[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009187753A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2009187753A
JP2009187753A JP2008025525A JP2008025525A JP2009187753A JP 2009187753 A JP2009187753 A JP 2009187753A JP 2008025525 A JP2008025525 A JP 2008025525A JP 2008025525 A JP2008025525 A JP 2008025525A JP 2009187753 A JP2009187753 A JP 2009187753A
Authority
JP
Japan
Prior art keywords
negative electrode
storage element
separator
electrode
lithium ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008025525A
Other languages
Japanese (ja)
Inventor
Shinichi Ueki
伸一 植木
Toshiyuki Miwa
俊之 美和
Takeshi Miyazaki
武志 宮崎
Osamu Terabayashi
治 寺林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008025525A priority Critical patent/JP2009187753A/en
Publication of JP2009187753A publication Critical patent/JP2009187753A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage element of a type in which lithium ions are stored beforehand in a negative electrode by a horizontal doping method, in which pre-doping of the lithium ions is completed in a short time. <P>SOLUTION: This is a power storage element 200 in which a power generation element in which a positive electrode 1p capable of carrying lithium ions or anions reversibly and a negative electrode 1n consisting of a material capable of storing and releasing lithium ions are arranged in opposition through a separator 30 is used as one unit and an electrode laminate 100 laminating at least one unit or more of the power generation elements is sealed tightly together with an electrolytic solution containing lithium salt, and all or a part of metal lithium 20 is arranged so as to be in electrical contact with a current collector on the surface of the current collector 11n on the negative electrode side, and the lithium ions originating from the metal lithium are stored beforehand in the negative electrode. The total value of a pore volume per unit area respectively of the positive electrode, the negative electrode, and the separator of the power generation element is 1.7 μL or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、リチウムイオンあるいはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出が可能な材料からなるとともに前記正極とセパレータを介して対向配置される負極と、リチウム塩を含んだ電解質とを備えて、正極、セパレータ、負極を積層してなる蓄電素子に関する。具体的には、負極にあらかじめリチウムイオンを吸蔵させておくタイプの蓄電素子に関する。   The present invention includes a positive electrode capable of reversibly carrying lithium ions or anions, a negative electrode which is made of a material capable of occluding and releasing lithium ions, and is disposed opposite to the positive electrode via a separator, and a lithium salt. The present invention relates to a power storage element that includes an electrolyte and is formed by stacking a positive electrode, a separator, and a negative electrode. Specifically, the present invention relates to a power storage element in which lithium ions are occluded in advance in a negative electrode.

上記したタイプの蓄電素子(以下、プレドープ型蓄電素子)は、急速充電が可能であるとともに、リチウムイオンをあらかじめ負極に吸蔵させるため、負極の電位が下がり、大きな電圧を得ることができ、高いエネルギー容量を得ることができる。そのため、風力発電の負荷平準化装置、瞬停対策装置、自動車における回生電力の蓄電用途などに利用されることが期待されている。   The above-mentioned type of storage element (hereinafter referred to as pre-doped storage element) is capable of rapid charging and has lithium ions previously stored in the negative electrode, so that the potential of the negative electrode is lowered and a large voltage can be obtained, resulting in high energy. Capacity can be obtained. Therefore, it is expected to be used for wind power generation load leveling devices, instantaneous power failure countermeasure devices, regenerative power storage for automobiles, and the like.

従来のプレドープ型蓄電素子におけるリチウムイオンの吸蔵(プレドープ)方式には、例えば、特許3485935号公報に記載されているように、メッシュ状の集電体に負極、または正極を形成し、それを交互にセパレータを挟んで積層した電極積層体の外側に金属リチウムを貼った集電体を配置して負極と電気的接触を持たせることにより、このメッシュを通して負極にリチウムイオンをプレドープする方式がある。この方式では、金属リチウムと負極とが対向し、リチウムイオンは、負極に対して垂直方向からプレドープされる。   In a conventional pre-doped type storage element, a lithium ion occlusion (pre-doping) method, for example, as described in Japanese Patent No. 3485935, a negative electrode or a positive electrode is formed on a mesh-like current collector, and these are alternately arranged. There is a method of pre-doping lithium ions into the negative electrode through this mesh by disposing a current collector with metallic lithium pasted on the outside of the electrode laminate laminated with a separator sandwiched between them to have electrical contact with the negative electrode. In this method, metallic lithium and the negative electrode face each other, and lithium ions are predoped from a direction perpendicular to the negative electrode.

以下、このようなプレドープ方式を「垂直ドープ方式」と称することにすると、この垂直ドープ方式は、メッシュなど穴が空いた集電体を用いているため、コストが嵩むという問題を有していた。   Hereinafter, when such a pre-doping method is referred to as a “vertical doping method”, the vertical doping method has a problem that the cost increases because a current collector having a hole such as a mesh is used. .

そこで本発明者らは、製造や低価格化が容易なプレドープ方式として、シート状集電体の表面に負極を形成するとともに、その集電体面と同じ面に金属リチウムを貼着し、リチウムイオンを集電体の表面に沿って負極にドープする「水平ドープ方式」を採用することとした。また、水平ドープ方式は、垂直ドープ方式と比較して、吸蔵されるリチウムイオンの量を精確に設定でき、その後の電池反応を均一にすることができる、という利点があり、信頼性に優れている。このような水平ドープ方式は、負極を、例えば、ダイコート、グラビアコート、リバースコートなどの塗工技術により、容易かつ安価に集電体の表面に形成することができる。   Therefore, the present inventors formed a negative electrode on the surface of the sheet-like current collector as a pre-doping method that is easy to manufacture and reduce the price, and adhered lithium metal to the same surface as the current collector surface, The “horizontal dope method” is adopted in which the negative electrode is doped along the surface of the current collector. In addition, the horizontal dope method has the advantage that the amount of stored lithium ions can be accurately set and the subsequent battery reaction can be made uniform as compared with the vertical dope method. Yes. In such a horizontal doping method, the negative electrode can be easily and inexpensively formed on the surface of the current collector by a coating technique such as die coating, gravure coating, and reverse coating.

しかし、水平ドープ方式のプレドープ型蓄電素子では、金属リチウムが配置されている負極集電体上の固定位置から遠く離れた位置にある負極にまでリチウムイオンを拡散させているため、組み立てが終わった蓄電素子を、リチウムイオンが負極活物質に対して均一に吸蔵されるまで極めて長い時間静置する必要があった。当然、蓄電素子に対する高出力化の要求に対応するために電極面積を大型化すれば、リチウムイオンを吸蔵させるためのエージング期間がさらに長くなる。   However, in the horizontally doped pre-doped storage element, the assembly was completed because lithium ions were diffused to the negative electrode located far from the fixed position on the negative electrode current collector where the metal lithium was arranged. It was necessary to leave the electricity storage element for an extremely long time until lithium ions were uniformly occluded in the negative electrode active material. Naturally, if the electrode area is increased in order to meet the demand for higher output for the power storage element, the aging period for occluding lithium ions becomes longer.

長時間に渡るエージングは、生産性を低下させ、製造コストを増大させる。これでは、信頼性を確保できたとしても、水平ドープ方式の蓄電素子の製造容易性によるコストダウンの可能性を阻害してしまう。したがって本発明の目的は、短時間にリチウムイオンのプレドープを完了させることで、信頼性が高く、高出力な蓄電素子を安価に提供することにある。   Aging over a long period of time reduces productivity and increases manufacturing costs. In this case, even if the reliability can be ensured, the possibility of cost reduction due to the ease of manufacturing the horizontally doped storage element is hindered. Accordingly, an object of the present invention is to provide a highly reliable and high-power storage element at low cost by completing pre-doping of lithium ions in a short time.

上記目的を達成するために、本発明者らは、まず、水平ドープ方式では、電極面に水平な方向に物質移動経路が形成されていることに着目した。そして、水平ドープ方式では、リチウムイオンの移動媒体となる電解液中に溶解した金属リチウムが電極面を平行(水平)に拡散しながら負極活物質中に吸蔵されるため、そのリチウムイオンの移動経路中に存在している電解液量が多いほど、リチウムイオンの移動が円滑に行われると考えた。   In order to achieve the above object, the present inventors first focused on the fact that the mass transfer path is formed in the horizontal direction on the electrode surface in the horizontal doping method. In the horizontal dope method, the lithium metal dissolved in the electrolytic solution serving as a lithium ion transfer medium is occluded in the negative electrode active material while diffusing the electrode surface in parallel (horizontal), so the lithium ion transfer path It was thought that the more the amount of the electrolyte solution present therein, the smoother the movement of lithium ions.

電解液は、蓄電素子を構成する各要素における細孔(負極電極中の細孔、正極電極中の細孔、セパレータ中の細孔)、および各構成要素の界面(正極とセパレータ、負極とセパレータ等)に含まれていることから、この細孔容積について鋭意研究を重ね、その結果、セパレータを介して対向配置される一組の正極と負極からなるセルにおいて、正極、負極、およびセパレータにおける単位面積当たりの細孔容積の値に、上記目的を達成するための最適条件が存在することを見いだした。   The electrolytic solution includes pores (pores in the negative electrode, pores in the positive electrode, pores in the separator) in each element constituting the power storage element, and interfaces (positive electrode and separator, negative electrode and separator in each component). As a result, in the cell composed of a pair of positive electrode and negative electrode arranged opposite to each other via the separator, the unit in the positive electrode, the negative electrode, and the separator It has been found that there is an optimum condition for achieving the above object in the value of the pore volume per area.

本発明は上記知見に基づきなされたもので、リチウムイオンもしくはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出が可能な材料からなる負極とをセパレータを介して対向配置してなる発電要素を1単位として、少なくとも1単位以上の発電要素を積層してなる電極積層体をリチウム塩を含む電解液とともに密封封止してなる蓄電素子において、
負極側の集電体表面には金属リチウムの全部、あるいは一部が当該集電体と電気的に接触するように配置されて、前記負極には当該金属リチウムを起源としたリチウムイオンがあらかじめ吸蔵されてなり、
前記発電要素の正極と負極とセパレータのそれぞれの単位面積当たりの細孔容積の合計値が1.7μL以上である蓄電素子としている。
The present invention has been made on the basis of the above knowledge, and is formed by arranging a positive electrode capable of reversibly carrying lithium ions or anions and a negative electrode made of a material capable of occluding and releasing lithium ions through a separator. In a power storage element formed by sealing and sealing an electrode laminate formed by laminating at least one unit of power generation elements as a unit with a power generation element together with an electrolyte containing a lithium salt,
The surface of the current collector on the negative electrode side is arranged so that all or part of the metal lithium is in electrical contact with the current collector, and lithium ions originating from the metal lithium are previously stored in the negative electrode. Being
The power storage element has a total pore volume per unit area of the positive electrode, the negative electrode, and the separator of the power generation element of 1.7 μL or more.

また、当該蓄電素子において、前記負極の単位面積当たりの細孔容積が0.3μL/cm以上、前記正極の単位面積当たりの細孔容積が0.7μL/cm以上、セパレータの単位面積当たりの細孔容積が0.7μL/cm以上のいずれかの条件を充足する蓄電素子、あるいは、これらの条件を適宜に組み合わせ条件を満たす蓄電素子とすればより好ましい。 Further, in the electric storage device, the pore volume per unit area of the negative electrode 0.3 [mu] L / cm 2 or more, the pore volume per unit area of the positive electrode 0.7μL / cm 2 or more, per unit area of the separator It is more preferable to use a power storage element that satisfies any one of the conditions in which the pore volume is 0.7 μL / cm 2 or more, or a power storage element that satisfies a combination of these conditions.

本発明者らは、リチウムイオンをより均一に負極に拡散させる条件として、負極材料のモード径に注目し、当該モード径の最適化を試みた。本発明は、このモード径を最適化した蓄電素子にも及んでおり、当該発明は、上記いずれかの蓄電素子において、前記負極は、細孔分布測定によるモード径が0.1μm以上6.0μm以下である蓄電素子としている。   The present inventors focused on the mode diameter of the negative electrode material as a condition for diffusing lithium ions more uniformly into the negative electrode, and attempted to optimize the mode diameter. The present invention also extends to a power storage element having an optimized mode diameter. In any one of the above power storage elements, the negative electrode has a mode diameter of 0.1 μm or more and 6.0 μm by pore distribution measurement. The power storage element is as follows.

さらに本発明らは、水平プレドープ方式においてリチウムイオンの移動媒体となる電解液量と細孔容積との関係について、以下の考察(1)〜(3)に基づいて検討した。   Furthermore, the present inventors examined the relationship between the amount of electrolytic solution serving as a lithium ion transfer medium and the pore volume in the horizontal pre-doping method based on the following considerations (1) to (3).

(1)電極積層体の細孔容積の容量に対して電解液量が小さい(A/B<1)と、電解液が存在しない細孔部を有することになり、リチウムイオンの移動経路が十分に確保できない。
(2)電解液が、正極、負極、セパレータの細孔のみに包含されたとしても、細孔容積の総量以上の電解液は必要。
(3)電解液が、正極、負極、セパレータの細孔のみに存在するわけではなく、蓄電素子内部の隙間に保持される分も存在する。
(1) When the amount of the electrolyte is small with respect to the capacity of the pore volume of the electrode laminate (A / B <1), it has a pore portion where the electrolyte does not exist, and the migration path of lithium ions is sufficient Cannot be secured.
(2) Even if the electrolytic solution is included only in the pores of the positive electrode, the negative electrode, and the separator, an electrolytic solution having a total pore volume or more is necessary.
(3) The electrolytic solution does not exist only in the pores of the positive electrode, the negative electrode, and the separator, and there is a portion that is retained in the gap inside the electric storage element.

そして、これら考察に基づく検討の結果、電解液量と細孔容積との関係においても最適条件が存在することを知見し、その最適条件を満たす蓄電素子についても本発明の範囲とし、当該発明は、上記何れかの蓄電素子において、当該蓄電素子に充当される電解液の容積Aと、当該蓄電素子に含まれる前記電極積層体の正極と負極とセパレータのそれぞれの細孔容積の合計値Bとの比率A/Bが1.4以上であることとしている。   As a result of the examination based on these considerations, it has been found that there is an optimum condition in the relationship between the amount of electrolyte and the pore volume, and the storage element that satisfies the optimum condition is also within the scope of the present invention. In any one of the power storage elements, the volume A of the electrolyte applied to the power storage element, and the total value B of the respective pore volumes of the positive electrode, the negative electrode, and the separator of the electrode laminate included in the power storage element; The ratio A / B is 1.4 or more.

本発明によれば、短時間にリチウムイオンのプレドープを完了させることができ、それによって、信頼性が高く、高出力な蓄電素子を安価に提供することができる。   According to the present invention, pre-doping of lithium ions can be completed in a short time, whereby a highly reliable and high-power storage element can be provided at low cost.

===蓄電素子の構造===
図1に本発明の第1の実施例における蓄電素子の負極側の概略構造(A)と正極側の概略構造(B)とを示した。(A)と(B)には、それぞれ、負極側の電極体(負極電極体)1nと正極側の電極体(正極電極体)1pの平面図と側面図とを示した。負極電極体1nは、略矩形の一辺に端子接続部12nが突設された銅箔を負極集電体11nとし、その負極集電体11nの端子接続部12n以外の略矩形領域の表裏両面に負極活物質が塗布されるとともに、当該略矩形の領域の一部を所定形状に剥離して負極活物質が塗布されていない電極未塗布部13nを設け、その未塗布部13nに金属リチウム20を貼着した構造を基本としている。
=== Structure of power storage element ===
FIG. 1 shows a schematic structure (A) on the negative electrode side and a schematic structure (B) on the positive electrode side of the electricity storage device in the first example of the present invention. A plan view and a side view of a negative electrode body (negative electrode body) 1n and a positive electrode body (positive electrode body) 1p are shown in (A) and (B), respectively. In the negative electrode body 1n, a copper foil having a terminal connection portion 12n projecting on one side of a substantially rectangular shape is used as a negative electrode current collector 11n, and the front and back surfaces of the substantially rectangular region other than the terminal connection portion 12n of the negative electrode current collector 11n. The negative electrode active material is applied, a part of the substantially rectangular region is peeled off in a predetermined shape to provide an electrode uncoated portion 13n where the negative electrode active material is not coated, and metal lithium 20 is applied to the uncoated portion 13n. It is based on a pasted structure.

負極電極体1nの具体的な作成方法としては、まず、難黒鉛化性炭素材料とポリフッ化ビニリデン樹脂を95:5の重量比で混合したものに、溶剤としてN−メチル−2−ピロリジノン(NMP)を加えてペースト状に混練したものを負極集電体11nとなる厚さ14μnの銅箔の表裏両面に略矩形状に塗布し乾燥させる。なお、負極集電体11nの表裏一方の面における負極材料は、乾燥後に負極材料の単位面積当たりの細孔容積が所定値となるように塗布される。なお、細孔容積は、塗布重量、厚さ、空孔率を調整することで制御できる。そして、端子接続部12nを備えた電極体形状となるように銅箔を切断した上で、電極未塗布部13nとなる部分の負極活物質を剥離する。本実施例では、塗布領域の左右中央を上下に延長する帯状に剥離して電極未塗布部13nを形成して負極電極部10nを形成するとともに、当該未塗布部13nの形状に沿う帯状の金属リチウム20を貼着している。なお、上記炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛などが使用可能であるが、リチウムイオンの吸蔵・放出が可能な材料であれば特に限定されるわけではない。   As a specific method for producing the negative electrode body 1n, first, N-methyl-2-pyrrolidinone (NMP) as a solvent was mixed with a non-graphitizable carbon material and a polyvinylidene fluoride resin mixed at a weight ratio of 95: 5. ) And kneaded into a paste form is applied in a substantially rectangular shape on both the front and back surfaces of a 14 μm thick copper foil to be the negative electrode current collector 11n and dried. The negative electrode material on one of the front and back surfaces of the negative electrode current collector 11n is applied so that the pore volume per unit area of the negative electrode material becomes a predetermined value after drying. The pore volume can be controlled by adjusting the coating weight, thickness, and porosity. And after cutting copper foil so that it may become an electrode body shape provided with the terminal connection part 12n, the negative electrode active material of the part used as the electrode non-application part 13n is peeled. In the present embodiment, the left and right center of the coating region is peeled off in a strip shape extending vertically to form the electrode uncoated portion 13n to form the negative electrode portion 10n, and the strip-shaped metal along the shape of the uncoated portion 13n. Lithium 20 is attached. The carbon material may be easily graphitizable carbon, non-graphitizable carbon, graphite or the like, but is not particularly limited as long as it is a material capable of occluding and releasing lithium ions.

一方、正極電極体1pは、略矩形の一辺に端子接続部12pが突設されたアルミニウム箔を正極集電体11pとし、その正極集電体11pの端子接続部12p以外の略矩形領域の表裏両面に正極活物質を塗布した構造を基本としている。正極電極体1pの具体的な作成方法としては、活性炭粉末90重量部、アセチレンブラック10重量部、およびポリフッ化ビニリデン粉末10重量部を混合し、その混合物にNNPを加えて混練してペースト状に混練したものを厚さ20μmのアルミニウム箔の表裏両面に略矩形状に塗布して乾燥させる。集電体の表裏一方の面における正極材料も、負極と同様に、乾燥後に負極材料の単位面積当たりの細孔容積が所定値となるように調整される。   On the other hand, in the positive electrode body 1p, an aluminum foil having a terminal connection portion 12p protruding on one side of a substantially rectangular shape is used as a positive electrode current collector 11p, and the front and back sides of a substantially rectangular region other than the terminal connection portion 12p of the positive electrode current collector 11p. It is based on a structure in which a positive electrode active material is applied on both sides. As a specific method for producing the positive electrode body 1p, 90 parts by weight of activated carbon powder, 10 parts by weight of acetylene black, and 10 parts by weight of polyvinylidene fluoride powder are mixed, and NNP is added to the mixture and kneaded to form a paste. The kneaded material is applied in a substantially rectangular shape on both the front and back surfaces of an aluminum foil having a thickness of 20 μm and dried. Similarly to the negative electrode, the positive electrode material on one surface of the current collector is adjusted so that the pore volume per unit area of the negative electrode material becomes a predetermined value after drying.

正極材料をアルミニウム箔の集電体両面に塗布して乾燥した後、正極の端子接続部12pを備えた電極体形状となるようにアルミニウム箔を切断する。そして、負極電極体1nと対向させたときに、金属リチウムが貼着される未塗布領域13nと位置が合致するように塗布領域の左右中央を上下に延長する帯状に剥離して電極未塗布部13pを形成する。   After the positive electrode material is applied to both surfaces of the aluminum foil current collector and dried, the aluminum foil is cut so as to have an electrode body shape having the positive electrode terminal connection portion 12p. Then, when facing the negative electrode body 1n, the electrode uncoated portion is peeled off in a strip shape extending vertically from the left and right center of the coated region so that the position matches the uncoated region 13n to which the metallic lithium is stuck. 13p is formed.

このように作成された両極の電極体(1p,1n)は、双方の前記電極未塗布(13p,13n)の形状を合わせるようにセパレータを介して対向させて積層され構造体(電極積層体)に組み立てられる。本実施例では、セパレータは、ポリオレフィン系マイクロポーラスフィルムを使用しているが、素材としてはポリエチレン、ポリプロピレン、アラミド、PET、セルロース、セロハンなどを少なくとも1種以上用いた多孔質フィルム、不織布など、イオン透過性を有し、正負極間を電気的に分離できるのであれば、適宜なものを採用することができる。また、セパレータの空孔率についても、正負極間が短絡しなければ特に限定されるものではない。通常は、30〜70%の空孔率である。   The bipolar electrode bodies (1p, 1n) thus created are laminated so as to face each other via a separator so as to match the shapes of the two uncoated electrodes (13p, 13n). Assembled into. In this example, the separator uses a polyolefin microporous film, but as a material, a porous film using at least one kind of polyethylene, polypropylene, aramid, PET, cellulose, cellophane, etc. Any suitable material can be adopted as long as it has transparency and can electrically separate the positive and negative electrodes. Further, the porosity of the separator is not particularly limited as long as the positive and negative electrodes are not short-circuited. Usually, the porosity is 30 to 70%.

図2(A)(B)に、当該電極積層体100の断面図と平面図とを示した。一つのセパレータ30と、そのセパレータ30を介して対面する一対の正極と負極とによる構成を一つの正負極対向部50とし、電極積層体100は、この正負極対向部50を複数積層したものである(A)。本実施例では、10組の正負極対向部50を積層している。そして、正極と負極のそれぞれの端子接続部(12p,12n)は、同じ方向に突出するように、かつ積層方向で上下に重ならないように互い違いとなるようにそれぞれの集電体を積層する(B)。   2A and 2B are a cross-sectional view and a plan view of the electrode stack 100. A configuration comprising one separator 30 and a pair of positive and negative electrodes facing each other through the separator 30 is defined as one positive and negative electrode facing portion 50, and the electrode stack 100 is a laminate of a plurality of positive and negative electrode facing portions 50. Yes (A). In this embodiment, 10 sets of positive and negative electrode facing portions 50 are stacked. Then, the respective current collectors are stacked so that the terminal connection portions (12p, 12n) of the positive electrode and the negative electrode are staggered so as to protrude in the same direction and do not overlap vertically in the stacking direction ( B).

さらに、このように電極積層体100を組み立てた後、図3に示すように、それぞれの正負極対向部50の正極の端子接続部12p同士、および負極の端子接続部12n同士を重ねた状態で一括してリード端子板60に溶接し、次いで、3辺を融着して袋状に形成したアルミラミネートフィルムの外装体70内にリード端子60を外部に導出した状態で電極積層体100を配置し、当該外装体70内に、電解液(LiPFの濃度が1モル/Lとなるように調整されたプロピレンカーボネート)を注入し、袋状外装体70の開口を真空封止して構造体としての蓄電素子200を完成させる。なお、上記構造において、負極における金属リチウムの貼着方法は、図1に示した位置や配置に限らず、例えば、図4(A)〜(C)に示すように、様々な位置や配置が考えられる。 Further, after assembling the electrode laminate 100 in this way, as shown in FIG. 3, the positive terminal connection portions 12p and the negative terminal connection portions 12n of the respective positive and negative electrode facing portions 50 are stacked. The electrode laminate 100 is arranged in a state where the lead terminals 60 are led out to the outside in an aluminum laminate film outer package 70 which is welded to the lead terminal plate 60 in a lump and fused in three sides to form a bag shape. Then, an electrolytic solution (propylene carbonate adjusted so that the concentration of LiPF 6 is 1 mol / L) is injected into the outer package 70, and the opening of the bag-shaped outer package 70 is vacuum-sealed. Is completed. In the above structure, the method for attaching metallic lithium to the negative electrode is not limited to the position and arrangement shown in FIG. 1, and for example, various positions and arrangements are available as shown in FIGS. Conceivable.

上述した蓄電素子200の構造は従来から知られている蓄電素子と同様である。しかし本発明は、正極、負極、およびセパレータの各構成要素における細孔構造に着目し、各構成要素における単位面積当たりの細孔容積を最適化することによりプレドープ期間の短縮化を達成している。   The structure of the above-described power storage element 200 is the same as that of a conventionally known power storage element. However, the present invention pays attention to the pore structure in each component of the positive electrode, the negative electrode, and the separator, and achieves shortening of the pre-doping period by optimizing the pore volume per unit area in each component. .

===プレドープについての評価方法===
上記構造の蓄電素子において、負極、正極、セパレータのそれぞれにおける細孔容積、およびそれら容積を合計した合計細孔容積、さらに負極材料におけるモード径の各条件がそれぞれ異なる多種多様な蓄電素子をサンプルとして作製した。そして、これらサンプルにおけるプレドープ速度やプレドープの均一性などについて評価した。
=== Evaluation Method for Pre-Dope ===
In the electricity storage device having the above structure, a wide variety of electricity storage devices having different pore volume in each of the negative electrode, the positive electrode, and the separator, and the total pore volume obtained by summing these volumes, and the mode diameter in the negative electrode material are used as samples. Produced. And the pre-dope speed | rate in these samples, the uniformity of pre-dope, etc. were evaluated.

プレドープ速度は、作製した各サンプルを45℃の高温槽内に100時間静置保存したのち、静置保存開始1時間後のセル電圧Va1と、100時間経過後のセル電圧Va2を測定し、その電圧値の差(セル電圧変化)ΔVa(=Va1−Va2)によって評価した。すなわち、ΔVaが大きいほどプレドープ速度が速いことになる。   The pre-doping speed is determined by measuring the cell voltage Va1 after 1 hour from the start of the storage and the cell voltage Va2 after 100 hours after each sample was stored in a high temperature bath at 45 ° C. for 100 hours. The voltage value difference (cell voltage change) ΔVa (= Va1−Va2) was evaluated. That is, the larger the ΔVa, the faster the pre-doping speed.

また、十分かつ均一にリチウムイオンが負極にプレドープされているかどうかについては、蓄電素子のプレドープを完了させた後、セル抵抗値Rを計測することで評価できる。セル抵抗値Rは、サンプルを10日間放置した後、25℃で3.8Vまで1Aで充電して1分間休止し、次いで100Aの電流値で放電を行い、放電開始直前の電圧値Vb1と放電開始100msec経過時点での電圧値Vb2として、それら電圧値の差ΔVb(=Vb1−Vb2)と電流値I(=100A)から、R=ΔVb/Iの式によって求めた。   Further, whether or not lithium ions are pre-doped into the negative electrode sufficiently and uniformly can be evaluated by measuring the cell resistance value R after completing the pre-doping of the electric storage element. The cell resistance value R was determined by allowing the sample to stand for 10 days, charging it at 1 A to 25 ° C. to 3.8 V, resting for 1 minute, then discharging at a current value of 100 A, and discharging the voltage value Vb1 immediately before the start of discharge. The voltage value Vb2 at the start of 100 msec was obtained from the voltage value difference ΔVb (= Vb1−Vb2) and the current value I (= 100 A) by the equation R = ΔVb / I.

細孔容積については、水銀圧入法を測定原理とした細孔分布測定装置(Quantachrome社製ポロシメータPoreMaster60)を用いて測定した圧力Pより細孔径Dを算出し、最終的に細孔容積を算出した。具体的には、20〜60,000PSI(0.138〜414MPa)の範囲で圧力Pを測定し、まず、細孔(直)径Dを、Washburnの式
D=4γcosθ/P
に基づいて算出した。ここで、γは水銀の表面張力(480dyn/cm)であり、θは、水銀と細孔壁面との接触角(140゜)である。そして、例えば、セパレータの細孔容積は、
セパレータの見かけの体積−(セパレータ重量/セパレータ素材の密度)
により算出する。なお、見かけの体積はセパレータの外径サイズにより求めることができる。
For the pore volume, the pore diameter D was calculated from the pressure P measured using a pore distribution measuring device (Porosimeter PoreMaster 60 manufactured by Quantachrome) based on the mercury intrusion method, and finally the pore volume was calculated. . Specifically, the pressure P is measured in the range of 20 to 60,000 PSI (0.138 to 414 MPa), and first, the pore (straight) diameter D is determined according to the Washburn equation D = 4γcos θ / P.
Calculated based on Here, γ is the surface tension of mercury (480 dyn / cm), and θ is the contact angle (140 °) between mercury and the pore wall surface. And, for example, the pore volume of the separator is
Apparent volume of separator-(Separator weight / Separator material density)
Calculated by The apparent volume can be obtained from the outer diameter size of the separator.

===細孔容積によるプレドープ速度の評価===
表1に、各サンプルについての負極材料、正極材料、セパレータの各細孔容積と、これらの合計細孔容積、およびプレドープ速度の指標となるセル電圧変化ΔVaを示した。

Figure 2009187753
=== Evaluation of pre-doping rate by pore volume ===
Table 1 shows the pore volume of each of the negative electrode material, the positive electrode material, and the separator for each sample, the total pore volume, and the cell voltage change ΔVa that serves as an index of the pre-doping rate.
Figure 2009187753

表1において、実施例1〜16のサンプルが本発明に係る蓄電素子に対応し、比較例1〜4のサンプルが従来の蓄電素子に対応している。ここで、まず、合計細孔容積に着目すると、実施例5の1.70μL/cm以上である実施例の各サンプルはセル電圧変化ΔVaが最低でも0.6V程度であった。一方、比較例の各サンプルでは、0.5V以下であり、プレドープ速度が低下していることを示している。したがって、負極、正極、セパレータのそれぞれの単位面積当たりの細孔容積の合計値は1.7μL/cmであることが望ましい。 In Table 1, the samples of Examples 1 to 16 correspond to the power storage elements according to the present invention, and the samples of Comparative Examples 1 to 4 correspond to the conventional power storage elements. Here, focusing on the total pore volume, each sample of the example of Example 5 that is 1.70 μL / cm 2 or more had a cell voltage change ΔVa of about 0.6 V at the minimum. On the other hand, in each sample of the comparative example, it is 0.5 V or less, indicating that the pre-doping rate is reduced. Therefore, the total value of the pore volume per unit area of each of the negative electrode, the positive electrode, and the separator is desirably 1.7 μL / cm 2 .

上述したように、水平ドープ方式では、リチウムイオンの移動媒体となる電解液中に溶解した金属リチウムが電極面を平行(水平)に拡散しながら負極活物質中に吸蔵されるため、そのリチウムイオンの移動経路中に存在している電解液量が多いほど、リチウムイオンの移動が円滑に行われると考えられる。すなわち、水平ドープ方式では、電解液は、各構成要素における細孔(負極電極中の細孔、正極電極中の細孔、セパレータ中の細孔)、および各構成要素の界面(正極とセパレータ、負極とセパレータ等)に含まれており、電解液を含んでいる各構成要素の細孔容積の合計容積が大きいほど、拡散経路を形成する電解液の量が多くなる。表1は、その合計容積の下限が1.7μm/cmであることを示している。 As described above, in the horizontal dope method, metallic lithium dissolved in the electrolytic solution serving as a lithium ion transfer medium is occluded in the negative electrode active material while diffusing the electrode surface in parallel (horizontal), so the lithium ion It is considered that the movement of lithium ions is performed more smoothly as the amount of the electrolyte present in the movement path is larger. That is, in the horizontal dope method, the electrolytic solution contains pores in each component (pores in the negative electrode, pores in the positive electrode, pores in the separator), and interfaces (positive electrode and separator, As the total volume of the pore volume of each component including the electrolyte solution is larger, the amount of the electrolyte solution that forms the diffusion path increases. Table 1 shows that the lower limit of the total volume is 1.7 μm / cm 2 .

ところで、表1の結果からも分かるように、細孔容積の合計値とセル電圧変化ΔVaの値とは比例していない。これは、プレドープ速度を速めるための必要条件として所定以上の細孔容積の合計値が存在する一方、負極、正極、セパレータの個々の構成要素における細孔容積にも最適条件があることを示唆している。ここで、実施例1〜16と比較例1〜4について、各構成要素の細孔容積を比較し、表1の結果を纏めてみた。図5に、その纏めとして、各構成要素の細孔容積に応じた各実施例1〜16(s1〜s16)の分類区分を示した。この図から、負極、正極、セパレータのそれぞれの細孔容積における必要条件が見いだせる。負極については0.3μm/cm以上、正極とセパレータについてはそれぞれ0.7μm/cm以上であると言える。そして、これらの条件の全てを満たす実施例1〜10については、セル電圧変化ΔVaが0.79V〜1.06Vであり、実施例11〜16の0.58V〜0.65Vよりも格段に大きく、プレドープ速度が極めて大きいことが分かる。 Incidentally, as can be seen from the results in Table 1, the total value of the pore volume and the value of the cell voltage change ΔVa are not proportional. This suggests that while there is a total pore volume value above a certain level as a necessary condition for increasing the pre-doping rate, there is an optimum condition for the pore volume in each component of the negative electrode, positive electrode, and separator. ing. Here, about Examples 1-16 and Comparative Examples 1-4, the pore volume of each component was compared and the result of Table 1 was summarized. FIG. 5 shows the classification of each of Examples 1 to 16 (s1 to s16) according to the pore volume of each component as a summary. From this figure, the necessary conditions for the respective pore volumes of the negative electrode, the positive electrode, and the separator can be found. It can be said that the negative electrode is 0.3 μm / cm 2 or more, and the positive electrode and the separator are 0.7 μm / cm 2 or more, respectively. And about Examples 1-10 which satisfy | fill all of these conditions, cell voltage change (DELTA) Va is 0.79V-1.06V, and is much larger than 0.58V-0.65V of Examples 11-16. It can be seen that the pre-doping rate is extremely high.

===負極のモード径によるプレドープ均一性の評価===
次に、リチウムイオンがプレドープされる負極について、細孔構造における孔の大きさの指標となるモード径とプレドープの均一性との関係について評価した。この評価に際しては、正極とセパレータの細孔容積が同じ値となるサンプルを使用した。ここでは、正極とセパレータのそれぞれの細孔容積を、3.44μL/cmと1,38μL/cmとし、表1における実施例7〜10と、比較例となる新たなサンプル(比較例5)を使用した。そして、各サンプルのセル抵抗値Rによってプレドープの均一性、すなわち、負極にリチウムイオンが遍く吸蔵されているかどうかを評価した。
=== Evaluation of pre-dope uniformity by negative electrode mode diameter ===
Next, the negative electrode pre-doped with lithium ions was evaluated for the relationship between the mode diameter serving as an index of the pore size in the pore structure and the uniformity of the pre-doping. In this evaluation, a sample having the same pore volume of the positive electrode and the separator was used. Here, the pore volume of each of the positive electrode and the separator is set to 3.44 μL / cm 2 and 1,38 μL / cm 2, and Examples 7 to 10 in Table 1 and a new sample as a comparative example (Comparative Example 5) are used. )It was used. Then, the uniformity of pre-doping, that is, whether or not lithium ions are uniformly occluded in the negative electrode was evaluated based on the cell resistance value R of each sample.

表2に負極のモード径とセル抵抗値との関係を纏めた。

Figure 2009187753
Table 2 summarizes the relationship between the mode diameter of the negative electrode and the cell resistance value.
Figure 2009187753

この表2において、セル抵抗値Rは、上述のR=ΔVb/Iの式によって求めた。なお、表中の抵抗値Rは、実施例10における抵抗値Rを基準(100%)としたときの相対値によって示している。表2より、比較例5のセル抵抗値が基準より70%近く増加していることが分かる。そして、負極のモード径は、0.1〜6.0μmであることが望ましい、ということが分かった。   In Table 2, the cell resistance value R was determined by the above-described equation R = ΔVb / I. The resistance value R in the table is shown as a relative value when the resistance value R in Example 10 is set as a reference (100%). From Table 2, it can be seen that the cell resistance value of Comparative Example 5 is increased by nearly 70% from the reference. And it turned out that it is desirable for the mode diameter of a negative electrode to be 0.1-6.0 micrometers.

===電解液容積について===
正極、負極、セパレータのそれぞれの容積と同一量の電解液が電極積層体100の各正負極対向部50に供給されていないと電解液が欠如した部位が存在することになる。また電解液は、各構成要素間の界面にも分布可能であることから、良好なプレドープを実現するためには、細孔容積に対して過剰量の電解液を電極積層体100に対して与える必要がある。そこで、蓄電素子200の外装体内70に封入した電解液の容積、すなわち蓄電素子200に充当される電解液の容積(Aとする)と、電極積層体100の正負極対向部50における細孔容積の合計値、すなわち正極電極部10p、負極正極部10n、セパレータ30における細孔容積の合計値(Bとする)との関係において、良好なリチウムプレドープが可能である条件を検討した。ここで、実施例1のサンプルを用い、比率A/Bを変えたときのセル電圧変化ΔVaによって当該条件について検討した。
=== About electrolyte volume ===
If the electrolyte solution having the same volume as each of the positive electrode, the negative electrode, and the separator is not supplied to each positive and negative electrode facing portion 50 of the electrode laminate 100, there is a portion where the electrolyte solution is lacking. In addition, since the electrolytic solution can be distributed at the interface between the constituent elements, an excess amount of the electrolytic solution with respect to the pore volume is given to the electrode laminate 100 in order to realize a good pre-dope. There is a need. Therefore, the volume of the electrolytic solution sealed in the exterior body 70 of the power storage element 200, that is, the volume of the electrolytic solution applied to the power storage element 200 (referred to as A), and the pore volume in the positive and negative electrode facing portion 50 of the electrode stack 100. Of the positive electrode part 10p, the negative electrode positive electrode part 10n, and the total value of the pore volume in the separator 30 (referred to as B), the conditions under which good lithium pre-doping is possible were studied. Here, using the sample of Example 1, the conditions were examined by the cell voltage change ΔVa when the ratio A / B was changed.

表3にその検討結果を示した。

Figure 2009187753
Table 3 shows the results of the study.
Figure 2009187753

当該検討結果より、比率A/Bが1.4未満の場合、電解液が不足する領域が生じ、プレドープに際してリチウムイオンが電極表面に沿って均一に拡散しにくくなることが判明した。以上により、本発明では、正負極対向部50に含まれる電解液の容積について、前記比率A/B≧1.4を規定した。   From the examination results, it was found that when the ratio A / B is less than 1.4, a region where the electrolytic solution is insufficient is generated, and lithium ions are difficult to diffuse uniformly along the electrode surface during pre-doping. As described above, in the present invention, the ratio A / B ≧ 1.4 is defined for the volume of the electrolyte contained in the positive and negative electrode facing portion 50.

本発明の実施例における蓄電素子の電極構造を示す図である。It is a figure which shows the electrode structure of the electrical storage element in the Example of this invention. 上記実施例における蓄電素子を構成する電極積層体の概略構造図である。It is a schematic structural drawing of the electrode laminated body which comprises the electrical storage element in the said Example. 上記実施例における蓄電素子の概略図である。It is the schematic of the electrical storage element in the said Example. 上記蓄電素子において、金属リチウムのその他の貼着位置や配置を示す図である。It is a figure which shows the other sticking position and arrangement | positioning of metallic lithium in the said electrical storage element. 上記実施例における細孔構造の条件を示す図である。It is a figure which shows the conditions of the pore structure in the said Example.

符号の説明Explanation of symbols

1p 正極電極体
1n 負極電極体
10p 正極電極部
10n 負極電極部
11p 正極集電体
11n 負極集電体
12p、12n 端子接続部
20 金属リチウム
30 セパレータ
50 正負極対向部
100 電極積層体
200 蓄電素子
DESCRIPTION OF SYMBOLS 1p Positive electrode body 1n Negative electrode body 10p Positive electrode part 10n Negative electrode part 11p Positive electrode collector 11n Negative electrode collector 12p, 12n Terminal connection part 20 Metal lithium 30 Separator 50 Positive / negative electrode opposing part 100 Electrode laminated body 200 Electric storage element

Claims (6)

リチウムイオンもしくはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出が可能な材料からなる負極とをセパレータを介して対向配置してなる発電要素を1単位として、少なくとも1単位以上の発電要素を積層してなる電極積層体をリチウム塩を含む電解液とともに密封封止してなる蓄電素子において、
負極側の集電体表面には金属リチウムの全部、あるいは一部が当該集電体と電気的に接触するように配置されて、前記負極には当該金属リチウムを起源としたリチウムイオンがあらかじめ吸蔵されてなり、
前記発電要素の正極と負極とセパレータのそれぞれの単位面積当たりの細孔容積の合計値が1.7μL以上である
ことを特徴とする蓄電素子。
At least 1 unit or more of a power generation element in which a positive electrode capable of reversibly carrying lithium ions or anions and a negative electrode made of a material capable of occluding and releasing lithium ions are arranged to face each other through a separator. In an electricity storage element formed by sealing and sealing an electrode laminate formed by laminating power generation elements together with an electrolyte containing a lithium salt,
The surface of the current collector on the negative electrode side is arranged so that all or part of the metal lithium is in electrical contact with the current collector, and lithium ions originating from the metal lithium are previously stored in the negative electrode. Being
The total value of the pore volume per unit area of each of the positive electrode, the negative electrode, and the separator of the power generation element is 1.7 μL or more.
前記負極の単位面積当たりの細孔容積が0.3μL/cm以上であることを特徴とする請求項1に記載の蓄電素子。 2. The electricity storage device according to claim 1, wherein a pore volume per unit area of the negative electrode is 0.3 μL / cm 2 or more. 前記正極の単位面積当たりの細孔容積が0.7μL/cm以上であることを特徴とする請求項1または2に記載の蓄電素子。 The electrical storage element according to claim 1 or 2, wherein a pore volume per unit area of the positive electrode is 0.7 µL / cm 2 or more. 前記セパレータの単位面積当たりの細孔容積が0.7μL/cm以上であることを特徴とする請求項1〜3のいずれかに記載の蓄電素子。 The electrical storage element according to claim 1, wherein a pore volume per unit area of the separator is 0.7 μL / cm 2 or more. 前記負極は、細孔分布測定によるモード径が0.1μm以上6.0μm以下であることを特徴とする請求項1〜4のいずれかに記載の蓄電素子。   5. The electric storage element according to claim 1, wherein the negative electrode has a mode diameter of 0.1 μm or more and 6.0 μm or less by pore distribution measurement. 当該蓄電素子に充当される電解液の容積Aと、当該蓄電素子に含まれる前記電極積層体の正極と負極とセパレータのそれぞれの細孔容積の合計値Bとの比率A/Bが1.4以上であることを特徴とする請求項1〜5のいずれかに記載の蓄電素子。   The ratio A / B between the volume A of the electrolyte applied to the electric storage element and the total value B of the respective pore volumes of the positive electrode, the negative electrode, and the separator of the electrode laminate included in the electric storage element is 1.4. It is the above, The electrical storage element in any one of Claims 1-5 characterized by the above-mentioned.
JP2008025525A 2008-02-05 2008-02-05 Power storage element Pending JP2009187753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025525A JP2009187753A (en) 2008-02-05 2008-02-05 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025525A JP2009187753A (en) 2008-02-05 2008-02-05 Power storage element

Publications (1)

Publication Number Publication Date
JP2009187753A true JP2009187753A (en) 2009-08-20

Family

ID=41070793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025525A Pending JP2009187753A (en) 2008-02-05 2008-02-05 Power storage element

Country Status (1)

Country Link
JP (1) JP2009187753A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108811B1 (en) * 2010-05-17 2012-02-09 삼성전기주식회사 Method of manufacturing lithium ion capacitor and lithium ion capacitor obtained by the method
JP5035650B2 (en) * 2009-09-28 2012-09-26 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JP2012186458A (en) * 2011-02-15 2012-09-27 Seiko Instruments Inc Electrochemical element and manufacturing method of the same
JP2015519710A (en) * 2013-05-06 2015-07-09 エルジー・ケム・リミテッド Negative electrode for lithium secondary battery and lithium ion secondary battery including the same
JP2015191943A (en) * 2014-03-27 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Lithium ion capacitor, power storage module, and method of manufacturing lithium ion capacitor
JP2015210848A (en) * 2014-04-23 2015-11-24 オートモーティブエナジーサプライ株式会社 Nonaqueous electrolyte secondary battery
JP2016510485A (en) * 2013-05-06 2016-04-07 エルジー・ケム・リミテッド Secondary battery, secondary battery module including the same, and secondary battery pack
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123767A (en) * 2001-10-18 2003-04-25 Sony Corp Collector, electrode, and battery
JP2005525674A (en) * 2001-07-27 2005-08-25 マサチューセッツ インスティテュート オブ テクノロジー Battery structure, self-organizing structure, and related method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525674A (en) * 2001-07-27 2005-08-25 マサチューセッツ インスティテュート オブ テクノロジー Battery structure, self-organizing structure, and related method
JP2003123767A (en) * 2001-10-18 2003-04-25 Sony Corp Collector, electrode, and battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035650B2 (en) * 2009-09-28 2012-09-26 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JPWO2011036797A1 (en) * 2009-09-28 2013-02-14 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
KR101108811B1 (en) * 2010-05-17 2012-02-09 삼성전기주식회사 Method of manufacturing lithium ion capacitor and lithium ion capacitor obtained by the method
JP2012186458A (en) * 2011-02-15 2012-09-27 Seiko Instruments Inc Electrochemical element and manufacturing method of the same
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
JP2015519710A (en) * 2013-05-06 2015-07-09 エルジー・ケム・リミテッド Negative electrode for lithium secondary battery and lithium ion secondary battery including the same
JP2016510485A (en) * 2013-05-06 2016-04-07 エルジー・ケム・リミテッド Secondary battery, secondary battery module including the same, and secondary battery pack
US10050250B2 (en) 2013-05-06 2018-08-14 Lg Chem, Ltd. Anode for lithium secondary battery and lithium ion secondary battery including the same
JP2015191943A (en) * 2014-03-27 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Lithium ion capacitor, power storage module, and method of manufacturing lithium ion capacitor
JP2015210848A (en) * 2014-04-23 2015-11-24 オートモーティブエナジーサプライ株式会社 Nonaqueous electrolyte secondary battery
US9680153B2 (en) 2014-04-23 2017-06-13 Automotive Energy Supply Corporation Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2009187753A (en) Power storage element
JP5167703B2 (en) Battery electrode
US9543077B2 (en) Separator with heat resistant insulation layer
US8652668B2 (en) Secondary battery; solar power generation system, wind power generation system, and vehicle provided therewith; and method for fabrication of a secondary battery
US9660240B2 (en) Secondary battery including separator containing electroconductive porous layer sandwiched between electroconductive material-free porous layers
JP2009016340A (en) Secondary battery and its manufacturing method
JP3705801B1 (en) Lithium ion secondary battery
JP5309909B2 (en) Secondary battery electrode
JPH11238528A (en) Lithium secondary battery
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JP2013016515A (en) Electrode for battery
US20190221880A1 (en) Nonaqueous Electrolyte Secondary Battery
JP5308646B2 (en) Lithium ion capacitor
JPWO2014050114A1 (en) Nonaqueous electrolyte secondary battery
JP4352972B2 (en) Electrode and battery using the same
JPWO2013047379A1 (en) Lithium secondary battery and manufacturing method thereof
JP2012019187A (en) Method for manufacturing lithium ion capacitor and lithium ion capacitor manufactured by the same
JP2009187752A (en) Power storage element
CN204991877U (en) Multipolar ear lithium ion power batteries
JP2010062299A (en) Electricity storage device
JP2009187751A (en) Power storage element
JP2017201589A (en) Electricity storage element
JP2017195059A (en) Method of recovering output of electricity storage element
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
JP2016186886A (en) Electricity storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226