JP2009241559A - Laminated panel and method for manufacturing the same - Google Patents
Laminated panel and method for manufacturing the same Download PDFInfo
- Publication number
- JP2009241559A JP2009241559A JP2008094258A JP2008094258A JP2009241559A JP 2009241559 A JP2009241559 A JP 2009241559A JP 2008094258 A JP2008094258 A JP 2008094258A JP 2008094258 A JP2008094258 A JP 2008094258A JP 2009241559 A JP2009241559 A JP 2009241559A
- Authority
- JP
- Japan
- Prior art keywords
- core material
- resin
- laminated
- laminated panel
- panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、板状のコア材の両面を強化繊維シートでサンドイッチした積層パネルとその製造方法に関し、より詳しくは、コア材の両面に繊維シートを積層した積層体を凹凸の形状が形成された型材に押し付けながら真空状態でマトリックス樹脂を含浸させて前記凹凸の形状に成型した積層パネルとその製造方法に関する。 The present invention relates to a laminated panel in which both sides of a plate-like core material are sandwiched with reinforcing fiber sheets and a method for producing the same, and more specifically, an uneven shape is formed on a laminated body in which fiber sheets are laminated on both sides of a core material. The present invention relates to a laminated panel which is impregnated with a matrix resin in a vacuum state while being pressed against a mold material, and is formed into the uneven shape and a manufacturing method thereof.
(FRP板)
近時、耐候性や耐熱性、耐薬品性、電気絶縁性に優れ、さらに軽量であるといった構造材としてカーボンやグラスファイバー等の繊維を合成樹脂の中に入れた繊維強化樹脂(以下、FRP)が知られ、建築資材(採光屋根、温室等)や住設機材(浴槽、浄化槽)、船艇・船舶、海洋調査艇や灯台の塔体、CNGタンク、航空機、レーダードーム等、様々な構造物に利用されている。
(FRP board)
Recently, a fiber reinforced resin (hereinafter referred to as FRP) in which fibers such as carbon and glass fiber are included in a synthetic resin as a structural material that is excellent in weather resistance, heat resistance, chemical resistance, electrical insulation and light weight. Various structures such as building materials (lighting roofs, greenhouses, etc.), housing equipment (tubs, septic tanks), boats / boats, marine research boats and lighthouse towers, CNG tanks, aircraft, radar domes, etc. Has been used.
FRPを成型する方法として、例えば、真空含浸法(一般的にVaRTM法と呼ばれている:Vacuum assisted Resin Transfer Molding)が知られ、具体的には図11に示すような成形装置が用いられている(例えば、特許文献1)。 As a method for molding FRP, for example, a vacuum impregnation method (generally called VaRTM method: Vacuum assisted Resin Transfer Molding) is known. Specifically, a molding apparatus as shown in FIG. 11 is used. (For example, Patent Document 1).
この成形装置は、成形型111の上にガラスクロス等の繊維101,102,103が積み重ねられ、前記繊維101,102,103にバッグ108が被され、このバッグ108の周縁が気密シール109によりシールされ、更に、前記成形型111の成形面に連通する合成樹脂Rの導入管113が設けられると共に、前記バッグ108には該バッグ108内のガスを吸引する真空ポンプ116を有する吸引管114が設けられている。
In this molding apparatus,
このような成形装置におけるFRP板の成型方法は、成形型111の成形面に繊維材料101,102,103を積層し、バッグ108でこれらを覆う。次に、前記バッグ108内のガスが吸引管114より排気されて減圧状態となり、導入管113より不飽和ポリエステルやエポキシ樹脂等の合成樹脂Rがバッグ108内に導入される。そして、バッグ108は大気圧と前記減圧状態の圧力との差により繊維材料101,102,103を成形型111側に強圧し、前記繊維材料が圧縮されると共に注入された合成樹脂Rが繊維材料に含浸する。所定の時間(樹脂の硬化するまでの時間)バッグ108内が前記真空状態に保持され、その後、バッグ108内を真空状態から大気圧状態に戻し、圧縮成型されたFRP板を成形型より離型して繊維強化樹脂パネルが製作される。
In the molding method of the FRP plate in such a molding apparatus, the
前記繊維材料は、例えば、ガラスファイバーやカーボンファイバー等の繊維材料であり、不織布や平織りのシート状のものが使用されている。この繊維材料に含浸させる樹脂(マトリックス樹脂)は、熱硬化性樹脂や熱可塑性樹脂が用いられており、特に、ポリエステルやポリプロピレン等の耐衝撃性・高曲げ強度を有する樹脂が多用されている。 The fiber material is, for example, a fiber material such as glass fiber or carbon fiber, and a nonwoven fabric or a plain weave sheet is used. As the resin (matrix resin) to be impregnated into the fiber material, a thermosetting resin or a thermoplastic resin is used, and in particular, a resin having impact resistance and high bending strength such as polyester or polypropylene is frequently used.
このようなFRP板は、繊維材料で構成されているので、厚みのあるFRP板を形成するには大量の繊維材料を積層することになるので手間とコストがかかる上に重量が重くなってしまうという問題があった。
(第1の積層パネル)
ところで、板状のコア材の両面に繊維材料を積層した積層パネルが知られている(例えば、特許文献2)。この積層パネルは、図12に示すように繊維121aとコア材122と繊維121bとをこの順序で積層したものであって、繊維材料(シート)にエポキシ樹脂等を刷毛やローラーなどで含浸させるハンドレイアップ法や、積層状態で圧縮成型するプレス法、プリプレグを積層して大形の窯(オートクレーブ)で加熱する加熱法などにより製造されている。
Since such an FRP plate is made of a fiber material, a large amount of fiber material is laminated to form a thick FRP plate, which is laborious and costly, and increases the weight. There was a problem.
(First laminated panel)
By the way, a laminated panel in which a fiber material is laminated on both surfaces of a plate-like core material is known (for example, Patent Document 2). This laminated panel is obtained by laminating
そして、製造された積層パネル120は、コア材に高強度のものを使用することでFRPパネル以上の曲げ強度を発揮することができる。また、コア材の厚さを変えるだけで様々な厚みの積層パネルが容易に得られるので、前述のFRPパネルのように大量の繊維シートを積層する必要がなくなるので製造時間の短縮とコストの削減ができる。 And the manufactured laminated panel 120 can exhibit bending strength more than an FRP panel by using a high-strength core material. In addition, it is easy to obtain laminated panels with various thicknesses by simply changing the thickness of the core material, which eliminates the need for laminating a large amount of fiber sheets as in the FRP panel described above, thus reducing manufacturing time and cost. Can do.
ところが、このような積層パネル120に使用されているコア材は平板形状であり、大きい曲率を有する積層パネルを形成することができなかった。従って、大きい曲率を有する積層パネルを製造するには、予め曲面に沿って製造段階から形成するか又は機械加工等の切削加工されたコア材を使用したり、熱可塑性樹脂製のコア材であればこれを加熱しながら大型プレス機で強圧して変形させなければならず、手間とコストがかかっていた。 However, the core material used in such a laminated panel 120 has a flat plate shape, and a laminated panel having a large curvature cannot be formed. Therefore, in order to manufacture a laminated panel having a large curvature, a core material formed in advance from the manufacturing stage along a curved surface or cut by machining or the like, or a core material made of thermoplastic resin may be used. If this was heated, it had to be deformed by pressing it with a large press machine, which required labor and cost.
また、事前に製品毎に専用のコア材を製造していたのでは新製品への切り替えに時間がかかったり、製品毎のコア材の在庫が増えてしまったりという問題があった。 In addition, if a dedicated core material is manufactured in advance for each product, there is a problem that switching to a new product takes time and the stock of core material for each product increases.
(第2の積層パネル)
ところで、前記平板状の第1の積層パネルに対して曲面を有する積層パネルを成型する方法が知られている(特許文献3)。この曲面を有する積層パネルの概略を図13に示す。この図に示すように曲面を有する成形型(不図示)上にガラス繊維218、コア材(ガラスクロス213、ポリ塩化ビニル製発泡材212)、パテ216、ガラス繊維216をこの順に積層して形成されている。前記コア材は、図14(A)に示すように発泡材212の一方の面に非貫通スリット214aを複数設け、次いで図(B)のように前記スリット14が開口している発泡材212の一方の面に多孔性シート(ガラスクロス213等)を接着剤で貼り付け、更に図(C)のように発泡材212の他方の面から前記スリット214aよりも幅広のスリット214bを設けて貫通スリットが形成されている。
(Second laminated panel)
By the way, a method of molding a laminated panel having a curved surface with respect to the flat first laminated panel is known (Patent Document 3). An outline of the laminated panel having the curved surface is shown in FIG. As shown in this figure, a
そして、この積層パネルは、熟練の職人が手作業でパテ216を塗り込みながら製作しており、前述のように複数の工程を経て製作されるものであるので、特許文献3記載の積層パネルは大量生産に適していないのである。従って、積層パネルが高価なものになってしまう。
And this laminated panel is manufactured while applying the
また、パテは発泡材に吸収され易く、その吸収にはバラツキがあるので、積層パネルの強度がバラツキ易いという欠点があった。更に、パテの硬化を促進するために加熱すると、パテ内の空気が膨張してボイドを形成し、曲げ強度が著しく低下するという問題がある。 In addition, the putty is easily absorbed by the foam material, and there is a variation in the absorption. Therefore, there is a drawback that the strength of the laminated panel is likely to vary. Furthermore, when heated to promote the curing of the putty, the air in the putty expands to form voids, and the bending strength is significantly reduced.
更に、パテと硬化剤とを念入りかつ均一に練り合わせる手間がかかり、配合比率によって硬化時間や硬化後の収縮率が異なってしまうので、これにより積層パネルの強度ムラが生ずるという問題もある。 Further, it takes time and effort to knead the putty and the curing agent carefully and uniformly, and the curing time and the shrinkage after curing differ depending on the blending ratio, thereby causing the problem of uneven strength of the laminated panel.
更にまた、手作業によりパテをスリット内に塗り込まなければならないので、その作業自体が非常に手間のかかるものであり、塗り込みムラによる強度のバラツキを生ずるという問題もあった。また、均一にパテを塗り込むのには熟練の作業者を必要とするので、工期とコストがかかり、大量生産できないという問題がある。 Furthermore, since the putty has to be applied in the slits by manual work, the work itself is very troublesome, and there is a problem that the intensity varies due to uneven application. In addition, since a skilled worker is required to apply the putty uniformly, there is a problem that a construction period and cost are required and mass production cannot be performed.
また、薄いガラスクロスで連結された発泡材からなるコア材は、全くコシのないものとなっている。従って、成形型上の凹凸によりコア材が移動したりして安定しないので、作業性がよくないという問題もあった。また、コア材を製作する際にも安定感がよくないので、慎重に取り扱わなければならない。 Moreover, the core material which consists of a foam material connected with the thin glass cloth becomes a thing without a firmness at all. Accordingly, there is a problem that workability is not good because the core material moves due to unevenness on the mold and is not stable. Also, when manufacturing the core material, the stability is not good and must be handled with care.
また、発泡材に多数の切り込みを形成し、この切り込みが拡大あるいは縮小することで発泡材に柔軟性を与えたものがあるが、パテを切り込みに塗り込む作業は前述の問題がある。 In addition, there are some foams made with a large number of cuts, and the cuts are enlarged or reduced to give the foams flexibility. However, the work of applying the putty into the cuts has the above-mentioned problems.
そして、手作業により製作されているので、作業環境にパテ中の揮発性有機化合物(volatile organic compounds。以下、VOC)が放出され、これを作業者が吸入してしまうことがあるという問題があった。
本発明は、かかる従来技術の欠点に鑑み、作業者がVOCガスを吸入したりすることなく、更に、手作業によりコア材のスリットにパテを塗り込んだり、コア材を予め曲面に合わせて変形させたりすることなく、短時間かつ容易に曲面を有する高強度なFRPサンドイッチパネルを製造する方法を提供するものである。 In the present invention, in view of the drawbacks of the prior art, the operator does not inhale the VOC gas, and further puts the putty on the slit of the core material manually, or deforms the core material in advance according to the curved surface. The present invention provides a method for producing a high-strength FRP sandwich panel having a curved surface easily and in a short time without causing it to occur.
本発明は前記したような従来の問題点を解決するためになされたものであって、本発明に係る積層パネルの製造方法は、
1)コア材の両面に強化繊維層を配設した積層体を、真空成型用型材の表面に配置し、液状の樹脂を前記積層体に供給して曲面を有する構造物用積層パネルを前記型材に押圧状態で成型する方法において、前記コア材は、平板状体の片面あるいは両面に複数の膨出部が小間隙を開けて一体的に形成されており、前記小間隙は、前記積層体を前記型材表面に形成された曲面に沿わせて撓ませたときに、この積層体の曲がりを阻止することがなく、且つ、液状の樹脂を全体的に供給することができる樹脂の小流路に形成し、更にこの樹脂が硬化して膨出部同士が一体化するように配置したことを特徴としている。
The present invention was made to solve the conventional problems as described above, and the method for manufacturing a laminated panel according to the present invention includes:
1) A laminated body in which reinforcing fiber layers are disposed on both surfaces of a core material is placed on the surface of a vacuum molding mold material, and a liquid resin is supplied to the laminated body to form a laminated panel for a structure having a curved surface. In the method of molding in a pressed state, the core material is formed integrally with a plurality of bulging portions on one side or both sides of a flat plate with a small gap, and the small gap is formed from the laminate. When the resin is bent along the curved surface formed on the surface of the mold material, the resin does not prevent bending of the laminate, and the resin small flow path can supply the liquid resin as a whole. It is characterized in that the resin is cured and arranged so that the bulging portions are integrated with each other.
また、本発明に係る積層パネルは、
2)コア材の両面に強化繊維層を配設した積層体を、真空成型用型材の表面に配置し、液状の樹脂を前記積層体に供給し、前記型材に押圧状態で成型された曲面を有する構造物用積層パネルであって、前記コア材は、平板状体の片面あるいは両面に複数の膨出部が小間隙を開けて一体的に形成されており、前記小間隔は、前記積層体を前記型材表面に形成された曲面に沿わせて撓ませたときに、この積層体の曲がりを阻止することがなく、且つ、液状の樹脂を全体的に供給することができる樹脂の小流路に形成し、更にこの樹脂が硬化して膨出部同士が一体化するように配置したことを特徴としている。
The laminated panel according to the present invention is
2) A laminated body in which reinforcing fiber layers are arranged on both surfaces of the core material is placed on the surface of a vacuum molding mold material, a liquid resin is supplied to the laminated body, and a curved surface molded in a pressed state on the mold material is formed. A laminate panel for a structure having the core material, wherein a plurality of bulging portions are formed integrally with a small gap on one side or both sides of a flat plate-like body, Is a resin small flow path that can prevent the bending of the laminated body and supply the entire liquid resin when bent along the curved surface formed on the mold surface. And the resin is cured and arranged so that the bulging portions are integrated with each other.
マトリックス樹脂が硬化すると、このマトリックス樹脂硬化体とコア材の膨出部とが一体となり、これが恰も一枚の板のようになるので、積層パネルの強度を向上させることができる。 When the matrix resin is cured, the matrix resin cured body and the bulging portion of the core material are integrated, and this is like a single plate, so that the strength of the laminated panel can be improved.
手作業によりパテを塗り込む作業が不要となり、短期間で積層パネルが製造され、結果、量産により安価に提供することができる。 The operation of painting putty manually is not necessary, and a laminated panel is manufactured in a short period of time. As a result, it can be provided at low cost by mass production.
従来の真空成型ではコア材と強化繊維とを積層した積層パネルは平板状のものに限られていたが、コア材を平板状体の片面に膨出部を小間隙を有して複数形成したことにより、曲面を有する積層パネルを真空成型により容易に製造することができる。 In the conventional vacuum forming, the laminated panel in which the core material and the reinforcing fiber are laminated is limited to a flat plate, but a plurality of the core materials are formed on one side of the flat body with a small gap. Thus, a laminated panel having a curved surface can be easily manufactured by vacuum forming.
真空成型により、コア材の膨出部と膨出部との間隙にマトリックス樹脂が充填させ、また、前記コア材をサンドイッチする強化繊維層に前記樹脂が含浸させるだけで、曲面を有する積層パネルが一発成型される。結果、製造期間を著しく短縮することができる。 By vacuum forming, the gap between the bulging part of the core material is filled with a matrix resin, and the reinforcing fiber layer sandwiching the core material is simply impregnated with the resin to form a laminated panel having a curved surface. It is molded once. As a result, the manufacturing period can be significantly shortened.
また、コア材を平板状体の片面に膨出部を小間隙を有して複数形成したことにより、この小間隙が凹面や凸面に沿って拡大したり縮小したりするので、凹面と凸面とを同時に有する積層パネルを製造することができる。 In addition, by forming a plurality of bulging portions with a small gap on one side of the flat plate, the small gap expands or contracts along the concave or convex surface, so that the concave and convex surfaces Can be manufactured at the same time.
パテが発泡材製のコア材に吸収されてしまうこと、又は作業の不均一性によりスリット内に空隙を生じ、パネル強度のバラツキが発生することが防止される。 It is prevented that the putty is absorbed by the core material made of the foam material, or a gap is generated in the slit due to the non-uniformity of the work, and the variation in the panel strength is prevented.
パテの塗込みに比べ、液状の樹脂を真空引きで充填することにより隅々まで樹脂を行き渡らせることでボイドを減じるだけでなく、コア材との接合強度を向上させることができる。 Compared with the application of putty, filling the liquid resin by evacuation allows the resin to spread to every corner, not only reducing the voids, but also improving the bonding strength with the core material.
発泡材にガラス繊維シートを貼り付けたり、貫通スリットを形成したりする工程が省略されてこれにかかる費用と期間が削減される。発泡材の小片の集まりで多面体を形成し、強化繊維とコア材の隙間に同時に樹脂が充填されるので、型面に無理なく沿い、意図された理想の曲面に近付く。 The process of attaching the glass fiber sheet to the foam material or forming the through slit is omitted, and the cost and time required for this are reduced. A polyhedron is formed by a collection of small pieces of foam material, and the resin is filled in the gap between the reinforcing fiber and the core material at the same time, so that it easily follows the mold surface and approaches the intended ideal curved surface.
また、強化繊維を大量に積層したりすることなく、所定の厚みを有するコア材を使用するだけで、所望の厚みの積層パネルを簡単に得ることができる。また、強化繊維と比較してコア材は非常に安価であるので、生産される積層パネルも安価となる。 Moreover, a laminated panel having a desired thickness can be easily obtained by using a core material having a predetermined thickness without laminating a large amount of reinforcing fibers. In addition, since the core material is very inexpensive as compared with the reinforcing fiber, the produced laminated panel is also inexpensive.
熟練の職人の手作業により積層パネルを組み上げる必要がなくなるので、手作業におけるバラツキもなくなり、工業生産に適している。よって、安定した品質のものを安定した供給量で提供することができる。 Since there is no need to assemble a laminated panel by a skilled craftsman, there is no variation in manual work, which is suitable for industrial production. Therefore, the thing of stable quality can be provided with the stable supply amount.
真空引きの状態で樹脂がゲル化したときに吸引を止め、乾燥炉ないしオートクレーブ内で加熱することでより強度を向上させることができ、必要に応じて加圧、加熱してより高性能な性質を得ることが可能である。 Suction is stopped when the resin gels in the vacuum state, and the strength can be improved by heating in a drying furnace or autoclave. It is possible to obtain
更に、パテやマトリックス樹脂、プリプレグ等を作業者が手作業で直接取り扱う機会を大幅に削減するので、作業者の健康被害の発生を防止できる。 Furthermore, since the opportunity for the operator to directly handle putty, matrix resin, prepreg and the like by hand is greatly reduced, it is possible to prevent the health damage of the worker.
以下、本発明にかかる積層パネルの製造方法について図示して説明する。 Hereinafter, the manufacturing method of the laminated panel concerning this invention is illustrated and demonstrated.
(実施例1)
図1は、本発明における製造方法によって積層パネルを製造する装置の概略図である。積層パネルの真空成型機Aは、成形型5(型材)と、これを覆うシート状のバッグ6と、前記成形型5とバッグ6との間を気密に保持するためのパッキン7とを有している。更に、前記成形型5の成形面5aに連通するマトリックス樹脂Rの供給路L1と、前記バッグ6内に連通してガスを排気する真空ポンプを備えた排気路L2とが設けられている。前記成形型5の成形面5aは、製作される積層パネルの形状に沿って曲面に形成されている。
Example 1
FIG. 1 is a schematic view of an apparatus for producing a laminated panel by the production method according to the present invention. The laminated panel vacuum forming machine A has a forming die 5 (mold material), a sheet-
前記コア材1は、例えば塩化ビニル等の合成樹脂が使用され、これを型枠に流し込んで発泡させ、図2〜図4に示すように平板状体1f上に複数の膨出部1a(突条)が形成されている。前記の膨出部1a同士の間隙はマトリックス樹脂Rの流路1eとなっており、この流路1e部分はコア材1の厚さ膨出部1aよりも薄肉に形成されている。なお、流路1eに位置する平板状体1fの厚さは可撓性を有する程度の厚みに形成され、コア材1を曲げ加工しやすいようになっている。
The
マトリックス樹脂には短く切断した強化繊維を予め混練しておくことによって従来のパテより強度の高い部材を得ることができる。 A member having higher strength than the conventional putty can be obtained by kneading the reinforcing fibers cut short in advance in the matrix resin.
具体的には、膨出部1aは10〜100mm、流路1eは前記厚みの50〜95%程度となっている。この厚みは、前述のようにコア材1が変形し易い程度のものであり、かつ、取り扱い性・作業性のよいコシが得られる程度となる範囲で変更することができる。よって、コア材として使用する合成樹脂によって前述の厚みは適宜調整される。また、図5に示すように膨出部1aの巾は、製造される積層パネルPの曲面に沿って変形できるように曲がり角度θを確保できる間隙となっている。
Specifically, the bulging
前記繊維材料は、ガラス繊維、炭素繊維、ポリアミド繊維、ポリエステル繊維、アクリル繊維、金属繊維等が使用されており、また、ロービングを平織りにしたクロス(ロービングクロス)や、チョップドストランドマット等のクロスが使用されている。施工の容易性から、前記繊維材料の厚さは0.5mm〜10mmのものが使用される。 As the fiber material, glass fiber, carbon fiber, polyamide fiber, polyester fiber, acrylic fiber, metal fiber, and the like are used, and a cloth having a plain weaving (roving cloth) or a cloth such as a chopped strand mat is used. in use. In view of ease of construction, the fiber material having a thickness of 0.5 mm to 10 mm is used.
マトリックス樹脂は、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ABS樹脂、ポリエチレンテレフタラート樹脂、ナイロン樹脂、ポリイミド樹脂などが使用され、積層パネルの用途や強度等に合わせて最適なものが使用される。よって、前述の樹脂に限定されるものではない。 As the matrix resin, an epoxy resin, a phenol resin, an unsaturated polyester resin, an ABS resin, a polyethylene terephthalate resin, a nylon resin, a polyimide resin, or the like is used, and an optimum one is used according to the use or strength of the laminated panel. . Therefore, it is not limited to the above-mentioned resin.
次に、真空成型機Aを使用して本発明に係る積層パネルを製造する操作について説明する。 Next, an operation for manufacturing the laminated panel according to the present invention using the vacuum forming machine A will be described.
成形型5の成形面5aに図示しない離型シートを敷設し、これの上にガラスファイバー等の強化繊維シート2bを所定の枚数積層し、この上にコア材1を載置し、更にその上に強化繊維シート2aを所定の枚数積層して積層体Tを形成する。次いで、気密パッキン7を前記成形面5a上に載置された積層体Tの周囲に配置し、前記成形面5aと積層体とを真空バッグ6により覆う。
A release sheet (not shown) is laid on the
排気ラインL2よりバッグ6内のガスを排気し、このバッグ6内を真空状態とする。供給ラインL1のバルブを開くと樹脂Rが図示しないタンクより該供給ラインL1を介して成形面5aに導入される。導入された樹脂Rは強化繊維シート2bの繊維間の隙間を通じて前記成形面5a全体に供給されると共に、この強化繊維シート2bに含浸する。
The gas in the
さらに、樹脂Rはコア材1の流路1e内を流通しながら拡がると共にこの流路1e内に充填され、コア材1と上側の強化繊維シート2aとに樹脂Rが含浸する。
Further, the resin R spreads while flowing in the
また、バッグ6内は大気圧よりも低圧に保持されており、大気圧と前記低圧との差圧によって前記バッグ6が積層体Tを成形面5aに押し付け、この積層体Tに圧縮力が作用している。この低圧状態は、樹脂Rが硬化するまで保持されている。
The
なお、前記真空成型機に、図示しない電熱器や冷却器等を備えた温度制御手段を設け、樹脂Rの最適な硬化温度に保持するようにしてもよい。 The vacuum molding machine may be provided with temperature control means including an electric heater or a cooler (not shown) so as to keep the resin R at the optimum curing temperature.
そして、マトリックス樹脂Rの硬化が完了すると排気ラインL2による排気を停止してバッグ6内が大気圧に戻され、このバッグ6は取り外される。次いで、前記成形型5よりこの積層パネルPが取り出され、曲面が形成された積層パネルPが完成する(図6)。以上のような操作を繰り返すことで積層パネルPが製造される。
When the curing of the matrix resin R is completed, the exhaust through the exhaust line L2 is stopped, the interior of the
本実施例により、曲面および厚みを有し、かつ高強度な積層パネルが容易に製造できるようになり、更に、コア材に作業者がパテを手作業で埋め込むことなく自動含浸されるので、積層パネルの製作の手間と時間が短縮され、その製作コストも抑えることができる。 According to the present embodiment, a laminated panel having a curved surface and a thickness and having high strength can be easily manufactured, and further, the core material is automatically impregnated without manually putting the putty into the core material. The time and labor for manufacturing the panel can be reduced, and the manufacturing cost can be reduced.
前記コア材1の流路1e内の樹脂Rが硬化して膨出部1a同士が連結されて一体となる。従って、恰も1枚の板のようになって強度が向上する。
The resin R in the
なお、本実施例においては、膨出部が一方向に形成されたコア材について説明をしたが、これに限定されるものではない。例えば、図7,8に示すように交差する突条1a,1dが複数形成されたものを使用することができる。この図7,8に示すようなコア材1は、例えば擂り鉢状やドーム状に変形しやすくなっている。また、膨出部が薄板部の両面に形成され、即ち、樹脂Rの流路が両面に形成されたコア材を使用することもでき、このコア材は両側に形成された流路により樹脂が均一かつ迅速に充填されるようになる。
In addition, in the present Example, although the core material in which the bulging part was formed in one direction was demonstrated, it is not limited to this. For example, as shown in FIGS. 7 and 8, a plurality of intersecting
本発明に係る積層パネルは、コア材やガラスクロス等に真空含浸させて成形しているので、真空成型機の樹脂注入口或いは排気ラインの位置を変えることができ、例えば図9のように、供給口と排気口とを上方に設けることができる。供給口と排気口とを上方に設けることで、積層体により開口部を塞がれることが防止される。また、樹脂の硬化時間により供給口/排気口のペアをかえて、大面積作業を可能にすることもできる。 Since the laminated panel according to the present invention is molded by vacuum impregnation into a core material, glass cloth or the like, the position of the resin inlet or the exhaust line of the vacuum molding machine can be changed, for example, as shown in FIG. The supply port and the exhaust port can be provided above. By providing the supply port and the exhaust port upward, the opening is prevented from being blocked by the laminated body. In addition, it is possible to change the supply port / exhaust port pair according to the curing time of the resin to enable a large area operation.
(実施例2)
本実施例は、船舶の船体を成型するものであって、これに用いられる成形型の概略を図10に示す。この成形型15の成形面15aは船体の外形に沿った形状に形成されており、この成形型15の一方よりエポキシ樹脂等のマトリックス樹脂が供給される供給配管L1が接続され、他方に吸引ポンプが接続された吸引配管L2が接続されている。また、この成形型15全体を覆うバッグ6と、バッグ6内を真空にしたときの気密を保つための図示しないシールが設けられている。積層パネルの製造方法は、前記実施例1と同様であるので説明を省略する。
(Example 2)
In this embodiment, the hull of a ship is molded, and an outline of a mold used for this is shown in FIG. The molding surface 15a of the molding die 15 is formed in a shape along the outer shape of the hull, and a supply pipe L1 to which a matrix resin such as an epoxy resin is supplied from one side of the molding die 15 is connected to the suction pump. The suction pipe L2 to which is connected is connected. Further, a
本実施例により、従来はコア材のないFRPのみから船体が形成されることが多かったが、コア材を有する船体を容易且つ正確に形成することができるようになり、その強度は著しく向上し、更に軽量・高強度な船体を得ることができる。船体のような大形構造物を一体で一度の樹脂充填工程で成型することができ、低コスト化に大きな効果がある。また、外側のFRPに亀裂が生じても、コア材と樹脂とが一体となった構造材が水密を保つので漏水することもなく、また、船体が前記構造材により強固に支持されているので、安全性が向上する。従って、船舶同士の接触や船舶の岸壁への接触等の事故が発生しても船体の損傷がFRP船よりも小さくなる。 According to the present embodiment, the hull was conventionally formed only from the FRP without the core material. However, the hull having the core material can be formed easily and accurately, and its strength is remarkably improved. Furthermore, a lighter and higher strength hull can be obtained. Large structures such as ship hulls can be integrally molded in a single resin filling process, which has a great effect on cost reduction. In addition, even if a crack occurs in the outer FRP, the structural material in which the core material and the resin are integrated maintains watertightness, so there is no water leakage, and the hull is firmly supported by the structural material. , Improve safety. Therefore, even if an accident such as contact between ships or contact with the quay of the ship occurs, damage to the hull is smaller than that of the FRP ship.
(実施例3)
本実施例は、透過性を有するコア材を、太陽光を透過する程度の厚みとし、前述の本発明の製造方法によりドーム型等の屋根を形成するものである。
(Example 3)
In this embodiment, the core material having transparency is made thick enough to transmit sunlight, and a roof such as a dome shape is formed by the manufacturing method of the present invention described above.
本実施例によると、強化繊維にガラスファイバーを使用し、コア材に透光性を有する合成樹脂(例えば、塩化ビニル樹脂)を使用したことにより軽量且つ高強度の光透過性を有する屋根を得ることができる。また、従来のようにガラス板を用いることなく太陽光を採り入れることのできる屋根を形成することができる。また、ガラスのように割れて破片が飛び散ったり、重量が重くなったりしない。 According to this embodiment, a glass fiber is used as the reinforcing fiber, and a light-transmitting roof having high light transmittance is obtained by using a synthetic resin (for example, vinyl chloride resin) having translucency for the core material. be able to. Moreover, the roof which can take in sunlight can be formed, without using a glass plate conventionally. In addition, it does not break like glass and shards do not scatter or become heavy.
前記実施例1〜3において、コア材に発泡材を用いたが、バルサやハニカムを用いることができる。また、コア材自体を積層したり、用途に合わせて高さの異なるコア材を使用することもできる。 In Examples 1 to 3, a foam material is used as the core material, but balsa or honeycomb can be used. Further, the core materials themselves can be laminated, or core materials having different heights can be used according to the application.
また、コア材の一方の面に流路を形成したが、両面に流路を対抗するように形成し、恰もコア材の略中央部に薄板状の連結体が形成されているようなものとすることもできる。両面に流路が形成されるので、マトリックス樹脂の拡散により適したものとなる。 In addition, although the flow path is formed on one surface of the core material, the flow path is formed on both surfaces so as to face each other, and the thin plate-like connection body is formed at the substantially central portion of the core material. You can also Since the flow paths are formed on both sides, it becomes more suitable for diffusion of the matrix resin.
また、本発明の製造方法は、前記実施例に限定されるものではなく、曲面を有する構造物(例えば、自動車の車体・ボンネット、高速鉄道車両の前頭部等)についても好適に使用することができる。 Further, the production method of the present invention is not limited to the above-described embodiment, and it is also preferably used for a structure having a curved surface (for example, an automobile body / bonnet, a frontal head of a high-speed railway vehicle, etc.). Can do.
更に、コア材の両面に設けられた強化繊維層を、パネルの用途に合わせて耐紫外線性、耐候性、耐衝撃性などに適した繊維材料やマトリックス樹脂を用いることができ、コア材を変更するだけで種々の用途に合わせて積層パネルの特性を変更したものを製造することができる。 Furthermore, the fiber layer and matrix resin suitable for UV resistance, weather resistance, impact resistance, etc. can be used for the reinforcing fiber layers provided on both sides of the core material according to the panel application, and the core material can be changed. By simply doing so, it is possible to produce a laminate panel with modified characteristics according to various applications.
更にまた、コア材にもマトリックス樹脂が十分に含浸されるので、この樹脂が固化した際には恰も一枚の板のような高強度を発現し、製造されるFRP積層パネルの強度も向上する。 Furthermore, since the core material is sufficiently impregnated with the matrix resin, when the resin is solidified, the core material exhibits high strength like a single plate, and the strength of the manufactured FRP laminated panel is also improved. .
なお、コア材を略ブロック形状とし、このコア材同士の中間部に形成した連結部により連結させることができる。すなわち、 In addition, it can be made to connect by the connection part formed in the intermediate part of these core materials by making a core material into a substantially block shape. That is,
1 コア材
1a 膨出部
1d,1e 流路
1f 平板状体
2,2a,2b 強化繊維シート
5 成形型(型材)
5a 成形面
6 バッグ
7 パッキン
L1 供給ライン
L2 排気ライン
G ガス
R マトリックス樹脂
DESCRIPTION OF
Claims (2)
前記コア材は、平板状体の片面あるいは両面に複数の膨出部が小間隙を開けて一体的に形成されており、前記小間隙は、前記積層体を前記型材表面に形成された曲面に沿わせて撓ませたときに、この積層体の曲がりを阻止することがなく、且つ、液状の樹脂を全体的に供給することができる樹脂の小流路に形成し、更にこの樹脂が硬化して膨出部同士が一体化するように配置したことを特徴とする積層パネルの製造方法。 A laminated body in which reinforcing fiber layers are arranged on both surfaces of the core material is placed on the surface of a vacuum molding mold material, and a liquid resin is supplied to the laminated body to press a laminated panel for a structure having a curved surface against the mold material. In the method of molding in the state,
The core material is formed integrally with a plurality of bulging portions on one side or both sides of a flat plate with a small gap, and the small gap has a curved surface formed on the surface of the mold material. When it is bent along, it is formed in a small resin flow path that does not prevent bending of this laminate and can supply liquid resin as a whole. A method for producing a laminated panel, wherein the bulging portions are arranged so as to be integrated with each other.
前記コア材は、平板状体の片面あるいは両面に複数の膨出部が小間隙を開けて一体的に形成されており、前記小間隔は、前記積層体を前記型材表面に形成された曲面に沿わせて撓ませたときに、この積層体の曲がりを阻止することがなく、且つ、液状の樹脂を全体的に供給することができる樹脂の小流路に形成し、更にこの樹脂が硬化して膨出部同士が一体化するように配置したことを特徴とする積層パネル。 A structure having a curved surface formed by placing a laminated body in which reinforcing fiber layers are disposed on both surfaces of a core material on the surface of a vacuum molding mold material, supplying a liquid resin to the laminated body and pressing the mold material in a pressed state A laminated panel for objects,
The core material is integrally formed with a plurality of bulging portions on one side or both sides of a flat plate with a small gap, and the small gap is formed on a curved surface formed on the surface of the mold material. When it is bent along, it is formed in a small resin flow path that does not prevent bending of this laminate and can supply liquid resin as a whole. A laminated panel characterized by being arranged so that the bulging portions are integrated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008094258A JP2009241559A (en) | 2008-03-31 | 2008-03-31 | Laminated panel and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008094258A JP2009241559A (en) | 2008-03-31 | 2008-03-31 | Laminated panel and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009241559A true JP2009241559A (en) | 2009-10-22 |
Family
ID=41304019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008094258A Pending JP2009241559A (en) | 2008-03-31 | 2008-03-31 | Laminated panel and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009241559A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013172345A1 (en) * | 2012-05-14 | 2016-01-12 | 三菱電機株式会社 | Manufacturing method for vehicle air conditioner cover |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03262635A (en) * | 1990-03-13 | 1991-11-22 | Sekisui Plastics Co Ltd | Manufacture of curved surface panel |
JPH11254567A (en) * | 1998-01-07 | 1999-09-21 | Toray Ind Inc | Fiber-reinforced resin structural member, manufacture thereof, and roofing material or wall material using the member |
JP2003311755A (en) * | 2002-04-19 | 2003-11-05 | Toho Tenax Co Ltd | Hollow sandwich member and manufacturing method therefor |
-
2008
- 2008-03-31 JP JP2008094258A patent/JP2009241559A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03262635A (en) * | 1990-03-13 | 1991-11-22 | Sekisui Plastics Co Ltd | Manufacture of curved surface panel |
JPH11254567A (en) * | 1998-01-07 | 1999-09-21 | Toray Ind Inc | Fiber-reinforced resin structural member, manufacture thereof, and roofing material or wall material using the member |
JP2003311755A (en) * | 2002-04-19 | 2003-11-05 | Toho Tenax Co Ltd | Hollow sandwich member and manufacturing method therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013172345A1 (en) * | 2012-05-14 | 2016-01-12 | 三菱電機株式会社 | Manufacturing method for vehicle air conditioner cover |
EP2851259A4 (en) * | 2012-05-14 | 2016-02-10 | Mitsubishi Electric Corp | Cover for air conditioning device for vehicle, and method for manufacturing same |
US9643365B2 (en) | 2012-05-14 | 2017-05-09 | Mitsubishi Electric Corporation | Cover for air conditioning device for vehicle, and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9120253B2 (en) | Methods of RTM molding | |
JP5877156B2 (en) | Rotor blade manufacturing method and manufacturing apparatus thereof | |
US6656411B1 (en) | Grooved core pattern for optimum resin distribution | |
CA2660702A1 (en) | Manufacturing process of a honeycomb sandwich panel | |
WO2011043253A1 (en) | Process and apparatus for producing fiber-reinforced plastic | |
CN111231367A (en) | Forming method of curved surface composite material part | |
JP2009292054A (en) | Method for press-molding fiber-reinforced plastic | |
WO2006062038A1 (en) | Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin | |
JP2003071864A (en) | Method for manufacturing composite material reinforced panel | |
JP4839523B2 (en) | Manufacturing method of fiber reinforced resin | |
JP2009241559A (en) | Laminated panel and method for manufacturing the same | |
JP2008137179A (en) | Method for manufacturing fiber-reinforced plastic | |
JP2012245623A (en) | Method and device of molding composite material using porous mold | |
JP4104414B2 (en) | Method for producing fiber-reinforced resin molded body | |
JP2009172863A (en) | Manufacturing method of fiber-reinforced resin structure | |
CN114801251A (en) | Integrated forming method for general aircraft carbon fiber prepreg corrugated wall plate | |
EP3600854B1 (en) | A tool for manufacturing a composite component | |
JP5010528B2 (en) | Manufacturing apparatus and manufacturing method for fiber reinforced resin structure | |
JP7474070B2 (en) | Manufacturing method of composite material, and composite material | |
CN115091791B (en) | Vacuum auxiliary forming positioning tool and process | |
Ma et al. | Laminating Processes of Thermoset Sandwich Composites | |
JP5638492B2 (en) | Fiber-reinforced plastic structure and method for manufacturing the same | |
Ma et al. | 4 Laminating Processes | |
JP2008500209A (en) | Gel coat reinforced composite | |
JP5738061B2 (en) | FRP structure manufacturing method and manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120807 |