[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009176953A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2009176953A
JP2009176953A JP2008014105A JP2008014105A JP2009176953A JP 2009176953 A JP2009176953 A JP 2009176953A JP 2008014105 A JP2008014105 A JP 2008014105A JP 2008014105 A JP2008014105 A JP 2008014105A JP 2009176953 A JP2009176953 A JP 2009176953A
Authority
JP
Japan
Prior art keywords
trench
region
insulating film
gate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008014105A
Other languages
English (en)
Inventor
Kenki Osada
賢樹 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2008014105A priority Critical patent/JP2009176953A/ja
Publication of JP2009176953A publication Critical patent/JP2009176953A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】オン抵抗の増大を生じることなく、ゲート・ドレイン電荷量を低減することができる、半導体装置を提供する。
【解決手段】エピタキシャル層3には、N型領域4およびボディ領域5が形成されている。エピタキシャル層3には、ボディ領域5を貫通し、最深部がN型領域4に達するトレンチ6が形成されている。エピタキシャル層3の表層部におけるトレンチ6の周囲には、ソース領域9が形成されている。トレンチ6の底面および側面上には、ゲート絶縁膜7が形成されている。ゲート絶縁膜7におけるトレンチ6の側面を覆う部分の全域には、ゲート電極8がゲート絶縁膜7に沿って形成されている。トレンチ6内の底部には、ゲート絶縁膜7およびゲート電極8に接する底部埋設体17が埋設されている。トレンチ6内における底部埋設体17上には、導電性を有するポリシリコンからなる上部埋設体29が埋設されている。
【選択図】図1

Description

本発明は、トレンチゲート型VDMOSFETを有する半導体装置に関する。
VDMOSFET(Virtical Double diffused Metal Oxide Semiconductor Field Effect Transistor)の微細化に有効な構造として、トレンチゲート構造が一般に知られている。
図3は、従来のトレンチゲート型VDMOSFETを有する半導体装置の構造を示す模式的な断面図である。
この半導体装置100は、N型基板101を備えている。N型基板101上には、N型エピタキシャル層102が積層されている。N型エピタキシャル層102の基層部は、N型領域103とされ、N型エピタキシャル層102の表層部には、P型ボディ領域104がN型領域103と上下に隣接して形成されている。
型エピタキシャル層102には、トレンチ105がその表面から掘り下がって形成されている。トレンチ105は、P型ボディ領域104を貫通し、その最深部がN型領域103に達している。トレンチ105内には、SiO(酸化シリコン)からなるゲート絶縁膜106を介して、N型不純物が高濃度にドープされたポリシリコンからなるゲート電極107が埋設されている。
また、P型ボディ領域104の表層部には、トレンチ105に沿って、N型ソース領域108が形成されている。N型ソース領域108には、平面視でその中央部に、P型ボディコンタクト領域109がN型ソース領域108を貫通して形成されている。
型エピタキシャル層102上には、層間絶縁膜110が積層されている。層間絶縁膜110上には、ソース配線111が形成されている。ソース配線111は、接地されている。そして、ソース配線111は、層間絶縁膜110に形成されたコンタクト孔112を介して、N型ソース領域108およびP型ボディコンタクト領域109にコンタクト(電気接続)されている。また、ゲート電極107には、層間絶縁膜110に形成されたコンタクト孔(図示せず)を介して、ゲート配線113が電気的に接続されている。
型基板の裏面には、ドレイン電極114が形成されている。
ドレイン電極114に適当な大きさの正電圧を印加しつつ、ゲート電極107の電位を制御することにより、P型ボディ領域104におけるゲート絶縁膜106との界面近傍にチャネルを形成して、N型ソース領域108とドレイン電極114との間に電流を流すことができる。これにより、VDMOSFETのスイッチング動作が達成される。
特開2005−86140号公報
VDMOSFETのスイッチング性能を表わす指標として、たとえば、VDMOSFETのオン抵抗とゲート−ドレイン電荷量との積が用いられ、この積が小さいほど、より高速なスイッチング動作を達成することができる。
図3の半導体装置100において、VDMOSFETのオン抵抗Ron2は、N型ソース領域108(P型ボディコンタクト領域109を含む。)とN型基板101との間の抵抗である。一方、VDMOSFETのゲート−ドレイン電荷量Qgd2は、ゲート−ドレイン間に寄生的に形成されるゲート−ドレイン間容量Cgd2(ゲート電極107とトレンチ105の底面との間に挟まれるゲート絶縁膜106の容量Cox2と、N型領域103とボディ領域104との界面から広がる空乏層115が有する容量Cdep2との合成容量)に蓄積される電荷量である。半導体装置100では、オン抵抗Ron2とゲート−ドレイン電荷量Qgd2との積Ron2・Qgd2を低減することができれば、VDMOSFETの高速スイッチング動作を達成することができる。
ところが、図4に示されるように、オン抵抗とゲート−ドレイン電荷量とは、一方を低減すると、他方が増大する、いわゆるトレードオフの関係にある。そのため、オン抵抗とゲート−ドレイン電荷量との積を小さくするには、オン抵抗およびゲート−ドレイン電荷量の一方を低減するとともに、他方の増大を防止する必要がある。
そこで、本発明の目的は、オン抵抗の増大を生じることなく、ゲート・ドレイン電荷量を低減することができる、半導体装置を提供することである。
前記の目的を達成するための請求項1記載の発明は、半導体層と、前記半導体層の基層部に形成された第1導電型の第1導電型領域と、前記半導体層に形成され、前記第1導電型領域に接する第2導電型のボディ領域と、前記半導体層に形成され、前記ボディ領域を貫通し、最深部が前記第1導電型領域に達するトレンチと、前記半導体層の表層部における前記トレンチの周囲に形成され、前記ボディ領域に接する第1導電型のソース領域と、前記トレンチの底面および側面上に形成されたゲート絶縁膜と、前記ゲート絶縁膜における前記トレンチの側面を覆う部分の全域に沿って形成されたゲート電極と、前記トレンチ内の底部に埋設され、絶縁性を有する材料からなり、前記ゲート絶縁膜および前記ゲート電極に接する底部埋設体と、前記トレンチ内における前記底部埋設体上に埋設され、導電性を有するポリシリコンからなる上部埋設体とを備える、半導体装置である。
この構成によれば、半導体層の基層部には、第1導電型の第1導電型領域が形成されている。半導体層には、第1導電型領域に接する第2導電型のボディ領域が形成されている。半導体層には、ボディ領域を貫通し、最深部が第1導電型領域に達するトレンチが形成されている。半導体層の表層部におけるトレンチの周囲には、ボディ領域に接する第1導電型のソース領域が形成されている。トレンチの底面および側面上には、ゲート絶縁膜が形成されている。ゲート絶縁膜におけるトレンチの側面を覆う部分の全域には、ゲート電極がゲート絶縁膜に沿って形成されている。トレンチ内の底部には、絶縁性を有する材料からなり、ゲート絶縁膜およびゲート電極に接する底部埋設体が埋設されている。トレンチ内における底部埋設体上には、導電性を有するポリシリコンからなる上部埋設体が埋設されている。
従来の構成(図3参照)では、ゲート絶縁膜の内面全域にゲート電極が接する。これと比べて、ゲート電極がゲート絶縁膜の側面に沿って形成される構成では、ゲート絶縁膜におけるトレンチの底面を覆う部分を挟んで、第1導電型領域に対向するゲート電極の面積を小さくすることができる。したがって、ゲート電極とトレンチの底面(第1導電型領域)との間に生じる寄生容量を小さくすることができる。その結果、ゲート−ドレイン間容量を低減することができ、ゲート−ドレイン電荷量を低減することができる。また、ゲート絶縁膜におけるトレンチの底面を覆う部分に底部埋設体が接する構成によって、半導体装置のオン抵抗が増大することがない。よって、オン抵抗の増大を生じることなく、ゲート−ドレイン電荷量を低減することができる。
また、トレンチ内における底部埋設体上には、上部埋設体が埋設されている。したがって、半導体層および上部埋設体上に層間絶縁膜が形成され、この層間絶縁膜にゲート電極に対する電気接続のためのコンタクト孔をエッチングにより形成する際に、上部埋設体の上面を基準にエッチング時間(量)を設定すれば、コンタクト孔を上部埋設体に確実に到達させることができる。そのため、層間絶縁膜上に配設されるゲート配線とゲート電極とを、コンタクト孔に埋設されるコンタクトおよび上部埋設体を介して確実に接続することができる。そして、このようなエッチング時間に設定することにより、ゲート電極に対する電気接続のためのコンタクト孔とソース領域に対する電気接続のためのコンタクト孔とを同時に形成する場合に、半導体層(ソース領域)が大きく掘れ下がることを防止することができる。その結果、コンタクト孔がソース領域を貫通することによるジャンクションリークの発生を防止することができる。
また、請求項2に記載のように、前記ゲート電極は、前記トレンチの底面に近づくほどその厚みが大きくなる断面略三角形状に形成されていてもよい。
以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る半導体装置の構造を示す図解的な断面図である。
半導体装置1は、トレンチゲート型VDMOSFETを有するユニットセルがマトリクス状に配置されたアレイ構造を有している。
半導体装置1の基体をなすN型基板2上には、N型基板2よりもN型不純物が低濃度(たとえば、1×1015〜4×1015/cm)にドーピングされたシリコンからなるN型のエピタキシャル層3が積層されている。エピタキシャル層3の基層部は、エピタキシャル成長後のままの状態で、第1導電型領域としてのN型領域4とされている。また、エピタキシャル層3には、N型領域4上に、P型のボディ領域5がN型領域4に接して形成されている。
エピタキシャル層3には、トレンチ6がその表面から掘り下がって形成されている。トレンチ6は、ボディ領域5を貫通し、その最深部がN型領域4に達している。また、トレンチ6は、図1における左右方向に一定の間隔を空けて複数形成され、それぞれ図1の紙面と直交する方向に延びている。各トレンチ6は、図1における左右方向(ゲート幅と直交する方向)における幅Wが、たとえば、0.5μmで形成されている。
トレンチ6内には、その内面全域を覆うように、SiO(酸化シリコン)からなるゲート絶縁膜7が形成されている。ゲート絶縁膜7は、その膜厚Toxが、たとえば、50nmで形成されている。
また、トレンチ6内には、ゲート絶縁膜7の側面全域に沿って、ゲート電極8が形成されている。ゲート電極8は、N型不純物が高濃度にドーピングされたポリシリコンからなり、深い位置ほど厚みが大きくなる断面略三角形状を有している。
トレンチ6内の底部には、ゲート電極8に囲まれる部分をトレンチ6の深さ方向途中までSiOで埋め尽くすことにより、底部埋設体17が埋設されている。底部埋設体17は、ゲート絶縁膜7におけるトレンチ6の底面を覆う部分に、たとえば、0.3μmの幅Wで接している。
トレンチ6内における底部埋設体17上には、N型不純物が高濃度にドーピングされたポリシリコンからなる上部埋設体29が埋設されている。上部埋設体29は、ゲート電極8に接している。また、上部埋設体29の表面は、エピタキシャル層3の表面とほぼ面一をなしている。
また、エピタキシャル層3の表層部には、トレンチ6に対してゲート幅と直交する方向(図1における左右方向)の両側に、N型領域4のN型不純物濃度よりも高いN型不純物濃度(たとえば、1019/cm)を有するN型のソース領域9が形成されている。ソース領域9は、トレンチ6に沿ってゲート幅に沿う方向に延び、その底部がボディ領域5に接している。また、ゲート幅と直交する方向におけるソース領域9の中央部には、P型のボディコンタクト領域10がソース領域9を貫通して形成されている。
すなわち、トレンチ6およびソース領域9は、ゲート幅と直交する方向に交互に設けられ、それぞれゲート幅に沿う方向に延びている。そして、ソース領域9上に、そのソース領域9に沿って、ゲート幅と直交する方向に隣接するユニットセル間の境界が設定されている。ボディコンタクト領域10は、ゲート幅と直交する方向に隣接する2つのユニットセル間に跨って少なくとも1つ以上設けられている。また、ゲート幅に沿う方向に隣接するユニットセル間の境界は、各ユニットセルに含まれるゲート電極8が一定のゲート幅を有するように設定されている。
エピタキシャル層3および上部埋設体29上には、層間絶縁膜13が積層されている。層間絶縁膜13上には、たとえば、Al(アルミニウム)からなるソース配線14が形成されている。ソース配線14は、接地されている。層間絶縁膜13には、平面視でソース配線14とボディコンタクト領域10とが対向する部分に、コンタクト孔15が貫通形成されている。コンタクト孔15には、たとえば、W(タングステン)からなるコンタクト18が埋設されている。ソース配線14は、コンタクト18を介して、ソース領域9およびボディコンタクト領域10と電気的に接続されている。また、層間絶縁膜13上には、たとえば、Alからなるゲート配線16が形成されている。層間絶縁膜13には、平面視でゲート配線16と上部埋設体29とが対向する部分に、コンタクト孔11が貫通形成されている。コンタクト孔11には、たとえば、Wからなるコンタクト12が埋設されている。ゲート配線16は、コンタクト12および上部埋設体29を介して、ゲート電極8と電気的に接続されている。
N+型基板2の裏面には、ドレイン電極27が形成されている。
ドレイン電極27に適当な大きさの正電圧を印加しつつ、ゲート電極8の電位を制御することにより、ボディ領域5におけるゲート絶縁膜7との界面近傍にチャネルを形成して、ソース領域9とドレイン電極27との間に電流を流すことができる。
以上のように、エピタキシャル層3の基層部には、N型領域4が形成されている。エピタキシャル層3には、N型領域4に接するP型のボディ領域5が形成されている。エピタキシャル層3には、ボディ領域5を貫通し、最深部がN型領域4に達するトレンチ6が形成されている。エピタキシャル層3の表層部におけるトレンチ6の周囲には、ボディ領域5に接するN型のソース領域9が形成されている。トレンチ6の底面および側面上には、ゲート絶縁膜7が形成されている。ゲート絶縁膜7におけるトレンチ6の側面を覆う部分の全域には、ゲート電極8がゲート絶縁膜7に沿って形成されている。トレンチ6内の底部には、SiOからなり、ゲート絶縁膜7およびゲート電極8に接する底部埋設体17が埋設されている。底部埋設体17は、ゲート絶縁膜7におけるトレンチ6の底面を覆う部分に、幅Wで接している。トレンチ6内における底部埋設体17上には、N型不純物が高濃度にドーピングされたポリシリコンからなる上部埋設体29が埋設されている。
従来の半導体装置100(図3参照)では、ゲート絶縁膜106の内面全域にゲート電極107が接する。これと比べて、ゲート電極8がゲート絶縁膜7の側面に沿って形成される構成では、ゲート絶縁膜7におけるトレンチ6の底面を覆う部分を挟んで、N型領域4に対向するゲート電極8の面積を小さくすることができる。したがって、ゲート電極8とトレンチ6の底面(N型領域4)との間に生じる寄生容量を小さくすることができる。その結果、ゲート−ドレイン間容量を低減することができ、ゲート−ドレイン電荷量を低減することができる。
たとえば、図3の半導体装置100において、ゲート絶縁膜106を挟んで対向するゲート電極107とトレンチ105の底面(N型領域103)との間に生じる寄生容量Cox2と、本実施形態の半導体装置1において、ゲート絶縁膜7を挟んで対向するゲート電極8とトレンチ6の底面(N型領域4)との間に生じる寄生容量Cox1とを比較する。なお、この比較において、半導体装置100は、半導体装置1と同じ、トレンチ6の幅W、ゲート絶縁膜7の厚みToxおよびゲート幅Wを有する。
図3の半導体装置100において、寄生容量Cox2は、Cox2≒εox・W・W/Tox(εox:SiOの比誘電率)となる。
これに対し、本実施形態の半導体装置1において、トレンチ6の幅Wと底部埋設体17の幅Wとの差を2Wとすると、寄生容量Cox1は、Cox1≒εox・2W・W/Toxとなる。
以上の計算式に、たとえば、W=0.5μm、W=0.3μm、W=0.1μmおよびTox=50nmを代入して、寄生容量Cox1と寄生容量Cox2とを比較すると、Cox1=0.4Cox2となるので、半導体装置100の寄生容量Cox2に比べ、半導体装置1の寄生容量Cox1が低減されることがわかる。
半導体装置1のゲート−ドレイン間容量Cgd1は、たとえば、寄生容量Cox1と、N型領域4とボディ領域5との界面から広がる空乏層28が有する容量Cdep1との合成容量で表わされる。そのため、寄生容量Cox1を低減することにより、ゲート−ドレイン間容量Cgd1を低減することができ、その結果、ゲート−ドレイン電荷量Qgd1を低減することができる。
また、ゲート絶縁膜7におけるトレンチ6の底面を覆う部分に底部埋設体17が接する構成によって、半導体装置1のオン抵抗が増大することがない。よって、この半導体装置1の構造によれば、オン抵抗の増大を生じることなく、ゲート−ドレイン電荷量Qgd1を低減することができる。
また、トレンチ6内における底部埋設体17上には、上部埋設体29が埋設されている。したがって、エピタキシャル層3および上部埋設体29上に層間絶縁膜13が形成され、この層間絶縁膜13にゲート電極8に対する電気接続のためのコンタクト孔11をエッチングにより形成する際に、上部埋設体29の上面を基準にエッチング時間(量)を設定すれば、コンタクト孔11を上部埋設体29に確実に到達させることができる。そのため、層間絶縁膜13上に配設されるゲート配線16とゲート電極8とを、コンタクト孔11に埋設されるコンタクト12および上部埋設体29を介して確実に接続することができる。そして、このようなエッチング時間に設定することにより、ゲート電極8に対する電気接続のためのコンタクト孔11とソース領域9に対する電気接続のためのコンタクト孔15とを同時に形成する場合に、エピタキシャル層3(ソース領域9)が大きく掘れ下がることを防止することができる。その結果、コンタクト孔15がソース領域9を貫通することによるジャンクションリークの発生を防止することができる。
図2A〜2Mは、半導体装置1の製造方法を工程順に示す図解的な断面図である。
まず、図2Aに示すように、エピタキシャル成長法により、N型基板2上に、エピタキシャル層3が形成される。
次いで、図2Bに示すように、熱酸化処理により、エピタキシャル層3の表面に、SiOからなる犠牲酸化膜21が形成される。その後、P−CVD(Plasma Chemical Vapor Deposition:プラズマ化学気相成長)法により、犠牲酸化膜21上にSiN(窒化シリコン)層が形成され、このSiN層がパターニングされることによって、トレンチ6を形成すべき部分と対向する部分に開口を有するハードマスク22が形成される。そして、ハードマスク22を利用して、犠牲酸化膜21およびエピタキシャル層3がエッチングされることにより、トレンチ6が形成される。トレンチ6の形成後、犠牲酸化膜21およびハードマスク22は、除去される。
次に、図2Cに示すように、熱酸化処理が行われることにより、トレンチ6の内面を含むエピタキシャル層3の表面の全域に、SiOからなる酸化膜23が形成される。
その後、図2Dに示すように、CVD法により、酸化膜23上に、N型不純物が高濃度にドーピングされたポリシリコンの堆積層24が形成される。堆積層24は、所定の厚みで形成され、トレンチ6内を埋め尽くさない。
そして、図2Eに示すように、エッチバックによって、堆積層24がトレンチ6の深さ方向(エピタキシャル層3の表面に直交する方向)に一様にエッチングされる。これにより、酸化膜23におけるトレンチ6の側面に沿って形成された部分上に、堆積層24が選択的に残る。この選択的に残された断面略三角形状の堆積層24がゲート電極8となり、ゲート電極8に囲まれる部分において、酸化膜23におけるトレンチ6の底面を覆う部分が部分的に露出する。
次いで、図2Fに示すように、HDP−CVD(High Density Plasma Chemical Vapor Deposition:高密度プラズマ化学気相成長)法により、エピタキシャル層3上にSiOが堆積される。SiOは、トレンチ6内を埋め尽くすとともに、エピタキシャル層3を覆い尽くすまで堆積される。これにより、トレンチ6内およびエピタキシャル層3上に堆積層19が形成される。
そして、図2Gに示すように、エッチバックによって、堆積層19におけるトレンチ6外に存在する部分およびトレンチ6内に存在する部分のトレンチ6の一部が除去される。これにより、トレンチ6内の底部に底部埋設体17が形成される。また、酸化膜23におけるトレンチ6外に存在する部分が除去され、トレンチ6の内面上のみに酸化膜23が残されることにより、ゲート絶縁膜7が得られる。
その後、図2Hに示すように、CVD法により、トレンチ6内における底部埋設体17上およびエピタキシャル層3上に、N型不純物が高濃度にドーピングされたポリシリコンからなる堆積層30が形成される。この堆積層30は、トレンチ6を埋め尽くす厚さに形成される。
次いで、堆積層30がエッチバックされる。このエッチバックは、堆積層30におけるトレンチ6外に存在する部分が全て除去され、エピタキシャル層3の表面が露出するまで続けられる。これにより、図2Iに示すように、トレンチ6内に埋設され、エピタキシャル層3の表面とほぼ面一な表面を有する上部埋設体29が形成される。
その後、P型不純物のイオンが、エピタキシャル層3の内部に向けて注入される。
次いで、ドライブイン拡散処理が行われる。このドライブイン拡散処理により、エピタキシャル層3に注入されたP型不純物のイオンが拡散し、図2Jに示すように、エピタキシャル層3に、ボディ領域5が形成される。
その後、図2Kに示すように、エピタキシャル層3上に、ソース領域9を形成すべき部分と対向する部分に開口を有するマスク25が形成される。そして、マスク25の開口を介して、エピタキシャル層3の表層部に、N型不純物のイオンが注入される。このイオン注入後、マスク25は除去される。
さらに、図2Lに示すように、エピタキシャル層3上に、ボディコンタクト領域10を形成すべき部分と対向する部分に開口を有するマスク26が形成される。そして、マスク26の開口を介して、エピタキシャル層3の表層部に、P型不純物のイオンが注入される。このイオン注入後、マスク26は除去される。
その後、アニール処理が行われる。このアニール処理により、図2Mに示すように、エピタキシャル層3の表層部に注入されたN型不純物およびP型不純物が活性化され、エピタキシャル層3の表層部に、ソース領域9およびボディコンタクト領域10が形成される。
次いで、図2Nに示すように、CVD法により、エピタキシャル層3および上部埋設体29上に層間絶縁膜13が形成される。その後、層間絶縁膜13上に、コンタクト孔11およびコンタクト孔15を形成すべき部分と対向する開口を有するマスク20が形成され、このマスク20を用いて、層間絶縁膜13がドライエッチングされる。これにより、層間絶縁膜13に、コンタクト孔11およびコンタクト孔15が形成される。
そして、コンタクト孔11にコンタクト12が埋設され、このコンタクト12上にゲート配線16が形成されるとともに、コンタクト孔15にコンタクト18が埋設され、このコンタクト18上にソース配線14が形成される。また、N型基板2の裏面にドレイン電極27が形成される。これにより、図1に示す半導体装置1が得られる。
以上、本発明の一実施形態を説明したが、本発明は、他の形態で実施することもできる。たとえば、半導体装置1の各半導体部分の導電型を反転した構成が採用されてもよい。すなわち、半導体装置1において、P型の部分がN型であり、N型の部分がP型であってもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
本発明の一実施形態に係る半導体装置の構造を示す図解的な断面図である。 図1に示す半導体装置の製造方法を説明するための図解的な断面図である。 図2Aの次の工程を示す図解的な断面図である。 図2Bの次の工程を示す図解的な断面図である。 図2Cの次の工程を示す図解的な断面図である。 図2Dの次の工程を示す図解的な断面図である。 図2Eの次の工程を示す図解的な断面図である。 図2Fの次の工程を示す図解的な断面図である。 図2Gの次の工程を示す図解的な断面図である。 図2Hの次の工程を示す図解的な断面図である。 図2Iの次の工程を示す図解的な断面図である。 図2Jの次の工程を示す図解的な断面図である。 図2Kの次の工程を示す図解的な断面図である。 図2Lの次の工程を示す図解的な断面図である。 図2Mの次の工程を示す図解的な断面図である。 従来のトレンチゲート型VDMOSFETを有する半導体装置の構造を示す模式的な断面図である。 図3に示すVDMOSFETのオン抵抗とゲート−ドレイン電荷量との関係を示すグラフである。
符号の説明
1 半導体装置
3 半導体層
4 N型領域(第1導電型領域)
5 ボディ領域
6 トレンチ
7 ゲート絶縁膜
8 ゲート電極
9 ソース領域
17 絶縁体
29 中間電極

Claims (2)

  1. 半導体層と、
    前記半導体層の基層部に形成された第1導電型の第1導電型領域と、
    前記半導体層に形成され、前記第1導電型領域に接する第2導電型のボディ領域と、
    前記半導体層に形成され、前記ボディ領域を貫通し、最深部が前記第1導電型領域に達するトレンチと、
    前記半導体層の表層部における前記トレンチの周囲に形成され、前記ボディ領域に接する第1導電型のソース領域と、
    前記トレンチの底面および側面上に形成されたゲート絶縁膜と、
    前記ゲート絶縁膜における前記トレンチの側面を覆う部分の全域に沿って形成されたゲート電極と、
    前記トレンチ内の底部に埋設され、絶縁性を有する材料からなり、前記ゲート絶縁膜および前記ゲート電極に接する底部埋設体と、
    前記トレンチ内における前記底部埋設体上に埋設され、導電性を有するポリシリコンからなる上部埋設体とを備える、半導体装置。
  2. 前記ゲート電極は、前記トレンチの底面に近づくほどその厚みが大きくなる断面略三角形状に形成されている、請求項1に記載の半導体装置。
JP2008014105A 2008-01-24 2008-01-24 半導体装置 Pending JP2009176953A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014105A JP2009176953A (ja) 2008-01-24 2008-01-24 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014105A JP2009176953A (ja) 2008-01-24 2008-01-24 半導体装置

Publications (1)

Publication Number Publication Date
JP2009176953A true JP2009176953A (ja) 2009-08-06

Family

ID=41031739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014105A Pending JP2009176953A (ja) 2008-01-24 2008-01-24 半導体装置

Country Status (1)

Country Link
JP (1) JP2009176953A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468334A (zh) * 2010-11-19 2012-05-23 无锡华润上华半导体有限公司 Vdmos器件及其制造方法
CN103489917A (zh) * 2013-10-22 2014-01-01 东南大学 一种高雪崩耐量能力的纵向双扩散金属氧化物半导体结构
US9653597B2 (en) 2010-05-20 2017-05-16 Infineon Technologies Americas Corp. Method for fabricating a shallow and narrow trench FET and related structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510215A (ja) * 2002-12-14 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 縦型絶縁ゲート・トランジスタおよび製造方法
JP2007311574A (ja) * 2006-05-18 2007-11-29 Nec Electronics Corp 半導体装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510215A (ja) * 2002-12-14 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 縦型絶縁ゲート・トランジスタおよび製造方法
JP2007311574A (ja) * 2006-05-18 2007-11-29 Nec Electronics Corp 半導体装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653597B2 (en) 2010-05-20 2017-05-16 Infineon Technologies Americas Corp. Method for fabricating a shallow and narrow trench FET and related structures
CN102468334A (zh) * 2010-11-19 2012-05-23 无锡华润上华半导体有限公司 Vdmos器件及其制造方法
CN103489917A (zh) * 2013-10-22 2014-01-01 东南大学 一种高雪崩耐量能力的纵向双扩散金属氧化物半导体结构
CN103489917B (zh) * 2013-10-22 2016-09-21 东南大学 一种高雪崩耐量能力的纵向双扩散金属氧化物半导体结构

Similar Documents

Publication Publication Date Title
US11075297B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8384152B2 (en) Semiconductor device having trench gate VDMOSFET and method of manufacturing the same
JP5767430B2 (ja) 半導体装置および半導体装置の製造方法
US8022472B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP7383760B2 (ja) 半導体装置
JP5394025B2 (ja) 半導体装置および半導体装置の製造方法
JP5604029B2 (ja) 半導体装置およびその製造方法
JP2013058575A (ja) 半導体装置及びその製造方法
JP2009246225A (ja) 半導体装置
JP5385567B2 (ja) 半導体装置および半導体装置の製造方法
JP5563760B2 (ja) 半導体装置
JP2009176953A (ja) 半導体装置
JP5388495B2 (ja) 半導体装置
JP2010192691A (ja) 半導体装置
KR102324168B1 (ko) 반도체 장치 및 그 제조 방법
JP2009246224A (ja) 半導体装置
JP5390758B2 (ja) 半導体装置
JP2009049315A (ja) 半導体装置および半導体装置の製造方法
KR20190118812A (ko) 반도체 장치 및 그 제조 방법
JP2009158587A (ja) 半導体装置
JP5135884B2 (ja) 半導体装置の製造方法
JP2009266961A (ja) 半導体装置
JP2006196545A (ja) 半導体装置の製造方法
JP2010147299A (ja) 半導体装置および半導体装置の製造方法
KR20090022013A (ko) 드레인 확장형 모스 트랜지스터의 제조방법

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100630

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20110111

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A977 Report on retrieval

Effective date: 20130228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Effective date: 20130419

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20131205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20140327

Free format text: JAPANESE INTERMEDIATE CODE: A02