[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009106993A - Wire-inserted formed solder, and its manufacturing method - Google Patents

Wire-inserted formed solder, and its manufacturing method Download PDF

Info

Publication number
JP2009106993A
JP2009106993A JP2007283432A JP2007283432A JP2009106993A JP 2009106993 A JP2009106993 A JP 2009106993A JP 2007283432 A JP2007283432 A JP 2007283432A JP 2007283432 A JP2007283432 A JP 2007283432A JP 2009106993 A JP2009106993 A JP 2009106993A
Authority
JP
Japan
Prior art keywords
solder
wire
tape
metal wire
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007283432A
Other languages
Japanese (ja)
Other versions
JP5207707B2 (en
Inventor
Susumu Mitani
進 三谷
Takeshi Asagi
剛 浅黄
Yutaka Sakurai
豊 櫻井
Shin Sasaki
伸 佐々木
Ikuro Nakagawa
郁朗 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Nihon Handa Co Ltd
Original Assignee
Toyota Motor Corp
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nihon Handa Co Ltd filed Critical Toyota Motor Corp
Priority to JP2007283432A priority Critical patent/JP5207707B2/en
Publication of JP2009106993A publication Critical patent/JP2009106993A/en
Application granted granted Critical
Publication of JP5207707B2 publication Critical patent/JP5207707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire-inserted formed solder to be served for the soldering of excellent accuracy of an electronic component, and its manufacturing method. <P>SOLUTION: In the wire-inserted formed solder, and its manufacturing method, at least two wires formed of nickel, copper or stainless steel having the melting point higher than that of a solder with the predetermined hardness H are juxtaposed at each predetermined distance ΔT (0.1≤ΔT≤3.5 mm) from both ends along the longitudinal direction of the wires on a surface of a tape-like or sheet-like solder, and the juxtaposed wires extend and are exposed in the longitudinal direction of the wires, and are press-fitted on the surface of the tape-like or sheet-like solder with the predetermined width B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電子部品用はんだにおいて、特に金属線入り成形はんだ、およびその製造方法に関するものである。   The present invention relates to a solder for an electronic component, and more particularly to a molded solder containing a metal wire and a manufacturing method thereof.

はんだは、電子部品の接合材料として広く使われている。このはんだ付けにおいては、はんだが少な過ぎることはもちろん、また多すぎても接合強度が弱くなるため、はんだ付け厚さを適度に保つことが重要である。
このことは例えば発熱の大きなパワートランジスタなどの半導体チップやモジュールなどの電子部品と放熱板などの接合においては、電流のオン・オフによって大きな温度差が生じるので特に重要である。放熱の面からは熱伝導性の劣るはんだはできる限り薄い方が良い。
Solder is widely used as a bonding material for electronic components. In this soldering, it is important to keep the soldering thickness moderate because not only the solder is too little but also the joint strength is weakened if it is too much.
This is particularly important, for example, when a semiconductor chip or module such as a power transistor that generates a large amount of heat is joined to an electronic component such as a module and a heat sink, because a large temperature difference is caused by turning on and off the current. From the viewpoint of heat dissipation, it is better to make the solder with poor thermal conductivity as thin as possible.

一方、はんだが薄くなりすぎると電子部品と放熱板との熱膨張の差により、電子部品に大きな応力が生じ割れに至る恐れがあるので厚い方が良い。なぜなら柔らかい金属であるはんだは、電子部品と放熱板との熱膨張の差を吸収する緩衝材の役目を果たしているからである。また、加えて重要なことは、はんだ厚さ均一に保つことである。電子部品が傾斜して取り付けられると、はんだの厚さは不均一となる。このような状態で熱膨張と熱収縮が繰り返されると、はんだは応力差によって早期に割れを生じさせることになる。このため、はんだ厚さを適度に保ち、かつ電子部品を傾斜させずに取り付ける手段が求められていた。   On the other hand, if the solder is too thin, a large stress is likely to be generated in the electronic component due to a difference in thermal expansion between the electronic component and the heat radiating plate. This is because the soft metal solder serves as a buffer material that absorbs the difference in thermal expansion between the electronic component and the heat sink. In addition, it is important to keep the solder thickness uniform. When the electronic component is mounted with an inclination, the thickness of the solder becomes non-uniform. If thermal expansion and thermal contraction are repeated in such a state, the solder will crack early due to the stress difference. Therefore, there has been a demand for means for attaching the electronic component without tilting while keeping the solder thickness moderate.

上記の技術的要請に応えるためにいくつかの方法が考案がなされ、使用されている。
これらの方法の一つとして、ソルダペースト中にはんだよりも融点の高い粒子を分散させるものがあり、融点の高い金属粒子は、電子部品と放熱板の間隙を適度に保つためのスペーサの役目を果たす。この溶融しない金属粒子があると電子部品の自重や負荷があっても電子部品は粒子径以上には沈み込まず、はんだ厚さは保たれることになる。また、金属粒子径を選べば適度なはんだ厚さに設定できることになる。
しかし、ソルダペーストは、フラックスとはんだ粒を混合させたものであることから、はんだ付け後にフラックス残漬が残ることは避けらず、フラックス残漬が長期において腐食を生じさせる懸念がある。
Several methods have been devised and used to meet the above technical requirements.
One of these methods is to disperse particles having a melting point higher than that of solder in the solder paste, and the metal particles having a high melting point serve as spacers for maintaining an appropriate gap between the electronic component and the heat sink. Fulfill. If there are metal particles that do not melt, the electronic component will not sink beyond the particle diameter even if the electronic component has its own weight or load, and the solder thickness will be maintained. Moreover, if a metal particle diameter is chosen, it can set to moderate solder thickness.
However, since the solder paste is a mixture of flux and solder grains, it is inevitable that residual flux remains after soldering, and there is a concern that residual flux will cause corrosion over a long period of time.

また、フラックスを用いず、はんだ単体の成形はんだによる還元雰囲気中での接合が行われている。この成形はんだ接合においても、はんだ厚さを適度に保ち、かつ電子部品を傾斜させずに取り付ける手段が求められていた。成形はんだにおいてこの技術的要請に応える手段として、色々の技術が開発されており、成形はんだ中にはんだよりも融点の高い粒子を分散させるもの、成形はんだ内部に高融点金属を帯状、または線状に設けたものなどがある(例えば、特許文献1、2、3参照)。   In addition, bonding is performed in a reducing atmosphere using a molded solder of a single solder without using a flux. In this molded solder joint, means for keeping the solder thickness moderate and attaching the electronic component without inclining has been demanded. Various techniques have been developed as a means to meet this technical requirement in molded solder, in which particles having a melting point higher than that of solder are dispersed in the molded solder, a refractory metal is strip-shaped or linear inside the molded solder. (See, for example, Patent Documents 1, 2, and 3).

特開2005−288516号公報JP 2005-288516 A 実開平6−9784号公報Japanese Utility Model Publication No. 6-9784 実開平6−9783号公報Japanese Utility Model Publication No. 6-9783 特開2005−288516号公報JP 2005-288516 A

はんだ中にはんだよりも融点の高い粒子を分散させることは、上述のソルダペーストにおける方法でも、成形はんだにおける方法でも同様に実現できると思われるが、後者は前者ほどで容易ではない。ソルダペーストは、粘度の高いフラックスとはんだ粒子の混合物であり、粒子の比重差があっても撹拝により或程度分散する。
しかしながら、成形はんだでは溶湯状態において比重の異なる金属粒子を分散させることが必要になり、容易ではない。すなわち、高融点粒子の比重が大きければ沈降し、小さければ浮きあがる。この対策として攪拌しながら鋳込む方法が考案されている(例えば、特許文献4参照)。しかし、この考案をもってしても均一に分散させることは確実ではない。すなわち、溶湯中の攪拌はできても鋳込んだビレット中では攪拌できないため高融点金属粒子のある程度の密度偏析は避けられないものである。このビレットが押出しと圧延工程によって引き伸ばされた板となる際には高融点金属粒子密度の差が拡大されてしまい、粒子密度が低い箇所ではスペーサが不足する可能性があり問題となる。
Dispersing particles having a melting point higher than that of the solder in the solder can be realized in the same manner by the solder paste method or the molded solder method, but the latter is not as easy as the former. Solder paste is a mixture of flux with high viscosity and solder particles, and is dispersed to some extent by stirring even if there is a difference in specific gravity of the particles.
However, in molded solder, it is necessary to disperse metal particles having different specific gravity in the molten metal state, which is not easy. That is, if the specific gravity of the high melting point particle is large, it will settle, and if it is small, it will float. As a countermeasure, a method of casting while stirring has been devised (for example, see Patent Document 4). However, even with this device, it is not certain that it will be uniformly dispersed. That is, even if the molten metal can be stirred, it cannot be stirred in the cast billet, so that a certain degree of density segregation of the refractory metal particles is unavoidable. When this billet becomes a plate stretched by extrusion and rolling processes, the difference in refractory metal particle density is enlarged, and there is a possibility that a spacer may be insufficient at a location where the particle density is low, which is a problem.

高融点金属粒子の役目は、電子部品の傾きをなくし、はんだ厚さを均一にするものである。例えば方形の電子部品用の成形はんだであれば、方形はんだの四隅に高融点金属粒子が1 個づつあればはんだ厚さを適度に保ち、かつ、電子部品を傾斜させずに取り付けることができる。一方、四隅のうちの一箇所でも高融点金属粒子が配置されないと電子部品が傾斜し、はんだ厚さが一様でなくなる恐れがある。このように方形はんだであれば四隅に高融点金属粒子が、確実に配置されることは必須の条件となる。   The role of the refractory metal particles is to eliminate the inclination of the electronic component and make the solder thickness uniform. For example, in the case of a molded solder for a rectangular electronic component, if one refractory metal particle is provided at each of the four corners of the rectangular solder, the solder thickness can be kept moderate and the electronic component can be attached without being inclined. On the other hand, if refractory metal particles are not disposed at one of the four corners, the electronic component may be inclined and the solder thickness may not be uniform. Thus, in the case of a square solder, it is an essential condition that the refractory metal particles are surely arranged at the four corners.

しかし、高融点金属粒子の分散が不均一であれば圧延材から打ち抜いたペレットはんだには、密度の小さいものと大きいものがあるということになる。密度の小さいペレットはんだでは、四隅の一隅または複数の隅に高融点金属粒子がないものの恐れがある。
そこで最低密度を確保するために、溶湯へ投入する高融点金属粒子の量を増やすことが考えられるが、逆に密度が高すぎる箇所ができてしまい接合に寄与していない部分が増えて、はんだ付け欠陥を生じる恐れがある。
また、高融点金属粒子は、スペーサの役目であることから粒子径の揃ったものを必要とする。このような微小で寸法精度の高い高融点金属粒子は高価格であり、多量に投入することははんだの価格上昇となってしまう嫌いもある。
However, if the dispersion of the refractory metal particles is not uniform, the pellet solder punched from the rolled material has a low density and a high density. In the case of pellet solder having a low density, there is a possibility that refractory metal particles are not present in one or more corners of the four corners.
Therefore, in order to secure the minimum density, it is conceivable to increase the amount of the high melting point metal particles to be introduced into the molten metal, but conversely, the density is too high and the portion not contributing to the joining increases and the solder May cause imperfections.
Further, the high melting point metal particles need to have a uniform particle diameter because they serve as spacers. Such refractory metal particles with a small size and high dimensional accuracy are expensive, and there is also a disagreement that adding a large amount will increase the price of solder.

一方、スペーサとして内部に高融点金属を帯状に設けた成形はんだでは、スペーサ効果を得ることが期待できる。しかし、帯状ワイヤ部は、前述した粒子密度が高すぎる箇所に相当し、接合に寄与しない欠陥となり、はんだの接合強度を低下させることになってしまう恐れがある。さらに、スペーサとして内部に高融点金属を線状に設けた成形はんだは、帯状スペーサの欠陥を克服するように思われるが、実用上において大きな問題がある。すなわち、線状スペーサは成形はんだ内部にあるために所定の位置にあるか否かは外観から確認できない。したがって、パワートランジスタなどの半導体チップやモジュールなどの電子部品を実装した後になって、その傾き発生からワイヤが端部にないことが初めてわかるといった事態になる恐れがある。
以上の述べたように、成形はんだにおいては、はんだ厚さを適度に保ち、かつ電子部品を傾斜させずに取り付けるための安価で確実な手段が強く求められている。
本発明は、上記に鑑み、これらの課題を解決するための金属線入り成形はんだおよびその製造方法を提供することをその目的としている。
On the other hand, it is expected that a spacer effect is obtained with a molded solder in which a refractory metal is provided in a strip shape as a spacer. However, the band-shaped wire portion corresponds to the above-described portion where the particle density is too high, and becomes a defect that does not contribute to the bonding, which may reduce the bonding strength of the solder. Furthermore, although it seems that the molded solder which provided the high melting point metal in the inside as a spacer as a spacer seems to overcome the defect of a strip | belt-shaped spacer, there exists a big problem in practical use. That is, since the linear spacer is inside the molded solder, it cannot be confirmed from the appearance whether it is in a predetermined position. Therefore, after mounting an electronic component such as a semiconductor chip such as a power transistor or a module, there is a risk that the occurrence of the tilt may first reveal that there is no wire at the end.
As described above, in molded solder, there is a strong demand for inexpensive and reliable means for attaching an electronic component without tilting while keeping the solder thickness moderate.
In view of the above, an object of the present invention is to provide a metal wire-containing molded solder and a method for manufacturing the same to solve these problems.

本発明は、はんだ厚さを適度に保ち、かつ電子部品を傾斜させずに成形はんだによる接合を行うために、はんだよりも高融点の金属線をスペーサとして金属線を一体化させた成形はんだおよびその製造方法である。なお、金属線は、必ずしも連続している必要はなく、線状に連なっていれば断続線でも良い。また、金属線は、はんだ溶融時にある程度溶解しても目標とする線径以下に減肉しなければ良く、具体的には、ニッケル線、銅線およびステンレス鋼線が好ましい。   The present invention relates to a molded solder in which metal wires are integrated with a metal wire having a melting point higher than that of a solder as a spacer in order to perform bonding with a molded solder without tilting an electronic component while maintaining an appropriate thickness of the solder. It is the manufacturing method. In addition, the metal wire does not necessarily need to be continuous, and may be an intermittent wire as long as it is continuous in a linear shape. In addition, even if the metal wire is melted to some extent when the solder is melted, the metal wire may be thinned to a target wire diameter or less, and specifically, a nickel wire, a copper wire, and a stainless steel wire are preferable.

高融点の金属線をはんだと一体化させる方法としては、4種の方法がある。第1の方法は、テ−プ状はんだ上の長手方向に高融点の金属線を配線した後に圧延することで一体化させる方法である。第2の方法は、2枚のテ−プ状はんだで高融点の金属線を挟んだ後に圧延することで一体化させる方法である。なお、第1および第2の方法で一体化させたテープ状はんだを適当な寸法に切断すれば電子部品を傾斜させない金属線入り成形はんだが得られる。   There are four methods for integrating the high melting point metal wire with the solder. The first method is a method in which a high melting point metal wire is wired in the longitudinal direction on the tape-shaped solder and then integrated by rolling. The second method is a method in which a high melting point metal wire is sandwiched between two tape-shaped solders and then integrated by rolling. If the tape-like solder integrated by the first and second methods is cut to an appropriate size, a metal wire-containing molded solder that does not tilt the electronic component can be obtained.

第3の方法は、成形はんだ上に高融点の金属線を配線した後にプレス機により両者を一体化させる方法である。第4の方法は、2枚の成形はんだの間に配線した後にプレス機により3者を一体化させる方法である。
この内、比較的に精度が高く、製造が容易で、安価である第1および3の方法が好ましい。
The third method is a method in which a high melting point metal wire is wired on the molded solder and then both are integrated by a press machine. The fourth method is a method in which the three members are integrated by a press machine after wiring between two molded solders.
Among these, the first and third methods are preferable because they are relatively high in accuracy, easy to manufacture, and inexpensive.

本発明の金属線入り成形はんだは、
1)少なくとも2本の、はんだより融点の高い線材が、テープ状または板状はんだの表面の線材長手方向に沿った両側端部より各所定の距離ΔTをもって併設位置されており、該併設位置された線材が、上記テープ状または板状はんだの表面において線材長手方向に所定の巾Bをもって露出するように圧入されているものであり、
2)上述の1)において、前記所定の距離ΔTを、0.1≦ΔT≦5.0mmであり、前記所定の巾Bが圧入後線材の最大径の3分の1以上としたものであり、
3)上述の1)または2)において、前記線材をニッケル、銅またはステンレス鋼の金属線としたものである。
The metal wire-containing molded solder of the present invention is
1) At least two wire rods having a melting point higher than that of the solder are disposed adjacent to each other at a predetermined distance ΔT from both side end portions along the wire rod longitudinal direction on the surface of the tape-shaped or plate-shaped solder. The wire rod is press-fitted so as to be exposed with a predetermined width B in the longitudinal direction of the wire rod on the surface of the tape-shaped or plate-shaped solder,
2) In the above 1), the predetermined distance ΔT is 0.1 ≦ ΔT ≦ 5.0 mm, and the predetermined width B is one third or more of the maximum diameter of the wire after press-fitting. ,
3) In the above 1) or 2), the wire is a metal wire of nickel, copper or stainless steel.

また、本発明の金属線入り成形はんだの製造方法は、
4)少なくとも2本の、はんだより融点の高い線材を、該線材の圧入前の直径d0 と圧延前のテープ状はんだの厚さt0 との比K(K=d0/t0 )を0.25≦K≦0.85として、該テープ状はんだの長手方向表面の両側端部よりの距離ΔTが0.1≦ΔT≦5.0mmをもって緊張して併設位置させる工程と、該併設位置された線材と上記テープ状はんだとを、該線材が該テープ状はんだの表面の長手方向に所定の巾Bが延在露出するように、同時に圧延する工程を有するものであり、
5)少なくとも2本の、はんだより融点の高い線材を、該線材の圧入前の直径d0 とプレス前の板状はんだの厚さt0 との比K(K=d0/t0 )を所定の比K値として、該板状はんだの表面に該表面の両側端部よりの距離ΔTが0.1≦ΔT≦5.0mmをもって緊張して平行に位置させる工程と、該平行に位置された線材と上記板状はんだとを、該線材が該板状はんだの表面に所定の巾Bが露出するように、同時にプレスする工程を有するものであり、
6)上述の5)において、前記所定の比K値を、0.85以下としたものであり、
7)上述の4)〜6)において、前記線材を、ニッケル、銅またはステンレス鋼の金属線としたものである。
Moreover, the manufacturing method of the metal wire-containing molded solder of the present invention,
4) A ratio K (K = d 0 / t 0 ) of the diameter d 0 before press-fitting the wire and the thickness t 0 of the tape-shaped solder before rolling is determined for at least two wires having a melting point higher than that of the solder. 0.25 ≦ K ≦ 0.85, a step of tensioning and arranging the distance ΔT from both ends of the longitudinal surface of the tape-shaped solder with 0.1 ≦ ΔT ≦ 5.0 mm, and the side-by-side position A step of simultaneously rolling the formed wire and the tape-shaped solder such that the wire is exposed to extend a predetermined width B in the longitudinal direction of the surface of the tape-shaped solder,
5) A ratio K (K = d 0 / t 0 ) of the diameter d 0 before press-fitting the wire and the thickness t 0 of the plate-shaped solder before pressing is determined for at least two wires having a melting point higher than that of the solder. As a predetermined ratio K value, the distance ΔT from the both end portions of the surface of the plate-like solder is tensioned in parallel with 0.1 ≦ ΔT ≦ 5.0 mm, and the parallel solder is positioned in parallel. A step of simultaneously pressing the wire rod and the plate-like solder so that the wire rod has a predetermined width B exposed on the surface of the plate-like solder,
6) In the above 5), the predetermined ratio K value is 0.85 or less,
7) In the above 4) to 6), the wire is a metal wire of nickel, copper or stainless steel.

なお、前述の比K(K=d0/t0 )を0.25≦K≦0.85の特定は、前記圧延前のテープ状はんだの厚さt0 と圧延後のテープ状はんだの厚さt1 とで表される圧下率J(J=(t0 −t1)/t0 )が、0.2≦J≦0.7において、線材を圧入するための圧延条件をJL ≦―0.83K+91として求めたものである。 The above-mentioned ratio K (K = d 0 / t 0 ) is specified as 0.25 ≦ K ≦ 0.85 by determining the thickness t 0 of the tape-shaped solder before rolling and the thickness of the tape-shaped solder after rolling. When the rolling reduction ratio J (J = (t 0 −t 1 ) / t 0 ) expressed by the length t 1 is 0.2 ≦ J ≦ 0.7, the rolling conditions for press-fitting the wire are set as J L ≦ -Calculated as 0.83K + 91.

本発明の成形はんだにより、近年における電子部品のはんだ接合において、はんだ厚さを適度に保ち、かつ電子部品を傾斜させずに確実に取り付けることが可能となり、また本発明の製造方法により該成形はんだを精度良く、かつ安価に提供することができる。   The molded solder of the present invention makes it possible to securely attach the electronic component without tilting the solder in recent solder joints of electronic components, and the molded solder according to the manufacturing method of the present invention. Can be provided accurately and inexpensively.

[実施の形態]
図1は、はんだ厚さを均一にするために高融点金属線3を一対の辺に沿わせて配線させた方形の成形はんだ2による電子部品1とヒートシンク4のはんだ付けを示す平面図および断面図である。
電子部品1の一対の辺内側下部に沿い、かつ外縁に近く高融点金属線3が配線されている。このため四隅に金属粒子を配した場合と同様の効果を示し、電子部品1が高融点金属線3の線径以下に沈みこむことが無くはんだ厚さは均一になる。さらに成形はんだ2の製造工程の面から本発明の実施の形態を説明する。
成形はんだ2は、一般的に長尺の圧延テープを打ち抜きまたは切断することで製造される。
図2は従来の高融点金属粒子6を分散させたテープ状はんだ5を示したものであり、このテープはんだをAl の対線で切断し方形はんだとした場合には、四隅に高融点金属粒子6があり、望ましい配置となっている。しかし、A2の対線で切断した場合には、高融点金属粒子6は方形はんだ中央部に2個あるのみであり、はんだ接合時の電子部品の傾きを抑えることはできない。成形はんだはテープはんだから大量生産されるものであるから、望ましくない配置に切断することが確率的に生じてしまう。
[Embodiment]
FIG. 1 is a plan view and a cross-section showing soldering of an electronic component 1 and a heat sink 4 with a square molded solder 2 in which a refractory metal wire 3 is wired along a pair of sides in order to make the solder thickness uniform. FIG.
A high melting point metal wire 3 is wired along the lower part of the inner side of the pair of electronic components 1 and close to the outer edge. For this reason, the same effect as the case where the metal particles are arranged at the four corners is shown, and the electronic component 1 does not sink below the wire diameter of the refractory metal wire 3 and the solder thickness becomes uniform. Further, an embodiment of the present invention will be described from the viewpoint of the manufacturing process of the molded solder 2.
The formed solder 2 is generally manufactured by punching or cutting a long rolled tape.
FIG. 2 shows a conventional tape-like solder 5 in which refractory metal particles 6 are dispersed. When this tape solder is cut by a pair of Al wires to form a square solder, refractory metal particles are formed at the four corners. 6 is a desirable arrangement. However, when cut along the A2 pair, there are only two refractory metal particles 6 at the center of the square solder, and the inclination of the electronic component during solder joining cannot be suppressed. Since the formed solder is mass-produced from tape solder, cutting to an undesired arrangement is probabilistic.

これに対し、図3に示す本発明の実施の形態においては、テープはんだ5の長手方向縁部に高融点金属線3が配線されておりこのようなことは生じない。すなわち、A1の対線で切断でもA2の対線で切断しても方形はんだの高融点金属線の配置は変わらない。
どのような切断でも方形はんだの両縁部にはんだ厚さを適度に保ち、かつ電子部品を傾斜させないためのセパレータとなる高融点金属線3が配置されている。なお、高融点金属線3の線径は、高融点金属粒の球径と同様に選択すればよい。
On the other hand, in the embodiment of the present invention shown in FIG. 3, the refractory metal wire 3 is wired at the longitudinal edge of the tape solder 5, and this does not occur. That is, the arrangement of the refractory metal wire of the square solder does not change even if the wire is cut by the pair A1 or the wire A2.
A refractory metal wire 3 serving as a separator is provided at both edges of the square solder so as to maintain a proper solder thickness and prevent the electronic component from being inclined in any cutting. In addition, what is necessary is just to select the wire diameter of the refractory metal wire 3 similarly to the spherical diameter of a refractory metal particle.

さらに、上述のごとく金属線は金属粒に対して機能的に優位であるばかりでなく、経済的にも優位性がある。すなわち、金属粒は方形はんだの四隅に1個づつあれば充分であるが、確実に1個づつ配置させることはできない。このため、面的に数多く振り撒いて四隅に1個配置される確率を高めるしかない。このため必要以上に金属粒を消費することになる。
さらに高融点金属粒子はスペーサの役目であることから粒子径の揃ったものでなくてはならないが、微小で寸法精度の高い高融点金属粒子は高価格である。一方、金属線はペレットはんだ両縁部に一本づつ配置するだけで良く、加えて球に比べて製造コストが安いという利点がある。
Furthermore, as described above, the metal wire is not only functionally superior to the metal grains but also economically superior. That is, it is sufficient that one metal grain is provided at each of the four corners of the square solder, but it is not possible to arrange the metal grains one by one. For this reason, there is no choice but to increase the probability that one will be arranged at the four corners by sprinkling many on the surface. For this reason, metal particles are consumed more than necessary.
Furthermore, since the refractory metal particles serve as spacers, they must have a uniform particle diameter. However, refractory metal particles having a small size and high dimensional accuracy are expensive. On the other hand, the metal wires need only be arranged one by one on both edges of the pellet solder, and in addition, there is an advantage that the manufacturing cost is lower than that of the sphere.

図4は、テープはんだ5の外縁部に沿って融点の高い高融点金属線3を配線させた後、圧延機により圧延する場合を示すものである。圧延後には、図3に示すように、高融点金属線3がテープ状はんだ5に埋没し一体化する。テープ状はんだの構造は、ペレットはんだの長尺なものといえるものであり、成形はんだは、テープはんだを打ち抜き加工または切断加工によって製造される。なお、金属線は必ずしも連続線でなくても、間隔が密であれば断続線でも良い。   FIG. 4 shows a case where a high melting point metal wire 3 having a high melting point is wired along the outer edge portion of the tape solder 5 and then rolled by a rolling mill. After rolling, as shown in FIG. 3, the refractory metal wire 3 is buried in the tape-like solder 5 and integrated. The structure of the tape-like solder can be said to be a long pellet solder, and the formed solder is manufactured by punching or cutting the tape solder. Note that the metal wire is not necessarily a continuous line, but may be an intermittent line as long as the interval is close.

本発明は、本発明の金属線入り成形はんだにおいて、如何にハンダ付け工程後のはんだ厚さを適度に保ち、かつ電子部品を傾斜させずに安定確実に取り付けるか、また、それを如何に精度良く、かつ、安価に提供するかをその特徴の1つとしている。
すなわち、電子基板面とヒートシンク面間を接合するはんだに設けスペーサに期待される精度はスペーサ厚さLの10%以下であり、この精度が圧延後の金属線に求められること、および製品としての金属線入り成形はんだにおける金属線の挿入状態が確実に求められ得ることが必要である。
また、如何なる諸元の金属線を、テープ状ハンダ中の如何なる位置に配設するかにより、前記の安定確実さが左右される。これらの適正な条件をはんだの接着容量を阻害しない範囲で特定するところに本発明の特徴がある。
The present invention relates to a molded solder containing a metal wire according to the present invention, how to keep the solder thickness after the soldering process moderately and securely mount the electronic component without inclining it, and how accurate it is. One of the features is whether to provide a good and low cost.
That is, the accuracy expected of the spacer provided on the solder for joining the electronic substrate surface and the heat sink surface is 10% or less of the spacer thickness L. This accuracy is required for the metal wire after rolling, and as a product It is necessary that the insertion state of the metal wire in the molded solder containing the metal wire can be reliably obtained.
Further, the stability and certainty depend on what kind of metal wire is arranged in which position in the tape-shaped solder. The present invention is characterized in that these appropriate conditions are specified within a range that does not hinder the adhesion capacity of the solder.

強度の異なる各種はんだ材とCu、SUS、Niの各種線材の組合せの加工により、線材の精度、特に扁平精度におよぼす影響を多くの実態試験により特定した。その概要を以下に述べる。
まず、圧入された線材は、テープはんだと一体となって圧延される。すなわち、圧延によりテープ状はんだの厚さが50%になり、その断面積が50%になると線材の断面積も50%になる。ただし、線材の断面形状は当初の円径ではなく、露出上部が平坦となる疑似楕円形状になる。
図5は、圧延後の金属線入りテープ状はんだの断面を示す一例である。なお、擬似楕円の扁平度には、はんだの性状、線材の性状、加工度等が影響を与える。
図6は、ワイヤおよび圧下率Jを一定にした場合の線材の断面変形度合(線材断面径縦横比(b/a))(以下、断面変形度合という)に対する、はんだの引張強さの影響を示したものであるが、はんだの引張強さが大きいほど扁平化し易いことを示す。
図7は、はんだの強度および圧下率を一定にした場合の線材の断面変形度合に対する線材の引張強さの影響を示したものである。
線材の引張強さが大きいほど扁平化し難いことを示す。
図8は、はんだおよび線材をそれぞれ同一にした場合の、線材の断面変形度合に対する、圧下率Jの影響を示したものである。
圧下率が大きくなるにつれ扁平化が進むことを示す。さらに、圧延前線材の直径d0 および圧延前テープ状はんだの厚さt0 の比K(K=d0 /t0 )が、大きいほど圧下率の影響が著しいことも示している。なお、圧下率が大きくなりすぎると、線材がはんだテープを付き抜け切断してしまう現象が生じる。
図9は、比Kと、はんだ切断が生じない限界の圧下率JL の関係を示したものである。
図8でも示したように、比Kが大きいほど限界の圧下率JL は小さくなる。
以上述べたごとく、線材の変形挙動特性を考慮することにより、テープ状はんだに所定の厚さの線材をスペーサとして適正に圧入することができる。
The effects on the accuracy of wire rods, especially the flatness accuracy, were determined by many actual tests by processing various combinations of solder materials with different strengths and various wire rods of Cu, SUS and Ni. The outline is described below.
First, the press-fitted wire is rolled together with tape solder. That is, when the thickness of the tape-like solder is 50% by rolling and the cross-sectional area is 50%, the cross-sectional area of the wire is also 50%. However, the cross-sectional shape of the wire is not the original circular diameter but a pseudo-elliptical shape in which the exposed upper part is flat.
FIG. 5 is an example showing a cross-section of the metal wire-containing tape-shaped solder after rolling. The flatness of the pseudo ellipse is affected by the properties of the solder, the properties of the wire, the degree of processing, and the like.
FIG. 6 shows the influence of the tensile strength of the solder on the cross-sectional deformation degree (wire cross-sectional diameter aspect ratio (b / a)) (hereinafter referred to as cross-sectional deformation degree) of the wire when the wire and the rolling reduction J are constant. Although shown, it shows that it is easy to flatten, so that the tensile strength of solder is large.
FIG. 7 shows the influence of the tensile strength of the wire on the degree of cross-sectional deformation of the wire when the strength and the rolling reduction of the solder are constant.
It shows that it is hard to flatten, so that the tensile strength of a wire is large.
FIG. 8 shows the influence of the rolling reduction J on the degree of cross-sectional deformation of the wire when the solder and the wire are the same.
It shows that flattening progresses as the rolling reduction increases. Further, it is also shown that the influence of the rolling reduction becomes more remarkable as the ratio K (K = d 0 / t 0 ) of the diameter d 0 of the wire rod before rolling and the thickness t 0 of the tape-shaped solder before rolling is larger. In addition, when the rolling reduction becomes too large, a phenomenon occurs in which the wire rod comes off the solder tape and is cut.
FIG. 9 shows the relationship between the ratio K and the limit rolling reduction J L at which solder cutting does not occur.
As shown in FIG. 8, the limit rolling reduction J L decreases as the ratio K increases.
As described above, by considering the deformation behavior characteristics of the wire, it is possible to properly press-fit the wire having a predetermined thickness as a spacer into the tape-like solder.

圧延前線材の直径d0 および圧延前テープ状はんだの厚さt0 の比K(K=d0 /t0 )は、0.25≦K≦0.85が望ましい。
比Kが0.25未満では、はんだが溶融した場合でもはんだ厚さは一定程度あり、線材がはんだ厚以下となりスペーサの役目を果たすに至らない。また、比Kが0.85を超える場合には、小さな圧下率の圧延でも線材がテープはんだを突き抜け切断させてしまう。すなわち、線材を圧入させ、線材とはんだテープを一体化させるためには20%以上の圧下率を必要とし、比Kが大きすぎると圧延の余地がなくなってしまうことがわかった。
The ratio K (K = d 0 / t 0 ) between the diameter d 0 of the wire rod before rolling and the thickness t 0 of the tape-shaped solder before rolling is preferably 0.25 ≦ K ≦ 0.85.
When the ratio K is less than 0.25, even when the solder is melted, the thickness of the solder is constant, and the wire becomes less than the solder thickness and does not serve as a spacer. When the ratio K exceeds 0.85, the wire rod penetrates and cuts the tape solder even when rolling with a small reduction ratio. That is, in order to press-fit the wire and to integrate the wire and the solder tape, a reduction ratio of 20% or more is required, and it was found that if the ratio K is too large, there is no room for rolling.

上記のごとく、本発明の特徴として、金属線に適度の扁平度を付与するもので、この扁平度を左右する因子を特定する必要がある。すなわち、1は加工度であり、また、2は加工度を左右するはんだの機械的強度である。
このはんだの特性に対して金属線は、適正な範囲が存在し、実用的には銅、ニッケルまたは、鋼であればステンレス鋼が望ましい。
As described above, as a feature of the present invention, an appropriate flatness is imparted to the metal wire, and it is necessary to specify a factor that affects the flatness. That is, 1 is the degree of processing, and 2 is the mechanical strength of the solder that affects the degree of processing.
The metal wire has an appropriate range for the characteristics of the solder, and practically, copper, nickel, or stainless steel is desirable for steel.

また、本発明の特徴として、挿入された金属線がはんだ表面にその一部所定巾Bを露出し、金属線の挿入状態が測定管理可能な形態に構成されている。これにより金属線の状態、すなわち金属線入り成型はんだの製品精度が、特殊な計器を必要とせず目視により精度管理を行うことができる。目視にて線の存在を検知するには、その露出巾Bを金属線径の約0.3倍程度以上とすることが好ましい。   Further, as a feature of the present invention, the inserted metal wire is partially exposed to the solder surface with a predetermined width B, and the inserted state of the metal wire can be measured and managed. As a result, the accuracy of the state of the metal wire, that is, the product accuracy of the molded solder containing the metal wire can be visually controlled without requiring a special instrument. In order to visually detect the presence of a line, the exposed width B is preferably about 0.3 times or more of the metal wire diameter.

さらに、高融点金属線の配線本数は、テープはんだの両外縁部に 1 本づつばかりでなく複数本配線しても良い。複数本を配線したテープ状はんだにおいては、テープ状はんだの幅よりも小さなペレットはんだを切り出してもペレット外縁に高融点金属線の配線を確保できることになる。
また、成形はんだの形状は、方形に限定されるものではなく、円盤形状やリング状などでも良く、配線も、コの字、ロの字または円弧状などでもよい。ただし、このような成形はんだを、テープ状はんだから打ち抜き加工または切断加工によって製造することはかなり困難である。したがってこの場合の製造は、成形はんだの上に配線した後、プレス機による押圧で両者を一体化させる方法となる。
Furthermore, the number of refractory metal wires may be multiple, not just one on each outer edge of the tape solder. In a tape-shaped solder in which a plurality of wires are wired, even if a pellet solder smaller than the width of the tape-shaped solder is cut out, a high melting point metal wire can be secured on the outer periphery of the pellet.
Further, the shape of the molded solder is not limited to a square, and may be a disk shape, a ring shape, or the like, and the wiring may be a U shape, a B shape, an arc shape, or the like. However, it is quite difficult to manufacture such molded solder from a tape-shaped solder by punching or cutting. Therefore, the manufacturing in this case is a method in which both are integrated by pressing with a press after wiring on the molded solder.

なお、上述においては、本発明の特徴として、高融点金属線の配線は、テープ状はんだ1表面側に挿入する場合について記載したが、表面ばかりでなく、配線深さを特定するためにテープ状はんだに設けた溝内に配線しても良く、また2枚のテープ状はんだで挟み圧着することにより内包させることを排除するものではない。   In the above description, as a feature of the present invention, the wiring of the refractory metal wire is described as being inserted on the surface side of the tape-shaped solder 1, but not only the surface but also the tape shape for specifying the wiring depth. Wiring may be provided in a groove provided in the solder, and inclusion by crimping between two pieces of tape-shaped solder is not excluded.

[実施例1]
本実施例1は、金属線のスペーサとしての効果を確認するために接合試験を行ったものである。
図10に示すように、線径100μmのニッケル線を圧入したテープ状はんだから切り出し、縦35mm、 横 70mm、厚さ0.2mm のペレットを作成した。このペレット内に圧入された擬似楕円形のニッケル線の短軸(縦径)は60μmである。
配線位置は、一対の辺に平行に縁から2mmである。なお、はんだ成分は Sn−0.7%Cu とした。このペレットを無電解ニッケルメッキした銅製ヒートシンクに載せ、さらにはんだペレットと縦・横寸法が同じ DBA (Direct Brazed Aluminum)基板を重ねた。
次に、図6に示すように、意図的にはんだ厚さが均等になるのを妨げるようにDBA基板の上に5gの錘を載せた後、減圧水素還元雰囲気のリフロー炉を通して接合させ、はんだ厚さを測定した。なお、効果を明確にするため、ニッケル線を内包しないペレットも評価した。
図11中の点線で囲った部分のはんだ厚さを測定した結果を図12に示す。
ニッケル線を内包しない比較例においては、錘を負荷したことではんだ厚さは10μm程度になっている。すなわち、部品が傾き、はんだ厚さが極めて薄い部分が出来てしまっており、割れ発生の原因となり得る。一方、本発明の実施例においては、ニッケル線とほぼ同じ62μmの膜厚が確保できており、部品の傾き、及びはんだ膜厚の極めて薄い部分の発生を抑制できている。以上の結果より、本発明の有効性が確認できた。
[Example 1]
In Example 1, a joining test was performed in order to confirm the effect of a metal wire as a spacer.
As shown in FIG. 10, it cut out from the tape-shaped solder which press-fitted the nickel wire of wire diameter 100micrometer, and produced the pellet of length 35mm, width 70mm, and thickness 0.2mm. The minor axis (vertical diameter) of the pseudo-elliptical nickel wire press-fitted into the pellet is 60 μm.
The wiring position is 2 mm from the edge parallel to the pair of sides. The solder component was Sn-0.7% Cu. This pellet was placed on an electroless nickel-plated copper heat sink, and a DBA (Direct Brazed Aluminum) substrate having the same vertical and horizontal dimensions as the solder pellet was stacked.
Next, as shown in FIG. 6, a 5 g weight is placed on the DBA substrate so as to prevent the solder thickness from being intentionally equalized, and then bonded through a reflow furnace in a reduced-pressure hydrogen reducing atmosphere. The thickness was measured. In addition, in order to clarify an effect, the pellet which does not include a nickel wire was also evaluated.
FIG. 12 shows the result of measuring the solder thickness of the portion surrounded by the dotted line in FIG.
In the comparative example in which the nickel wire is not included, the solder thickness is about 10 μm by loading the weight. That is, the part is tilted and a part having a very thin solder thickness is formed, which may cause cracks. On the other hand, in the embodiment of the present invention, the film thickness of 62 μm, which is almost the same as that of the nickel wire, can be secured, and the occurrence of the part inclination and the extremely thin part of the solder film thickness can be suppressed. From the above results, the effectiveness of the present invention was confirmed.

[実施例2]
本発明における、テープ状はんだ上に配線した場合の金属線入り成形はんだの圧延前後の金属線の状況を調べた。厚さ0.40mm 、板幅82mm 、長さ2m のテープ状はんだにおいて、両縁から7mmの位置に直径 65μmのニッケル線を2本長手方向に直線状に平行配線し、両端部をビニールテープで固定した。なお、テープ状はんだの成分はSn−0.7%Cu とした。
この金属線を配設したテープ状はんだを圧延機により板厚 0.21mmに圧延したところ、金属線はテープ状はんだの長手方向に直線状となり、テープ状はんだの表層部に埋没した。
埋没した金属線の断面を測定したところほぼ楕円状であり、長軸径は177μmであり、短軸径は112μmであることから面積は0.0165 平方mmと計算され、圧延前の直径65μmの面積0.0033平方mmの約半分になった。
これは圧延によりテープ状はんだの板厚が0.40mmから0.21mmになることから長さは約2倍となり、必然的に断面積は約半分になることによるものである。
なお、なお、金属線を圧入後のはんだ状テープの長手方向両縁部を切断することにより、テープ幅70mmの縁からそれぞれ1mmの位置に金属線スペーサが配置されることとなった。
[Example 2]
In the present invention, the state of the metal wire before and after the rolling of the molded solder containing the metal wire when wired on the tape-like solder was examined. In a tape-shaped solder with a thickness of 0.40mm, a plate width of 82mm, and a length of 2m, two nickel wires with a diameter of 65μm are wired in parallel in the longitudinal direction at a position 7mm from both edges, and both ends are covered with vinyl tape. Fixed. The component of the tape-like solder was Sn-0.7% Cu.
When the tape-shaped solder provided with the metal wire was rolled to a sheet thickness of 0.21 mm by a rolling mill, the metal wire became linear in the longitudinal direction of the tape-shaped solder and was buried in the surface layer portion of the tape-shaped solder.
When the cross section of the buried metal wire was measured, it was almost elliptical, the major axis diameter was 177 μm, and the minor axis diameter was 112 μm, so the area was calculated to be 0.0165 square mm, and the diameter before rolling was 65 μm. The area was about half of 0.0033 square mm.
This is because the length of the tape-shaped solder is reduced from 0.40 mm to 0.21 mm by rolling, so that the length is approximately doubled, and the cross-sectional area is necessarily approximately half.
It should be noted that the metal wire spacers are arranged at positions of 1 mm from the edge having a tape width of 70 mm by cutting both edges in the longitudinal direction of the solder-like tape after press-fitting the metal wires.

[実施例3]
本発明に比較した追加の実施例として、金属線を2枚のテープ状はんだに挟んだ場合の、金属線入り成形はんだにおける圧延前後の金属線の状況を調べた。
はんだ成分をSn−0.7%Cu とし、厚さ0.4mm 、板幅82mm、長さ2mのテープ状はんだ2本において、一本のテープ状はんだの両縁から7mmの位置に直径65μmのニッケル線を2本長手方向に直線状に併設配置し、両端部をビニールテープで固定した後、もう一本のテープ状はんだにより挟み込んだ。このニッケル線を挟んだ2本のテープ状はんだを圧延機により板厚0.2mmに圧延した。
圧延後のニッケル線の状態を観察したところ、テープ状はんだの肉厚の中央部に位置し、図13に示すように断続な直線となって長手方向に伸びていた。
テープ状はんだの一箇所を切断しニッケル断続線中央部の断面を観察したところ、形状はほぼ楕円状であり、長軸径は57μmであり、短軸径は43μmであった。
また、一部の長さに渡って断続線間の空隙間隔を測定したところ、最少間隔25μm、最大359μm、平均146μm 、標準偏差( σ )80μmであった。平均値から3σの離れた数値が386μmであることから、ニッケル線の無い部分の間隔は非常に小さなものであり、スペーサとして問題はないことも分かった。
[Example 3]
As an additional example in comparison with the present invention, the state of the metal wire before and after rolling in the metal wire-containing molded solder when the metal wire was sandwiched between two tape-shaped solders was examined.
The solder component is Sn-0.7% Cu, and the thickness is 0.4 mm, the plate width is 82 mm, and the length is 2 m. Two tape-shaped solders having a diameter of 65 μm at a position 7 mm from both edges of one tape-shaped solder. Two nickel wires were arranged side by side in the longitudinal direction, both ends were fixed with vinyl tape, and then sandwiched with another piece of tape solder. Two tape-shaped solders sandwiching the nickel wire were rolled to a plate thickness of 0.2 mm by a rolling mill.
When the state of the nickel wire after rolling was observed, it was located at the central portion of the thickness of the tape-like solder, and became an intermittent straight line and extended in the longitudinal direction as shown in FIG.
When one portion of the tape-shaped solder was cut and the cross section of the central part of the nickel interrupted line was observed, the shape was almost elliptical, the major axis diameter was 57 μm, and the minor axis diameter was 43 μm.
Moreover, when the gap | interval space | interval between intermittent lines was measured over a part of length, they were the minimum space | interval 25 micrometers, the maximum 359 micrometers, the average 146 micrometers, and the standard deviation ((sigma)) 80 micrometers. Since the numerical value 3σ away from the average value is 386 μm, the interval between the portions without the nickel wire is very small, and it was also found that there is no problem as a spacer.

上述において金属線の断面形状は円形のものについて記載されているが、多角形、太鼓形状等の断面を有する金属線を含む金属線入り成形はんだとして適用することができる。   In the above description, the cross-sectional shape of the metal wire is described as a circular shape, but it can be applied as a molded solder containing a metal wire including a metal wire having a cross-section such as a polygonal shape or a drum shape.

本発明の金属線入り成形はんだによる電子部品とヒートシンクのはんだ付け状態を示す平面図および断面図。The top view and sectional drawing which show the soldering state of the electronic component and heat sink by the shaping | molding solder containing a metal wire of this invention. 金属粒子分散形の方形成形はんだにおいて、切断位置により粒子分布が異なることを示す平面図。The top view which shows that particle distribution changes with cutting positions in the square-shaped solder of a metal particle dispersion type. 本発明の金属線入り成形はんだにおいて、切断位置によらずスペーサー機能があることを示す平面図および断面図。The top view and sectional drawing which show that the metal wire containing molded solder of this invention has a spacer function irrespective of a cutting position. 本発明の金属線入り成形はんだにおける圧延前の状態を示す平面図および断面図。The top view and sectional drawing which show the state before rolling in the metal wire containing molded solder of this invention. 圧延後の金属線入りテープ状はんだの断面の一例を示す図。The figure which shows an example of the cross section of the tape-shaped solder containing a metal wire after rolling. 線材強度および圧下率Jを一定にした場合、線材の断面変形度合に対するはんだの引張強さの影響を示した図。The figure which showed the influence of the tensile strength of the solder with respect to the cross-sectional deformation degree of a wire when wire strength and the rolling reduction J were made constant. はんだの強度および圧下率を一定にした場合、線材の断面変形度合に対する線材の引張強さの影響を示した図。The figure which showed the influence of the tensile strength of a wire with respect to the cross-sectional deformation degree of a wire when the intensity | strength of a solder and a rolling reduction were made constant. 線材の断面変形度合に対するはんだの圧下率Jの影響を示した図。The figure which showed the influence of the rolling reduction rate J of the solder with respect to the cross-sectional deformation degree of a wire. K値をパラメータとして、はんだ切断が生じない限界の圧下率の関係を示した図。The figure which showed the relationship of the rolling reduction of the limit which does not produce solder cutting by using K value as a parameter. 実施例1における金属線を内包一体化させた成形はんだの平面図および断面図。The top view and sectional drawing of the shaping | molding solder which integrated the metal wire in Example 1. FIG. 意図的にはんだ厚さが不均等になるようにDBA基板上に荷重を錘を載せた接合試験片の状態を示す平面図。The top view which shows the state of the joining test piece which put the weight on the DBA board | substrate so that the solder thickness may become uneven intentionally. 本発明の金属線入り成形はんだと金属線を内包しない成形はんだとの接合後のはんだ厚さの比較図。The comparison figure of the solder thickness after joining with the shaping | molding solder containing a metal wire of this invention, and the shaping | molding solder which does not include a metal wire. 実施例3の金属線入り成形はんだにおける圧延後の金属線の状態を示す平面図。The top view which shows the state of the metal wire after rolling in the shaping | molding solder containing a metal wire of Example 3. FIG.

符号の説明Explanation of symbols

1 電子部品
2 はんだ
3 高溶融点金属線
4 ヒートシンク
5 テープはんだ
6 高溶融点金属粒子
7 DBA基板
8 錘
A−A 断面図切断線
A1 テープはんだ切断線
A2 テープはんだ切断線
B はんだ厚さ測定位置
1 Electronic Component 2 Solder 3 High Melting Point Metal Wire 4 Heat Sink 5 Tape Solder 6 High Melting Point Metal Particle 7 DBA Substrate 8 Weight AA Cross Section Cutting Line A1 Tape Solder Cutting Line A2 Tape Solder Cutting Line B Solder Thickness Measurement Position

Claims (7)

少なくとも2本のはんだより融点の高い線材が、テープ状または板状はんだの表面の線材長手方向に沿った両側端部より各所定の距離ΔTをもって併設位置されており、該併設位置された線材が、上記テープ状または板状はんだの表面において線材長手方向に所定の巾Bをもって露出するように圧入されていることを特徴とする金属線入り成形はんだ。   Wires having a melting point higher than that of at least two solders are arranged side by side with predetermined distances ΔT from both side end portions along the longitudinal direction of the wire on the surface of the tape-like or plate-like solder. The metal wire-containing molded solder is press-fitted so as to be exposed with a predetermined width B in the longitudinal direction of the wire rod on the surface of the tape-like or plate-like solder. 前記所定の距離ΔTが、0.1≦ΔT≦5.0mmであり、前記所定の巾Bが圧入後線材の最大径の3分の1以上であることを特徴とする請求項1に記載の金属線入り成形はんだ。   The predetermined distance ΔT is 0.1 ≦ ΔT ≦ 5.0 mm, and the predetermined width B is one third or more of the maximum diameter of the wire after press-fitting. Molded solder with metal wire. 前記線材がニッケル、銅またはステンレス鋼の金属線であることを特徴とする請求項1〜2のいずれか1項に記載の金属線入り成形はんだ。   The said wire is a metal wire of nickel, copper, or stainless steel, The metal wire containing molded solder of any one of Claims 1-2 characterized by the above-mentioned. 少なくとも2本の、はんだより融点の高い線材を、該線材の圧入前の直径d0 と圧延前のテープ状はんだの厚さt0 との比K(K=d0/t0 )を0.25≦K≦0.85として、該テープ状はんだの長手方向表面の両側端部よりの距離ΔTが0.1≦ΔT≦5.0mmをもって緊張して併設位置させる工程と、該併設位置された線材と上記テープ状はんだとを、該線材が該テープ状はんだの表面の長手方向に所定の巾Bが延在露出するように、同時に圧延する工程を有することを特徴とする金属線入り成形はんだの製造方法。 A ratio K (K = d 0 / t 0 ) of the diameter d 0 before press-fitting of the wire to the thickness t 0 of the tape-shaped solder before rolling is set to at least two wires having a melting point higher than that of the solder. 25 ≦ K ≦ 0.85, and the step of placing the tape-shaped solder with the distance ΔT from the both side ends of the longitudinal direction of the tape-shaped solder being 0.1 ≦ ΔT ≦ 5.0 mm, A metal wire-containing molded solder comprising a step of simultaneously rolling a wire and the tape-shaped solder so that the wire is exposed to extend a predetermined width B in the longitudinal direction of the surface of the tape-shaped solder. Manufacturing method. 少なくとも2本の、はんだより融点の高い線材を、該線材の圧入前の直径d0 とプレス前の板状はんだの厚さt0 との比K(K=d0/t0 )を所定の比K値として、該板状はんだの表面に該表面の両側端部よりの距離ΔTが0.1≦ΔT≦5.0mmをもって緊張して平行に位置させる工程と、該平行に位置された線材と上記板状はんだとを、該線材が該板状はんだの表面に所定の巾Bが露出するように、同時にプレスする工程を有することを特徴とする金属線入り成形はんだの製造方法。 A ratio K (K = d 0 / t 0 ) between a diameter d 0 before press-fitting of the wire and a thickness t 0 of the plate-shaped solder before pressing is set to a predetermined value for at least two wires having a melting point higher than that of the solder. As a ratio K value, a step of placing the surface of the plate-like solder in parallel with a distance ΔT from the both side ends of the surface being 0.1 ≦ ΔT ≦ 5.0 mm, and the wire positioned in parallel And a method of manufacturing a metal wire-containing molded solder, comprising: pressing the sheet-like solder simultaneously with the wire so that a predetermined width B is exposed on the surface of the sheet-like solder. 前記所定の比K値が、0.85以下であることを特徴とする請求項5に記載の金属線入り成形はんだの製造方法。   6. The method for producing a metal wire-containing molded solder according to claim 5, wherein the predetermined ratio K value is 0.85 or less. 前記線材がニッケル、銅またはステンレス鋼の金属線であることを特徴とする請求項4〜6のいずれか1項に記載の金属線入り成形はんだの製造方法。
The said wire is a metal wire of nickel, copper, or stainless steel, The manufacturing method of the metal wire containing solder of any one of Claims 4-6 characterized by the above-mentioned.
JP2007283432A 2007-10-31 2007-10-31 Molded solder containing metal wire and method for producing the same Active JP5207707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283432A JP5207707B2 (en) 2007-10-31 2007-10-31 Molded solder containing metal wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283432A JP5207707B2 (en) 2007-10-31 2007-10-31 Molded solder containing metal wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009106993A true JP2009106993A (en) 2009-05-21
JP5207707B2 JP5207707B2 (en) 2013-06-12

Family

ID=40776088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283432A Active JP5207707B2 (en) 2007-10-31 2007-10-31 Molded solder containing metal wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP5207707B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018832A (en) * 2012-07-18 2014-02-03 Nippon Handa Kk Molded solder with metal wire, and method for producing the same
US20140239467A1 (en) * 2013-02-22 2014-08-28 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2016111031A (en) * 2014-12-02 2016-06-20 三菱電機株式会社 Semiconductor device and method of manufacturing semiconductor device
CN106475702A (en) * 2016-11-23 2017-03-08 广州汉源新材料股份有限公司 A kind of limit for height type preformed soldering
WO2017047293A1 (en) * 2015-09-15 2017-03-23 株式会社村田製作所 Bonding member, method for producing bonding member, and bonding method
US10591223B2 (en) 2015-09-28 2020-03-17 Murata Manufacturing Co., Ltd. Heat pipe, heat dissipating component, and method for manufacturing heat pipe
US10625377B2 (en) 2015-11-05 2020-04-21 Murata Manufacturing Co., Ltd. Bonding member and method for manufacturing bonding member
WO2021160196A1 (en) * 2020-02-12 2021-08-19 Pfarr Stanztechnik Gmbh Lead-free soldering foil
CN116967658A (en) * 2023-08-24 2023-10-31 广州汉源微电子封装材料有限公司 Reinforced soldering lug and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431126A (en) * 1987-07-28 1989-02-01 Optrex Kk Terminal connecting structure
JPH0669620A (en) * 1992-08-13 1994-03-11 Ricoh Co Ltd Connection structure for printed wiring board
JP2004174522A (en) * 2002-11-25 2004-06-24 Hitachi Ltd Composite solder, production method therefor, and electronic equipment
JP2005161338A (en) * 2003-12-01 2005-06-23 Hitachi Metals Ltd Solder sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431126A (en) * 1987-07-28 1989-02-01 Optrex Kk Terminal connecting structure
JPH0669620A (en) * 1992-08-13 1994-03-11 Ricoh Co Ltd Connection structure for printed wiring board
JP2004174522A (en) * 2002-11-25 2004-06-24 Hitachi Ltd Composite solder, production method therefor, and electronic equipment
JP2005161338A (en) * 2003-12-01 2005-06-23 Hitachi Metals Ltd Solder sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018832A (en) * 2012-07-18 2014-02-03 Nippon Handa Kk Molded solder with metal wire, and method for producing the same
US20140239467A1 (en) * 2013-02-22 2014-08-28 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2016111031A (en) * 2014-12-02 2016-06-20 三菱電機株式会社 Semiconductor device and method of manufacturing semiconductor device
US10625376B2 (en) 2015-09-15 2020-04-21 Murata Manufacturing Co., Ltd. Bonding member, method for manufacturing bonding member, and bonding method
WO2017047293A1 (en) * 2015-09-15 2017-03-23 株式会社村田製作所 Bonding member, method for producing bonding member, and bonding method
JPWO2017047293A1 (en) * 2015-09-15 2018-05-24 株式会社村田製作所 Joining member, method for producing joining member, and joining method
US10591223B2 (en) 2015-09-28 2020-03-17 Murata Manufacturing Co., Ltd. Heat pipe, heat dissipating component, and method for manufacturing heat pipe
US10625377B2 (en) 2015-11-05 2020-04-21 Murata Manufacturing Co., Ltd. Bonding member and method for manufacturing bonding member
CN106475702A (en) * 2016-11-23 2017-03-08 广州汉源新材料股份有限公司 A kind of limit for height type preformed soldering
CN106475702B (en) * 2016-11-23 2020-12-15 广州汉源新材料股份有限公司 Height-limiting type preformed soldering lug
WO2021160196A1 (en) * 2020-02-12 2021-08-19 Pfarr Stanztechnik Gmbh Lead-free soldering foil
US11712759B2 (en) 2020-02-12 2023-08-01 Pfarr Stanztechnik Gmbh Lead-free soldering foil
CN116967658A (en) * 2023-08-24 2023-10-31 广州汉源微电子封装材料有限公司 Reinforced soldering lug and preparation method and application thereof

Also Published As

Publication number Publication date
JP5207707B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5207707B2 (en) Molded solder containing metal wire and method for producing the same
US7800230B2 (en) Solder preform and electronic component
US9076755B2 (en) Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module
US20200185839A1 (en) Disk having an electric connecting element
JP6044097B2 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
US8198540B2 (en) Power element mounting substrate, method of manufacturing the same, power element mounting unit, method of manufacturing the same, and power module
CN102725094A (en) Composite conductive component and method for making it
CN106475702B (en) Height-limiting type preformed soldering lug
CN103000559A (en) Positioning clamp for semiconductor chip and manufacture method for semiconductor device
CN108788509A (en) A kind of preformed soldering
US20240051051A1 (en) Ultra-thin soldering gasket and preparation method therefor, soldering method, and semiconductor device
JP4560645B2 (en) Heat sink for mounting a plurality of semiconductor substrates and semiconductor substrate assembly using the same
JP5743970B2 (en) Molded solder containing metal wire and manufacturing method thereof
JP2004134746A (en) Semiconductor device
JP2009105251A (en) Solder film thickness control method, and circuit device
JP5130533B2 (en) Semiconductor substrate heat sink having protrusions and method for manufacturing the same
CN105834612B (en) A kind of high-dimensional stability Sn Ag Cu solders suitable for Electronic Packaging
JP2001168252A (en) Semiconductor device and manufacturing method thereof
JP4560644B2 (en) Semiconductor substrate heatsink with improved soldering
JP2019188456A (en) Solder alloy, solder paste, mold solder, and semiconductor device using solder alloy
CN208680800U (en) A kind of low void fraction preformed soldering
JP5203896B2 (en) Semiconductor device and manufacturing method thereof
EP3744470A1 (en) Solder preform
JP2007250772A (en) Electronic control apparatus
CN217444374U (en) Semiconductor packaging structure capable of improving thermal stress distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250