[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009183889A - Sludge dehydration method - Google Patents

Sludge dehydration method Download PDF

Info

Publication number
JP2009183889A
JP2009183889A JP2008027670A JP2008027670A JP2009183889A JP 2009183889 A JP2009183889 A JP 2009183889A JP 2008027670 A JP2008027670 A JP 2008027670A JP 2008027670 A JP2008027670 A JP 2008027670A JP 2009183889 A JP2009183889 A JP 2009183889A
Authority
JP
Japan
Prior art keywords
flocculant
sludge
meth
dewatering
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008027670A
Other languages
Japanese (ja)
Other versions
JP5042057B2 (en
Inventor
Takuji Sato
託爾 佐藤
Shigeru Tanabe
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2008027670A priority Critical patent/JP5042057B2/en
Publication of JP2009183889A publication Critical patent/JP2009183889A/en
Application granted granted Critical
Publication of JP5042057B2 publication Critical patent/JP5042057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a digested sewage sludge treatment method which is suitable for dehydration treatment by a centrifugal dehydrator or a screw press dehydrator, enables a further reduction of water content in a dehydrated cake, and enables a reduction of the generation of magnesium ammonium phosphate (MAP) scales. <P>SOLUTION: An inorganic coagulant is added to digested sewage sludge, and then a polymer coagulant composition (A) containing a polyamidine-based coagulant and an aminoalkyl (meth)acrylate-based cationic coagulant and having a cation equivalent of less than 5 meq/g is added thereto to subject the material to be treated to hydration treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、下水消化汚泥の脱水処理方法に関する。   The present invention relates to a method for dewatering sewage digested sludge.

下水、し尿処理場及び食品工業等有機性廃水より生じる有機質汚泥は、高分子凝集剤を用いてスクリューデカンター(遠心脱水機)、スクリュープレス型脱水機、ベルトプレス等で脱水処理した後、埋め立て或いは焼却処分されている。脱水された汚泥(以下脱水ケーキという)の焼却に使用される燃料の大部分は脱水ケーキ中の水分の蒸発に使用される。一般的に脱水ケーキ中の水分が1%低下すると焼却に使用される燃料を約10%程度節約できるとされている。
ところが、近年は水処理の高度化、汚泥有機分の上昇等の理由により脱水ケーキの含水率が高くなる傾向にある。このため、焼却処分における燃料費用が増大しており、燃料費削減のほか、COガスの削減、温暖化防止の観点からも脱水ケーキにおける含水率の低減が切望されている。
Organic sludge generated from organic wastewater such as sewage, human waste treatment plant, and food industry is dehydrated with a screw decanter (centrifugal dehydrator), screw press type dehydrator, belt press, etc. using a polymer flocculant, and then landfilled or It is incinerated. Most of the fuel used for incineration of dewatered sludge (hereinafter referred to as dehydrated cake) is used for evaporation of moisture in the dehydrated cake. Generally, when the moisture in the dehydrated cake is reduced by 1%, the fuel used for incineration can be saved by about 10%.
However, in recent years, the water content of the dehydrated cake tends to be high due to reasons such as advanced water treatment and an increase in sludge organic content. For this reason, the fuel cost in incineration disposal is increasing, and in addition to the fuel cost reduction, reduction of the moisture content in the dehydrated cake is also desired from the viewpoint of CO 2 gas reduction and prevention of global warming.

ところで、一般的に、混合生汚泥(初沈汚泥と余剰汚泥の混合汚泥)或いは初沈汚泥を、微生物により嫌気性消化処理した汚泥を下水消化汚泥というが、かかる下水消化汚泥は次のような特徴があり、他の汚泥に比較して含水率を低くすることが難しい。
1.浮遊固定物(SS)の粒子径が小さく、低比重である。
2.凝集フロックの核になる砂分、繊維分が少ない。
3.汚泥コロイド値に示される負荷電を有するコロイド物質を多く含有する。
4.燐酸塩、炭酸塩等の無機塩類を多量に含有する。
By the way, generally, mixed raw sludge (mixed sludge of primary sludge and excess sludge) or primary sludge that has been anaerobically digested by microorganisms is called sewage digested sludge. Such sewage digested sludge is as follows: It has characteristics and it is difficult to reduce the water content compared to other sludges.
1. The suspended fixed matter (SS) has a small particle size and low specific gravity.
2. There is little sand and fiber as the core of the aggregated floc.
3. It contains a large amount of colloidal material having negative charge shown in the sludge colloid value.
4). Contains a large amount of inorganic salts such as phosphates and carbonates.

また、特に遠心脱水機またはスクリュープレス型脱水機による脱水処理においては、凝集フロックが大きくて強度が高いことが好ましいが、下水消化汚泥の処理において、このような凝集フロックを形成させることは難しい。
このため、下水消化汚泥を脱水処理する場合、遠心脱水機による方法では含水率が高く、得られた脱水ケーキの形状が高粘着性の固まり状となり、搬送、焼却処理が大変困難となる。また、スクリュープレス型脱水機による方法では、圧搾ゾーンで形成フロックが壊れ、パンチングプレートよりSSがもれてしまい、その結果、分離性が悪くなり、含水率が高くなる場合が多い。
In particular, in a dehydration process using a centrifugal dehydrator or a screw press type dehydrator, it is preferable that the aggregated floc is large and the strength is high, but it is difficult to form such an aggregated floc in the treatment of sewage digested sludge.
For this reason, when dewatering the sewage digested sludge, the water content is high in the method using a centrifugal dehydrator, and the shape of the obtained dewatered cake becomes a highly sticky lump, making it difficult to carry and incinerate. Also, in the method using a screw press type dehydrator, the formed flock is broken in the pressing zone and SS is leaked from the punching plate, resulting in poor separation and high moisture content in many cases.

汚泥の脱水処理に関して、脱水ケーキの含水率を低下させる方法として、(1)有機質汚泥に無機系凝集剤を添加後、両性系高分子凝集剤を用いて脱水処理する方法(特許文献1)、(2)下水消化汚泥に無機系凝集剤添加後、アクリレート系カチオン高分子凝集剤を用いて脱水処理する方法(特許文献2)、(3)汚泥にポリ硫酸鉄を添加後、ポリアミジンを含有し、カチオン当量値が5以上であるカチオン性高分子凝集剤を添加混合し、ペルトプレス型脱水機で脱水する方法(特許文献3)等が開示されている。
特開昭63−158200号公報 特開平7−214100号公報 特開平8−173999号公報
Regarding the sludge dewatering treatment, as a method of reducing the moisture content of the dewatered cake, (1) a method of adding an inorganic flocculant to organic sludge and then performing a dewatering treatment using an amphoteric polymer flocculant (Patent Document 1), (2) After adding an inorganic flocculant to sewage digested sludge, a method of dehydrating using an acrylate cationic polymer flocculant (Patent Document 2), (3) After adding polyiron sulfate to the sludge, containing polyamidine In addition, a method of adding and mixing a cationic polymer flocculant having a cation equivalent value of 5 or more and dehydrating with a Pelto press type dehydrator (Patent Document 3) is disclosed.
JP 63-158200 A JP-A-7-214100 JP-A-8-173999

上記(1)の方法は一般的な有機質汚泥に対しては有効であり、含水率を大幅に低下させることができる。しかし下水消化汚泥に対しては、汚泥のアルカリ度が大変高いため多量の無機系凝集剤の添加が必要となる。このため、カチオン系凝集剤を単独で用いる場合に比較して薬品コストが2倍以上かかる結果となり実用的でない。
(2)の方法は(1)の方法に比べ、比較的少ない無機系凝集剤添加量で良好な脱水処理が可能になり有効な手段で実用化されているが、より一層の含水率の低下が求められている。
(3)の方法は必ずしも種々の脱水機に最適とは言い難い。
また、下水消化汚泥の脱水処理においては、脱水分離液配管等に燐酸マグネシウムアンモニウム(MAP)スケールが発生し配管を閉塞させるトラブルが発生しやすいため、かかるMAPスケールの生成を低減することが要求される。
The method (1) is effective for general organic sludge, and can significantly reduce the water content. However, for sewage digested sludge, the alkalinity of the sludge is so high that it is necessary to add a large amount of an inorganic flocculant. For this reason, compared with the case where a cationic type flocculant is used independently, a chemical | medical cost will result in 2 times or more, and it is not practical.
Compared with the method (1), the method (2) enables a good dehydration treatment with a relatively small amount of inorganic flocculant added and is put to practical use as an effective means. However, the water content is further reduced. Is required.
The method (3) is not necessarily optimal for various dehydrators.
Further, in the dewatering treatment of sewage digested sludge, magnesium ammonium phosphate (MAP) scale is generated in the dewatered separation liquid piping, etc., and troubles that block the piping are likely to occur. Therefore, it is required to reduce the generation of such MAP scale. The

本発明は前記事情に鑑みてなされたもので、下水消化汚泥を脱水処理する方法において、遠心脱水機またはスクリュープレス型脱水機による脱水処理にも好適であり、脱水ケーキにおける含水率をより低減できるとともに、MAPスケールの生成を低減できるようにすることを目的とする。   The present invention has been made in view of the above circumstances, and in the method for dewatering sewage digested sludge, it is also suitable for dewatering by a centrifugal dewatering machine or a screw press type dewatering machine, and the water content in the dewatered cake can be further reduced. At the same time, it is an object to reduce the generation of the MAP scale.

本発明者らは下水消化汚泥の性状及び脱水性能について詳細に検討した結果、下水消化汚泥中には燐酸アルカリ塩類等の無機物質や、多糖類、タンパク質等の有機物が多く含まれていてこれらの物質が汚泥の脱水性に大きな影響を与えていることをつきとめた。
そして、下水消化汚泥に無機系凝集剤を加えることにより、無機系凝集剤中に含まれるAl、Fe等の金属イオンが、汚泥中の燐酸イオン、多糖類、タンパク質等と反応して、これらを不溶化でき、その結果、MAPスケールの生成を防止でき、脱水性を向上できることを見出した。
また、単に無機系凝集剤で凝結させた下水消化汚泥は非常に細かいため、そのままでは脱水処理することが困難であるが、高分子凝集剤を用いればより大きな凝集フロックを形成することが可能である。本発明者等はさらに検討を重ねた結果、高分子凝集剤としてポリアミジン系凝集剤とアミノアルキル(メタ)アクリレート系カチオン凝集剤を併用することにより、より粗大な凝集フロックが形成され、脱水ケーキの含水率がより低減されること、このとき形成される凝集フロックは粗大かつ強固であり、遠心脱水機またはスクリュープレス型脱水機を用いて下水消化汚泥を脱水処理できることを見出して、本発明に至った。
As a result of examining the properties and dewatering performance of sewage digested sludge in detail, the present inventors have found that the sewage digested sludge contains a large amount of inorganic substances such as alkali phosphates and organic substances such as polysaccharides and proteins. It was found that the substance has a great influence on the dewaterability of sludge.
Then, by adding an inorganic flocculant to the sewage digested sludge, metal ions such as Al and Fe contained in the inorganic flocculant react with phosphate ions, polysaccharides, proteins, etc. in the sludge, It has been found that it can be insolubilized, and as a result, generation of MAP scale can be prevented and dehydration can be improved.
In addition, sewage digested sludge simply condensed with an inorganic flocculant is very fine and difficult to dehydrate as it is, but if a polymer flocculant is used, larger flocs can be formed. is there. As a result of further studies, the present inventors have used a polyamidine-based flocculant and an aminoalkyl (meth) acrylate-based cationic flocculant as a polymer flocculant to form a coarser flocculant floc. The inventors have found that the water content is further reduced, the aggregated floc formed at this time is coarse and strong, and that sewage digested sludge can be dehydrated using a centrifugal dehydrator or a screw press type dehydrator. It was.

すなわち本発明の汚泥の脱水処理方法は、下水消化汚泥に無機系凝集剤を加えた後、ポリアミジン系凝集剤とアミノアルキル(メタ)アクリレート系カチオン凝集剤を含有し、かつカチオン当量値が5meq/g未満である凝集剤組成物(A)を添加した被処理物を脱水処理することを特徴とする。
前記脱水処理を遠心脱水機またはスクリュープレス型脱水機を用いて行うことが好ましい。
That is, the sludge dewatering method of the present invention comprises adding a polyamidine flocculant and an aminoalkyl (meth) acrylate cationic flocculant after adding an inorganic flocculant to sewage digested sludge, and a cation equivalent value of 5 meq / The to-be-processed object which added the flocculant composition (A) which is less than g is dehydrated, It is characterized by the above-mentioned.
The dehydration treatment is preferably performed using a centrifugal dehydrator or a screw press dehydrator.

本発明の汚泥の脱水処理方法によれば、下水消化汚泥を高効率で脱水処理することができ、脱水ケーキにおける含水率をより低減することができる。また、遠心脱水機またはスクリュープレス型脱水機による脱水処理も適用できる。   According to the sludge dewatering method of the present invention, the sewage digested sludge can be dewatered with high efficiency, and the water content in the dewatered cake can be further reduced. Further, a dehydration process using a centrifugal dehydrator or a screw press dehydrator can be applied.

<下水消化汚泥>
本発明における下水消化汚泥とは、混合生汚泥(初沈汚泥と余剰汚泥の混合汚泥)あるいは初沈汚泥を、嫌気性消化処理した汚泥を意味する。
<Sewage digestion sludge>
The sewage digestion sludge in the present invention means mixed sludge (mixed sludge of primary sludge and excess sludge) or sludge obtained by subjecting primary sediment sludge to an anaerobic digestion treatment.

<無機系凝集剤>
本発明で使用する無機系凝集剤としては、硫酸バンド(硫酸アルミニウム)、塩化第二鉄、硫酸第一鉄、ポリ硫酸鉄等、公知の無機系凝集剤を用いることができる。これらは市販品から入手できる。無機系凝集剤は1種を単独で用いてもよく、2種以上を併用してもよい。
<Inorganic flocculant>
As the inorganic flocculant used in the present invention, known inorganic flocculants such as sulfate band (aluminum sulfate), ferric chloride, ferrous sulfate, polyiron sulfate and the like can be used. These can be obtained from commercial products. An inorganic flocculant may be used individually by 1 type, and may use 2 or more types together.

<凝集剤組成物(A)>
本発明における凝集剤組成物(A)は、ポリアミジン系凝集剤とアミノアルキル(メタ)アクリレート系カチオン凝集剤を含有する。
[ポリアミジン系凝集剤]
本発明で用いられるポリアミジン系凝集剤は、下記化学式(I)で表される繰り返し単位(I)を有する重合体(P)からなる。該重合体(P)は該繰り返し単位(I)以外の他の繰り返し単位を有していてもよい。該重合体(P)における繰り返し単位(I)の含有割合は50モル%以上であり、80モル%以上が好ましく、100モル%でもよい。
<Aggregating agent composition (A)>
The flocculant composition (A) in the present invention contains a polyamidine flocculant and an aminoalkyl (meth) acrylate cationic flocculant.
[Polyamidine flocculant]
The polyamidine flocculant used in the present invention comprises a polymer (P) having a repeating unit (I) represented by the following chemical formula (I). The polymer (P) may have a repeating unit other than the repeating unit (I). The content ratio of the repeating unit (I) in the polymer (P) is 50 mol% or more, preferably 80 mol% or more, and may be 100 mol%.

Figure 2009183889
Figure 2009183889

繰り返し単位(I)を有する重合体(P)は公知の製法、例えば特許第2624089号公報に記載された方法で製造できる。
重合体(P)は、N−ビニルホルムアミド及びアクリロニトリルを共重合し、得られた共重合体を塩酸酸性下、加水分解した後に熱処理を行うことにより、分子内側鎖の一級アミノ基とシアノ基が環化されてアミジン環が形成された重合体が好ましい。
The polymer (P) having the repeating unit (I) can be produced by a known production method, for example, a method described in Japanese Patent No. 2624089.
The polymer (P) is obtained by copolymerizing N-vinylformamide and acrylonitrile, hydrolyzing the resulting copolymer under hydrochloric acid acidity, and then performing a heat treatment, so that the primary amino group and the cyano group on the inner chain of the molecule are converted. Polymers that are cyclized to form amidine rings are preferred.

重合体(P)の分子量は10万〜500万が好ましく、100万〜500万がより好ましい。10万未満では、凝集力が低下し、500万を超える分子量の重合体を商業ベースで生産することは現在のところ難しい。
重合体(P)のカチオン当量値Cv(単位:meq/g)は、4.0〜8.0が好ましく、5.0〜7.0がより好ましい。上記範囲の下限値より小さいとフロックは大きいものの含水率が劣り、上限値より大きいとフロックが小さく、弱くなり脱水性が悪化する。
重合体(P)の分子量を示す極限粘度[η]は、4dl/g以上が好ましく、5dl/g以上がより好ましい。[η]が高いほど大きく強いフロックを形成しやすく脱水処理がより良好となる。[η]が4dl/g未満ではフロックが小さく弱くなりやすく遠心脱水及びスクリュープレス脱水における脱水性が悪化するので好ましくない。
重合体(P)の極限粘度[η]の上限は特に制限されないが、生産性の点からは12dl/g以下が好ましく、10dl/g以下がより好ましい。
なお、重合体のカチオン当量値Cvおよび極限粘度[η]の測定方法は後述する。ポリアミジン系凝集剤は1種を単独で用いてもよく、複数類を併用してもよい。
The molecular weight of the polymer (P) is preferably 100,000 to 5,000,000, more preferably 1,000,000 to 5,000,000. Below 100,000, the cohesive strength decreases and it is currently difficult to produce a polymer with a molecular weight exceeding 5 million on a commercial basis.
The cation equivalent value Cv (unit: meq / g) of the polymer (P) is preferably 4.0 to 8.0, and more preferably 5.0 to 7.0. If it is smaller than the lower limit of the above range, although the floc is large, the moisture content is inferior, and if it is larger than the upper limit, the floc is small, weakens and dewaters.
The intrinsic viscosity [η] indicating the molecular weight of the polymer (P) is preferably 4 dl / g or more, and more preferably 5 dl / g or more. The higher [η], the easier it is to form larger and stronger flocs, and the better the dehydration process. If [η] is less than 4 dl / g, the flocs are small and tend to be weak, and the dewaterability in centrifugal dewatering and screw press dewatering is deteriorated.
The upper limit of the intrinsic viscosity [η] of the polymer (P) is not particularly limited, but is preferably 12 dl / g or less and more preferably 10 dl / g or less from the viewpoint of productivity.
The method for measuring the cation equivalent value Cv and the intrinsic viscosity [η] of the polymer will be described later. One polyamidine flocculant may be used alone, or a plurality of polyamidine flocculants may be used in combination.

[アミノアルキル(メタ)アクリレート系カチオン凝集剤]
本発明において用いられるアミノアルキル(メタ)アクリレート系カチオン凝集剤はアミノアルキル(メタ)アクリレート系カチオン単量体の単独重合体、またはアミノアルキル(メタ)アクリレート系カチオン単量体とノニオン性単量体との共重合体である(以下、これらを総称して重合体(K)ということがある)。
アミノアルキル(メタ)アクリレート系カチオン単量体の例としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジエチルアミノ−2−ヒドロキシプロピル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレートの塩酸塩、硫酸塩等の3級塩;
該ジアルキルアミノアルキル(メタ)アクリレートの塩化メチル付加物等のハロゲン化アルキル付加物及び塩化ベンジル等のハロゲン化アリール付加物等の4級塩;
N,N−ジメチル(メタ)アクリルアミド等のジアルキル(メタ)アクリルアミド等の塩酸塩及び硫酸塩等の3級塩;
ジアルキル(メタ)アクリルアミドの塩化メチル付加物等のハロゲン化アルキル付加物及び塩化ベンジル付加物等のハロゲン化アリール付加物等の4級塩が挙げられる。
これらのうちで、下記化学式(II)で表されるジメチルアミノエチル(メタ)アクリレート・メチルクロライド4級塩が好ましい。
[Aminoalkyl (meth) acrylate cationic flocculant]
The aminoalkyl (meth) acrylate cationic flocculant used in the present invention is a homopolymer of an aminoalkyl (meth) acrylate cationic monomer, or an aminoalkyl (meth) acrylate cationic monomer and a nonionic monomer. (Hereinafter, these may be collectively referred to as a polymer (K)).
Examples of aminoalkyl (meth) acrylate cationic monomers include dialkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and diethylamino-2-hydroxypropyl (meth) acrylate. Tertiary salts such as hydrochlorides and sulfates of
Quaternary salts such as halogenated alkyl adducts such as methyl chloride adducts of the dialkylaminoalkyl (meth) acrylate and aryl halide adducts such as benzyl chloride;
Tertiary salts such as hydrochlorides and sulfates such as dialkyl (meth) acrylamides such as N, N-dimethyl (meth) acrylamide;
And quaternary salts such as halogenated alkyl adducts such as methyl chloride adducts of dialkyl (meth) acrylamide and aryl halide adducts such as benzyl chloride adducts.
Of these, dimethylaminoethyl (meth) acrylate / methyl chloride quaternary salt represented by the following chemical formula (II) is preferable.

Figure 2009183889
(式中、R、R、RはそれぞれCHを表わし、XはClを表わす。)
Figure 2009183889
(In the formula, R 1 , R 2 and R 3 each represent CH 3 and X 1 represents Cl.)

ノニオン性単量体の例としては(メタ)アクリルアミド、スチレン、アクリロニトリル、酢酸ビニル、アクリル酸アルキル等が挙げられる。これらのうちでも、下記化学式(III)で表されるアクリルアミドが好ましい。
いずれの単量体も、単独又は2種以上を使用することができる。
Examples of nonionic monomers include (meth) acrylamide, styrene, acrylonitrile, vinyl acetate, alkyl acrylate, and the like. Among these, acrylamide represented by the following chemical formula (III) is preferable.
Any of these monomers can be used alone or in combination of two or more.

Figure 2009183889
Figure 2009183889

重合体(K)の重合方法は特に限定されず、沈殿重合、塊状重合や、分散重合、水溶液重合等が挙げられる。
また重合体(K)とともに、溶解性を向上、溶解液の保存安定性向上の目的で固体酸を用いても構わない。固体酸としてはスルファミン酸、酸性亜硫酸ソーダ等が挙げられる。
The polymerization method of the polymer (K) is not particularly limited, and examples thereof include precipitation polymerization, bulk polymerization, dispersion polymerization, and aqueous solution polymerization.
A solid acid may be used together with the polymer (K) for the purpose of improving the solubility and improving the storage stability of the solution. Examples of the solid acid include sulfamic acid and acidic sodium sulfite.

重合体(K)のカチオン当量値Cvは特に制限がなく、汚泥性状に応じて、ポリアミジン系凝集剤(重合体(P))との混合比を調整することにより、凝集剤組成物(A)のカチオン当量値を好ましい範囲に調整できる。
重合体(K)の極限粘度[η]は、5dl/g以上が適当であり、[η]が高いほど大きく強いフロックになり良好な脱水処理が可能となる。[η]が5dl/g未満ではフロックが小さく弱くなり遠心脱水及びスクリュープレス脱水における脱水性が悪化するので好ましくない。また重合体(K)の極限粘度[η]の上限は特に制限されないが、生産性の点からは25dl/g以下が好ましく、20dl/g以下がより好ましい。
アミノアルキル(メタ)アクリレート系カチオン凝集剤は1種を単独で用いてもよく、複数類を併用してもよい。
The cation equivalent value Cv of the polymer (K) is not particularly limited, and the flocculant composition (A) is adjusted by adjusting the mixing ratio with the polyamidine flocculant (polymer (P)) according to the sludge properties. Can be adjusted to a preferred range.
The intrinsic viscosity [η] of the polymer (K) is appropriately 5 dl / g or more, and the higher [η], the larger and stronger the floc becomes and the better dehydration treatment becomes possible. If [η] is less than 5 dl / g, the flocs are small and weak, and the dewaterability in centrifugal dewatering and screw press dewatering is deteriorated. The upper limit of the intrinsic viscosity [η] of the polymer (K) is not particularly limited, but is preferably 25 dl / g or less and more preferably 20 dl / g or less from the viewpoint of productivity.
The aminoalkyl (meth) acrylate cationic flocculant may be used alone or in combination of two or more.

[配合割合]
本発明における凝集剤組成物(A)は水に希釈した水溶液として脱水処理に用いられる。該水溶液の濃度は0.05〜1.5質量%が好ましく、0.2〜0.5質量%がより好ましい。
凝集剤組成物(A)における、ポリアミジン系凝集剤とアミノアルキル(メタ)アクリレート系カチオン凝集剤の配合比率は、これらを混合した後の凝集剤組成物(A)のカチオン当量値Cvが5meq/g未満となればよく、特に制限されない。好ましくはポリアミジン系凝集剤の配合量/アミノアルキル(メタ)アクリレート系カチオン凝集剤の配合量の質量比が80/20〜20/80が好ましく、70/30〜30/70がより好ましい。
凝集剤組成物(A)のカチオン当量値Cvが5meq/g以上であると、無機凝集剤を添加した後に凝集剤組成物(A)を添加して形成されるフロックが小さく弱くなりやすく、遠心脱水機およびスクリュープレス型脱水機における脱水性が悪化しやすい。
[Combination ratio]
The flocculant composition (A) in the present invention is used for dehydration as an aqueous solution diluted in water. The concentration of the aqueous solution is preferably 0.05 to 1.5% by mass, and more preferably 0.2 to 0.5% by mass.
The blending ratio of the polyamidine flocculant and the aminoalkyl (meth) acrylate cationic flocculant in the flocculant composition (A) is such that the cation equivalent value Cv of the flocculant composition (A) after mixing these is 5 meq / There is no particular limitation as long as it is less than g. The mass ratio of the blending amount of the polyamidine flocculant / the blending amount of the aminoalkyl (meth) acrylate cationic flocculant is preferably 80/20 to 20/80, and more preferably 70/30 to 30/70.
When the cation equivalent value Cv of the flocculant composition (A) is 5 meq / g or more, the floc formed by adding the flocculant composition (A) after adding the inorganic flocculant tends to be small and weak, and centrifugal Dewaterability in a dehydrator and a screw press type dehydrator tends to deteriorate.

[カチオン当量値Cvの測定方法]
本発明におけるカチオン当量値Cv(単位:meq/g)は、以下に示すコロイド滴定法によって求められる値である。
(1)コニカルビーカーに脱イオン水90mlをとり、下記(2)の方法で調製した試料500ppm溶液の10mlを加え、塩酸水溶液でpHを3.0とし、約1分間撹拌する。次に、トルイジンブルー指示薬を2、3滴加え、N/400−ポリビニル硫酸カリウム試薬(N/400−PVSK)で滴定する。滴定速度は2ml/分とし、検水が青から赤紫色に変色、10秒間以上保持する時点を終点とする。N/400−ポリビニル硫酸カリウム試薬の滴定量から、下記の式(1)によりカチオン当量値(Cv)を求める。
(2)上記試料500ppm溶液の調製は以下の方法で行う。すなわち試料0.2g(乾品換算しない)を精秤し、共栓付三角コルベンにより、脱イオン水100mlで溶解する。この25mlを100mlメスフラスコにて脱イオン水でメスアップする。
[Method for Measuring Cation Equivalent Value Cv]
The cation equivalent value Cv (unit: meq / g) in the present invention is a value determined by the colloid titration method shown below.
(1) Take 90 ml of deionized water in a conical beaker, add 10 ml of a 500 ppm sample solution prepared by the method of (2) below, bring the pH to 3.0 with an aqueous hydrochloric acid solution, and stir for about 1 minute. Next, a few drops of toluidine blue indicator are added and titrated with N / 400-polyvinyl potassium sulfate reagent (N / 400-PVSK). The titration rate is 2 ml / min, and the end point is the time when the sample water changes from blue to magenta for 10 seconds or longer. From the titration amount of N / 400-polyvinyl potassium sulfate reagent, the cation equivalent value (Cv) is obtained by the following formula (1).
(2) The sample 500 ppm solution is prepared by the following method. That is, 0.2 g (not converted to a dry product) of the sample is precisely weighed and dissolved with 100 ml of deionized water using a triangular corben with a stopper. The 25 ml is made up with deionized water in a 100 ml volumetric flask.

Figure 2009183889
Figure 2009183889

[極限粘度[η]の測定方法]
本発明における極限粘度[η]は、以下の方法で求められる値である。
(1)まず溶媒ブランクの粘度を測定する。
すなわち、30±0.05℃に調整した恒温槽中にウベローデ型粘度計をセットし、この粘度計の中に1N−硝酸ナトリウム溶液を入れ、10〜30分間放置後、この溶液を上昇させてから自然流下させたときの粘度計に表示されている上下標線間を通過するのに要する流下時間を3回以上測定して、その平均値をもって溶媒ブランクの粘度(t0)とする。
(2)次いで、以下の方法で還元粘度の算出を行う。
上記と同様の操作を試料濃度0.10〜0.02質量%の各1N−硝酸ナトリウム溶液を用いて行い、各々の溶液の、粘度計に表示されている上下標線間を通過するのに要する平均の流下時間を測定し、それらの平均値をもって各試料溶液の粘度(t)とする。次にそれぞれの試料についての比t/t0を求めて相対粘度ηとし、これらからそれぞれの比粘度ηsp=η−1を求め、これらを各々それぞれの試料濃度で除して各試料の還元粘度ηsp/Cを算出する。
(3)次いで、以下の方法で極限粘度を算出する。
試料溶液の濃度(g/d1)と還元粘度をプロットし、外挿法により極限粘度[η]を求める。
[Measurement method of intrinsic viscosity [η]]
The intrinsic viscosity [η] in the present invention is a value determined by the following method.
(1) First, the viscosity of the solvent blank is measured.
That is, an Ubbelohde viscometer is set in a thermostat adjusted to 30 ± 0.05 ° C., a 1N-sodium nitrate solution is placed in the viscometer, and after standing for 10 to 30 minutes, the solution is raised. The flow time required for passing between the upper and lower marked lines displayed on the viscometer when it is allowed to flow naturally is measured three times or more, and the average value is taken as the viscosity (t0) of the solvent blank.
(2) Next, the reduced viscosity is calculated by the following method.
The same operation as described above was performed using each 1N-sodium nitrate solution having a sample concentration of 0.10 to 0.02% by mass to pass between the upper and lower marked lines displayed on the viscometer of each solution. The average flow time required is measured, and the average value thereof is taken as the viscosity (t) of each sample solution. Next, the ratio t / t0 for each sample was determined to obtain the relative viscosity η r, and the specific viscosity η sp = η r −1 was determined from these, and these were divided by the respective sample concentrations to obtain the respective samples. The reduced viscosity η sp / C is calculated.
(3) Next, the intrinsic viscosity is calculated by the following method.
The concentration (g / d1) of the sample solution and the reduced viscosity are plotted, and the intrinsic viscosity [η] is obtained by extrapolation.

<脱水処理方法>
まず、下水消化汚泥に無機系凝集剤を加え、混合した後、凝集剤組成物(A)を添加する。無機系凝集剤を添加してから凝集剤組成物(A)を添加するまでの時間は特に限定されない。
こうして無機系凝集剤と凝集剤組成物(A)が添加された被処理物を公知の手法で脱水処理する。脱水処理はスクリューデカンター(遠心脱水機)、スクリュープレス型脱水機、ベルトプレス等の公知の脱水機を用いて行うことができる。
本発明は、従来下水消化汚泥の脱水処理が難しかった、遠心脱水機またはスクリュープレス型脱水機によっても良好に脱水処理を行うことできる。
凝集剤組成物(A)を添加してから脱水処理を行うまでの時間は特に限定されない。
<Dehydration method>
First, an inorganic flocculant is added to and mixed with sewage digested sludge, and then the flocculant composition (A) is added. The time from the addition of the inorganic flocculant to the addition of the flocculant composition (A) is not particularly limited.
The object to be treated to which the inorganic flocculant and the flocculant composition (A) are added is dehydrated by a known method. The dehydration treatment can be performed using a known dehydrator such as a screw decanter (centrifugal dehydrator), a screw press type dehydrator or a belt press.
In the present invention, it is possible to perform the dehydration process well even by a centrifugal dehydrator or a screw press type dehydrator, which has conventionally been difficult to dehydrate the sewage digested sludge.
The time from the addition of the flocculant composition (A) to the dehydration treatment is not particularly limited.

本発明によれば、下水消化汚泥に無機系凝集剤を添加することにより、汚泥中の燐酸イオン、多糖類、タンパク質等を不溶化することができる。その後、ポリアミジン系凝集剤とアミノアルキル(メタ)アクリレート系カチオン凝集剤を含む凝集剤組成物(A)を添加することにより、遠心脱水機またはスクリュープレス型脱水機を用いての脱水処理が良好に行える程度に、粗大かつ強固なフロックを形成することができる。
したがって、下水消化汚泥を高効率で脱水処理することができ、脱水ケーキにおける含水率をより低減することができる。これにより汚泥処理コストの削減を実現できる。また、遠心脱水機またはスクリュープレス型脱水機を好適に用いて脱水処理を行うことができる。
また脱水分離液中の燐濃度を低減できるため、これによりMAPスケールの生成を抑制できる。
According to the present invention, phosphate ions, polysaccharides, proteins and the like in sludge can be insolubilized by adding an inorganic flocculant to sewage digested sludge. Thereafter, by adding a flocculant composition (A) containing a polyamidine flocculant and an aminoalkyl (meth) acrylate cationic flocculant, the dehydration treatment using a centrifugal dehydrator or a screw press dehydrator is improved. Coarse and strong flocs can be formed to the extent possible.
Therefore, the sewage digested sludge can be dehydrated with high efficiency, and the water content in the dehydrated cake can be further reduced. Thereby, reduction of sludge treatment cost is realizable. Moreover, a dehydration process can be performed suitably using a centrifugal dehydrator or a screw press type dehydrator.
In addition, since the phosphorus concentration in the dehydrated separation liquid can be reduced, the production of MAP scale can be suppressed thereby.

ここで、ポリアミジン系凝集剤はアクリレート系凝集剤と比較すると比較的分子量が低いが、汚泥に対する吸着性が強く、無機系凝集剤に比較して少量の添加量で親水性の多糖類、タンパク質等を疎水化させることができる。しかし、本発明者等の知見によれば、ポリアミジン系凝集剤は分子量が低いため単独では大きく且つ強度の強いフロックを形成することが困難な場合が多く、特に無機系凝集剤を併用するとその傾向が強いが、アミノアルキル(メタ)アクリレート系カチオン凝集剤を、カチオン当量値が所定の範囲となる配合量で併用すると、遠心脱水機及びスクリュープレス型脱水機に適する大きく且つ強度の強いフロックを形成できる。   Here, the polyamidine flocculant has a relatively low molecular weight compared to the acrylate flocculant, but has a strong adsorptivity to sludge, and has a small amount of addition compared to the inorganic flocculant to hydrophilic polysaccharides, proteins, etc. Can be hydrophobized. However, according to the knowledge of the present inventors, the polyamidine-based flocculant has a low molecular weight, so it is often difficult to form a large and strong floc alone, especially when an inorganic flocculant is used in combination. However, when an aminoalkyl (meth) acrylate cationic flocculant is used together in a blending amount with a cation equivalent value within a predetermined range, a large and strong floc suitable for centrifugal dehydrators and screw press dehydrators is formed. it can.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
以下の実施例および比較例で用いた凝集剤組成物(A)は、表1に示す重合体を表2に示すように配合し、0.3質量%水溶液としたものである。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
The flocculant composition (A) used in the following Examples and Comparative Examples is prepared by blending the polymers shown in Table 1 as shown in Table 2 to form a 0.3 mass% aqueous solution.

表1は各重合体の合成に用いた単量体とその比率を示している。この表に示す単量体の略号は以下の通りである。
PVAD:ポリビニルアミジン。極限粘度[η]:5.0dl/g。
DMC:ジメチルアミノエチルメタクリレート・メチルクロライド4級塩。
DME:ジメチルアミノエチルアクリレート・メチルクロライド4級塩。
AAm:アクリルアミド。
Table 1 shows the monomers used in the synthesis of each polymer and their ratios. Abbreviations of monomers shown in this table are as follows.
PVAD: polyvinylamidine. Intrinsic viscosity [η]: 5.0 dl / g.
DMC: dimethylaminoethyl methacrylate / methyl chloride quaternary salt.
DME: dimethylaminoethyl acrylate / methyl chloride quaternary salt.
AAm: acrylamide.

Figure 2009183889
Figure 2009183889

Figure 2009183889
Figure 2009183889

〔実施例1〜9〕
表3に示す無機系凝集剤および凝集剤組成物(A)を用い、次の手順で下水消化汚泥の脱水試験を行った。
以下において、各特性の測定は以下の方法で行った。
・SS濃度:定法に基づき測定した(財団法人日本下水道協会編、「下水試験方法上巻1997年版」,平成9年8月25日発行、p.116)。
・VTS(強熱減量)値:定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p297)。
・凝集フロック平均粒径:目視により測定した。
・コロイド荷電量:定法に基づき測定した(東京都下水道サービス(株)編、ポリマー凝集剤手引きp47−49)。
・Mアルカリ度:定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p300)。
・脱水ケーキ含水率:定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p296−297)。
[Examples 1 to 9]
Using the inorganic flocculant and the flocculant composition (A) shown in Table 3, a dewatering test of sewage digested sludge was performed according to the following procedure.
In the following, each characteristic was measured by the following method.
-SS concentration: Measured based on a standard method (edited by the Japan Sewerage Association, “Sewage Test Method, Vol. 1997,” published on August 25, 1997, p. 116).
・ VTS (loss on ignition) value: Measured based on a regular method (edited by Japan Sewerage Association, “Sewerage Test Method Vol. 1997 edition” p297).
Aggregated floc average particle diameter: measured by visual observation.
Colloid charge amount: Measured based on a conventional method (edited by Tokyo Sewerage Service Co., Ltd., Polymer Flocculant Guide p47-49).
-M alkalinity: Measured based on a standard method (edited by Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p300”).
-Water content of dehydrated cake: Measured based on a standard method (edited by Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p. 296-297)”.

下水消化汚泥としては、SS濃度:2.35質量%、pH:7.5、VTS:65.2質量%、コロイド荷電量:−1.2meq/l、Mアルカリ度:5,600mg/lの汚泥を用いた。
攪拌装置は図1のものを用いた。この撹拌装置は可変式攪拌機11と伸縮架台12を有し、可変式攪拌機11には、例えば、直径が7.5〜7.9Φの攪拌軸11aと、幅Wが60mm、厚さTが2mmの攪拌翼11bが備わっている。
As sewage digestion sludge, SS concentration: 2.35 mass%, pH: 7.5, VTS: 65.2 mass%, colloid charge amount: -1.2 meq / l, M alkalinity: 5,600 mg / l Sludge was used.
The stirring device shown in FIG. 1 was used. This stirrer has a variable stirrer 11 and a telescopic stand 12. The variable stirrer 11 includes, for example, a stirring shaft 11a having a diameter of 7.5 to 7.9Φ, a width W of 60 mm, and a thickness T of 2 mm. The stirring blade 11b is provided.

(1)まず、500mlのビーカーに上記汚泥を300ml採取し、図1の攪拌装置にセットした。
(2)表3に示す無機系凝集剤を、表3に示す添加量となるように添加し(以下、同様。)、900rpmの回転数で10秒間攪拌混合した。
(3)次いで表3に示す凝集剤組成物(A)を、表3に示す添加量となるように添加し(以下、同様。)、900rpmの回転数で20秒間攪拌混合した。
(4)次いで、凝集した汚泥をろ布を敷いたヌッチェにあけて濾過し、最初の10秒間の濾液量を測定した。その結果を表3の「10秒間濾液量」の欄に示す。
(5)続いて1分間経過後、ろ布上にある濃縮した汚泥を、ろ布で挟んで0.1MPaの圧力で1分間圧搾脱水し、脱水ケーキの含水率を求めた。その結果を表3に示す。
(1) First, 300 ml of the sludge was collected in a 500 ml beaker and set in the stirring device of FIG.
(2) An inorganic flocculant shown in Table 3 was added so as to have an addition amount shown in Table 3 (hereinafter the same), and stirred and mixed for 10 seconds at a rotation speed of 900 rpm.
(3) Next, the flocculant composition (A) shown in Table 3 was added so as to have the addition amount shown in Table 3 (hereinafter the same), and the mixture was stirred and mixed at a rotation speed of 900 rpm for 20 seconds.
(4) Next, the agglomerated sludge was filtered through a Nutsche lined with a filter cloth, and the filtrate amount for the first 10 seconds was measured. The results are shown in the column of “10 second filtrate amount” in Table 3.
(5) Subsequently, after 1 minute had elapsed, the concentrated sludge on the filter cloth was sandwiched between filter cloths and squeezed and dehydrated at a pressure of 0.1 MPa for 1 minute to determine the moisture content of the dehydrated cake. The results are shown in Table 3.

〔比較例1、2〕
実施例1における凝集剤組成物(A)に代えて、ポリアミジン系凝集剤とアミノアルキル(メタ)アクリレート系カチオン凝集剤を含有しCv値が5meq/g以上である凝集剤組成物を用いた以外は実施例1と同様に行った。添加量および各測定結果を表3に示す。
[Comparative Examples 1 and 2]
Instead of the flocculant composition (A) in Example 1, a flocculant composition containing a polyamidine flocculant and an aminoalkyl (meth) acrylate cationic flocculant and having a Cv value of 5 meq / g or more was used. Was carried out in the same manner as in Example 1. Table 3 shows the addition amount and each measurement result.

〔比較例3、4〕
実施例1における凝集剤組成物(A)を、比較例3ではアミノアルキル(メタ)アクリレート系カチオン凝集剤に変更し、比較例4ではポリビニルアミジンに変更した。その他は実施例1と同様に行った。添加量および各測定結果を表3に示す。
[Comparative Examples 3 and 4]
The flocculant composition (A) in Example 1 was changed to an aminoalkyl (meth) acrylate cationic flocculant in Comparative Example 3, and changed to polyvinylamidine in Comparative Example 4. Others were the same as in Example 1. Table 3 shows the addition amount and each measurement result.

〔比較例5、6〕
比較例5では無機系凝集剤を添加しない他は実施例1と同様に行った。
この比較例5では凝集フロックが殆ど形成されず、脱水不可能であったため、比較例6では無機系凝集剤を添加せず、凝集剤組成物(A)の添加量を実施例1の1.5倍量とした。その他は実施例1と同様に行った。添加量および各測定結果を表3に示す。
[Comparative Examples 5 and 6]
In Comparative Example 5, the same procedure as in Example 1 was performed except that the inorganic flocculant was not added.
In Comparative Example 5, almost no flocculent flocs were formed and dehydration was impossible. Therefore, in Comparative Example 6, an inorganic flocculant was not added, and the amount of flocculant composition (A) added was set to 1. The amount was 5 times. Others were the same as in Example 1. Table 3 shows the addition amount and each measurement result.

Figure 2009183889
Figure 2009183889

実施例1〜9は何れも形成フロックの粒子径が大きく、濾過速度(10秒間濾液量)、および脱水ケーキの含水率も大変優れた結果であった。
比較例1,2はフロック粒径が小さく、濾過速度が実施例1〜9に比べて遅く、含水率が実施例1〜9に比較して4%程度劣る結果であった。
高分子凝集剤として、アミノアルキル(メタ)アクリレート系カチオン凝集剤のみを用いた比較例3、およびポリアミジン系凝集剤のみを用いた比較例4は、実施例に比べてフロック粒径が小さく、濾過速度が実施例1〜9に比べて遅く、含水率が実施例1〜9に比較して4%程度劣る結果であった。
無機系凝集剤を添加せず、凝集剤組成物(A)の添加量を多くした比較例6は、フロックは形成されたが、濾過速度が実施例1〜9に比べて遅く、含水率が実施例1〜9に比較して大きく劣っていた。
In each of Examples 1 to 9, the particle size of the formed floc was large, and the filtration rate (the amount of filtrate for 10 seconds) and the water content of the dehydrated cake were very excellent.
In Comparative Examples 1 and 2, the floc particle size was small, the filtration rate was slower than those in Examples 1 to 9, and the moisture content was about 4% inferior to Examples 1 to 9.
Comparative Example 3 using only an aminoalkyl (meth) acrylate cationic flocculant as a polymer flocculant and Comparative Example 4 using only a polyamidine flocculant have a smaller floc particle size than the examples, and filtration. The speed was slower than in Examples 1 to 9, and the water content was inferior by about 4% compared to Examples 1 to 9.
In Comparative Example 6 where the inorganic flocculant was not added and the amount of flocculant composition (A) added was increased, flocs were formed, but the filtration rate was slower than in Examples 1 to 9, and the water content was lower. It was greatly inferior compared with Examples 1-9.

〔実施例10〕
表4に示す無機系凝集剤および凝集剤組成物(A)を、表4に示す添加量で用い、次の手順で下水消化汚泥の脱水試験を行った。本例では遠心脱水機(西原環境テクノロジー社製)を用いて脱水処理を行った。
下水消化汚泥としては、SS濃度:2.1質量%、pH:7.3、コロイド荷電量:−1.7meq/l、Mアルカリ度:3,960mg/lの汚泥を用いた。
無機凝集剤は、遠心脱水機の汚泥供給ポンプの出口にて添加した。凝集剤組成物(A)は遠心脱水機内で添加した。
得られた脱水ケーキの含水率を求めた。その結果を表4に示す。
脱水分離液を採取して全燐含有量(分離液TP濃度)を測定した。測定方法は、「下水試験法上巻」P.199、「3.全リン(1)ペルオキソ二硫酸カリウムによる分解法」に準拠する方法で行った。その結果を表4に示す。また分離液の状態を目視で観察し、SSが殆どなく液の色が白色の場合を良好、SSが多く液の色が黒色の場合を不良として評価した。その結果を表4に示す。
Example 10
The inorganic flocculant and the flocculant composition (A) shown in Table 4 were used in the addition amounts shown in Table 4, and a dewatering test of sewage digested sludge was performed according to the following procedure. In this example, the spin-drying | dehydration process was performed using the centrifugal dehydrator (made by Nishihara environmental technology company).
As the sewage digestion sludge, sludge having an SS concentration of 2.1 mass%, a pH of 7.3, a colloid charge amount of −1.7 meq / l, and an M alkalinity of 3,960 mg / l was used.
The inorganic flocculant was added at the outlet of the sludge supply pump of the centrifugal dehydrator. The flocculant composition (A) was added in a centrifugal dehydrator.
The water content of the obtained dehydrated cake was determined. The results are shown in Table 4.
The dehydrated separation liquid was collected and the total phosphorus content (separation liquid TP concentration) was measured. The measurement method is described in “Sewage test method, first volume”, p. 199, “3. Decomposition method with total phosphorus (1) potassium peroxodisulfate”. The results are shown in Table 4. Further, the state of the separation liquid was visually observed, and the case where there was almost no SS and the color of the liquid was white was evaluated as good, and the case where there was a lot of SS and the color of the liquid was black was evaluated as defective. The results are shown in Table 4.

〔比較例7〕
実施例10における凝集剤組成物(A)をアミノアルキル(メタ)アクリレート系カチオン凝集剤に変更した他は実施例10と同様に行った。添加量および各測定結果を表4に示す。
[Comparative Example 7]
The same procedure as in Example 10 was performed except that the flocculant composition (A) in Example 10 was changed to an aminoalkyl (meth) acrylate cationic flocculant. Table 4 shows the addition amount and each measurement result.

〔比較例8、9〕
比較例8では無機系凝集剤を添加しない他は実施例10と同様に行った。
この比較例8では凝集フロックが殆ど形成されず、脱水不可能であったため、比較例9では無機系凝集剤を添加せず、凝集剤組成物(A)の添加量を実施例10の1.5倍量とした。その他は実施例10と同様に行った。添加量および各測定結果を表4に示す。
[Comparative Examples 8 and 9]
Comparative Example 8 was carried out in the same manner as Example 10 except that no inorganic flocculant was added.
In Comparative Example 8, almost no flocculent flocs were formed and dehydration was impossible. Therefore, in Comparative Example 9, no inorganic flocculant was added, and the amount of flocculant composition (A) added was 1. The amount was 5 times. Others were performed in the same manner as in Example 10. Table 4 shows the addition amount and each measurement result.

Figure 2009183889
Figure 2009183889

実施例10では、脱水分離液の状態も良好で分離液中の全燐含有量(TP濃度)は7.2mg/lであり85質量%の燐が除去された。また脱水ケーキの含水率も71.8%と低く、形状も小ダンゴ状で良好であった。
比較例7は、脱水分離液の状態は良好であったが、脱水ケーキの含水率が77.0%であり、実施例10と比べて5%程度劣る結果となった。
比較例9は、分離液中の全燐含有量(TP濃度)が48.1mg/lと高く、含水率は81.8%となり、実施例10に比較してすこぶる劣る結果であった。
In Example 10, the state of the dehydrated separation liquid was also good, the total phosphorus content (TP concentration) in the separation liquid was 7.2 mg / l, and 85% by mass of phosphorus was removed. The moisture content of the dehydrated cake was as low as 71.8%, and the shape was small and good.
In Comparative Example 7, the state of the dehydrated separation liquid was good, but the water content of the dehydrated cake was 77.0%, which was inferior to that of Example 10 by about 5%.
In Comparative Example 9, the total phosphorus content (TP concentration) in the separated liquid was as high as 48.1 mg / l, and the water content was 81.8%, which was a very inferior result compared to Example 10.

実施例で用いた撹拌装置を示す概略図である。It is the schematic which shows the stirring apparatus used in the Example.

符号の説明Explanation of symbols

11 可変式攪拌機、11a 攪拌軸、11b 攪拌翼、12 伸縮架台。 11 Variable stirrer, 11a Stirrer shaft, 11b Stirrer blade, 12 Telescopic stand.

Claims (2)

下水消化汚泥に無機系凝集剤を加えた後、ポリアミジン系凝集剤とアミノアルキル(メタ)アクリレート系カチオン凝集剤を含有し、かつカチオン当量値が5meq/g未満である凝集剤組成物(A)を添加した被処理物を脱水処理することを特徴とする汚泥の脱水処理方法。   After adding an inorganic flocculant to sewage digested sludge, a flocculant composition (A) containing a polyamidine flocculant and an aminoalkyl (meth) acrylate cationic flocculant and having a cation equivalent value of less than 5 meq / g A method for dewatering sludge, comprising: dewatering a material to which the material is added. 前記脱水処理を遠心脱水機またはスクリュープレス型脱水機を用いて行うことを特徴とする請求項1記載の汚泥の脱水処理方法。   2. The sludge dewatering method according to claim 1, wherein the dewatering process is performed using a centrifugal dehydrator or a screw press type dehydrator.
JP2008027670A 2008-02-07 2008-02-07 Sludge dewatering method Active JP5042057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027670A JP5042057B2 (en) 2008-02-07 2008-02-07 Sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027670A JP5042057B2 (en) 2008-02-07 2008-02-07 Sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2009183889A true JP2009183889A (en) 2009-08-20
JP5042057B2 JP5042057B2 (en) 2012-10-03

Family

ID=41067716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027670A Active JP5042057B2 (en) 2008-02-07 2008-02-07 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP5042057B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224420A (en) * 2010-04-15 2011-11-10 Daiyanitorikkusu Kk Sludge dewatering agent and sludge dewatering treatment method
JP2012012540A (en) * 2010-07-02 2012-01-19 Daiyanitorikkusu Kk Method for producing powdery cationic water-soluble polymer compound, sludge dehydrating agent, and method for dehydrating sludge
JP2012206023A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent and sludge dehydration method using the same
JP2013000718A (en) * 2011-06-21 2013-01-07 Swing Corp Method and equipment for treating organic waste water and sludge
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment
JP2017136514A (en) * 2016-02-01 2017-08-10 水ing株式会社 Polymer coagulant and dewatering method and dewatering device of sludge using polymer coagulant
JP7570463B1 (en) 2023-06-14 2024-10-21 日本ペイント・オートモーティブコーティングス株式会社 Cationic electrodeposition coating composition, electrodeposition coated article, and method for producing electrodeposition coated article

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192513A (en) * 1991-08-20 1993-08-03 Mitsubishi Kasei Corp Cationic polymeric flocculant
JPH06218400A (en) * 1993-01-27 1994-08-09 Mitsubishi Kasei Corp Sludge dewatering agent
JPH07214100A (en) * 1994-02-07 1995-08-15 Dia Furotsuku Kk Method for dehydrating sewage digested sludge
JPH07223000A (en) * 1994-02-15 1995-08-22 Kurita Water Ind Ltd Sludge dewatering agent and method for dewatering sludge using the same
JPH08173999A (en) * 1994-12-28 1996-07-09 Kubota Corp Method for dewatering sludge
JPH0985013A (en) * 1995-09-20 1997-03-31 Hymo Corp Dehydration of sludge
JPH09314200A (en) * 1996-05-24 1997-12-09 Hymo Corp Sludge dehydrating agent and its use
JPH1015600A (en) * 1996-07-02 1998-01-20 Hymo Corp Treatment of sludge
JPH1085798A (en) * 1996-09-19 1998-04-07 Ebara Corp Method for dehydrating sludge
JP2002136999A (en) * 2000-10-31 2002-05-14 Tosoh Corp Method for dehydrating sludge
JP2004059719A (en) * 2002-07-29 2004-02-26 Hymo Corp Crosslinkable ionic water soluble polymer powder, its preparing method and its using method
JP2004195370A (en) * 2002-12-18 2004-07-15 Toagosei Co Ltd Method for dehydrating digested sludge
JP2005213343A (en) * 2004-01-29 2005-08-11 Tomooka Kaken Kk Organic coagulant and polymer flocculant
JP2006015209A (en) * 2004-06-30 2006-01-19 Toagosei Co Ltd Dehydration method of digested sewage sludge
JP2006175427A (en) * 2004-11-25 2006-07-06 Daiyanitorikkusu Kk Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating wastewater with use of polymer coagulant
JP2009183888A (en) * 2008-02-07 2009-08-20 Daiyanitorikkusu Kk Sludge dehydration method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192513A (en) * 1991-08-20 1993-08-03 Mitsubishi Kasei Corp Cationic polymeric flocculant
JPH06218400A (en) * 1993-01-27 1994-08-09 Mitsubishi Kasei Corp Sludge dewatering agent
JPH07214100A (en) * 1994-02-07 1995-08-15 Dia Furotsuku Kk Method for dehydrating sewage digested sludge
JPH07223000A (en) * 1994-02-15 1995-08-22 Kurita Water Ind Ltd Sludge dewatering agent and method for dewatering sludge using the same
JPH08173999A (en) * 1994-12-28 1996-07-09 Kubota Corp Method for dewatering sludge
JPH0985013A (en) * 1995-09-20 1997-03-31 Hymo Corp Dehydration of sludge
JPH09314200A (en) * 1996-05-24 1997-12-09 Hymo Corp Sludge dehydrating agent and its use
JPH1015600A (en) * 1996-07-02 1998-01-20 Hymo Corp Treatment of sludge
JPH1085798A (en) * 1996-09-19 1998-04-07 Ebara Corp Method for dehydrating sludge
JP2002136999A (en) * 2000-10-31 2002-05-14 Tosoh Corp Method for dehydrating sludge
JP2004059719A (en) * 2002-07-29 2004-02-26 Hymo Corp Crosslinkable ionic water soluble polymer powder, its preparing method and its using method
JP2004195370A (en) * 2002-12-18 2004-07-15 Toagosei Co Ltd Method for dehydrating digested sludge
JP2005213343A (en) * 2004-01-29 2005-08-11 Tomooka Kaken Kk Organic coagulant and polymer flocculant
JP2006015209A (en) * 2004-06-30 2006-01-19 Toagosei Co Ltd Dehydration method of digested sewage sludge
JP2006175427A (en) * 2004-11-25 2006-07-06 Daiyanitorikkusu Kk Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating wastewater with use of polymer coagulant
JP2009183888A (en) * 2008-02-07 2009-08-20 Daiyanitorikkusu Kk Sludge dehydration method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224420A (en) * 2010-04-15 2011-11-10 Daiyanitorikkusu Kk Sludge dewatering agent and sludge dewatering treatment method
JP2012012540A (en) * 2010-07-02 2012-01-19 Daiyanitorikkusu Kk Method for producing powdery cationic water-soluble polymer compound, sludge dehydrating agent, and method for dehydrating sludge
JP2012206023A (en) * 2011-03-30 2012-10-25 Hymo Corp Coagulation treatment agent and sludge dehydration method using the same
JP2013000718A (en) * 2011-06-21 2013-01-07 Swing Corp Method and equipment for treating organic waste water and sludge
JP2016059839A (en) * 2014-09-16 2016-04-25 三菱レイヨン株式会社 Solid-liquid separation method in membrane separation activated sludge treatment
JP2017136514A (en) * 2016-02-01 2017-08-10 水ing株式会社 Polymer coagulant and dewatering method and dewatering device of sludge using polymer coagulant
JP7570463B1 (en) 2023-06-14 2024-10-21 日本ペイント・オートモーティブコーティングス株式会社 Cationic electrodeposition coating composition, electrodeposition coated article, and method for producing electrodeposition coated article

Also Published As

Publication number Publication date
JP5042057B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5042057B2 (en) Sludge dewatering method
JP6378342B2 (en) Organic wastewater treatment method
JP5117228B2 (en) Sewage sludge treatment method
JP5172372B2 (en) Sludge dewatering method
BE1019642A3 (en) COMPOSITION FOR CONDITIONING SLUDGE.
JP5649279B2 (en) Dewatering method for sewage digested sludge
JP6131465B2 (en) Sludge dewatering method
JP4684980B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP5239167B2 (en) Concentration method of sludge
JP5961934B2 (en) Sludge dewatering method
JP5882608B2 (en) Method and apparatus for dewatering organic sludge
JP5038587B2 (en) Dewatering method for sewage digested sludge
JP4479095B2 (en) Polymer flocculant and sludge dewatering method
JP2016120464A (en) Sludge dewatering method
JP2020065985A (en) Textile dyeing waste water treatment method and textile dyeing waste water treatment agent kit
JP3906636B2 (en) Amphoteric polymer flocculant and sludge dewatering method
JP4795290B2 (en) How to remove phosphorus
JP2004283716A (en) Method for dehydrating sludge
JP4804707B2 (en) Sludge dewatering method
JP3924011B2 (en) Dewatering method for sewage digested sludge
JP2000225400A (en) Method for flocculating/separating suspended particle
JP2004344748A (en) Polymer coagulant
JP3890521B2 (en) Acrylic cationic polymer flocculant
JP4828152B2 (en) Sewage treatment method
JP2023080648A (en) Liquid waste concentration method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5042057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250