺と平行なY方向において、基板1の縁のテーパにより散乱されて散乱光を発生するレーザー光線の基板1の表面への照射範囲が、検査範囲から確実に除外される。   When the CPU 60 determines the inspection range of the substrate 1, from the irradiation position on the surface of the substrate 1 of the laser beam directly applied to the taper corner 1b of the edge of the substrate 1 to the edge of the substrate 1 (distance Y1 in FIG. 15). From the irradiation position on the surface of the substrate 1 to the edge of the substrate 1 that is transmitted to the inside of the substrate 1 and reflected on the back surface of the substrate 1 and irradiated to the taper corner 1b of the edge of the substrate 1 (FIG. 16). And the inspection range in the Y direction of the substrate 1 is determined. In the Y direction parallel to the two supported sides of the substrate 1, the irradiation range of the laser beam that is scattered by the taper of the edge of the substrate 1 and generates scattered light is reliably excluded from the inspection range. .

以上説明した実施の形態によれば、基板1の縁のテーパにより散乱されて散乱光を発生するレーザー光線の基板1の表面への照射範囲、及び検査テーブル5により散乱されて散乱光を発生するレーザー光線の基板1の表面への照射範囲を除外して、基板1の検査範囲を決定することにより、板厚の大きい透明な基板の欠陥の検査において、基板の周辺部のノイズの影響を無くし、欠陥の検出精度を向上させることができる。   According to the embodiment described above, the laser beam that is scattered by the taper at the edge of the substrate 1 to generate scattered light and the laser beam that is scattered by the inspection table 5 and generates scattered light. By eliminating the irradiation range on the surface of the substrate 1 and determining the inspection range of the substrate 1, in the inspection of the defect of the transparent substrate having a large plate thickness, the influence of noise around the substrate is eliminated, and the defect Detection accuracy can be improved.

さらに、以上説明した実施の形態によれば、検査テーブル5に、基板1の向かい合う二辺の底に接触する傾斜面5bを有する基板支持部5aを設け、基板1の内部へ透過して基板1の裏面で反射されて基板1の縁のテーパの角1bへ照射される光線の基板1の表面への照射位置から基板1の縁までと、基板1の内部へ透過して基板1の裏面から射出されて基板支持部5aの角5dへ照射される光線の基板1の表面への照射位置から基板1の縁までとを除外して、基板1の支持された二辺と垂直な方向の検査範囲を決定することにより、基板1の支持された二辺と垂直な方向において、基板1の縁のテーパにより散乱されて散乱光を発生する光線の基板1の表面への照射範囲、及び検査テーブル5により散乱されて散乱光を発生する光線の基板1の表面への照射範囲を、検査範囲から確実に除外することができる。   Furthermore, according to the embodiment described above, the inspection table 5 is provided with the substrate support portion 5a having the inclined surface 5b that contacts the bottoms of the two opposite sides of the substrate 1, and penetrates into the substrate 1 to transmit the substrate 1 From the irradiation position on the surface of the substrate 1 to the edge of the substrate 1 through the inside of the substrate 1 and from the back surface of the substrate 1. Inspection in the direction perpendicular to the two supported sides of the substrate 1 excluding from the irradiation position on the surface of the substrate 1 to the edge of the substrate 1 of the light beam emitted and irradiated onto the corner 5d of the substrate support 5a By determining the range, in the direction perpendicular to the two supported sides of the substrate 1, the irradiation range on the surface of the substrate 1 that is scattered by the taper of the edge of the substrate 1 to generate scattered light, and the inspection table A substrate of light rays scattered by 5 to generate scattered light Irradiation range to the surface, can be excluded securely from the inspection range.

さらに、以上説明した実施の形態によれば、基板1の縁のテーパの角1bへ直接照射される光線の基板1の表面への照射位置から基板1の縁までと、基板1の内部へ透過して基板1の裏面で反射されて基板1の縁のテーパの角1bへ照射される光線の基板1の表面への照射位置から基板1の縁までとを除外して、基板1の支持された二辺と平行な方向の検査範囲を決定することにより、基板1の支持された二辺と平行な方向において、基板1の縁のテーパにより散乱されて散乱光を発生する光線の基板1の表面への照射範囲を、検査範囲から確実に除外することができる。   Furthermore, according to the embodiment described above, the light beam directly irradiated onto the taper corner 1b of the edge of the substrate 1 is transmitted from the irradiation position on the surface of the substrate 1 to the edge of the substrate 1 and into the inside of the substrate 1. Then, the substrate 1 is supported by excluding from the irradiation position on the surface of the substrate 1 to the edge of the substrate 1 that is reflected from the back surface of the substrate 1 and applied to the taper corner 1b of the edge of the substrate 1. By determining the inspection range in the direction parallel to the two sides, the light beam that is scattered by the taper of the edge of the substrate 1 and generates scattered light in the direction parallel to the two sides supported by the substrate 1 is obtained. The irradiation range on the surface can be reliably excluded from the inspection range.

本発明の一実施の形態による基板検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the board | substrate inspection apparatus by one embodiment of this invention. 検査テーブルに搭載された基板の斜視図である。It is a perspective view of the board | substrate mounted in the test | inspection table. 走査部の上面図である。It is a top view of a scanning part. 上受光系を上から見た図である。It is the figure which looked at the upper light-receiving system from the top. 下受光系を横から見た図である。It is the figure which looked at the lower light-receiving system from the side. 入射光、反射光、透過光、及び射出光の関係を説明する図である。It is a figure explaining the relationship between incident light, reflected light, transmitted light, and emitted light. 基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces in the taper of the edge of a board | substrate in the scanning of the X direction of a board | substrate by a laser beam when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces in the taper of the edge of a board | substrate in the scanning of the X direction of a board | substrate by a laser beam when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces in the taper of the edge of a board | substrate in the scanning of the X direction of a board | substrate by a laser beam when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces in the taper of the edge of a board | substrate in the scanning of the X direction of a board | substrate by a laser beam when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces in the taper of the edge of a board | substrate in the scanning of the X direction of a board | substrate by a laser beam when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板支持部で発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces in a board | substrate support part in the scanning of the X direction of a board | substrate by a laser beam when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、レーザー光線による基板のX方向の走査において、基板支持部で発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces in a board | substrate support part in the scanning of the X direction of a board | substrate by a laser beam when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces with the taper of the edge of a board | substrate in the movement to the Y direction of an inspection table, when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces with the taper of the edge of a board | substrate in the movement to the Y direction of an inspection table, when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces with the taper of the edge of a board | substrate in the movement to the Y direction of an inspection table, when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces with the taper of the edge of a board | substrate in the movement to the Y direction of an inspection table, when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces with the taper of the edge of a board | substrate in the movement to the Y direction of an inspection table, when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces with the taper of the edge of a board | substrate in the movement to the Y direction of an inspection table, when the whole board | substrate is made into the inspection range. 基板全体を検査範囲とした場合、検査テーブルのY方向への移動において、基板の縁のテーパで発生する散乱光を説明する図である。It is a figure explaining the scattered light which generate | occur | produces with the taper of the edge of a board | substrate in the movement to the Y direction of an inspection table, when the whole board | substrate is made into the inspection range.

符号の説明Explanation of symbols

1 基板
5 検査テーブル
5a 基板支持部
10 走査部
11 レーザー光源
12a レンズ
12c fθレンズ
13 ポリゴンミラー
14 ミラー
15 角度検出器
20 上受光系
30 下受光系
21,31 レンズ
22,32 受光部
22a,32a 光ファイバー
23,33 光電子倍増管
24,34 アンプ
25,35 欠陥検出回路
40 焦点調節機構
41 焦点調節制御回路
50 基板移動機構
51 基板移動制御回路
52 投光系移動機構
53 投光系移動制御回路
54 上受光系移動機構
55 上受光系移動制御回路
56 下受光系移動機構
57 下受光系移動制御回路
60 CPU
70 メモリ
DESCRIPTION OF SYMBOLS 1 Board | substrate 5 Inspection table 5a Board | substrate support part 10 Scanning part 11 Laser light source 12a Lens 12c f (theta) lens 13 Polygon mirror 14 Mirror 15 Angle detector 20 Upper light receiving system 30 Lower light receiving system 21, 31 Lens 22, 32 Light receiving part 22a, 32a Optical fiber 23, 33 Photomultiplier tubes 24, 34 Amplifiers 25, 35 Defect detection circuit 40 Focus adjustment mechanism 41 Focus adjustment control circuit 50 Substrate movement mechanism 51 Substrate movement control circuit 52 Projection system movement mechanism 53 Projection system movement control circuit 54 System movement mechanism 55 Upper light reception system movement control circuit 56 Lower light reception system movement mechanism 57 Lower light reception system movement control circuit 60 CPU
70 memory

Claims (6)

四角形の透明な基板をその向かい合う二辺だけで支持する検査テーブルと、
光線を基板の表面へ斜めに照射しながら、光線を基板の支持された二辺と垂直な方向へ所定の距離だけ移動して、基板の走査を行う投光系と、
レンズと複数の光ファイバーを束ねた受光部とを有し、光線が基板の欠陥により散乱された散乱光を受光する受光系と、
前記検査テーブルと前記投光系及び前記受光系とを相対的に基板の支持された二辺と平行な方向へ移動する第1の移動手段と、
前記第1の移動手段を制御する第1の制御手段と、
前記検査テーブルと前記投光系及び前記受光系とを相対的に基板の支持された二辺と垂直な方向へ移動して、光線による基板の走査範囲を変更する第2の移動手段と、
前記第2の移動手段を制御する第2の制御手段と、
前記受光系が受光した散乱光から基板の欠陥を検出する検出手段と、
基板の検査範囲を決定して前記第1の制御手段及び前記第2の制御手段に指示し、光線が照射されている基板の表面上の位置を検出して、前記検出手段が検出した欠陥の位置を検出する処理手段とを備え、
前記処理手段は、基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び前記検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を除外して、基板の検査範囲を決定することを特徴とする基板検査装置。
An inspection table that supports a rectangular transparent substrate only on its two opposite sides;
A light projecting system that scans the substrate by irradiating the surface of the substrate obliquely while moving the light beam by a predetermined distance in a direction perpendicular to the two sides supported by the substrate;
A light receiving system including a lens and a light receiving unit in which a plurality of optical fibers are bundled, and a light receiving system that receives scattered light in which a light beam is scattered by a defect in the substrate;
First moving means for moving the inspection table, the light projecting system, and the light receiving system in a direction that is relatively parallel to the two sides supported by the substrate;
First control means for controlling the first moving means;
A second moving means for moving the inspection table, the light projecting system, and the light receiving system in a direction that is relatively perpendicular to two sides supported by the substrate, and changing a scanning range of the substrate by the light beam;
Second control means for controlling the second moving means;
Detecting means for detecting a defect of the substrate from the scattered light received by the light receiving system;
The inspection range of the substrate is determined, the first control unit and the second control unit are instructed, the position on the surface of the substrate irradiated with the light beam is detected, and the defect detected by the detection unit is detected. Processing means for detecting the position,
The processing means irradiates the surface of the substrate with light rays scattered by the edge taper of the substrate and generates scattered light, and irradiates the surface of the substrate with light rays scattered by the inspection table and generating scattered light. A substrate inspection apparatus that determines a substrate inspection range by excluding the range.
前記検査テーブルは、基板の向かい合う二辺の底に接触する傾斜面を有する基板支持部を有し、
前記処理手段は、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面から射出されて前記基板支持部の角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と垂直な方向の検査範囲を決定することを特徴とする請求項1に記載の基板検査装置。
The inspection table has a substrate support portion having an inclined surface that contacts bottoms of two opposite sides of the substrate,
The processing means passes from the irradiation position on the surface of the substrate to the edge of the substrate from the irradiation position of the light beam transmitted to the inside of the substrate, reflected on the back surface of the substrate and irradiated to the taper corner of the substrate edge, and into the substrate inside. Except from the irradiation position on the surface of the substrate to the edge of the substrate, the light beam that is transmitted and emitted from the back surface of the substrate and irradiated to the corner of the substrate support portion is perpendicular to the two supported sides of the substrate. The substrate inspection apparatus according to claim 1, wherein a direction inspection range is determined.
前記処理手段は、基板の縁のテーパの角へ直接照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と平行な方向の検査範囲を決定することを特徴とする請求項1又は請求項2に記載の基板検査装置。   The processing means transmits the light beam directly irradiated to the taper corner of the substrate edge from the irradiation position on the substrate surface to the substrate edge, and is transmitted to the inside of the substrate and reflected on the back surface of the substrate to be reflected on the substrate edge. The inspection range in the direction parallel to the two supported sides of the substrate is determined by excluding from the irradiation position of the light beam irradiated to the taper corner of the substrate to the edge of the substrate. The board | substrate inspection apparatus of Claim 1 or Claim 2. 検査テーブルにより、四角形の透明な基板をその向かい合う二辺だけで支持し、
基板の縁のテーパにより散乱されて散乱光を発生する光線の基板の表面への照射範囲、及び検査テーブルにより散乱されて散乱光を発生する光線の基板の表面への照射範囲を除外して、基板の検査範囲を決定し、
投光系から光線を基板の表面へ斜めに照射しながら、光線を基板の支持された二辺と垂直な方向へ所定の距離だけ移動して、基板の走査を行い、
検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と平行な方向へ移動し、検査テーブルと投光系及び受光系とを相対的に基板の支持された二辺と垂直な方向へ移動して、光線による基板の走査範囲を変更し、これらを繰り返して、検査範囲全体で光線による基板の走査を行い、
光線が基板の欠陥により散乱された散乱光を受光系で受光し、
受光した散乱光から基板の表面の欠陥を検出し、
光線が照射されている基板の表面上の位置を検出して、検出した欠陥の位置を検出することを特徴とする基板検査方法。
The inspection table supports a rectangular transparent substrate only on its two opposite sides,
Excluding the irradiation range on the surface of the substrate of the light beam scattered by the edge taper of the substrate and the irradiation range of the light beam scattered by the inspection table and generating the scattered light on the surface of the substrate, Determine the inspection range of the board,
While obliquely irradiating the surface of the substrate with light rays from the light projecting system, the light rays are moved by a predetermined distance in a direction perpendicular to the two supported sides of the substrate, and the substrate is scanned.
The inspection table, the light projecting system and the light receiving system are moved in a direction parallel to the two sides relatively supported by the substrate, and the inspection table, the light projecting system and the light receiving system are relatively moved by the two sides supported by the substrate. The scanning range of the substrate with the light beam is changed, and these steps are repeated to scan the substrate with the light beam over the entire inspection range,
The light receiving system receives the scattered light scattered by the defects on the substrate,
Detect defects on the surface of the substrate from the received scattered light,
A substrate inspection method, comprising: detecting a position of a detected defect by detecting a position on a surface of a substrate irradiated with a light beam.
検査テーブルに、基板の向かい合う二辺の底に接触する傾斜面を有する基板支持部を設け、
基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面から射出されて基板支持部の角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と垂直な方向の検査範囲を決定することを特徴とする請求項4に記載の基板検査方法。
The inspection table is provided with a substrate support having an inclined surface that contacts the bottoms of the two opposite sides of the substrate,
From the irradiation position on the surface of the substrate to the edge of the substrate, the light beam that is transmitted to the inside of the substrate and reflected from the back surface of the substrate and irradiated to the taper corner of the substrate is transmitted to the inside of the substrate and transmitted to the inside of the substrate. Excludes from the irradiation position on the surface of the substrate to the edge of the substrate, which is emitted from the back surface and irradiated to the corner of the substrate support part, and determines the inspection range in the direction perpendicular to the two supported sides of the substrate The substrate inspection method according to claim 4, wherein:
基板の縁のテーパの角へ直接照射される光線の基板の表面への照射位置から基板の縁までと、基板の内部へ透過して基板の裏面で反射されて基板の縁のテーパの角へ照射される光線の基板の表面への照射位置から基板の縁までとを除外して、基板の支持された二辺と平行な方向の検査範囲を決定することを特徴とする請求項4又は請求項5に記載の基板検査方法。   From the irradiation position of the light beam directly applied to the taper corner of the substrate edge to the edge of the substrate from the irradiation position to the substrate edge, it is transmitted to the inside of the substrate and reflected by the back surface of the substrate to the taper corner of the substrate edge 5. The inspection range in a direction parallel to the two supported sides of the substrate is determined by excluding the irradiation position of the irradiated light beam on the surface of the substrate to the edge of the substrate. Item 6. The substrate inspection method according to Item 5.
JP2008090816A 2008-03-31 2008-03-31 Substrate inspection apparatus and substrate inspection method Expired - Fee Related JP5178281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090816A JP5178281B2 (en) 2008-03-31 2008-03-31 Substrate inspection apparatus and substrate inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090816A JP5178281B2 (en) 2008-03-31 2008-03-31 Substrate inspection apparatus and substrate inspection method

Publications (2)

Publication Number Publication Date
JP2009244091A true JP2009244091A (en) 2009-10-22
JP5178281B2 JP5178281B2 (en) 2013-04-10

Family

ID=41306151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090816A Expired - Fee Related JP5178281B2 (en) 2008-03-31 2008-03-31 Substrate inspection apparatus and substrate inspection method

Country Status (1)

Country Link
JP (1) JP5178281B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073039A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
JP2012073040A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
JP2013044577A (en) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp Substrate inspection method and device
JP2019082496A (en) * 2019-03-11 2019-05-30 列真株式会社 Flaw detecting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364749A (en) * 1991-06-12 1992-12-17 Nikon Corp Foreign matter inspection apparatus
JPH05332943A (en) * 1992-05-29 1993-12-17 Canon Inc Surface state inspection device
WO2006112466A1 (en) * 2005-04-19 2006-10-26 Matsushita Electric Industrial Co., Ltd. Method for inspecting a foreign matter on mirror-finished substrate
JP2007003376A (en) * 2005-06-24 2007-01-11 Toppan Printing Co Ltd Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2007107884A (en) * 2005-10-11 2007-04-26 Hitachi High-Technologies Corp Substrate inspection device and substrate inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364749A (en) * 1991-06-12 1992-12-17 Nikon Corp Foreign matter inspection apparatus
JPH05332943A (en) * 1992-05-29 1993-12-17 Canon Inc Surface state inspection device
WO2006112466A1 (en) * 2005-04-19 2006-10-26 Matsushita Electric Industrial Co., Ltd. Method for inspecting a foreign matter on mirror-finished substrate
JP2007003376A (en) * 2005-06-24 2007-01-11 Toppan Printing Co Ltd Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2007107884A (en) * 2005-10-11 2007-04-26 Hitachi High-Technologies Corp Substrate inspection device and substrate inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073039A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
JP2012073040A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
JP2013044577A (en) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp Substrate inspection method and device
JP2019082496A (en) * 2019-03-11 2019-05-30 列真株式会社 Flaw detecting device

Also Published As

Publication number Publication date
JP5178281B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5268061B2 (en) Board inspection equipment
KR101039020B1 (en) Apparatus of inspecting a substrate and method of inspecting a substrate
CN1379459A (en) Apparatus used for evaluating polycrystalline silicon film
JP5178281B2 (en) Substrate inspection apparatus and substrate inspection method
KR20170015468A (en) Method and system for measuring thickness of glass article
US20130329222A1 (en) Inspecting apparatus and method for manufacturing semiconductor device
JP2013044578A (en) Substrate inspection method and device
JP2011226939A (en) Method and device for inspecting substrate
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP2008191020A (en) Substrate inspection apparatus and substrate inspection method
JP5230240B2 (en) Laser processing equipment
JP4801634B2 (en) Laser processing apparatus and laser processing method
JP4808162B2 (en) Substrate inspection apparatus and substrate inspection method
JP2004138470A (en) Light transmissive substrate inspection device
JP4693581B2 (en) Substrate inspection apparatus and substrate inspection method
KR101138041B1 (en) Method of correcting in-line substrate inspection apparatus and in-line substrate inspection apparatus
JP2011069676A (en) Inspection system, and inspection method
JP2007024733A (en) Substrate inspection device and substrate inspection method
JP2008076283A (en) Method for adjusting optical axis of substrate inspection device, and optical axis adjusting sample
JP2011257304A (en) Substrate inspection method and device
JP4493428B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
TWI808774B (en) Light irradiation device
JP2011067826A (en) Laser machining apparatus and laser beam machining method
JP2012198071A (en) Device and method for inspecting optical glass
JP2001201461A (en) Foreign-body inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

LAPS Cancellation because of no payment of annual fees