[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009132949A - Steel material with excellent cold workability, and cold worked parts - Google Patents

Steel material with excellent cold workability, and cold worked parts Download PDF

Info

Publication number
JP2009132949A
JP2009132949A JP2007307741A JP2007307741A JP2009132949A JP 2009132949 A JP2009132949 A JP 2009132949A JP 2007307741 A JP2007307741 A JP 2007307741A JP 2007307741 A JP2007307741 A JP 2007307741A JP 2009132949 A JP2009132949 A JP 2009132949A
Authority
JP
Japan
Prior art keywords
less
cold
steel
steel material
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007307741A
Other languages
Japanese (ja)
Other versions
JP4909247B2 (en
Inventor
Tomokazu Masuda
智一 増田
Takehiro Tsuchida
武広 土田
Shogo Murakami
昌吾 村上
琢哉 ▲高▼知
Takuya Kochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007307741A priority Critical patent/JP4909247B2/en
Publication of JP2009132949A publication Critical patent/JP2009132949A/en
Application granted granted Critical
Publication of JP4909247B2 publication Critical patent/JP4909247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material for cold working, which exhibits excellent cold workability during working and secures superior strength of parts after cold working and accordingly can satisfy the life of forming dies and further has practicality in energy saving. <P>SOLUTION: The steel material has a composition which consists of, by mass, 0.06 to 0.5% C, 0.01 to 0.1% Si, 0.2 to 1.5% Mn, ≤0.05% (not including 0%) P, ≤0.05% (not including 0%) S, ≤0.6% (not including 0%) Sn, ≤0.04% (not including 0%) N and the balance Fe with inevitable impurities and in which the content of solid-solution N (Sol.N) is ≥0.006% and satisfies inequality (1) 10≤Sn/Sol.N≤40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ボルト・ナット等の機械部品、とくに自動車用の各種部品を製造するための素材として有用な冷間加工用鋼材、とりわけ冷間加工用線材および棒鋼に関する。さらに、本発明は、この冷間加工用鋼により製造される冷間加工部品、さらには、熱処理あるいは加工熱処理による冷間加工用鋼材の製造方法にも関係する。   The present invention relates to a steel material for cold working useful as a raw material for manufacturing machine parts such as bolts and nuts, in particular, various parts for automobiles, in particular, a wire rod for cold working and a bar steel. Furthermore, the present invention also relates to a cold-worked part produced from the cold-working steel, and further to a method for producing a cold-worked steel material by heat treatment or thermomechanical treatment.

近年、環境保護の観点から、自動車などの車両の燃費向上を意図した部品の軽量化に対する要望がますます高まっている。この種の軽量化に堪えることのできる一般的な高強度部品は、母材鉄に添加される各種合金元素の含有量を増加させることにより、部品としての所要強度を確保している。   In recent years, from the viewpoint of environmental protection, there is an increasing demand for weight reduction of parts intended to improve the fuel efficiency of vehicles such as automobiles. General high-strength parts that can withstand this type of weight reduction ensure the required strength of the parts by increasing the content of various alloy elements added to the base metal.

また、この種鋼材に適用される最適の加工方法は、通常、200℃以下の雰囲気における冷間加工であり、この冷間加工は、熱間加工や温間加工に比較して生産性が高く、しかも寸法精度および鋼材の歩留がともに良好な利点がある。   Moreover, the optimal processing method applied to this seed steel is usually cold processing in an atmosphere of 200 ° C. or less, and this cold processing has higher productivity than hot processing and warm processing. In addition, both dimensional accuracy and steel yield are advantageous.

ところで、このような冷間加工して部品を製造する場合に問題となるのは、冷間加工された部品の強度を、期待される所定値以上に確保するためには、必然的に変形抵抗の高い鋼材を用いる必要性があることである。ところが、使用する鋼材の変形抵抗が高いほど冷間加工用金型の寿命低下を招くばかりか、冷間加工時に割れが発生しやすい難点がある。   By the way, when manufacturing parts by such cold working, the problem is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, the deformation resistance is inevitably required. Therefore, it is necessary to use a steel material having a high height. However, the higher the deformation resistance of the steel material used, there is not only a reduction in the service life of the cold working mold, but also there is a difficulty that cracks are likely to occur during cold working.

この点を考慮し、従来、鋼材を所定形状に冷間加工した後、焼入れ焼戻し等の熱処理をおこなうことにより、所定強度(硬度)が確保された高強度部品を製造する方法が実施されることもあった。しかし、冷間加工後の熱処理は、部品寸法がなかば必然的に変化するため、二次的に切削などの機械加工により修正する必要があり、熱処理やその後の加工が省略できるような解決策が望まれている。   Considering this point, a method of manufacturing a high-strength part having a predetermined strength (hardness) by performing a heat treatment such as quenching and tempering after cold working a steel material into a predetermined shape is conventionally performed. There was also. However, since the heat treatment after cold working inevitably changes if the part dimensions are small, it is necessary to correct by secondary machining such as cutting, and there is a solution that can omit heat treatment and subsequent machining. It is desired.

以上のような状況を改善するために、冷間加工中における鋼材の変形抵抗を低減すると同時に、所定の部品強度を確保し、しかも生産性向上ならびに省エネルギーをはかるために、すでにいくつかの対策が提案されている。   In order to improve the situation as described above, several measures have already been taken to reduce the deformation resistance of steel during cold working, and at the same time, to ensure the specified component strength, and to improve productivity and save energy. Proposed.

下記特許文献1は、通常、冷間加工前に実施される軟化目的の球状加焼鈍が長時間加熱を必要とし、エネルギー消費の点で問題があることから、圧延ままで使用できる冷間加工性のよい線棒状鋼の製法を提案する。すなわち、フェライト粒内に微細な窒化物を析出させ、これを核としてセメンタイトなどのC化合物を析出させることにより、100〜350℃での冷間加工中の変形抵抗の増大を抑制するとしている。   The following Patent Document 1 discloses that cold workability that can be used in a rolling state is usually because the softening-purpose spherical annealing that is performed before cold working requires heating for a long time and there is a problem in terms of energy consumption. We propose a method for producing wire rod-like steel with good quality. That is, fine nitrides are precipitated in ferrite grains, and a C compound such as cementite is precipitated as a nucleus, thereby suppressing an increase in deformation resistance during cold working at 100 to 350 ° C.

また、特許文献2は、この種棒鋼材を100〜200℃で冷間鍛造する場合の動的歪時効による工具寿命の低下と製品の脆化を考慮した耐歪時効性にすぐれた棒鋼線材の製法を開示する。すなわち、鋼材中のNおよび固溶Al量を制御してNをAlNとして固定し、さらに200〜500℃での時効硬化処理によりCをC化合物として析出させることで、冷間固溶Cおよび固溶Nによる時効硬化を抑制するとしている。   Further, Patent Document 2 discloses a steel bar wire having excellent strain aging resistance in consideration of a decrease in tool life due to dynamic strain aging and product embrittlement when cold forging the seed steel bar at 100 to 200 ° C. Disclose the manufacturing method. That is, by controlling the amount of N and solute Al in the steel material to fix N as AlN, and further precipitating C as a C compound by age hardening at 200 to 500 ° C., It is said that age hardening due to dissolved N is suppressed.

特許文献1および2の方法は、いずれも動的歪時効による変形抵抗の増大を抑制するため、フェライト粒内に存在する固溶Nおよび固溶CをN化合物およびC化合物としてそれぞれ固定化させる方法である。したがって、固溶Nを固定するためには、N化合物形成元素であるAlを添加する必要がある。ところが、その発明の実施例に示されるように、Alの添加量が0.039〜0.045%の程度であれば、鋼中のN量が0.015%であっても、固溶NのほとんどはAlによってN化合物として固定されるので、固溶Nはほとんど存在しないものと考えられる。このような鋼材を加工して作成される部品は、加工中の変形抵抗に応じた部品強度となる。   In both methods of Patent Documents 1 and 2, in order to suppress an increase in deformation resistance due to dynamic strain aging, solid solution N and solid solution C existing in ferrite grains are respectively fixed as an N compound and a C compound. It is. Therefore, in order to fix the solid solution N, it is necessary to add Al which is an N compound forming element. However, as shown in the examples of the invention, if the amount of Al added is about 0.039 to 0.045%, even if the amount of N in the steel is 0.015%, solute N Most of them are fixed as N compounds by Al, so it is considered that almost no solid solution N exists. A part produced by processing such a steel material has a part strength corresponding to the deformation resistance during the processing.

また、下記特許文献3は、200〜400℃での高速鍛造による鋼材の変形抵抗の低減および工具寿命の向上を目的とする冷間圧造用低C棒鋼線材を開示する。この鋼材はAlキルドをベースとし、これに固溶軟化作用を有するCrを添加するとともに、さらにAlを添加することによる固溶Nの固定化により、冷間加工時の変形抵抗を低減するとしている。しかし、この方法は、Alを添加することで固溶NがN化合物として固定化されているため、特許文献1および2と同様に固溶Nがほとんど存在しないことが想定される。   Patent Document 3 below discloses a low C steel bar wire for cold heading for the purpose of reducing deformation resistance of steel by high speed forging at 200 to 400 ° C. and improving tool life. This steel material is based on Al killed steel, and Cr is added to this, which has a solid solution softening action. Furthermore, by fixing solid solution N by further adding Al, deformation resistance during cold working is reduced. . However, in this method, since solid solution N is immobilized as an N compound by adding Al, it is assumed that there is almost no solid solution N as in Patent Documents 1 and 2.

上述したように、この種の鋼部品材には、冷間加工性すなわち変形抵抗および変形能と冷間加工後の部品強度とは相反する性質がある。したがって、所定の部品強度を確保しようとすると、金型寿命が劣化し、また加工中に割れが生じやすくなるなどの共通的な問題が発生する。一方、金型寿命を改善するため冷間加工性を向上させると、所定の部品強度が確保できなくなる。   As described above, this type of steel part material has properties that are contradictory to cold workability, that is, deformation resistance and deformability, and part strength after cold working. Therefore, when it is attempted to secure a predetermined component strength, common problems such as a deterioration of the mold life and a tendency to crack during processing occur. On the other hand, if the cold workability is improved in order to improve the die life, a predetermined component strength cannot be secured.

このような状況から、上例に代表されるような従来技術では、これら両者の特性がともに良好な非調質型の冷間加工用の鋼材を製造するにはなお不十分さを残している。   From such a situation, the conventional techniques as represented by the above examples still have insufficiency to produce a non-tempered cold-working steel with good properties of both. .

また、この種の冷間加工された鋼製部品は、上述したように、所定の部品強度を確保するために硬化熱処理、たとえば焼入れ焼戻しが行なわれることがあるが、生産性向上および省エネルギーの観点から、焼入れ焼戻しの熱処理を省略することが求められている。
特開2000−008139号公報 特開昭60−082618号公報 特公昭57−060416号公報
Further, as described above, this kind of cold-worked steel part may be subjected to hardening heat treatment such as quenching and tempering in order to ensure a predetermined part strength. Therefore, it is required to omit the heat treatment for quenching and tempering.
JP 2000-008139 A Japanese Patent Laid-Open No. 60-082618 Japanese Patent Publication No.57-060416

本発明は、加工中にあってはすぐれた冷間加工性を発揮し、しかも冷間加工後には良好な部品製品としての強度が確保され、したがって、成形用金型の寿命も満足でき、さらには省エネルギー面でも実用的な冷間加工用鋼材の提供を主課題とする。また、本発明は、同様の線材・棒鋼製冷間加工用部品の提供を課題とする。   The present invention exhibits excellent cold workability during the processing, and after the cold processing, the strength as a good component product is ensured, and therefore the life of the molding die can be satisfied. The main issue is to provide practical steel materials for cold work in terms of energy saving. Moreover, this invention makes it a subject to provide the components for cold work made from the same wire and steel bar.

本発明は、上記課題を解決するために、下記の各手段により、SnおよびNの含有と固溶Nの制御を特徴とする冷間加工用鋼材およびこの鋼の熱処理・加工熱処理による冷間加工用鋼材の製造方法ならびにこの鋼材の冷間加工により得られた高品質の製品部品をそれぞれ特徴とする。
(1) C:0.06〜0.5%(質量%、以下同じ。)、Si:0.01〜0.1%、Mn:0.2〜1.5%、P:0.05%以下(0%を含まない。)、S:0.05%以下(0%を含まない。)、Sn:0.6%以下(0%を含まない。)、N:0.04%以下(0%を含まない。)を含有し、残部はFeおよび不可避の不純物から成り、固溶N(Sol.N)の含有量が0.006%以上で、固溶Nに対するSnの量的比率が下式(1)を満足することを特徴とする冷間加工性にすぐれた鋼材。
In order to solve the above-mentioned problems, the present invention provides a steel material for cold working characterized by the inclusion of Sn and N and the control of solute N by the following means, and cold working by heat treatment / work heat treatment of this steel. It is characterized by a method for manufacturing steel materials and high-quality product parts obtained by cold working of the steel materials.
(1) C: 0.06 to 0.5% (mass%, the same shall apply hereinafter), Si: 0.01 to 0.1%, Mn: 0.2 to 1.5%, P: 0.05% Or less (excluding 0%), S: 0.05% or less (not including 0%), Sn: 0.6% or less (not including 0%), N: 0.04% or less ( The balance is composed of Fe and inevitable impurities, the content of solid solution N (Sol. N) is 0.006% or more, and the quantitative ratio of Sn to solid solution N is A steel material excellent in cold workability characterized by satisfying the following formula (1).

10≦Sn/Sol.N≦40・・・(1)
(2)N:0.007%以上を含む上記(1)項に記載の冷間加工性にすぐれた鋼材。
(3)Al:0.2%以下(0%を含まない。)、Zr:0.2%以下(0%を含まない。)、Ti:0.2%以下(0%を含まない。)、Nb:0.5%以下(0%を含まない。)、V:0.5%以下(0%を含まない。)、Ta:0.1%以下(0%を含まない。)、Hf:0.1%以下(0%を含まない。)ならびにB:0.002%以下(0%を含まない。)より成る群から選ばれる1種または2種以上の選択元素を含有し、Nと選択元素との量的関係が下式(2)を満足することを特徴とする上記(1)または(2)項に記載の冷間加工性にすぐれた鋼材。
10 ≦ Sn / Sol. N ≦ 40 (1)
(2) A steel material excellent in cold workability as described in (1) above, containing N: 0.007% or more.
(3) Al: 0.2% or less (not including 0%), Zr: 0.2% or less (not including 0%), Ti: 0.2% or less (not including 0%) Nb: 0.5% or less (not including 0%), V: 0.5% or less (not including 0%), Ta: 0.1% or less (not including 0%), Hf : 0.1% or less (excluding 0%) and B: 0.002% or less (not including 0%), containing one or two or more selective elements selected from the group consisting of N The steel material having excellent cold workability as described in the above item (1) or (2), wherein the quantitative relationship between the element and the selected element satisfies the following formula (2):

N(%)−{14*Al(%)/27+14*Ti(%)/47.9
+14*Nb(%)/92.9+14*V(%)/50.9
+14*Zr(%)/91.2+14*B(%)/10.8
+14*Ta(%)/180.9+14*Hf(%)/178.5}
≧0.006%・・・(2)
ただし、式中*は積を表す。
(4)Cr:2%以下(0%を含まない。)を含有する上記(1)ないし(3)項のいずれかに記載の冷間加工性にすぐれた鋼材。
(5)Cu:5%以下(0%を含まない。)を含有する上記(1)ないし(4)項のいずれかに記載の冷間加工性にすぐれた鋼材。
(6)Ni:5%以下(0%を含まない。)および/またはCo:5%以下(0%を含まない。)を含有する上記(1)ないし(5)項のいずれかに記載の冷間加工性にすぐれた鋼材。
(7)Mo:2%以下(0%を含まない。)および/またはW:2%以下(0%を含まない。)を含有する上記(1)ないし(6)項に記載の冷間加工性にすぐれた鋼材。
(8)Ca:0.05%以下(0%を含まない。)、REM:0.05%以下(0%を含まない。)、Mg:0.02%以下(0%を含まない。)、Li:0.02%以下(0%を含まない。)、Pb:0.3%以下(0%を含まない。)、Bi:0.2%以下(0%を含まない。)より成る群から選ばれる1種または2種以上を含有する上記(1)ないし(7)項のいずれかに記載の冷間加工性にすぐれた鋼材。
(9)上記(1)ないし(8)項のいずれかに記載の鋼材を加工温度200℃以下で冷間加工してなることを特徴とする冷間加工部品。
(10)部品強度が冷間加工時の変形抵抗に対して下式(3)の関係を充足することを特徴とする上記(9)項に記載の冷間加工部品。
N (%)-{14 * Al (%) / 27 + 14 * Ti (%) / 47.9
+ 14 * Nb (%) / 92.9 + 14 * V (%) / 50.9
+ 14 * Zr (%) / 91.2 + 14 * B (%) / 100.8
+ 14 * Ta (%) / 180.9 + 14 * Hf (%) / 178.5}
≧ 0.006% (2)
However, * in a formula represents a product.
(4) A steel material excellent in cold workability according to any one of the above (1) to (3), which contains Cr: 2% or less (excluding 0%).
(5) The steel material having excellent cold workability according to any one of the above (1) to (4), which contains Cu: 5% or less (excluding 0%).
(6) Ni: 5% or less (not including 0%) and / or Co: 5% or less (not including 0%), any one of (1) to (5) above Steel with excellent cold workability.
(7) Cold working as described in the above items (1) to (6), which contains Mo: 2% or less (not including 0%) and / or W: 2% or less (not including 0%) Excellent steel material.
(8) Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%) Li: 0.02% or less (excluding 0%), Pb: 0.3% or less (not including 0%), Bi: 0.2% or less (not including 0%) A steel material excellent in cold workability according to any one of the above items (1) to (7), comprising one or more selected from the group.
(9) A cold-worked part obtained by cold-working the steel material according to any one of (1) to (8) above at a working temperature of 200 ° C or lower.
(10) The cold worked component as described in (9) above, wherein the component strength satisfies the relationship of the following expression (3) with respect to the deformation resistance during cold working.

H≧(DR+1000)/6・・・(3)
H :冷間加工後の部品強度(Hv)
DR:冷間加工時の変形抵抗(MPa)
H ≧ (DR + 1000) / 6 (3)
H: Strength of parts after cold working (Hv)
DR: Deformation resistance during cold working (MPa)

本発明の冷間加工用鋼は、通常の所定量とされる以上の固溶N量を含有しているので、冷間加工後の焼入れ焼戻しの熱処理を省略しても冷間加工後に所定の部品強度を確保することができる。さらに、本発明の冷間加工用鋼は、Snが添加されるとともに、このSnとNの含有量の割合が一定の範囲に適正化され、かつ、その用途が200℃程度以下での冷間加工に指向されているので、確実に良好な冷間加工性が期待できる。同時に、使用すべき成形用金型の寿命が被加工材によっていたずらに阻害されることも有効に救済される利点がある。   Since the steel for cold working of the present invention contains an amount of solute N that is larger than the normal predetermined amount, even if the heat treatment for quenching and tempering after the cold working is omitted, the cold working steel has a predetermined amount after the cold working. Part strength can be ensured. Further, the steel for cold working of the present invention is added with Sn, the ratio of the content of Sn and N is optimized in a certain range, and the use is cold at about 200 ° C. or less. Since it is oriented to machining, good cold workability can be expected with certainty. At the same time, there is an advantage that the life of the molding die to be used is unnecessarily hindered by the workpiece, which is effectively relieved.

最初に本発明の冷間加工性にすぐれた鋼材の化学組成について説明する。   First, the chemical composition of the steel material excellent in cold workability of the present invention will be described.

本発明になるこの鋼材は、基本成分として、C:0.06〜0.5%、Si:0.01〜0.1%、Mn:0.2〜1.5%、P:0.05%以下(0%を含まない。)ならびにS:0.05%以下(0%を含まない。)を含有する。さらに、Sn:0.6%以下(0%を含まない。)およびN:0.04%以下(0%を含まない。)を含有する点が特徴である。そして、固溶状態としてのNの含有量(Sol.N)が0.006%以上であり、同時に固溶Nに対するSnの量的比率が下式(1)を充足するように調整されることを特徴とする。   In the steel material according to the present invention, as basic components, C: 0.06 to 0.5%, Si: 0.01 to 0.1%, Mn: 0.2 to 1.5%, P: 0.05 % Or less (excluding 0%) and S: 0.05% or less (excluding 0%). Further, it is characterized by containing Sn: 0.6% or less (not including 0%) and N: 0.04% or less (not including 0%). And the content (Sol.N) of N as a solid solution state is 0.006% or more, and at the same time, the quantitative ratio of Sn to the solid solution N is adjusted so as to satisfy the following formula (1). It is characterized by.

10≦Sn/Sol.N≦40・・・(1)
各成分の役割および含有量の限定理由について以下に詳述する。
・C:0.06〜0.5%
Cは、脱酸元素であって、0.06%以上含有することが必要であり、それより少ないと、凝固過程でガスが発生して変形能が劣化する等の欠陥を生ずる。より好ましい下限は0.07%である。しかし、C量が過剰になると、変形抵抗の上昇による冷間加工性の劣化およびC化合物の増加による被削性の劣化を招くため、その上限を0.5%とし、好ましくは0.45%である。
・Si:0.01〜0.1%
Siは製鋼過程の脱酸剤として使用される元素で、含有量が少ないと、脱酸不足により凝固過程でガスが発生し、変形能が劣化する等の欠陥が生ずるので、0.01%以上添加する必要があり、好ましい下限は、0.02%である。しかし、過剰添加は割れ発生や変形抵抗の増大を招くため、上限を0.1%とし、好ましい上限は0.09%である。
・Mn:0.2〜1.5%
Mnは製鋼過程における脱酸・脱硫元素であり、含有量が少ないと、結晶粒界にFeSが膜状に析出して粒界強度を著しく低下させ変形能を劣化するので、0.2%以上添加する必要がある。より好ましい下限は0.3%である。しかし、過剰添加は、変形抵抗の増大を招き、冷間加工性を劣化させるため、その上限を1.5%とする。好ましい上限は1.2%である。
・P:0.05%以下(0%を含まない。)
Pは不可避の不純物元素であるが、これがフェライトに含有するとフェライト粒界に偏析して冷間加工性を劣化させる一方、フェライトを固溶強化して変形抵抗が増大する。したがって、Pは冷間加工性の観点から極力低減することが望ましいが、極端な低減は製鋼コストの増加を招くので、工程能力を考慮して、上限を0.05%とする。好ましくは、0.03%以下とするが、完全に0とすることは工業的に困難である。
・S:0.05%以下(0%を含まない。)
Sも不可避の不純物元素であるが、この含有はMnSの介在物を形成し、冷間加工性を劣化させるので、極力低減することが望ましく、変形能の観点から上限を0.05%とし、好ましくは0.03%以下である。しかし、他方でSは被削性の向上に有効な元素であり、極端な低減は被削性を劣化させるので、被削性を考慮して、好ましくは0.002%以上、より好ましくは0.006%以上含有させるのがよい。
・Sn:0.6%以下(0%を含まない。)
Snは本発明がもっとも重要とする積極的添加元素であり、冷間加工中にあって、固溶Nによる鋼材の変形抵抗の増大を抑制するのに有効に作用する。しかし、Snは素材鋼の連続鋳造時にフェライト粒界に偏析して脆化を促進させるため、過剰な添加を避けて上限を0.6%とし、より好ましくは0.55%以下とする。なお、Sn量の下限は、固溶N量との関係から、以下に説明する式(1)の条件を満足させるために0.06%以上添加する必要があり、好ましくは0.1%以上とする。
10 ≦ Sn / Sol. N ≦ 40 (1)
The role of each component and the reason for limiting the content will be described in detail below.
・ C: 0.06-0.5%
C is a deoxidizing element and needs to be contained in an amount of 0.06% or more. If it is less than that, a gas is generated during the solidification process, resulting in defects such as deterioration of deformability. A more preferred lower limit is 0.07%. However, when the amount of C is excessive, it causes deterioration of cold workability due to an increase in deformation resistance and deterioration of machinability due to an increase in C compound, so the upper limit is made 0.5%, preferably 0.45%. It is.
・ Si: 0.01-0.1%
Si is an element used as a deoxidizer in the steelmaking process. If the content is small, gas is generated during the solidification process due to insufficient deoxidation, and defects such as deterioration of deformability occur. It is necessary to add, and a preferable lower limit is 0.02%. However, excessive addition causes cracking and increased deformation resistance, so the upper limit is made 0.1%, and the preferred upper limit is 0.09%.
・ Mn: 0.2-1.5%
Mn is a deoxidation / desulfurization element in the steelmaking process. If the content is small, FeS precipitates in the form of a film at the crystal grain boundary, which significantly reduces the grain boundary strength and deteriorates the deformability. It is necessary to add. A more preferred lower limit is 0.3%. However, excessive addition causes an increase in deformation resistance and deteriorates cold workability, so the upper limit is made 1.5%. A preferable upper limit is 1.2%.
P: 0.05% or less (excluding 0%)
P is an inevitable impurity element, but when it is contained in ferrite, it segregates at the ferrite grain boundaries and deteriorates the cold workability, while the ferrite is solid-solution strengthened to increase the deformation resistance. Therefore, it is desirable to reduce P as much as possible from the viewpoint of cold workability. However, since extreme reduction leads to an increase in steelmaking cost, the upper limit is made 0.05% in consideration of process capability. Preferably, it is 0.03% or less, but it is industrially difficult to make it completely zero.
S: 0.05% or less (excluding 0%)
S is also an inevitable impurity element, but this content forms inclusions of MnS and degrades cold workability, so it is desirable to reduce it as much as possible, and the upper limit is made 0.05% from the viewpoint of deformability, Preferably it is 0.03% or less. However, on the other hand, S is an element effective for improving the machinability, and extreme reduction deteriorates the machinability. Therefore, considering machinability, it is preferably 0.002% or more, more preferably 0. It is good to make it contain 0.006% or more.
Sn: 0.6% or less (excluding 0%)
Sn is an active additive element that is most important in the present invention, and is effective in suppressing an increase in deformation resistance of a steel material due to solute N during cold working. However, Sn segregates at the ferrite grain boundaries and promotes embrittlement during continuous casting of the material steel, so avoid excessive addition and set the upper limit to 0.6%, more preferably 0.55% or less. Note that the lower limit of the Sn amount needs to be added in an amount of 0.06% or more in order to satisfy the condition of the formula (1) described below, preferably 0.1% or more, from the relationship with the solute N amount. And

なお、Snはスクラップ材が有効利用できるので省エネルギーに貢献できる。
・N:0.04%以下(0%を含まない。)
Nは鋼中に固溶して冷間加工後の鋼部品強度を向上させる効果があり、本発明では、上記したSnと共存して含有させる重要な元素である。しかし、鋼中の全N量が過剰であると、固溶N量も過剰となり、鋼材の冷間加工時に割れが生ずることがあり、さらに、鋼材の内部欠陥や連続鋳造時のスラブ割れも発生しやすくなる。そこで、鋼の変形能、材質の安定性および連続鋳造時の歩留まり向上の観点から、鋼中の全N量の上限を0.04%とし、より好ましくは0.03%以下とする。
Sn can contribute to energy saving because scrap material can be used effectively.
N: 0.04% or less (excluding 0%)
N has the effect of improving the strength of the steel part after cold working by dissolving in the steel, and in the present invention, N is an important element contained together with the above Sn. However, if the total amount of N in steel is excessive, the amount of solute N will also be excessive, which may cause cracks during cold working of steel materials, and also cause internal defects in steel materials and slab cracks during continuous casting. It becomes easy to do. Therefore, from the viewpoint of steel deformability, material stability, and yield improvement during continuous casting, the upper limit of the total N content in the steel is 0.04%, more preferably 0.03% or less.

一方、全N量は、つぎに説明する固溶N量の下限を満たすために、鋼材としては、0.007%以上の量を確保するのがよい。すなわち、これ以下では、十分な量の固溶N量の確保が困難となり、所定の部品強度を得るためには素材の変形抵抗を増大させなければならなくなる。したがって、全N量は、0.0075%以上、できれば0.008%以上が好ましい。
・固溶N量:0.006%以上
固溶N(Sol.N)は、上述したように、冷間加工後の部品強度を向上させる効果があり、所望の部品強度を確保するために、0.006%以上を含有させる点にこの発明の大きな特徴がある。固溶N量は、好ましくは、0.007%以上、より好ましくは、0.008%以上がよい。しかし、固溶N量が過剰になると、冷間加工性が劣化するため、好ましくは0.03%以下である。なお、固溶N量の上限は、当然、鋼中の全N量の上限である0.04%を超えることはない。
On the other hand, in order to satisfy the lower limit of the solute N amount described below, the total N amount is preferably secured as 0.007% or more as a steel material. That is, below this, it becomes difficult to secure a sufficient amount of solute N, and the deformation resistance of the material must be increased in order to obtain a predetermined component strength. Therefore, the total N amount is preferably 0.0075% or more, preferably 0.008% or more.
-Solid solution N amount: 0.006% or more Solid solution N (Sol. N) has the effect of improving the component strength after cold working as described above, and in order to ensure the desired component strength, A major feature of the present invention is that it contains 0.006% or more. The amount of solute N is preferably 0.007% or more, more preferably 0.008% or more. However, when the amount of solute N is excessive, cold workability is deteriorated, so the content is preferably 0.03% or less. In addition, naturally the upper limit of the amount of solute N does not exceed 0.04% which is the upper limit of the total N amount in steel.

このように、本発明は、固溶N量を所定量以上含有させることにより冷間加工後の部品強度を向上させ、かつ、SnとNとの量的比率を特定範囲に制御することにより、冷間加工中における固溶N量の弊害を抑制して良好な冷間加工性を維持する従来にない考え方である。この点は後述する。   Thus, the present invention improves the strength of parts after cold working by containing a predetermined amount or more of solute N, and by controlling the quantitative ratio of Sn and N to a specific range, This is an unprecedented idea of maintaining good cold workability by suppressing the adverse effect of the amount of dissolved N during cold work. This point will be described later.

なお、本発明における「固溶N量」の値は、JIS G 1228に準拠し、鋼中の全N量から全N化合物を差し引いて算出する。実用的な測定法を以下に例示する。   In addition, the value of the “solid solution N amount” in the present invention is calculated by subtracting all N compounds from the total N amount in steel according to JIS G 1228. A practical measurement method is illustrated below.

(a)不活性ガス融解法−熱伝導度法
供試鋼素材からサンプルを切り出して、るつぼに入れ、不活性ガス気流中で融解してNを抽出し、熱伝導度セルに搬送して熱伝導度の変化を測定する。
(A) Inert gas melting method-thermal conductivity method A sample is cut out from the test steel material, placed in a crucible, melted in an inert gas stream, extracted N, transported to a thermal conductivity cell and heated. Measure the change in conductivity.

(b)アンモニア蒸留分離インドフェノール青吸光光度法
この方法は、供試鋼素材から切り出されたサンプルを10%AA系電解液中に融解し定電流電解を行なって、鋼中の全N化合物量を測定するものである。この電解液は10%アセチルアセトン、10%塩化テトラメチルアンモニウム、残部:メタノールからなる非水溶媒系の電解液であり、鋼表面に不働態皮膜を生成させない溶液である。
(B) Ammonia distillation separated indophenol blue spectrophotometric method This method consists of melting a sample cut from a test steel material in a 10% AA-based electrolyte and conducting constant-current electrolysis to obtain the total amount of N compounds in the steel. Is to measure. This electrolytic solution is a non-aqueous solvent type electrolytic solution composed of 10% acetylacetone, 10% tetramethylammonium chloride, and the balance: methanol, and does not generate a passive film on the steel surface.

供試鋼素材のサンプル約0.5gをこの電解液中に溶解させ、その不溶解残渣(N化合物)を、穴サイズが0.1μmのポリカーボネート製のフィルタでろ過する。この不溶解残渣を硫酸、硫酸カリウムおよび純銅製チップ中で加熱して分解し、ろ液に合わせる。この溶液を水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させる。フェノール、次亜塩素酸ナトリウムおよびペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、光度計を用いてその吸光度を測定する。   About 0.5 g of a sample of the test steel material is dissolved in the electrolytic solution, and the insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 μm. The insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and combined with the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation is performed, and the distilled ammonia is absorbed by dilute sulfuric acid. Phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and its absorbance is measured using a photometer.

この方法により求められた鋼中の全N量(a)から全N化合物量(b)を差し引いて鋼中の固溶N量を算出する。
・10≦Sn/Sol.N≦40・・・(1)
本発明では、鋼中の固溶Nによる鋼材の変形抵抗の増大を抑制するために必要とされるSnの割合を定量的に規定する目的で、上述の基本的な鋼成分を前提にして多数の実験結果の集約から帰結した本式を使用することが特徴である。
By subtracting the total N compound amount (b) from the total N amount (a) in the steel determined by this method, the solid solution N amount in the steel is calculated.
・ 10 ≦ Sn / Sol. N ≦ 40 (1)
In the present invention, for the purpose of quantitatively prescribing the proportion of Sn required to suppress an increase in deformation resistance of steel due to solute N in steel, a large number of the above basic steel components are presupposed. It is the feature to use this formula that is derived from the aggregation of the experimental results.

すなわち、Sn/Sol.N比が10以下になると、Snは固溶Nによる変形抵抗の増大を十分に抑制することができず、変形抵抗の増大や加工性の低下を招くようになる。好ましいのは12≦Sn/Sol.Nで、より好ましいのは15≦Sn/Sol.Nである。   That is, Sn / Sol. When the N ratio is 10 or less, Sn cannot sufficiently suppress an increase in deformation resistance due to solute N, leading to an increase in deformation resistance and a decrease in workability. Preferred is 12 ≦ Sn / Sol. N, more preferably 15 ≦ Sn / Sol. N.

なお、Sn/Sol.N比が40以上となってもSnの効果が飽和するだけでなく、Snの固溶N強化作用によって変形抵抗が増大するので、好ましいのはSn/Sol.N≦38、より好ましいのはSn/Sol.N≦35とする。   In addition, Sn / Sol. Even if the N ratio is 40 or more, not only the effect of Sn is saturated but also the deformation resistance is increased by the solid solution N strengthening action of Sn. N ≦ 38, more preferably Sn / Sol. N ≦ 35.

本発明鋼の基本組成は上記の通りで、残部は実質的に鉄であり、製造原料、資材、製造設備などの状況によっては、持ち込まれる不可避の不純物が鋼中に含まれることは当然に許容される。   The basic composition of the steel of the present invention is as described above, and the balance is substantially iron, and it is naturally allowed that the inevitable impurities brought into the steel are included in the steel depending on the production raw materials, materials, production equipment, etc. Is done.

本発明の冷間加工用鋼材は、上記の基幹成分に対して、必要に応じてさらに、Al:0.2%以下(0%を含まない。)、Zr:0.2%以下(0%を含まない。)、Ti:0.2%以下(0%を含まない。)、Nb:0.5%以下(0%を含まない。)、V:0.5%以下(0%を含まない。)、Ta:0.1%以下(0%を含まない。)、Hf:0.1%以下(0%を含まない。)あるいはB:0.002%以下(0%を含まない。)のいずれかを、以下に説明するように、その目的に応じて追加的に添加することができる。これらの元素は、1種だけでもよいが、2種以上の複合添加であってもよい。   The steel material for cold working according to the present invention may further include Al: 0.2% or less (not including 0%), Zr: 0.2% or less (0%), if necessary, with respect to the basic component. ), Ti: 0.2% or less (not including 0%), Nb: 0.5% or less (not including 0%), V: 0.5% or less (including 0%) No), Ta: 0.1% or less (excluding 0%), Hf: 0.1% or less (not including 0%), or B: 0.002% or less (not including 0%). ) Can be additionally added depending on the purpose, as described below. These elements may be used alone or in combination of two or more.

ただし、これらの元素を併添する場合、N量との関係で下式(2)を満足させることが必要にして有効な条件である。   However, when these elements are added together, it is necessary and effective to satisfy the following formula (2) in relation to the N amount.

Al、Zr、Ti、Nb、V、Ta、HfおよびBは、Nとの親和力が強く、Nと共存してN化合物を形成し固溶N量を低減させるので、追添する場合の上限を上記のとおりに規制した。しかし、この上限以下の範囲でも下記の配合に留意するのが効果的である。   Al, Zr, Ti, Nb, V, Ta, Hf and B have a strong affinity with N, and coexist with N to form an N compound and reduce the amount of dissolved N. Regulated as above. However, it is effective to pay attention to the following formulation even in a range below this upper limit.

Al:好ましくは0.05%以下、より好ましくは0.03%以下
Zr:好ましくは0.05%以下、より好ましくは0.03%以下
Ti:好ましくは0.05%以下、より好ましくは0.03%
Nb:好ましくは0.3%以下、より好ましくは0.1%以下
V:好ましくは0.3%以下、より好ましくは0.1%以下
Ta:好ましくは0.04%以下、より好ましくは0.02%以下
Hf:好ましくは0.04%以下、より好ましくは0.02%以下
B:好ましくは0.001%以下、より好ましくは0.0008%以下
一方、これら元素のN化合物の生成は、鋼の結晶粒を微細化し、冷間加工後に得られる部品の靭性を向上し、同時に耐割れ性を向上させるために有効に機能する。したがって、各元素の含有上限は上記のとおりとするが、その上限以下であれば、より好ましい下記の範囲が必要に応じて選択されてよい。
Al: preferably 0.05% or less, more preferably 0.03% or less Zr: preferably 0.05% or less, more preferably 0.03% or less Ti: preferably 0.05% or less, more preferably 0 0.03%
Nb: preferably 0.3% or less, more preferably 0.1% or less V: preferably 0.3% or less, more preferably 0.1% or less Ta: preferably 0.04% or less, more preferably 0 0.02% or less Hf: preferably 0.04% or less, more preferably 0.02% or less B: preferably 0.001% or less, more preferably 0.0008% or less
On the other hand, the production of N compounds of these elements effectively functions to refine steel grains and improve the toughness of parts obtained after cold working, and at the same time improve crack resistance. Therefore, although the upper limit of content of each element is as described above, a more preferable following range may be selected as needed as long as the upper limit is not exceeded.

Al:好ましくは0.002%以上、より好ましくは0.004%以上
Zr:好ましくは0.002%以上、より好ましくは0.004%以上
Ti:好ましくは 0.002%以上、より好ましくは0.004%以上
Nb:好ましくは0.001%以上、より好ましくは0.002%以上
V:好ましくは0.001%以上、より好ましくは0.002%以上
Ta:好ましくは0.001%以上、より好ましくは0.002%以上
Hf:好ましくは0.001%以上、より好ましくは0.002%以上
B:好ましくは0.0001%以上、より好ましくは0.0002%以上
そして、本発明では、基幹的鋼組成について、必須成分のSnと固溶Nとの比率について式(1)の条件を付加したように、上記選択元素の追添時にも同じ根拠にもとづいて、下式(2)が充足されることを条件とする。
Al: preferably 0.002% or more, more preferably 0.004% or more Zr: preferably 0.002% or more, more preferably 0.004% or more Ti: preferably 0.002% or more, more preferably 0 0.004% or more Nb: preferably 0.001% or more, more preferably 0.002% or more V: preferably 0.001% or more, more preferably 0.002% or more Ta: preferably 0.001% or more, More preferably 0.002% or more Hf: preferably 0.001% or more, more preferably 0.002% or more B: preferably 0.0001% or more, more preferably 0.0002% or more In the present invention, As for the basic steel composition, the following formula (2) is obtained based on the same grounds when adding the above-mentioned selective elements, as the condition of formula (1) is added with respect to the ratio of Sn and solute N as an essential component. Subject to being satisfied.

N(%)−{14*Al(%)/27+14*Ti(%)/47.9
+14*Nb(%)/92.9+14*V(%)/50.9
+14*Zr(%)/91.2+14*B(%)/10.8
+14*Ta(%)/180.9+14*Hf(%)/178.5}
≧0.006%・・・(2)
上式中の係数は、Nと親和力が強い元素、たとえばAlの原子量をNの原子量で除した値である。また、記号*は積(×)を意味することとする。
N (%)-{14 * Al (%) / 27 + 14 * Ti (%) / 47.9
+ 14 * Nb (%) / 92.9 + 14 * V (%) / 50.9
+ 14 * Zr (%) / 91.2 + 14 * B (%) / 100.8
+ 14 * Ta (%) / 180.9 + 14 * Hf (%) / 178.5}
≧ 0.006% (2)
The coefficient in the above equation is a value obtained by dividing the atomic weight of an element having a strong affinity with N, for example, Al by the atomic weight of N. The symbol * means a product (x).

本条件について説明する。本発明の鋼が固溶N量を0.006%以上含有していることを特徴としているのは既述のとおりであり、この固溶N量を確保するためには、鋼中の全N量を増大させ、Nと親和力の高い元素を低減させることが要求される。したがって、Snに付加して上記したようなNとの親和力の強い選択元素を追添するときは、各含有量について、0.006%以上の固溶N量を確保することが必要がある。   This condition will be described. The steel of the present invention is characterized by containing a solid solution N amount of 0.006% or more as described above. In order to secure this solid solution N amount, It is required to increase the amount and reduce the elements having high affinity with N. Therefore, when a selective element having a strong affinity with N as described above is added to Sn, it is necessary to secure a solid solution N amount of 0.006% or more for each content.

すなわち、鋼中の全N量を増大させ、Nと親和力の高い元素を低減させることであり、鋼がAlなどのNと親和力の強い元素を含有している場合、NはAlなどとN化合物を形成し、固溶N量が低減する。そこで、鋼中の全N量をそれよりも多くすれば、AlなどがすべてNとN化合物を形成したとしても、十分な固溶N量が確保できる。   That is, it is to increase the total amount of N in the steel and to reduce elements having a high affinity for N. When the steel contains an element having a strong affinity for N such as Al, N is an N compound such as Al. And the amount of solute N is reduced. Therefore, if the total amount of N in the steel is made larger than that, even if all Al and the like form N and N compounds, a sufficient amount of dissolved N can be secured.

上式(2)はこの条件を指示するものである。この式にもとづいて選択元素の添加量を算出して配合すれば、製造された鋼材中に所要の全N量、したがって、0.006%以上の固溶N量が確保できる。   The above equation (2) indicates this condition. If the addition amount of the selected element is calculated and blended based on this formula, the required total N amount in the manufactured steel material, and therefore, the solid solution N amount of 0.006% or more can be secured.

つぎに、本発明の冷間加工用鋼材は、上記成分のほか、必要に応じて、Cr:2%以下(0%を含まない。)、Cu:5%以下(0%を含まない。)、Ni:5%以下(0%を含まない。)および/またはCo:5%以下(0%を含まない。)、Mo:2%以下(0%を含まない。)および/またはW:2%以下(0%を含まない。)のいずれも任意に含有させることが有効である。以下、個々について説明する。
・Cr:2%以下(0%を含まない。)
Crは結晶粒界の強度を高めることにより鋼の変形能を向上させる元素であり、必要に応じて、好ましくは0.1%以上、より好ましくは0.2%以上含有できる。しかし、Crの過剰添加は変形抵抗を増大し、冷間加工性が低下するので、好ましくは1.5%以下、より好ましくは1%以下がよい。
・Cu:5%以下(0%を含まない。)
Cuは鋼材をひずみ時効にて硬化させる作用により、加工後の部品強度を向上させることができる。好ましくは0.1%以上、より好ましくは0.5%以上を含有させるとよい。しかし、過剰に添加してもその効果が飽和し、含有量に見合う効果が期待できず、かえって冷間加工性の劣化を招き、部品の表面性状を悪化させるなどの不具合が生ずるため、上限は5%とし、好ましくは4%以下、より好ましくは3%以下がよい。
・Ni:5%以下および/またはCo:5%以下(0%を含まない。)
Niはフェライト−パーライト鋼の変形能を向上させるのに有効であり、また、Cuとの併添時に鋼材表面に発生する表面欠陥の防止に有効であり、好ましくは0.1%以上、より好ましくは0.5%以上を含有させるとよい。なお、Cuを添加する場合は、Cuと同量かその7割程度のNiを添加するのがよい。しかし、5%を超えて添加しても効果が飽和し、逆に冷間加工性を劣化するので、上限は5%とし、好ましくは4%以下、より好ましくは3%以下がよい。
Next, in addition to the above components, the steel material for cold working according to the present invention, if necessary, Cr: 2% or less (not including 0%), Cu: 5% or less (not including 0%) Ni: 5% or less (not including 0%) and / or Co: 5% or less (not including 0%), Mo: 2% or less (not including 0%) and / or W: 2 % Or less (not including 0%) is effective. Each will be described below.
・ Cr: 2% or less (excluding 0%)
Cr is an element that improves the deformability of the steel by increasing the strength of the crystal grain boundary, and may be contained by 0.1% or more, more preferably 0.2% or more, if necessary. However, excessive addition of Cr increases deformation resistance and decreases cold workability, so it is preferably 1.5% or less, more preferably 1% or less.
Cu: 5% or less (excluding 0%)
Cu can improve the strength of parts after processing by the effect of hardening steel by strain aging. Preferably 0.1% or more, more preferably 0.5% or more. However, even if it is added excessively, the effect is saturated, and an effect commensurate with the content cannot be expected.Instead, the cold workability is deteriorated and the surface properties of the parts are deteriorated. 5%, preferably 4% or less, more preferably 3% or less.
Ni: 5% or less and / or Co: 5% or less (excluding 0%)
Ni is effective in improving the deformability of ferrite-pearlite steel, and is effective in preventing surface defects generated on the steel material surface when co-added with Cu, preferably 0.1% or more, more preferably Is preferable to contain 0.5% or more. In addition, when adding Cu, it is good to add Ni of the same quantity as Cu, or about 70% of it. However, even if added over 5%, the effect is saturated and conversely the cold workability deteriorates, so the upper limit is made 5%, preferably 4% or less, more preferably 3% or less.

Coは、Niと同様に、フェライト−パーライト鋼の変形能を向上させるのに有効であり、好ましくは0.1%以上、より好ましくは0.5%以上を含有させるとよい。しかし、5%を超えると、鋳造、圧延等の製造工程で粒界強度を低下させ、割れが生じやすくなるため、5%を上限とし、好ましくは4%以下、より好ましくは3%以下である。
・Mo:2%以下および/またはW:2%以下(0%を含まない。)
Moは、加工後の鋼材の硬さおよび変形能を増加させる作用があり、好ましくは0.04%以上、より好ましくは0.08%以上を含有させることができる。しかし、2%を超える添加は冷間加工性を劣化させるため、上限は2%、好ましくは1.5%以下、より好ましくは1%以下である。
Co, like Ni, is effective in improving the deformability of the ferrite-pearlite steel, and is preferably 0.1% or more, more preferably 0.5% or more. However, if it exceeds 5%, the grain boundary strength is lowered in the manufacturing process such as casting and rolling, and cracking is likely to occur, so 5% is the upper limit, preferably 4% or less, more preferably 3% or less. .
Mo: 2% or less and / or W: 2% or less (excluding 0%)
Mo has the effect | action which increases the hardness and deformability of the steel materials after a process, Preferably it is 0.04% or more, More preferably, it can contain 0.08% or more. However, since addition exceeding 2% deteriorates cold workability, the upper limit is 2%, preferably 1.5% or less, more preferably 1% or less.

WはMoと同様に加工後の硬さおよび変形能を増加させる作用を有し、好ましくは0.04%以上、より好ましくは0.08%以上を含有させるとよいが、2%を超える添加は冷間加工性を劣化させるため、上限は2%とし、好ましくは1.5%以下、より好ましくは1%以下である。   W, like Mo, has the effect of increasing the hardness and deformability after processing, preferably 0.04% or more, more preferably 0.08% or more, but more than 2% addition In order to deteriorate cold workability, the upper limit is 2%, preferably 1.5% or less, more preferably 1% or less.

本発明の冷間加工用鋼は、上記成分のほか、必要に応じてさらに、Ca:0.05%以下(0%を含まない。)、REM:0.05%以下(0%を含まない。)、Mg:0.02%以下(0%を含まない。)、Li:0.02%以下(0%を含まない。)、Pb:0.3%以下(0%を含まない。)ならびにBi:0.2%以下(0%を含まない。)より成る群から、目的に応じて選ばれる1種もしくは2種以上を含有させることも有効である。以下、個々に説明する。
・Ca:0.05%以下(0%を含まない。)
Caは、MnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性向上に寄与する元素であり、好ましくは0.005%以上、より好ましくは0.01%以上を含有させることができる。しかし、過剰に添加してもその効果が飽和し、添加量に見合う効果が期待できないため、上限は0.05%とし、好ましくは0.04%以下、より好ましくは0.03%以下である。
・REM:0.05%以下(0%を含まない。)
REMもCaと同様にMnSなどの硫化化合物系介在物を球状化し、鋼の変形能を高めるとともに、被削性向上に寄与するので、好ましくは0.005%以上、より好ましくは0.01%以上を含有させることができる。しかし、過剰に添加してもその効果が飽和し、添加量に見合う効果が期待できないため、上限は0.05%とし、好ましくは0.04%以下、より好ましくは0.03%以下である。
・Mg:0.02%以下(0%を含まない。)
MgもCaと同様にMnSなどの硫化化合物系介在物を球状化し、鋼の変形能を高めるとともに、被削性向上に寄与するので、好ましくは0.002%以上、より好ましくは0.005%以上を含有させることができる。しかし、過剰に添加してもその効果が飽和し、添加量に見合う効果が期待できないため、上限は0.02%とし、好ましくは0.018%以下、より好ましくは0.015%以下である。
・Li:0.02%以下(0%を含まない。)
LiはCaと同様にMnSなどの硫化化合物系介在物を球状化し、鋼の変形能を高めることができ、また、Al系酸化物を低融点化して無害化することにより、被削性も向上するので、好ましくは0.002%以上、より好ましくは0.005%以上を含有させることができる。しかし、過剰に添加してもその効果が飽和し、添加量に見合う効果が期待できないため、上限は0.02%とし、好ましくは0.018%以下、より好ましくは0.015%以下である。
・Pb:0.3%以下(0%を含まない。)
Pbは被削性向上元素として、好ましくは0.01%以上、より好ましくは0.02%以上を含有させることができる。しかし、0.3%を超えると圧延疵等の製造上の問題を生ずるため、上限は0.3%とし、好ましくは0.28%以下、より好ましくは0.25%以下である。
・Bi:0.2%以下(0%を含まない。)
BiもPbと同様に被削性の向上に有効であり、好ましくは0.01%以上、より好ましくは0.02%以上を含有させることができるが、0.2%を超えるとその効果が飽和するため、上限は0.2%とし、好ましくは0.18%以下、より好ましくは0.15%以下である。
In addition to the above components, the steel for cold working according to the present invention may further include, if necessary, Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%) ), Mg: 0.02% or less (not including 0%), Li: 0.02% or less (not including 0%), Pb: 0.3% or less (not including 0%) It is also effective to contain one or more selected from the group consisting of Bi: 0.2% or less (excluding 0%) depending on the purpose. Each will be described below.
Ca: 0.05% or less (excluding 0%)
Ca is an element that spheroidizes sulfide compound inclusions such as MnS and improves the deformability of the steel and contributes to improvement of machinability, and is preferably 0.005% or more, more preferably 0.01%. The above can be contained. However, even if added excessively, the effect is saturated and an effect commensurate with the amount added cannot be expected. Therefore, the upper limit is set to 0.05%, preferably 0.04% or less, more preferably 0.03% or less. .
REM: 0.05% or less (excluding 0%)
Since REM also spheroidizes sulfide compound inclusions such as MnS and improves the deformability of steel and contributes to the improvement of machinability, it is preferably 0.005% or more, more preferably 0.01%. The above can be contained. However, even if added excessively, the effect is saturated and an effect commensurate with the amount added cannot be expected, so the upper limit is 0.05%, preferably 0.04% or less, more preferably 0.03% or less. .
Mg: 0.02% or less (excluding 0%)
Mg, like Ca, spheroidizes sulfide compound inclusions such as MnS and improves the deformability of the steel and contributes to the improvement of machinability. Therefore, it is preferably 0.002% or more, more preferably 0.005%. The above can be contained. However, even if added excessively, the effect is saturated and an effect commensurate with the amount added cannot be expected, so the upper limit is 0.02%, preferably 0.018% or less, more preferably 0.015% or less. .
Li: 0.02% or less (excluding 0%)
Li can spheroidize sulfide compound inclusions, such as MnS, like Ca, and can improve the deformability of steel. Also, it lowers the melting point of Al oxide and renders it harmless, improving machinability. Therefore, it is preferable to contain 0.002% or more, more preferably 0.005% or more. However, even if added excessively, the effect is saturated and an effect commensurate with the amount added cannot be expected, so the upper limit is 0.02%, preferably 0.018% or less, more preferably 0.015% or less. .
Pb: 0.3% or less (excluding 0%)
Pb can be added as a machinability improving element, preferably 0.01% or more, more preferably 0.02% or more. However, if it exceeds 0.3%, problems in production such as rolling mills occur, so the upper limit is made 0.3%, preferably 0.28% or less, more preferably 0.25% or less.
-Bi: 0.2% or less (excluding 0%)
Bi is also effective for improving the machinability like Pb, and is preferably 0.01% or more, more preferably 0.02% or more. However, if it exceeds 0.2%, the effect is increased. For saturation, the upper limit is set to 0.2%, preferably 0.18% or less, more preferably 0.15% or less.

なお、これらCa以下の任意元素は目的別に配合される合金剤であるから、AlやTi等を選択的に配合する場合のように、とくにN量との関係に制約を受けることは少なく、したがって、前式(2)のような規制は必要としない。   In addition, since these arbitrary elements below Ca are alloying agents mixed according to the purpose, there are few restrictions on the relationship with the amount of N as in the case of selectively mixing Al, Ti, etc. , Regulation like the previous formula (2) is not necessary.

つぎに、本発明は、以上に詳述した特性の鋼を200℃以下に制限された温度で冷間加工してなることを特徴とする製品部品を含む。この冷間加工温度は、当然ながら冷間加工性に影響するため、上限値を200℃に制約するものであり、好ましくは180℃、より好ましくは160℃とするのがよい。これより高温での冷間加工は、変形中に動的ひずみ時効が発生して変形抵抗が上昇し、金型寿命が劣化する。   Next, the present invention includes a product part that is obtained by cold-working the steel having the characteristics described above in detail at a temperature limited to 200 ° C. or less. Since this cold working temperature naturally affects the cold workability, the upper limit value is limited to 200 ° C., preferably 180 ° C., more preferably 160 ° C. In cold working at higher temperatures, dynamic strain aging occurs during deformation, the deformation resistance increases, and the mold life deteriorates.

このような条件下で得られた本発明の部品製品は、冷間加工時の変形抵抗との関係において、下式(3)を充足する強度を付与されていることが特徴であり、この部品強度(Hv)は、この種冷間加工用鋼部品としては十分に満足できるレベルを意味する。   The component product of the present invention obtained under such conditions is characterized in that it has a strength satisfying the following formula (3) in relation to the deformation resistance during cold working. The strength (Hv) means a level that can be satisfactorily satisfied for this kind of steel part for cold working.

H≧(DR+1000)/6・・・(3)
H :冷間加工後の部品強度(Hv)
DR:冷間加工時の変形抵抗(MPa)
ここでの冷間加工法には、冷間鍛造、冷間圧造、冷間転造、冷間引き抜きあるいは冷間押出し等が含まれる。また、部品の加工に必要であれば、伸線や圧延等の加工も実施してよい。なお、冷間加工は、通常、室温で実施されるが、0℃以下では、温度依存性の影響により変形抵抗が逆に高くなるため、加工温度の好ましい下限は0℃とする。なお、加工温度とは、加工時における鋼材の雰囲気温度のことである。
本発明は、以上に説明して来たように、Snを含有し、同時にSn量と全含有Nならびに固溶Nとの量的関係を規制することを特徴とする冷間加工性にすぐれた鋼材である。また、この鋼材から製造された製品部品も上述のとおり、よい強度を有するが、目的とする部品によって、素材鋼により以上の強度あるいはより適切な変形抵抗を求められる場合、あるいはその他の事情によっては、別途つぎの対策を付加的に実施することができる。
H ≧ (DR + 1000) / 6 (3)
H: Strength of parts after cold working (Hv)
DR: Deformation resistance during cold working (MPa)
The cold working method here includes cold forging, cold forging, cold rolling, cold drawing or cold extrusion. Further, if necessary for the processing of the parts, processing such as wire drawing and rolling may be performed. Although cold working is usually performed at room temperature, the deformation resistance increases conversely due to the influence of temperature dependence below 0 ° C., so the preferred lower limit of the working temperature is 0 ° C. The processing temperature is the atmospheric temperature of the steel material during processing.
As described above, the present invention has excellent cold workability characterized by containing Sn and at the same time regulating the quantitative relationship between the Sn content and the total contained N and solute N. It is a steel material. In addition, as described above, product parts manufactured from this steel material have good strength, but depending on the intended part, if the above strength or more appropriate deformation resistance is required by the material steel, or depending on other circumstances In addition, the following measures can be additionally implemented.

すなわち、既述した本発明の冷間加工用鋼を、そのAc1点以上の温度に加熱したのち、そのまま、あるいはこの温度領域で所要の熱間加工を行なった後、1℃/S以下の冷却速度で500℃以下まで冷却するとよい。   That is, the steel for cold working of the present invention described above is heated to a temperature of the Ac1 point or higher and then subjected to the required hot working in this temperature range as it is or after cooling at 1 ° C./S or lower. It is good to cool to 500 ° C. or less at a speed.

この方法は、焼ならし処理、ライトアニーリング(LA)処理あるいは球状化処理等の各種熱処理をベースとするもので、Ac1点+25℃〜50℃以上・500℃以下の加熱温度で、10〜30分以上・4時間以下の熱処理でよい。また、上記加熱保持中に伸線、圧延またはプレスなどの熱間加工を適宜おこなうことも可能である。   This method is based on various heat treatments such as normalizing treatment, light annealing (LA) treatment, spheroidizing treatment, etc., and at a heating temperature of Ac1 point + 25 ° C. to 50 ° C. to 500 ° C., 10 to 30 Heat treatment for at least 4 minutes and at most 4 minutes is sufficient. In addition, hot working such as wire drawing, rolling, or pressing can be appropriately performed during the heating and holding.

以下の実施例は、このような鋼材の熱処理あるいは加工熱処理をも例示するが、本発明は、このような付加的な熱処理を必須とするものではなく、すでに詳述されたとおりの鋼材それ自体の特性に由来して強度ならびに変形抵抗等にすぐれた冷間加工性を発揮する点に注意するべきはいうまでもない。   The following examples also illustrate heat treatment or thermomechanical treatment of such steel materials, but the present invention does not require such additional heat treatments, and the steel materials themselves as already detailed. It goes without saying that the cold workability that is excellent in strength, deformation resistance and the like is exhibited due to the above characteristics.

表1〜4に記載の成分組成から成る鋼記号1A〜4Tの100種類の供試鋼を真空炉溶製ならびに熱間鍛造法によりビレットとし、ビレット溶接を行なった後、いずれもφ12mmの線材に圧延した。   100 types of test steels of steel symbols 1A to 4T having the composition described in Tables 1 to 4 were billeted by vacuum furnace melting and hot forging, and billet welded. Rolled.

表1〜4中の「成分範囲」欄において、いずれかの成分元素の含有量が本発明の規制範囲を逸脱する例については、その旨を注記し、あわせて「×」印を付して比較例としての鋼であることを指している。「(1)、(2)式による判定」欄の「○」「×」は、成分元素の量的条件が本発明の規制範囲を規制する前記の二式(1)(2)を充足するかどうかの当否を指示する。また、同表中の「N」は全N量を示す。なお、同表中に記載の「固溶N量」は、既述したJIS G 1228に準拠する方法により計測された値である。   In the “component range” column in Tables 1 to 4, an example in which the content of any of the component elements deviates from the regulation range of the present invention is noted, and the “x” mark is attached. It points out that it is steel as a comparative example. “O” and “X” in the “determination based on the formulas (1) and (2)” satisfy the above two formulas (1) and (2) in which the quantitative conditions of the component elements regulate the regulation scope of the present invention. Instruct whether or not. Further, “N” in the table indicates the total N amount. In addition, the “solid solution N amount” described in the table is a value measured by a method based on JIS G 1228 described above.

Figure 2009132949
Figure 2009132949

Figure 2009132949
Figure 2009132949

Figure 2009132949
Figure 2009132949

Figure 2009132949
Figure 2009132949

つぎに、上記100種の各圧延線材の内、同表中の「製法」欄に(j)印を付した一部の線材は、何等の熱処理を施さないで圧延ままとし、その他は、圧延線材に対して表5の(a)〜(i)に示すように、比較目的で800〜1100℃の異なる加熱温度のもとでそれぞれ熱処理を行なった。その内の半数(b、d、g)は単に熱処理のみとし、他はその加熱温度のもとで加工熱処理を施した。なお、上記加熱処理は、430〜500℃まで冷却したのち、30分の保持時間を設けた。   Next, of each of the above 100 types of rolled wire rods, some of the wire rods marked with (j) in the “Manufacturing method” column in the same table are left unrolled without any heat treatment. As shown in Table 5 (a) to (i), the wires were subjected to heat treatment at different heating temperatures of 800 to 1100 ° C. for comparison purposes. Half of them (b, d, g) were simply heat treatment, and the others were heat treated at the heating temperature. In addition, after the said heat processing cooled to 430-500 degreeC, the retention time for 30 minutes was provided.

Figure 2009132949
Figure 2009132949

つぎに、上記熱処理を施した各線材ならびに圧延ままの線材から、その中心部からφ6mm×9mmLの試験片を切り出し、各試験片を、容量200KN加工フォーマスタ試験装置を用いて冷間鍛造により圧縮加工した。冷間鍛造の条件は、加工ひずみ速度:約10/S、加工温度:20〜200℃ならびに圧縮率:20〜80%とした。なお、上記加工ひずみ速度は、加工中(塑性変形中)のひずみ速度の平均値とする。   Next, a test piece of φ6 mm × 9 mmL is cut out from the center portion of each heat-treated wire and as-rolled wire, and each test piece is compressed by cold forging using a 200 KN processing formaster test device. processed. The conditions for cold forging were a processing strain rate of about 10 / S, a processing temperature of 20 to 200 ° C., and a compression ratio of 20 to 80%. The processing strain rate is an average value of strain rates during processing (plastic deformation).

得られた各部品について、実体顕微鏡により、観察倍率20倍で表面を観察して割れの有無を確認した。各部品の加工条件、割れの有無および変形抵抗を表6、7に示す。   About each obtained part, the presence or absence of the crack was confirmed by observing the surface by the observation magnification of 20 times with the stereomicroscope. Tables 6 and 7 show the processing conditions, presence / absence of cracks, and deformation resistance of each part.

また、ビッカース硬さ試験機を用いて、荷重:1000g、測定位置:試験片断面のD/4位置中央部(D:部品直径)および測定回数:5回の条件で、各部品のビッカース硬さ(Hv)を測定し、同じく表6、7に表示した。   In addition, using a Vickers hardness tester, the Vickers hardness of each part under the conditions of load: 1000 g, measurement position: D / 4 position center of test piece cross section (D: part diameter) and number of measurements: 5 times (Hv) was measured and similarly displayed in Tables 6 and 7.

Figure 2009132949
Figure 2009132949

Figure 2009132949
Figure 2009132949

これら一連の試験結果に対する評価は、部品に割れがなく、しかも部品硬さに対して鋼の変形抵抗が低い鋼(具体的には前式(3)による条件を満たすもの。)を、冷間加工性にすぐれたものと判定して「○」を表示した。一方、式(3)の条件を充足しない比較例の試験片で、割れが発生したものに「×」を表示してある。参考のために、同式をここに再記する。   Evaluation of these series of test results was performed by using a steel (particularly, one that satisfies the condition given by the previous formula (3)) that has no cracks in the part and that has a low deformation resistance against the part hardness. It was determined that the material was excellent in workability, and “◯” was displayed. On the other hand, in the test piece of the comparative example which does not satisfy the condition of the formula (3), “×” is displayed for the cracked one. For reference, the formula is rewritten here.

H≧(DR+1000)/6・・・(3)
H :冷間加工後の部品強度(Hv)
DR:冷間加工時の変形抵抗(MPa)
表6、7から明らかなように、好ましい加工条件(圧縮率および加工温度)において、本発明が規定する化学成分量および固溶N量の要件を満たす実施例鋼は、いずれも冷間加工性がすぐれており、これから得られた部品製品もすべて高強度を確保していることがわかる。しかも、この高強度と同程度の部品強度を確保しようとすると、より変形抵抗の大きい鋼材の使用が余儀なくされ、それが必然的に金型の寿命低下を招来することになる。この点で本発明鋼のすぐれた冷間加工性がよく理解される。以下に各比較材についてこの点を考察する。
H ≧ (DR + 1000) / 6 (3)
H: Strength of parts after cold working (Hv)
DR: Deformation resistance during cold working (MPa)
As is apparent from Tables 6 and 7, in the preferred processing conditions (compression rate and processing temperature), all of the example steels satisfying the requirements of the chemical component amount and the solute N amount specified by the present invention are cold workability. It can be seen that all of the component products obtained from this have secured high strength. In addition, when trying to secure a component strength comparable to this high strength, it is necessary to use a steel material having a higher deformation resistance, which inevitably leads to a reduction in the life of the mold. In this respect, the excellent cold workability of the steel of the present invention is well understood. This point will be discussed below for each comparative material.

なお、上記実施例のうち、圧延ままの鋼材に対して、熱処理を付加したa〜iに相当する鋼材は、その品質がいずれも前者と同等程度によい性能を示しており、本発明の鋼材が熱処理を実施しなくても圧延ままで部品化できることがわかる。   In addition, among the said Example, the steel materials equivalent to ai which heat-processed with respect to as-rolled steel materials have shown the performance in which the quality is as good as the former, and the steel materials of this invention However, it can be seen that a part can be formed as it is without rolling.

No.3はMn量が少ない鋼記号1Cを使用した例であり、Mnが所定の範囲を超えているため割れが発生している。   No. 3 is an example using steel symbol 1C with a small amount of Mn. Since Mn exceeds a predetermined range, cracks are generated.

No.7はC量が多い鋼記号1Gを使用した例であり、Cが所定の範囲を超えているため割れが発生している。   No. 7 is an example using the steel symbol 1G with a large amount of C. Since C exceeds a predetermined range, cracks occur.

No.9はSn量が多い鋼記号1Iを使用した例であり、Snが所定の範囲を超えているため割れが発生している。   No. 9 is an example using the steel symbol 1I with a large amount of Sn. Since Sn exceeds a predetermined range, a crack is generated.

No.21はSi量が多い鋼記号1Uを使用した例であり、Siが所定の範囲を超えているため割れが発生している。   No. 21 is an example using steel symbol 1U with a large amount of Si, and cracks have occurred because Si exceeds a predetermined range.

No.42はSi量が少ない鋼記号2Pを使用した例であり、Siが所定の範囲より少ないため割れが発生している。   No. 42 is an example using the steel symbol 2P with a small amount of Si. Since Si is less than a predetermined range, cracks are generated.

No.51はMn量が多い鋼記号2Yを使用した例であり、Mnが所定の範囲を超えているため割れが発生している。   No. 51 is an example using the steel symbol 2Y with a large amount of Mn. Since Mn exceeds a predetermined range, cracks are generated.

No.67はN量が多い鋼記号3Oを使用した例であり、Nが所定の範囲を超えているため割れが発生している。   No. No. 67 is an example using a steel symbol 3O with a large amount of N, and cracks occur because N exceeds a predetermined range.

No.71はSn量が多い鋼記号3Sを使用した例であり、Snが所定の範囲を超えているため割れが発生している。   No. 71 is an example using the steel symbol 3S with a large amount of Sn, and cracks occur because Sn exceeds a predetermined range.

No.86はS量が多い鋼記号4Hを使用した例であり、Sが所定の範囲を超えているため割れが発生している。   No. 86 is an example using the steel symbol 4H with a large amount of S, and cracks occur because S exceeds a predetermined range.

No.96はP量が多い鋼記号4Rを使用した例であり、Pが所定の範囲を超えているため割れが発生している。   No. 96 is an example using the steel symbol 4R with a large amount of P, and cracks occur because P exceeds a predetermined range.

No.98はC量が少ない鋼記号4Vを使用した例であり、Cが所定の範囲より少ないため割れが発生している。   No. No. 98 is an example using steel symbol 4V with a small amount of C. Since C is less than a predetermined range, cracks are generated.

No.44、No.61、No.62、No.74、No.75、No.77およびNo.80は、固溶N量が少ない鋼2R、3I、3J、3V、3W、3Yおよび4Bをそれぞれ使用した例である。いずれも固溶N量が所定の範囲より少なく、 しかも式(2)の条件を満たさないため、加工後も式(3)の条件を逸脱していることがわかる。   No. 44, no. 61, no. 62, no. 74, no. 75, no. 77 and No. 80 is an example in which steels 2R, 3I, 3J, 3V, 3W, 3Y and 4B having a small amount of dissolved N are used. In any case, the amount of solute N is less than the predetermined range and does not satisfy the condition of the expression (2), so that it is understood that the condition deviates from the condition of the expression (3) even after processing.

No.47、No.84、No.85、No.88およびNo.89は、式(2)の条件を満たさない化学組成となっているため、変形抵抗が増大して加工後も式(3)の条件を逸脱していることがわかる。   No. 47, no. 84, no. 85, no. 88 and no. No. 89 has a chemical composition that does not satisfy the condition of the formula (2), so that it can be seen that the deformation resistance is increased and the condition of the formula (3) is deviated even after processing.

Claims (10)

C:0.06〜0.5%(質量%、以下同じ。)、Si:0.01〜0.1%、Mn:0.2〜1.5%、P:0.05%以下(0%を含まない。)、S:0.05%以下(0%を含まない。)、Sn:0.6%以下(0%を含まない。)、N:0.04%以下(0%を含まない。)を含有し、残部はFeおよび不可避の不純物から成り、固溶N(Sol.N)の含有量が0.006%以上で、固溶N量に対するSn量の比率が下式(1)を満足することを特徴とする冷間加工性にすぐれた鋼材。
10≦Sn/Sol.N≦40・・・(1)
C: 0.06 to 0.5% (mass%, the same shall apply hereinafter), Si: 0.01 to 0.1%, Mn: 0.2 to 1.5%, P: 0.05% or less (0 %), S: 0.05% or less (excluding 0%), Sn: 0.6% or less (excluding 0%), N: 0.04% or less (excluding 0%) Not contained.), The balance is composed of Fe and inevitable impurities, the content of solid solution N (Sol. N) is 0.006% or more, and the ratio of the Sn amount to the solid solution N amount is represented by the following formula ( A steel material excellent in cold workability characterized by satisfying 1).
10 ≦ Sn / Sol. N ≦ 40 (1)
N:0.007%以上を含む請求項1に記載の冷間加工性にすぐれた鋼材。   N: The steel material excellent in cold workability of Claim 1 containing 0.007% or more. Al:0.2%以下(0%を含まない。)、Zr:0.2%以下(0%を含まない。)、Ti:0.2%以下(0%を含まない。)、Nb:0.5%以下(0%を含まない。)、V:0.5%以下(0%を含まない。)、Ta:0.1%以下(0%を含まない。)、Hf:0.1%以下(0%を含まない。)ならびにB:0.002%以下(0%を含まない。)より成る群から選ばれる1種または2種以上の選択元素を含有し、Nとこれら選択元素との量的関係が下式(2)を満足することを特徴とする請求項1または2に記載の冷間加工性にすぐれた鋼材。
N(%)−{14*Al(%)/27+14*Ti(%)/47.9
+14*Nb(%)/92.9+14*V(%)/50.9
+14*Zr(%)/91.2+14*B(%)/10.8
+14*Ta(%)/180.9+14*Hf(%)/178.5}
≧0.006%・・・(2)
ただし、式中*は積を表す。
Al: 0.2% or less (not including 0%), Zr: 0.2% or less (not including 0%), Ti: 0.2% or less (not including 0%), Nb: 0.5% or less (not including 0%), V: 0.5% or less (not including 0%), Ta: 0.1% or less (not including 0%), Hf: 0.00 1 or less (not including 0%) and B: 0.002% or less (not including 0%), containing one or more selective elements selected from the group consisting of N and these selections The steel material having excellent cold workability according to claim 1 or 2, wherein a quantitative relationship with an element satisfies the following formula (2).
N (%)-{14 * Al (%) / 27 + 14 * Ti (%) / 47.9
+ 14 * Nb (%) / 92.9 + 14 * V (%) / 50.9
+ 14 * Zr (%) / 91.2 + 14 * B (%) / 100.8
+ 14 * Ta (%) / 180.9 + 14 * Hf (%) / 178.5}
≧ 0.006% (2)
However, * in a formula represents a product.
Cr:2%以下(0%を含まない。)を含有する請求項1ないし3のいずれかに記載の冷間加工性にすぐれた鋼材。   The steel material excellent in cold workability according to any one of claims 1 to 3, containing Cr: 2% or less (excluding 0%). Cu:5%以下(0%を含まない。)を含有する請求項1ないし4のいずれかに記載の冷間加工性にすぐれた鋼材。   The steel material excellent in cold workability according to any one of claims 1 to 4, containing Cu: 5% or less (excluding 0%). Ni:5%以下(0%を含まない。)および/またはCo:5%以下(0%を含まない。)を含有する請求項1ないし5のいずれかに記載の冷間加工性にすぐれた鋼材。   6. Excellent cold workability according to any one of claims 1 to 5, containing Ni: 5% or less (excluding 0%) and / or Co: 5% or less (excluding 0%). Steel material. Mo:2%以下(0%を含まない。)および/またはW:2%以下(0%を含まない。)を含有する請求項1ないし6のいずれかに記載の冷間加工性にすぐれた鋼材。   The excellent cold workability according to any one of claims 1 to 6, which contains Mo: 2% or less (excluding 0%) and / or W: 2% or less (excluding 0%). Steel material. Ca:0.05%以下(0%を含まない。)、REM:0.05%以下(0%を含まない。)、Mg:0.02%以下(0%を含まない。)、Li:0.02%以下(0%を含まない。)、Pb:0.3%以下(0%を含まない。)、Bi:0.2%以下(0%を含まない。)より成る群から選ばれる1種または2種以上を含有する請求項1ないし7のいずれかに記載の冷間加工性にすぐれた鋼材。   Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: Selected from the group consisting of 0.02% or less (excluding 0%), Pb: 0.3% or less (not including 0%), Bi: 0.2% or less (not including 0%) The steel material excellent in cold workability in any one of Claim 1 thru | or 7 containing 1 type, or 2 or more types. 請求項1ないし8のいずれかに記載の鋼材を200℃以下の加工温度で冷間加工してなることを特徴とする冷間加工部品。   A cold-worked part obtained by cold-working the steel material according to any one of claims 1 to 8 at a working temperature of 200 ° C or lower. 強度が冷間加工時の変形抵抗に対して下式(3)の関係を充足していることを特徴とする請求項9に記載の冷間加工部品。
H≧(DR+1000)/6・・・(3)
H :冷間加工後の部品強度(Hv)
DR:冷間加工時の変形抵抗(MPa)
The cold-worked component according to claim 9, wherein the strength satisfies the relationship of the following expression (3) with respect to the deformation resistance during cold work.
H ≧ (DR + 1000) / 6 (3)
H: Strength of parts after cold working (Hv)
DR: Deformation resistance during cold working (MPa)
JP2007307741A 2007-11-28 2007-11-28 Steel and cold-worked parts with excellent cold workability Expired - Fee Related JP4909247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307741A JP4909247B2 (en) 2007-11-28 2007-11-28 Steel and cold-worked parts with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307741A JP4909247B2 (en) 2007-11-28 2007-11-28 Steel and cold-worked parts with excellent cold workability

Publications (2)

Publication Number Publication Date
JP2009132949A true JP2009132949A (en) 2009-06-18
JP4909247B2 JP4909247B2 (en) 2012-04-04

Family

ID=40865102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307741A Expired - Fee Related JP4909247B2 (en) 2007-11-28 2007-11-28 Steel and cold-worked parts with excellent cold workability

Country Status (1)

Country Link
JP (1) JP4909247B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117035A (en) * 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd Steel for high-strength bolt
CN104388813A (en) * 2014-12-25 2015-03-04 常熟市瑞峰模具有限公司 Alloy cast iron mold for reagent bottle production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399870A (en) * 2016-10-18 2017-02-15 河池学院 Mechanical movement arm connection material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342677A (en) * 2002-05-27 2003-12-03 Sanyo Special Steel Co Ltd Steel for mechanical structure excellent in machinability and method for producing part for mechanical structure comprising the steel
JP2005206943A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2005307339A (en) * 2004-03-22 2005-11-04 Jfe Steel Kk High tensile hot rolled steel sheet having excellent strength-ductility balance and method for manufacturing the same
WO2006129531A1 (en) * 2005-05-30 2006-12-07 Sumitomo Metal Industries, Ltd. Low carbon sulfur free-machining steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342677A (en) * 2002-05-27 2003-12-03 Sanyo Special Steel Co Ltd Steel for mechanical structure excellent in machinability and method for producing part for mechanical structure comprising the steel
JP2005206943A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk High-tension hot-rolled sheet steel excellent in bake hardenability and resistance to room-temperature aging and its production method
JP2005307339A (en) * 2004-03-22 2005-11-04 Jfe Steel Kk High tensile hot rolled steel sheet having excellent strength-ductility balance and method for manufacturing the same
WO2006129531A1 (en) * 2005-05-30 2006-12-07 Sumitomo Metal Industries, Ltd. Low carbon sulfur free-machining steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117035A (en) * 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd Steel for high-strength bolt
CN104388813A (en) * 2014-12-25 2015-03-04 常熟市瑞峰模具有限公司 Alloy cast iron mold for reagent bottle production

Also Published As

Publication number Publication date
JP4909247B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4295314B2 (en) Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
CN105378132B (en) High-carbon hot-rolled steel sheet and its manufacture method
JP5121282B2 (en) Steel for high-speed cold working and its manufacturing method, and high-speed cold-worked component and its manufacturing method
US8312751B2 (en) Method for producing high alloy pipe
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
CN106232847B (en) The deep-cold processing hot rolled steel plate excellent with the hardness after processing
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP5114189B2 (en) Cold-working steel, its manufacturing method and cold-worked steel parts
JP2009120962A (en) High-strength low-specific gravity steel sheet excellent in ductility, and its production method
JP4909247B2 (en) Steel and cold-worked parts with excellent cold workability
JP2008095181A (en) Hot-working tool steel having superior toughness and high-temperature strength
JP6459704B2 (en) Steel for cold forging parts
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JP2018131654A (en) Hot work tool steel having excellent toughness and softening resistance
JP4934481B2 (en) Steel for high-speed cold working, high-speed cold-worked parts, and manufacturing method thereof
JP5385574B2 (en) Machine structural steels and cold forged steel parts with excellent cold forgeability
JP2018062692A (en) Hot rolled steel sheet
JP2017197816A (en) Hot rolled steel sheet excellent in cold workability and hardness after being cold-worked
JP4564189B2 (en) High toughness non-tempered steel for hot forging
JP5379511B2 (en) Machine structural steel and cold work steel parts with excellent cold workability
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability
JP5286217B2 (en) Machine structural steel with excellent hot workability, cold workability, and hardness after cold work
CN118786235A (en) Steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4909247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees