[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009038330A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2009038330A
JP2009038330A JP2007250465A JP2007250465A JP2009038330A JP 2009038330 A JP2009038330 A JP 2009038330A JP 2007250465 A JP2007250465 A JP 2007250465A JP 2007250465 A JP2007250465 A JP 2007250465A JP 2009038330 A JP2009038330 A JP 2009038330A
Authority
JP
Japan
Prior art keywords
insulating film
conductivity type
forming
region
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007250465A
Other languages
Japanese (ja)
Inventor
Masaaki Ogino
正明 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2007250465A priority Critical patent/JP2009038330A/en
Publication of JP2009038330A publication Critical patent/JP2009038330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a semiconductor device capable of improving gate withstand voltage decline defect in the semiconductor device provided with a top gate type structure. <P>SOLUTION: The manufacturing method of the top gate type semiconductor device has a step of forming a level difference by etching the surface of an initial insulating film 2 so as to be lower than the surface of an n type semiconductor crystal layer 16 by the thickness of 50% to 100% of the thickness of a gate insulating film 9 on the boundary surface of the surface of the initial insulating film 2 and the surface of the (n) type semiconductor crystal layer 16 between a step of forming a function region including a (p) type base region 13 and an n++ type emitter region 14 in the (n) type semiconductor crystal layer 16 clamped by the initial insulating film 2 and formed so as to be separated from a semiconductor substrate 1 by a substrate insulating film and a step of forming a MOS gate having a gate electrode 10 formed through the gate insulating film 9 on the surface of the (p) type base region 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力変換装置などに使用されるパワー半導体装置の製造方法に関する。   The present invention relates to a method of manufacturing a power semiconductor device used for a power conversion device or the like.

本発明にかかるパワー半導体装置の一種であるIGBTについては、これまで数多くの改良によって、その性能の向上が図られてきている。ここで、IGBTの性能とは、オフ時には、電圧を保持して電流を遮断し、オン時には、できる限り小さい電圧降下、すなわち、小さいオン電圧で電流を流すことができ、パワー損失の少ないスイッチングデバイスとしての性能のことである。
以下、本発明にかかるIGBTの特性等について簡単に説明する。IGBTの保持可能な最大電圧、すなわち耐圧の大きさと、オン時の電圧降下(オン電圧)間には、いわゆるトレードオフの関係が存在し、高耐圧のIGBTほど厚い高抵抗層を必要とするのでオン電圧が高くなる。また、オン電圧とターンオフ損失の間にも、オフ直後の残留キャリアが多い構造ほど、オン電圧は低いがスイッチング損失(特に、ターンオフ損失)は大きくなるというトレードオフ関係があることはよく知られている。このようなトレードオフ関係のある両特性を共に改善することは一般的には困難とされている。最善の策はトレードオフ関係の最適化が得られるようにデバイスの構造設計をすることである。
最適なトレードオフ関係を実現するには、ドリフト層中のアノード側のキャリア濃度を下げるとともに、カソード側のキャリア濃度を上げることによって、アノード側とカソード側のキャリア濃度の比率が1:5程度になるようにすればよいことが知られている。さらに、ドリフト層でのキャリアライフタイムをできるだけ大きく保つことによって、ドリフト層内の平均キャリア濃度が高くなるようにすればよい。
With respect to an IGBT which is a kind of power semiconductor device according to the present invention, the performance has been improved by many improvements so far. Here, the performance of the IGBT is a switching device that keeps a voltage and shuts off a current when it is off, and can flow a current with a voltage drop as small as possible, that is, a small on voltage when it is on, and has low power loss. It is the performance as.
The characteristics of the IGBT according to the present invention will be briefly described below. There is a so-called trade-off relationship between the maximum voltage that the IGBT can hold, that is, the magnitude of the withstand voltage and the voltage drop (ON voltage) at the time of ON, and the higher withstand voltage IGBT requires a thicker high resistance layer. The on-voltage increases. In addition, it is well known that there is a trade-off relationship between the on-voltage and the turn-off loss that the higher the residual carrier immediately after the off, the lower the on-voltage, but the higher the switching loss (especially the turn-off loss). Yes. It is generally considered difficult to improve both characteristics having such a trade-off relationship. The best strategy is to design the device structure so that trade-off optimization is achieved.
In order to achieve the optimum trade-off relationship, the carrier concentration on the anode side in the drift layer is lowered and the carrier concentration on the cathode side is raised, so that the ratio of the carrier concentration on the anode side to the cathode side is about 1: 5. It is known that this should be done. Furthermore, the average carrier concentration in the drift layer may be increased by keeping the carrier lifetime in the drift layer as large as possible.

アノード側のキャリア濃度を下げる方法としては、アノード層(コレクタ層)の総不純物量を下げることが実際に行われている。一方、カソード側のキャリア濃度を上げることの作用効果はIE効果として、よく知られている。
さらに別途、表面カソード側を新規なキャリア高注入構造にすることにより、前述のオン電圧−ターンオフ損失のトレードオフを大幅に改善できるトップゲート型IGBTについても既に特許文献によって公開されている(特許文献1、特許文献2、特許文献3)。以下、このトップゲート構造を有するIGBTの製造方法について、本発明にも関係するので図面を参照して詳細に説明する。以下、参照する図6〜図9はいずれも、IGBTの製造方法を示すために製造工程順に並べたユニットセルの断面図である。簡潔な記述とするために、それらの図面については図番のみを示す。
図6(a)に示すように、n-型Si半導体基板101の全面に熱酸化またはCVD成長により膜厚0.7μmの初期酸化膜102を形成する。次に初期酸化膜(ストッパ酸化膜)102を並列ストライプ状の平面パターンとなるように選択的にドライエッチングして、初期酸化膜102の並列ストライプ間が20μm幅の第一開口部103を形成する(図6(b))。並列ストライプ状平面パターンからなる初期酸化膜102自体の基板面方向の幅は3μm程度が好ましい。続いて、図6(c)に示すように、熱酸化またはCVDによって基板酸化膜104を厚さ0.1μmの厚さに全面形成した後、フォトリソグラフィによって基板酸化膜104の中央にストライプ状初期酸化膜102に平行で幅1μmの第二開口部105を形成する。
As a method for reducing the carrier concentration on the anode side, the total impurity amount in the anode layer (collector layer) is actually reduced. On the other hand, the effect of increasing the carrier concentration on the cathode side is well known as the IE effect.
Further, a top gate type IGBT that can significantly improve the above-described on-voltage-turn-off loss trade-off by making the surface cathode side a novel high carrier injection structure has already been disclosed in the patent literature (Patent Literature). 1, Patent Document 2, Patent Document 3). Hereinafter, the manufacturing method of the IGBT having the top gate structure is related to the present invention and will be described in detail with reference to the drawings. Hereinafter, all of FIGS. 6 to 9 to be referred to are cross-sectional views of unit cells arranged in the order of the manufacturing process in order to show the manufacturing method of the IGBT. For the sake of brevity, only the figure numbers are shown for those drawings.
As shown in FIG. 6A, an initial oxide film 102 having a thickness of 0.7 μm is formed on the entire surface of the n -type Si semiconductor substrate 101 by thermal oxidation or CVD growth. Next, the initial oxide film (stopper oxide film) 102 is selectively dry-etched so as to form a parallel stripe-like planar pattern, thereby forming a first opening 103 having a width of 20 μm between the parallel stripes of the initial oxide film 102. (FIG. 6B). The width in the substrate surface direction of the initial oxide film 102 having a parallel stripe-like planar pattern is preferably about 3 μm. Subsequently, as shown in FIG. 6C, a substrate oxide film 104 is formed on the entire surface to a thickness of 0.1 μm by thermal oxidation or CVD, and then a striped initial pattern is formed at the center of the substrate oxide film 104 by photolithography. A second opening 105 parallel to the oxide film 102 and having a width of 1 μm is formed.

その後、第二開口部105によって露出したシリコン基板101表面をシード層としてn型エピタキシャル成長層106を成長させる。n型エピタキシャル成長層106の成長が第二開口部105で始まってから成長面が基板酸化膜104の厚みを超えると成長は基板酸化膜104上を横方向にも進む。その後、端部の初期酸化膜102の膜厚を乗り越えて第一開口部103の全面を初期酸化膜102の厚さ以上に被覆した時点で成長をストップさせる(図6(c))。
次に、初期酸化膜102を酸化膜ストッパーとして図7(d)に示すようにn型エピタキシャル成長層106表面が初期酸化膜102の表面と高さが概ね等しい平坦な断面形状になるまで研磨を行う。研磨後のn型エピタキシャル成長層106の厚さは約0.6μm〜0.7μm程度になる。
次に、図7(e)、(f)に示すように、研磨後のn型エピタキシャル成長層106の表面に、厚さ30nmのバッファ酸化膜107aを形成した後、フォトリソグラフィによりフォトレジスト30をマスクにpチャネル領域109をボロンのイオン注入および後、熱処理により形成後、図8(g)、(h)、(i)に示すように、p+ボディ領域112、n++エミッタ領域113形成用のフォトパターン形成を行い、各フォトレジスト30をマスクにしてボロンと砒素のイオン注入および1000℃の後熱処理により各領域を形成する。元のn型エピタキシャル成長層106のままで残される領域をn+バッファ領域106aとする。前記n型エピタキシャル成長層106に、n+バッファ領域106a、pチャネル領域109、p+ボディ領域112、n++エミッタ領域113などを形成した層を、以降、カソード膜120と称することもある。
Thereafter, an n-type epitaxial growth layer 106 is grown using the surface of the silicon substrate 101 exposed through the second opening 105 as a seed layer. If the growth surface exceeds the thickness of the substrate oxide film 104 after the growth of the n-type epitaxial growth layer 106 starts at the second opening 105, the growth proceeds in the lateral direction on the substrate oxide film 104. After that, the growth is stopped when the thickness of the initial oxide film 102 at the end is overcome and the entire surface of the first opening 103 is covered by the thickness of the initial oxide film 102 or more (FIG. 6C).
Next, polishing is performed using the initial oxide film 102 as an oxide film stopper until the surface of the n-type epitaxial growth layer 106 has a flat cross-sectional shape whose height is substantially equal to the surface of the initial oxide film 102 as shown in FIG. . The thickness of the n-type epitaxial growth layer 106 after polishing becomes about 0.6 μm to 0.7 μm.
Next, as shown in FIGS. 7E and 7F, a buffer oxide film 107a having a thickness of 30 nm is formed on the surface of the polished n-type epitaxial growth layer 106, and then the photoresist 30 is masked by photolithography. After the p channel region 109 is formed by boron ion implantation and heat treatment, the p + body region 112 and the n ++ emitter region 113 are formed as shown in FIGS. 8 (g), (h) and (i). Then, each region is formed by ion implantation of boron and arsenic and post-heat treatment at 1000 ° C. using each photoresist 30 as a mask. A region remaining as the original n-type epitaxial growth layer 106 is defined as an n + buffer region 106a. A layer in which the n + buffer region 106a, the p channel region 109, the p + body region 112, the n ++ emitter region 113, and the like are formed on the n type epitaxial growth layer 106 may be hereinafter referred to as a cathode film 120.

次に、前記バッファ酸化膜107aを除去し、カソード膜120表面を清浄化処理を施した後、図9(j)に示すように、前記カソード膜120の上に、熱酸化あるいはCVDによりゲート酸化膜107bを80nmの厚さで全面に形成する。さらにゲート電極となるポリシリコン層を500nm程度の厚さで、CVDにより全面に形成し、このポリシリコン層に高濃度のリンをドープして低抵抗層とした後、フォトリソグラフィによりポリシリコン層の一部を除去して所定の形状の導電性ポリシリコンゲート電極108を形成する。
この際、前述のp+ボディ領域112とn++エミッタ領域113の形成工程では、p+ボディ領域112がn++エミッタ領域113を面方向に下側から超えて、ゲート酸化膜107bの直下の、nチャネルが形成されるpチャネル領域109にかかると、チャネル生成に悪影響を及ぼしてゲートしきい値電圧が上昇するなどの問題が発生するので、n++エミッタ領域113下のp+ボディ領域112を所定の幅だけ、チャネルが生成されるpチャネル領域109から遠ざける方向に後退させることが必要である。
その後、図9(k)に示すように、厚さ約1μmのPSG(フォスフォシリケートガラス)膜を全面に形成して層間絶縁膜114とする。続いて、この層間絶縁膜114にn++エミッタ領域113とエミッタ電極115とのコンタクトのためのコンタクト開口部116を形成し、アルミニウム電極(エミッタ電極)115を形成し、図示しない基板裏面のアノード側にアノード電極を形成することにより、従来のトップゲート構造を有するIGBTが完成する。このトップゲート型IGBTによれば、オン電圧とターンオフ損失間のトレードオフを大幅に改善することができる。
特開2007−43028号公報 特開2006−237553号公報 米国特許出願公開第2006/0076583号明細書
Next, after removing the buffer oxide film 107a and cleaning the surface of the cathode film 120, as shown in FIG. 9 (j), gate oxidation is performed on the cathode film 120 by thermal oxidation or CVD. A film 107b is formed on the entire surface with a thickness of 80 nm. Further, a polysilicon layer serving as a gate electrode is formed on the entire surface by CVD with a thickness of about 500 nm. After doping the polysilicon layer with a high concentration of phosphorus to form a low resistance layer, the polysilicon layer is formed by photolithography. A part thereof is removed to form a conductive polysilicon gate electrode 108 having a predetermined shape.
At this time, in the above-described process of forming the p + body region 112 and the n ++ emitter region 113, the p + body region 112 exceeds the n ++ emitter region 113 from the lower side in the plane direction, and immediately below the gate oxide film 107b. When the n-channel is formed on the p-channel region 109, the channel generation is adversely affected and the gate threshold voltage rises. Therefore, the p + body under the n ++ emitter region 113 is generated. It is necessary to recede the region 112 by a predetermined width in a direction away from the p-channel region 109 where the channel is generated.
Thereafter, as shown in FIG. 9K, a PSG (phosphosilicate glass) film having a thickness of about 1 μm is formed on the entire surface to form an interlayer insulating film 114. Subsequently, a contact opening 116 for contact between the n ++ emitter region 113 and the emitter electrode 115 is formed in the interlayer insulating film 114, an aluminum electrode (emitter electrode) 115 is formed, and an anode on the back surface of the substrate (not shown) is formed. By forming an anode electrode on the side, a conventional IGBT having a top gate structure is completed. According to this top gate type IGBT, the trade-off between the ON voltage and the turn-off loss can be greatly improved.
JP 2007-43028 A JP 2006-237553 A US Patent Application Publication No. 2006/0076583

しかしながら、前述した従来のトップゲート型IGBTでは、カソード膜120にはオン状態では大電流を流し、阻止時においては高電界が印加されるため、良好なデバイス特性を得るにはカソード膜120としては結晶欠陥の少ない(あるいは無い)良質な結晶性シリコン半導体膜を形成する必要がある。このため従来の通常のIGBTには無い特殊なプロセスとして、前述のように、n-型Si半導体基板101上に形成された初期酸化膜(以下ストッパ酸化膜)102および基板酸化膜104に、第一開口部103、第二開口部105をそれぞれ形成した後、第一開口部103をn型シリコンエピタキシャル成長層106で埋め、続いて研磨処理によりストッパ酸化膜102の表面と面一に平坦化する工程と、研磨後に平坦化されたn型エピタキシャル成長層106に選択的にn+バッファ領域106a、pチャネル領域109、p+ボディ領域112、n++エミッタ領域113を形成する工程を有している。
さらに、前述のn型エピタキシャル成長層表面を平坦化する際に、研磨作業の終点を検知するストッパとして用いるストッパ酸化膜102表面とn型エピタキシャル成長層106表面とが相互に接する境界表面が必ず出現する。ところが、その後の工程でゲート酸化処理が行なわれると、前述の境界表面部分は熱酸化時の応力によって、境界でゲート酸化膜が薄膜化する現象が現れる。さらに、このように薄膜化した部分を含むゲート酸化膜上に前記ポリシリコンゲート電極が被覆されると、この薄膜部分でゲート酸化膜の耐圧が低下するという問題が発生する。
However, in the above-described conventional top-gate IGBT, since a large current flows through the cathode film 120 in the on state and a high electric field is applied at the time of blocking, the cathode film 120 is used to obtain good device characteristics. It is necessary to form a high-quality crystalline silicon semiconductor film with few (or no) crystal defects. For this reason, as a special process that does not exist in the conventional normal IGBT, as described above, the initial oxide film (hereinafter referred to as the stopper oxide film) 102 and the substrate oxide film 104 formed on the n -type Si semiconductor substrate 101 are subjected to the first process. After forming each of the one opening 103 and the second opening 105, the first opening 103 is filled with an n-type silicon epitaxial growth layer 106, and then planarized to be flush with the surface of the stopper oxide film 102 by a polishing process. And an n + buffer region 106a, a p channel region 109, a p + body region 112, and an n ++ emitter region 113 are selectively formed on the n type epitaxial growth layer 106 planarized after polishing.
Further, when the surface of the n-type epitaxial growth layer is planarized, a boundary surface where the surface of the stopper oxide film 102 used as a stopper for detecting the end point of the polishing operation and the surface of the n-type epitaxial growth layer 106 always appears. However, when the gate oxidation process is performed in the subsequent process, a phenomenon occurs in which the gate oxide film is thinned at the boundary due to the stress at the time of thermal oxidation. Further, when the polysilicon gate electrode is covered on the gate oxide film including the thinned portion, there arises a problem that the breakdown voltage of the gate oxide film is lowered at the thin film portion.

前述の図9(k)に示すトップゲート型IGBTのユニットセルの断面図は、ストッパ酸化膜102とカソード膜120の境界表面に、ゲート酸化膜107bおよびその上に形成されるポリシリコンゲート電極108が形成されない場所における一断面であるので、ゲート酸化膜107bの局部的薄膜化が示されていない。しかし、実際には、IGBTチップ内の各ユニットセル上に形成されるポリシリコンゲート電極108は、図示しないゲート電極メタルとコンタクトさせるためにユニットセル外に引き出されて集合されるので、図2の、境界表面近傍の拡大断面図に示すように、カソード膜120とストッパ酸化膜102との境界表面上のゲート酸化膜107b上にポリシリコンゲート電極108が形成される構造の部分が必ず存在する。そして、この図2に示すように、ゲート酸化膜107bの局部的薄膜部121に起因して、ゲート酸化膜107bの耐圧が著しく低下するといった問題が生じる。
本発明は、前述の問題点に鑑みてなされたものであり、本発明の目的は、トップゲート型構造を有する半導体装置において、ゲート耐圧低下不良を改善できる半導体装置の製造方法を提供することである。
The cross-sectional view of the unit cell of the top gate type IGBT shown in FIG. 9K is a gate oxide film 107b on the boundary surface between the stopper oxide film 102 and the cathode film 120 and the polysilicon gate electrode 108 formed thereon. Since it is a cross section in a place where no is formed, the local thinning of the gate oxide film 107b is not shown. However, in practice, the polysilicon gate electrode 108 formed on each unit cell in the IGBT chip is pulled out and assembled outside the unit cell to make contact with a gate electrode metal (not shown). As shown in the enlarged sectional view in the vicinity of the boundary surface, there is always a portion of the structure in which the polysilicon gate electrode 108 is formed on the gate oxide film 107b on the boundary surface between the cathode film 120 and the stopper oxide film 102. As shown in FIG. 2, the local thin film portion 121 of the gate oxide film 107b causes a problem that the breakdown voltage of the gate oxide film 107b is significantly reduced.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method of manufacturing a semiconductor device that can improve a gate breakdown voltage reduction failure in a semiconductor device having a top gate type structure. is there.

特許請求の範囲の請求項1記載の発明によれば、一導電型半導体基板表面に、第一開口部を間に挟んで直線状に配置される初期絶縁膜と、該初期絶縁膜より薄膜であって、前記第一開口部を含む前記半導体基板表面に形成される基板絶縁膜とを形成する第一工程、前記第一開口部内の基板絶縁膜に前記初期絶縁膜と平行に設けられる第二開口部を形成する第二工程、前記第一開口部内を前記初期絶縁膜と同程度の厚さに埋める一導電型半導体結晶層を形成する第三工程、該半導体結晶層に、前記第二開口部で前記半導体基板表面に接触する一導電型領域と、前記基板絶縁膜上にあって前記一導電型領域に隣接する他導電型ベース領域と、該他導電型ベース領域表面層に選択的に形成される一導電型エミッタ領域と、前記他導電型ベース領域内に選択的に他導電型ベース領域より高濃度に形成される他導電型ボディ領域とを形成する第四工程、前記一導電型領域と前記一導電型エミッタ領域とに挟まれる前記他導電型ベース領域の表面にゲート絶縁膜を介して形成されるゲート電極を形成する第五工程とを有する半導体装置の製造方法において、前記第四工程と第五工程の間に、前記初期絶縁膜表面と前記一導電型半導体結晶層表面とが接する境界表面で、前記初期絶縁膜表面を、前記一導電型半導体結晶層表面より、前記ゲート絶縁膜の厚さの50%乃至100%の厚さ分低くなるようにエッチングして段差を形成する工程を有する半導体装置の製造方法とする。   According to the first aspect of the present invention, the initial insulating film arranged linearly on the surface of the one-conductivity-type semiconductor substrate with the first opening interposed therebetween, and the first insulating film is thinner than the initial insulating film. A first step of forming a substrate insulating film formed on the surface of the semiconductor substrate including the first opening; a second step provided in parallel to the initial insulating film on the substrate insulating film in the first opening; A second step of forming an opening; a third step of forming a one-conductivity-type semiconductor crystal layer that fills the first opening with a thickness similar to that of the initial insulating film; and the second opening in the semiconductor crystal layer Selectively on the surface of the semiconductor substrate, the other conductive type base region on the substrate insulating film adjacent to the one conductive type region, and the other conductive type base region surface layer. One conductivity type emitter region to be formed and the other conductivity type base region A fourth step of selectively forming another conductivity type body region formed at a higher concentration than the other conductivity type base region, the other conductivity type base region sandwiched between the one conductivity type region and the one conductivity type emitter region; And a fifth step of forming a gate electrode formed on the surface of the first insulating film via the gate insulating film, the first insulating film surface and the one step between the fourth step and the fifth step. The initial insulating film surface is lower by 50% to 100% of the thickness of the gate insulating film than the surface of the one conductive type semiconductor crystal layer at the boundary surface contacting the conductive type semiconductor crystal layer surface. A method for manufacturing a semiconductor device having a step of forming a step by etching.

特許請求の範囲の請求項2記載の発明によれば、ゲート酸化膜を形成する処理温度を1000℃以上とする特許請求の範囲の請求項1記載の半導体装置の製造方法とする。
特許請求の範囲の請求項3記載の発明によれば、一導電型半導体基板表面に、第一開口部を間に挟んで直線状に配置される初期絶縁膜と、該初期絶縁膜より薄膜であって、前記第一開口部を含む前記半導体基板表面に形成される基板絶縁膜とを形成する第一工程、前記第一開口部内の基板絶縁膜に前記初期絶縁膜と平行な第二開口部を形成する第二工程、前記第一開口部内を前記初期絶縁膜と同程度の厚さに埋める一導電型半導体結晶層を形成する第三工程、該半導体結晶層に、前記第二開口部で前記半導体基板表面に接触する一導電型領域と、前記基板絶縁膜上にあって前記一導電型領域に隣接する他導電型ベース領域と、該他導電型ベース領域表面層に、選択的に形成される一導電型エミッタ領域と前記他導電型ベース領域より高濃度の他導電型ボディ領域とを形成する第四工程、前記一導電型領域と前記一導電型エミッタ領域とに挟まれる前記他導電型ベース領域の表面にゲート絶縁膜を介して形成されるゲート電極を形成する第五工程とを有する半導体装置の製造方法において、前記第四工程と第五工程の間に、前記初期絶縁膜表面と前記一導電型半導体結晶層表面とが接する境界表面であって、前記ゲート電極が覆う前記境界表面の前記一導電型半導体結晶層側の表面に形成される窒化シリコン膜をマスクとして用いて前記境界表面に接して選択的酸化膜を形成する工程を有する半導体装置の製造方法とすることにより、前記本発明の目的が達成される。
According to the second aspect of the present invention, the semiconductor device manufacturing method according to the first aspect of the present invention is such that the processing temperature for forming the gate oxide film is 1000 ° C. or higher.
According to the third aspect of the present invention, the initial insulating film arranged linearly on the surface of the one-conductivity-type semiconductor substrate with the first opening interposed therebetween, and the first insulating film is thinner than the initial insulating film. A first step of forming a substrate insulating film formed on the surface of the semiconductor substrate including the first opening, a second opening parallel to the initial insulating film in the substrate insulating film in the first opening A second step of forming a one-conductivity-type semiconductor crystal layer in which the inside of the first opening is filled to the same thickness as the initial insulating film, and the second opening in the semiconductor crystal layer Selectively formed in one conductivity type region in contact with the semiconductor substrate surface, another conductivity type base region adjacent to the one conductivity type region on the substrate insulating film, and the other conductivity type base region surface layer Higher concentration than the one conductivity type emitter region and the other conductivity type base region. A fourth step of forming a conductive type body region, forming a gate electrode formed on a surface of the other conductive type base region sandwiched between the one conductive type region and the one conductive type emitter region via a gate insulating film; In the method of manufacturing a semiconductor device having the fifth step, the boundary surface between the initial insulating film surface and the one-conductivity-type semiconductor crystal layer surface is in contact between the fourth step and the fifth step, Manufacturing a semiconductor device including a step of forming a selective oxide film in contact with the boundary surface using a silicon nitride film formed on the surface of the one conductivity type semiconductor crystal layer side of the boundary surface covered by the gate electrode as a mask By the method, the object of the present invention is achieved.

本発明によれば、トップゲート型構造を有する半導体装置において、ゲート耐圧低下不良が改善される半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the semiconductor device with which a gate breakdown voltage fall defect is improved can be provided in the semiconductor device which has a top gate type structure.

以下、本発明にかかる半導体装置の製造方法について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1は、本発明にかかるトップゲート型IGBTのユニットセルの断面図である。図2は本発明を説明するために参照する従来のトップゲート型IGBTのゲート酸化膜の局部的薄膜部の拡大断面図である。図3、4は本発明の実施例1にかかるトップゲート型IGBTの製造方法の特徴部分を示す拡大断面図である。図5はストッパ酸化膜の過剰エッチング時のゲート酸化膜の局部的薄膜部の拡大断面図である。図10、図11は本発明の実施例2にかかるトップゲート型IGBTの製造方法の特徴部分を示す拡大断面図である。
Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
FIG. 1 is a cross-sectional view of a unit cell of a top gate type IGBT according to the present invention. FIG. 2 is an enlarged sectional view of a local thin film portion of a gate oxide film of a conventional top gate type IGBT referred to for explaining the present invention. FIGS. 3 and 4 are enlarged cross-sectional views showing characteristic portions of the method for manufacturing the top gate IGBT according to the first embodiment of the present invention. FIG. 5 is an enlarged sectional view of a local thin film portion of the gate oxide film when the stopper oxide film is excessively etched. 10 and 11 are enlarged cross-sectional views showing characteristic portions of a method for manufacturing a top gate type IGBT according to Embodiment 2 of the present invention.

本発明の半導体装置の製造方法にかかる実施例1について、以下図1、図3、4を用いて説明する。図1に、実施例1にかかるトップゲート型IGBTのユニットセルのMOSゲート側のみの断面図を示す。MOS型半導体装置としては、MOSFET、IGBTなどがあるが、本発明では、特徴部分がMOSゲート側にあるので、いずれであってもよい。以降の説明では、IGBTとして説明を続ける。シリコン半導体基板としては、n型FZ−シリコン基板1のミラー研磨仕上げを用いる。基板の比抵抗は30〜200Ωcmの範囲が好ましく、IGBTに求められる耐圧によって選択する。たとえば、80Ωcmの基板1を用いて作製すれば、耐圧1200Vのトップゲート型IGBTとすることができる。
前記図1に示すIGBTは、この断面図に示される範囲では、前記図9(k)と、概ね同じである。図1の符号と図9(k)の符号との対応関係を示す。図1の1、2、7、9、10、11、12、13、14、15、16は図9(k)の101、102、106a、107b、108、114、115、109、113、112、120のこの順に対応する。図1のカソード膜16はn+バッファ領域7、pチャネル領域13、n++エミッタ領域14、p+ボディ領域15を合わせた膜を言う。
Example 1 according to the method for manufacturing a semiconductor device of the present invention will be described below with reference to FIGS. FIG. 1 is a sectional view of only the MOS gate side of a unit cell of a top gate type IGBT according to the first embodiment. As the MOS type semiconductor device, there are a MOSFET, an IGBT and the like. However, in the present invention, any of them may be used because the characteristic portion is on the MOS gate side. In the following description, the description is continued as an IGBT. As the silicon semiconductor substrate, the mirror polishing finish of the n-type FZ-silicon substrate 1 is used. The specific resistance of the substrate is preferably in the range of 30 to 200 Ωcm, and is selected according to the breakdown voltage required for the IGBT. For example, if a substrate 1 having 80 Ωcm is used, a top gate IGBT having a withstand voltage of 1200 V can be obtained.
The IGBT shown in FIG. 1 is substantially the same as FIG. 9 (k) in the range shown in this sectional view. The correspondence relationship between the reference numerals in FIG. 1 and the reference numerals in FIG. 1, 2, 7, 9, 10, 11, 12, 13, 14, 15, 16 are 101, 102, 106a, 107b, 108, 114, 115, 109, 113, 112 of FIG. 9 (k). , 120 in this order. The cathode film 16 in FIG. 1 is a film in which the n + buffer region 7, the p channel region 13, the n ++ emitter region 14, and the p + body region 15 are combined.

図3(a)は、前述の図2の拡大断面図と同様に、前記図1に示すIGBTの断面図には表れない、本発明にかかる、カソード膜16と初期酸化膜2の境界表面であって、後工程で導電性ポリシリコン膜10が覆うことになる基板表面部分の拡大断面図である。詳しくは、図3(a)は、前述の従来のトップゲート型IGBTの製造方法を示す図7(d)のステップと同様に、選択的に形成された初期絶縁膜をストッパ酸化膜2としてCMP(Chemical Mecanical Polishing)によりn型エピタキシャル成長層を面一に研磨し、所定の拡散層を形成してカソード膜16とする際に、その表面に形成される厚さ30nmのバッファ酸化膜19(図7(h)では107a)を有する製造ステップの前記ストッパ酸化膜2とカソード膜16との境界表面の近傍の拡大断面図である。
この図3(a)の断面図に示される状態を製造方法の観点で説明すると、図3(a)は、前述のように、従来のトップゲート構造を有するIGBTの製造方法を示す図6、図7、図8を参照して説明した工程と同様の工程をほぼ終え、次工程図9(j)のゲート酸化膜107bを形成する前の段階であって、図7(i)のステップの基板表面にバッファ酸化膜107aが残されている状態である。バッファ酸化膜19(図8ではバッファ酸化膜107a)の形成は、カソード膜16内に形成されるpチャネル領域13、p+ボディ領域15など(図3(a)には図示されない)の形成のために、カソード膜16の表面にイオン注入の直前に行う処理であり、図3(a)の状態はそれらの図示しないpチャネル領域13、p+ボディ領域15の拡散層のドライブ工程を終えた後のものである。このようにバッファ酸化膜19が形成されているので、図3(a)では境界表面に30nm(0.03μm)程度以下の段差のついた状態となっている(図8(h)ではバッファ酸化膜107aはカソード膜と初期酸化膜の両表面を覆うフラットな膜となっているが、実際には図3(a)のように段差がある)。この後、図3(b)のようにストッパ酸化膜2の表面をエッチングにより削り、所定の大きさの段差とする。ここでは、所定の大きさの段差として、ストッパ酸化膜2のエッチング量は0.05μmとする。このストッパ酸化膜2のエッチングはドライエッチングでもフッ酸によるウェットエッチングでもどちらでも構わないが、エッチング量が0.04μm以下ではエッチングばらつきがあった場合にバッファ酸化膜(厚さ0.03μm)19のエッチング残りが生じる可能性があり、0.1μm以上では、ストッパ酸化膜2の残膜厚さが不足する可能性がある。このようにしてストッパ酸化膜2の表面をカソード膜16の表面よりも低くする段差を形成する。この状態が図3(b)である。
FIG. 3A shows a boundary surface between the cathode film 16 and the initial oxide film 2 according to the present invention, which does not appear in the cross-sectional view of the IGBT shown in FIG. FIG. 4 is an enlarged cross-sectional view of a substrate surface portion that is to be covered with a conductive polysilicon film 10 in a later step. Specifically, FIG. 3A shows a CMP process using the selectively formed initial insulating film as a stopper oxide film 2 in the same manner as the step of FIG. 7D showing the above-described conventional top gate type IGBT manufacturing method. When the n-type epitaxial growth layer is polished flush with (Chemical Mechanical Polishing) to form a predetermined diffusion layer to form the cathode film 16, a buffer oxide film 19 with a thickness of 30 nm formed on the surface (FIG. 7). (H) is an enlarged sectional view of the vicinity of the boundary surface between the stopper oxide film 2 and the cathode film 16 in the manufacturing step having 107a).
The state shown in the cross-sectional view of FIG. 3A will be described in terms of a manufacturing method. FIG. 3A shows a manufacturing method of an IGBT having a conventional top gate structure as described above, FIG. Steps similar to the steps described with reference to FIGS. 7 and 8 are almost finished, and the next step before forming the gate oxide film 107b in FIG. 9 (j) is the step of FIG. 7 (i). In this state, the buffer oxide film 107a is left on the substrate surface. The buffer oxide film 19 (buffer oxide film 107a in FIG. 8) is formed by forming the p channel region 13, the p + body region 15 and the like (not shown in FIG. 3A) formed in the cathode film 16. Therefore, the process is performed immediately before the ion implantation on the surface of the cathode film 16, and the state of FIG. 3A has finished the driving process of the diffusion layers of the p channel region 13 and the p + body region 15 (not shown). Later. Since the buffer oxide film 19 is formed in this way, in FIG. 3A, the boundary surface has a step of about 30 nm (0.03 μm) or less (in FIG. 8H, the buffer oxide film 19). The film 107a is a flat film covering both surfaces of the cathode film and the initial oxide film, but actually has a step as shown in FIG. After that, as shown in FIG. 3B, the surface of the stopper oxide film 2 is etched to form a step having a predetermined size. Here, as a step having a predetermined size, the etching amount of the stopper oxide film 2 is set to 0.05 μm. The stopper oxide film 2 may be etched by either dry etching or wet etching with hydrofluoric acid. However, if the etching amount is 0.04 μm or less, the buffer oxide film 19 (thickness 0.03 μm) 19 may be etched. Etching residue may occur. If the thickness is 0.1 μm or more, the remaining thickness of the stopper oxide film 2 may be insufficient. In this way, a step is formed that makes the surface of the stopper oxide film 2 lower than the surface of the cathode film 16. This state is shown in FIG.

次いで、図3(c)に示すように、1000℃以上の高温の希釈パイロジェニック酸化により犠牲酸化を行う。犠牲酸化膜18の厚さは50nmである。犠牲酸化後の状態で、高温で希釈パイロジェニック酸化を行うことによって、酸化速度を抑制しつつ、酸化膜18の粘性流動を起こすことができるため、コーナー部の酸化膜18をより均一に形成することができる。図4(d)ではこの犠牲酸化膜18をフッ酸により除去した状態である。このフッ酸による犠牲酸化膜18の除去工程では、オーバーエッチし過ぎると、ストッパ酸化膜の膜厚が薄くなってしまうため、オーバーエッチ量は犠牲酸化膜厚の20%以下とする。図4(d)の破線がエッチング前の状態であり、実線が犠牲酸化膜18のエッチング後の境界近傍の表面である。
この後、厚さ80nmのゲート酸化膜9の形成を1000℃以上の高温の希釈パイロジェニック酸化で行う。前述の犠牲酸化膜18の形成時と同様に1000℃以上で酸化を行うことで図4(e)に示すようにコーナー部のゲート酸化膜9の薄膜化を回避できる。この後、図1に示すように、ポリシリコン膜を500nm、CVD法により堆積し、フォトリソグラフィ技術によりポリシリコンゲート電極10を形成する。その後、層間絶縁膜11の堆積後、層間絶縁膜11にエミッタ電極とのコンタクト開口部を形成し、エミッタ電極の形成および図示しないゲート電極用メタル配線を行う一般的な工程が適用される。この結果、従来のゲート酸化膜に局部的な薄膜部を有する従来のトップゲート型IGBTではゲート酸化膜耐圧が30V以下であったのに対し、本発明にかかる実施例1で形成されたトップゲート型IGBTでは、ゲート酸化膜耐圧65V以上という良好な絶縁特性を得ることができた。
Next, as shown in FIG. 3C, sacrificial oxidation is performed by dilute pyrogenic oxidation at a high temperature of 1000 ° C. or higher. The thickness of the sacrificial oxide film 18 is 50 nm. By performing diluted pyrogenic oxidation at a high temperature in the state after the sacrificial oxidation, the oxide film 18 can be made to flow viscously while suppressing the oxidation rate, so that the oxide film 18 in the corner portion is formed more uniformly. be able to. In FIG. 4D, the sacrificial oxide film 18 is removed with hydrofluoric acid. In the step of removing the sacrificial oxide film 18 using hydrofluoric acid, if the over-etching is excessive, the thickness of the stopper oxide film is reduced. Therefore, the over-etching amount is set to 20% or less of the sacrificial oxide film thickness. The dashed line in FIG. 4D is the state before etching, and the solid line is the surface of the sacrificial oxide film 18 near the boundary after etching.
Thereafter, the gate oxide film 9 having a thickness of 80 nm is formed by high-temperature diluted pyrogenic oxidation at 1000 ° C. or higher. By performing oxidation at 1000 ° C. or higher as in the case of forming the sacrificial oxide film 18 described above, it is possible to avoid thinning the gate oxide film 9 at the corner as shown in FIG. Thereafter, as shown in FIG. 1, a polysilicon film is deposited to a thickness of 500 nm by a CVD method, and a polysilicon gate electrode 10 is formed by a photolithography technique. Thereafter, after the interlayer insulating film 11 is deposited, a general process is performed in which a contact opening with the emitter electrode is formed in the interlayer insulating film 11 and the emitter electrode is formed and a gate electrode metal wiring (not shown) is formed. As a result, the conventional top gate IGBT having a local thin film portion on the conventional gate oxide film has a gate oxide breakdown voltage of 30 V or less, whereas the top gate formed in Example 1 according to the present invention. In the type IGBT, it was possible to obtain a good insulation characteristic of a gate oxide film withstand voltage of 65 V or more.

なお、前述した境界表面に段差を形成するためのストッパ酸化膜のエッチング工程において、そのエッチング量は後工程で、ゲート酸化膜9として形成する厚さである80nm以上行うと段差が大きくなり過ぎて、図5(a)に示す断面図のように段差の途中に角が残る状態となり、ゲート酸化膜9の形成後も、最終的に図5(b)のように、n型エピタキシャル成長層16とストッパ酸化膜2との境界の段差の途中のゲート酸化膜9自体に角部が形成されることになり、ゲート耐圧はゲート酸化膜9の角部で電界の集中が起きて低下する。また、エッチング量が多過ぎるとストッパ酸化膜2の残膜が薄くなり好ましくない。このため、ストッパ酸化膜2のエッチング量としては最終的なゲート酸化膜9の膜厚の50%〜100%、すなわち、実施例1の説明のように、ゲート酸化膜の厚さが80nmの場合、ストッパ酸化膜のエッチング量は40nm〜80nmとすることが望ましいのである。
以上、本発明にかかる実施例1で説明したように、犠牲酸化膜の形成前にストッパ酸化膜をエッチングすることで、カソード膜表面よりストッパ酸化膜表面が低くなるような段差を境界表面に形成することによって、カソード膜とストッパ酸化膜の境界表面のゲート酸化膜の薄膜化を回避できるため、ゲート酸化膜耐圧を著しく向上させることができる。
In the stopper oxide film etching step for forming a step on the boundary surface described above, if the etching amount is 80 nm or more, which is the thickness of the gate oxide film 9 formed in the subsequent step, the step becomes too large. As shown in the sectional view of FIG. 5A, corners remain in the middle of the step, and after the formation of the gate oxide film 9, the n-type epitaxial growth layer 16 is finally formed as shown in FIG. A corner is formed in the gate oxide film 9 itself in the middle of the step at the boundary with the stopper oxide film 2, and the gate breakdown voltage is lowered due to the concentration of an electric field at the corner of the gate oxide film 9. On the other hand, if the etching amount is too large, the remaining film of the stopper oxide film 2 becomes thin, which is not preferable. Therefore, the etching amount of the stopper oxide film 2 is 50% to 100% of the final gate oxide film 9 thickness, that is, the gate oxide film thickness is 80 nm as described in the first embodiment. The etching amount of the stopper oxide film is desirably 40 nm to 80 nm.
As described above, as described in the first embodiment of the present invention, the stopper oxide film is etched before the sacrificial oxide film is formed, thereby forming a step on the boundary surface that makes the stopper oxide film surface lower than the cathode film surface. By doing so, it is possible to avoid the gate oxide film from being thinned at the boundary surface between the cathode film and the stopper oxide film, so that the gate oxide film breakdown voltage can be remarkably improved.

本発明の半導体装置の製造方法にかかる実施例2について、以下、図1、図10〜図12を用いて説明する。図10(a)は、前記図7(d)の製造ステップに相当するステップであり、n+型エピタキシャルシリコン層106の研磨後表面と初期酸化膜102の表面との境界近傍であって、前記図7(d)には図示されない、境界表面上にポリシリコンゲート電極が覆う部分の拡大断面図である。n+型エピタキシャルシリコン7の研磨面の表面と初期酸化膜2の表面には段差が無く、面一である。
図10(b)は図10(a)の基板表面に厚さ30nmのバッファ酸化膜19を形成し、さらに、バッファ酸化膜19の形成後に、pチャネル領域13の形成のために、図示しないフォトリソグラフィによるパターニング、続いてイオン注入、ドライブ拡散処理を行ない、pチャネル領域13を形成する工程を示す。次に減圧CVD法により窒化シリコン膜を全面に堆積し、p+ボディ領域15の形成のためのマスクとするために前記窒化シリコン膜20をパターニングし、ボロンイオン注入を行う(図10(c))。ここで、窒化シリコン膜とは、通常はSi34膜を言うが、完全なSi34組成比に限らず、異なる組成比のものが含まれていてもよい。以降の説明では、窒化シリコン膜を前述と同じ語意として用いる。
Example 2 according to the method for manufacturing a semiconductor device of the present invention will be described below with reference to FIGS. 1 and 10 to 12. FIG. 10 (a) is a step corresponding to the manufacturing step of FIG. 7 (d), in the vicinity of the boundary between the polished surface of the n + type epitaxial silicon layer 106 and the surface of the initial oxide film 102, FIG. 8D is an enlarged cross-sectional view of a portion that is not illustrated in FIG. 7D and is covered with a polysilicon gate electrode on the boundary surface. There is no step between the surface of the polished surface of the n + -type epitaxial silicon 7 and the surface of the initial oxide film 2 and is flush.
In FIG. 10B, a buffer oxide film 19 having a thickness of 30 nm is formed on the substrate surface of FIG. 10A. Further, after the buffer oxide film 19 is formed, a p-channel region 13 is formed to form a p channel region 13. A process of forming a p-channel region 13 by performing patterning by lithography, followed by ion implantation and drive diffusion processing is shown. Next, a silicon nitride film is deposited on the entire surface by low pressure CVD, and the silicon nitride film 20 is patterned to form a mask for forming the p + body region 15, and boron ion implantation is performed (FIG. 10C). ). Here, the silicon nitride film normally refers to a Si 3 N 4 film, but is not limited to a complete Si 3 N 4 composition ratio, and may include films having different composition ratios. In the following description, the silicon nitride film is used as the same meaning as described above.

このボロンイオン注入後、さらに前記パターニング窒化シリコン膜20を用いて酸化処理を行う。この酸化処理工程は前記イオン注入したボロンの活性化処理を兼ねており、ボロンイオンの注入層がp+ボディ領域15となると同時に、窒化シリコン膜20と初期酸化膜2とに挟まれたp+ボディ領域15の表面が選択的に酸化されて厚いシリコン酸化膜(LOCOS酸化膜)21が形成される(図10(d))。
この後、窒化シリコン膜20を除去し(図11(e))、犠牲酸化処理を行い((図11(f))、さらにゲート酸化膜9を形成し(図11(g))、ゲート電極10となる導電性ポリシリコン層をCVD法により厚さ500nmに堆積する(図11(h))。次に、導電性ポリシリコン層をフォトリソグラフィによりパターニングして、前記図1に示すようなゲート電極10を形成する。続いて、フォトリソグラフィにより、図1に示すn++エミッタ領域14を形成するためのフォトレジストパターンを形成し、ゲート電極10および前記フォトレジストパターンをマスクにしてn++エミッタ領域14をイオン注入により形成する。続いて、層間絶縁膜11としてPSG(phosphorus Silicate Glass)膜を形成し、このPSG膜にp+ボディ領域15とn++エミッタ領域14の両表面に対応するエミッタコンタクトを開口する。次にエミッタ電極12を形成することにより、MOS半導体装置の表面側がほぼ完成する。トップゲート型IGBTを形成する場合は、さらに、図示しないが、半導体基板の裏面を研磨して所要の厚さにした後、コレクタ層およびアノード電極を形成する。
After the boron ion implantation, an oxidation process is further performed using the patterned silicon nitride film 20. This oxidation process also serves as an activation process for the ion-implanted boron. The boron ion implantation layer becomes the p + body region 15 and at the same time, p + sandwiched between the silicon nitride film 20 and the initial oxide film 2. The surface of the body region 15 is selectively oxidized to form a thick silicon oxide film (LOCOS oxide film) 21 (FIG. 10D).
Thereafter, the silicon nitride film 20 is removed (FIG. 11E), sacrificial oxidation treatment is performed (FIG. 11F), a gate oxide film 9 is further formed (FIG. 11G), and the gate electrode A conductive polysilicon layer to be 10 is deposited to a thickness of 500 nm by a CVD method (FIG. 11 (h)) Next, the conductive polysilicon layer is patterned by photolithography to form a gate as shown in FIG. An electrode 10 is formed, followed by photolithography to form a photoresist pattern for forming the n ++ emitter region 14 shown in Fig. 1, and using the gate electrode 10 and the photoresist pattern as a mask, n ++ The emitter region 14 is formed by ion implantation, and subsequently, a PSG (phosphorus silicate glass) film is formed as the interlayer insulating film 11. Opening an emitter contact corresponding to both surfaces of the p + body region 15 and the n ++ emitter region 14 in the PSG film. Then by forming the emitter electrode 12, the surface side of the MOS semiconductor device is substantially completed. Top In the case of forming the gate type IGBT, although not shown, the back surface of the semiconductor substrate is polished to a required thickness, and then the collector layer and the anode electrode are formed.

以上説明した実施例2により作成された本発明にかかるトップゲート型IGBTでは、カソード膜と初期酸化膜の境界表面のうち、導電性ポリシリコン膜に覆われる部分の境界表面には厚いLOCOS酸化膜が形成され、境界表面に形成され易い局部的に薄いゲート酸化膜部分が無くなるので、従来のトップゲート型IGBTのゲート酸化膜の耐圧30V以下に比べて、ゲート酸化膜の耐圧が65Vとなり、著しくゲート耐圧の改善を図ることができる。   In the top gate type IGBT according to the present invention prepared according to the second embodiment described above, a thick LOCOS oxide film is formed on the boundary surface of the portion covered with the conductive polysilicon film among the boundary surface between the cathode film and the initial oxide film. As a result, there is no locally thin gate oxide film portion that is likely to be formed on the boundary surface, so that the gate oxide film has a withstand voltage of 65 V as compared to the withstand voltage of 30 V or less of the gate oxide film of the conventional top gate IGBT. The gate breakdown voltage can be improved.

本発明の実施例1にかかるトップゲート型IGBTのユニットセルの断面図である。It is sectional drawing of the unit cell of the top gate type IGBT concerning Example 1 of this invention. 従来のトップゲート型IGBTのゲート酸化膜の局部的薄膜化を示す断面図である。It is sectional drawing which shows local thinning of the gate oxide film of the conventional top gate type IGBT. 本発明の実施例1のトップゲート型IGBTの製造方法にかかる拡大断面図である(その1)。It is an expanded sectional view concerning the manufacturing method of the top gate type IGBT of Example 1 of the present invention (the 1). 本発明の実施例1のトップゲート型IGBTの製造方法にかかる拡大断面図である(その2)。It is an expanded sectional view concerning the manufacturing method of the top gate type IGBT of Example 1 of the present invention (the 2). ストッパ酸化膜の過剰エッチング時のゲート酸化膜の局部的薄膜部の拡大断面図である。It is an expanded sectional view of the local thin film part of a gate oxide film at the time of excessive etching of a stopper oxide film. 従来のトップゲート型IGBTの製造方法を示す断面図である(その1)。It is sectional drawing which shows the manufacturing method of the conventional top gate type IGBT (the 1). 従来のトップゲート型IGBTの製造方法を示す断面図である(その2)。It is sectional drawing which shows the manufacturing method of the conventional top gate type IGBT (the 2). 従来のトップゲート型IGBTの製造方法を示す断面図である(その3)。It is sectional drawing which shows the manufacturing method of the conventional top gate type IGBT (the 3). 従来のトップゲート型IGBTの製造方法を示す断面図である(その4)。It is sectional drawing which shows the manufacturing method of the conventional top gate type IGBT (the 4). 本発明の実施例2にかかるトップゲート型IGBTの製造方法を示す半導体基板の要部断面図(その1)である。It is principal part sectional drawing (the 1) of the semiconductor substrate which shows the manufacturing method of the top gate type IGBT concerning Example 2 of this invention. 本発明の実施例2にかかるトップゲート型IGBTの製造方法を示す半導体基板の要部断面図(その2)である。It is principal part sectional drawing (the 2) of the semiconductor substrate which shows the manufacturing method of the top gate type IGBT concerning Example 2 of this invention.

符号の説明Explanation of symbols

1 n-型Si半導体基板
2 初期酸化膜、ストッパ酸化膜
7 n+バッファ領域
9 ゲート酸化膜
10 ポリシリコンゲート電極
11 PSG、層間絶縁膜
12 エミッタ電極
13 pチャネル領域
14 n++エミッタ領域
15 p+ボディ領域
16 カソード膜、一導電型半導体結晶層
18 犠牲酸化膜
19 バッファ酸化膜
20 窒化シリコン膜、Si34
21 LOCOS酸化膜。
1 n type Si semiconductor substrate 2 initial oxide film, stopper oxide film 7 n + buffer region 9 gate oxide film 10 polysilicon gate electrode 11 PSG, interlayer insulating film 12 emitter electrode 13 p channel region 14 n ++ emitter region 15 p + Body region 16 Cathode film, one-conductivity-type semiconductor crystal layer 18 Sacrificial oxide film 19 Buffer oxide film 20 Silicon nitride film, Si 3 N 4 film 21 LOCOS oxide film

Claims (3)

一導電型半導体基板表面に、第一開口部を間に挟んで直線状に配置される初期絶縁膜と、該初期絶縁膜より薄膜であって、前記第一開口部を含む前記半導体基板表面に形成される基板絶縁膜とを形成する第一工程、前記第一開口部内の基板絶縁膜に前記初期絶縁膜と平行な第二開口部を形成する第二工程、前記第一開口部内を前記初期絶縁膜と同程度の厚さに埋める一導電型半導体結晶層を形成する第三工程、該半導体結晶層に、前記第二開口部で前記半導体基板表面に接触する一導電型領域と、前記基板絶縁膜上にあって前記一導電型領域に隣接する他導電型ベース領域と、該他導電型ベース領域表面層に、選択的に形成される一導電型エミッタ領域と前記他導電型ベース領域より高濃度の他導電型ボディ領域とを形成する第四工程、前記一導電型領域と前記一導電型エミッタ領域とに挟まれる前記他導電型ベース領域の表面にゲート絶縁膜を介して形成されるゲート電極を形成する第五工程とを有する半導体装置の製造方法において、前記第四工程と第五工程の間に、前記初期絶縁膜表面と前記一導電型半導体結晶層表面とが接する境界表面で、前記初期絶縁膜表面を、前記一導電型半導体結晶層表面より、前記ゲート絶縁膜の厚さの50%乃至100%の厚さ分低くなるようにエッチングして段差を形成する工程を有することを特徴とする半導体装置の製造方法。 An initial insulating film linearly disposed on the surface of the one-conductivity-type semiconductor substrate with the first opening interposed therebetween, and a thin film thinner than the initial insulating film, the surface of the semiconductor substrate including the first opening A first step of forming a substrate insulating film to be formed; a second step of forming a second opening parallel to the initial insulating film in the substrate insulating film in the first opening; and the initial in the first opening A third step of forming a one-conductivity-type semiconductor crystal layer buried in a thickness similar to that of the insulating film; a one-conductivity-type region in contact with the semiconductor substrate surface through the second opening in the semiconductor crystal layer; and the substrate The other conductivity type base region adjacent to the one conductivity type region on the insulating film, the one conductivity type emitter region selectively formed on the surface layer of the other conductivity type base region, and the other conductivity type base region A fourth step of forming a high concentration other conductivity type body region, A fifth step of forming a gate electrode formed on a surface of the other conductivity type base region sandwiched between the conductivity type region and the one conductivity type emitter region via a gate insulating film; Between the fourth step and the fifth step, at the boundary surface where the surface of the initial insulating film and the surface of the one-conductivity-type semiconductor crystal layer are in contact, the surface of the initial insulating film is more than the surface of the one-conductivity-type semiconductor crystal layer, A method of manufacturing a semiconductor device, comprising: forming a step by etching so as to be 50% to 100% lower than the thickness of the gate insulating film. ゲート酸化膜を形成する処理温度を1000℃以上とすることを特徴とする請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein a processing temperature for forming the gate oxide film is set to 1000 [deg.] C. or higher. 一導電型半導体基板表面に、直線状の初期絶縁膜であって、間に第一開口部を有する初期絶縁膜と、該初期絶縁膜より薄膜であって、前記第一開口部を含む前記半導体基板表面に形成される基板絶縁膜とを形成する第一工程、前記第一開口部内の基板絶縁膜に前記初期絶縁膜と平行な第二開口部を形成する第二工程、前記第一開口部内を前記初期絶縁膜と同程度の厚さに埋める一導電型半導体結晶層を備える第三工程、該半導体結晶層に、前記第二開口部で前記半導体基板表面に接触する一導電型領域と、前記基板絶縁膜上にあって前記一導電型領域に隣接する他導電型ベース領域と、該他導電型ベース領域表面に、選択的に形成される一導電型エミッタ領域と前記他導電型ベース領域より高濃度の他導電型ボディ領域とを形成する第四工程、前記一導電型領域と前記一導電型エミッタ領域とに挟まれる前記他導電型ベース領域の表面にゲート絶縁膜を介して形成されるゲート電極を形成する第五工程とを有する半導体装置の製造方法において、前記第四工程と第五工程の間に、前記初期絶縁膜表面と前記一導電型半導体結晶層表面とが接する境界表面であって、前記ゲート電極が覆う前記境界表面の前記一導電型半導体結晶層側の表面に形成される窒化シリコン膜をマスクとして用いて前記境界表面に接して選択的酸化膜を形成する工程を有することを特徴とする半導体装置の製造方法。

An initial insulating film having a linear opening on the surface of the one-conductivity-type semiconductor substrate and having a first opening therebetween; and the semiconductor including the first opening and being thinner than the initial insulating film A first step of forming a substrate insulating film formed on the substrate surface, a second step of forming a second opening parallel to the initial insulating film in the substrate insulating film in the first opening, and in the first opening A third step of providing a one-conductivity-type semiconductor crystal layer to fill the same thickness as the initial insulating film, a one-conductivity-type region in contact with the semiconductor substrate surface at the second opening in the semiconductor crystal layer, Another conductivity type base region adjacent to the one conductivity type region on the substrate insulating film, one conductivity type emitter region selectively formed on the surface of the other conductivity type base region, and the other conductivity type base region Fourth step of forming a higher concentration other conductivity type body region And a fifth step of forming a gate electrode formed through a gate insulating film on the surface of the other conductivity type base region sandwiched between the one conductivity type region and the one conductivity type emitter region. In the fourth step and the fifth step, the boundary surface where the surface of the initial insulating film and the surface of the one-conductivity-type semiconductor crystal layer are in contact with each other, and the one-conductivity type of the boundary surface covered by the gate electrode A method of manufacturing a semiconductor device, comprising: forming a selective oxide film in contact with the boundary surface using a silicon nitride film formed on a surface on the semiconductor crystal layer side as a mask.

JP2007250465A 2007-07-10 2007-09-27 Manufacturing method of semiconductor device Pending JP2009038330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250465A JP2009038330A (en) 2007-07-10 2007-09-27 Manufacturing method of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007181027 2007-07-10
JP2007250465A JP2009038330A (en) 2007-07-10 2007-09-27 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2009038330A true JP2009038330A (en) 2009-02-19

Family

ID=40439954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250465A Pending JP2009038330A (en) 2007-07-10 2007-09-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2009038330A (en)

Similar Documents

Publication Publication Date Title
US7326608B2 (en) Fin field effect transistor and method of manufacturing the same
JP5319046B2 (en) Manufacturing method of semiconductor device including buried oxide film and semiconductor device including the same
TWI462295B (en) Trench type power transistor device and fabricating method thereof
JP5096739B2 (en) Manufacturing method of semiconductor device
US20120261744A1 (en) Microelectronic device structure and manufacturing method thereof
US7166514B2 (en) Semiconductor device and method of manufacturing the same
CN107403721B (en) Method for manufacturing power metal oxide semiconductor field effect transistor
US20130221431A1 (en) Semiconductor device and method of manufacture thereof
CN114220858A (en) Semiconductor device with a plurality of semiconductor chips
JPH0870124A (en) Fabrication of silicon carbide semiconductor device
JP4940533B2 (en) Manufacturing method of semiconductor integrated circuit device
KR20170128124A (en) Semiconductor device having a cavity and method for manufacturing thereof
US8455309B2 (en) Method for manufacturing a semiconductor device
JP2008235383A (en) Mos type semiconductor device and its fabrication process
JP4986420B2 (en) Transistor
CN111710649B (en) Semiconductor device and manufacturing method thereof
JP2009038330A (en) Manufacturing method of semiconductor device
JP3952914B2 (en) Manufacturing method of semiconductor device
JP5135668B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7807534B2 (en) Method for manufacturing semiconductor device and semiconductor device manufactured therefrom
JP4984697B2 (en) Manufacturing method of semiconductor device
TWI392031B (en) Method of forming power mosfet
CN116469938A (en) Gate-around transistor and manufacturing method thereof
JP5236985B2 (en) Semiconductor device and manufacturing method thereof
CN116884847A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Effective date: 20090219

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112