[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009032526A - Electrodeless discharge lamp lighting device, and luminaire - Google Patents

Electrodeless discharge lamp lighting device, and luminaire Download PDF

Info

Publication number
JP2009032526A
JP2009032526A JP2007195258A JP2007195258A JP2009032526A JP 2009032526 A JP2009032526 A JP 2009032526A JP 2007195258 A JP2007195258 A JP 2007195258A JP 2007195258 A JP2007195258 A JP 2007195258A JP 2009032526 A JP2009032526 A JP 2009032526A
Authority
JP
Japan
Prior art keywords
discharge lamp
electrodeless discharge
temperature
circuit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007195258A
Other languages
Japanese (ja)
Inventor
Akira Nakashiro
明 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007195258A priority Critical patent/JP2009032526A/en
Publication of JP2009032526A publication Critical patent/JP2009032526A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeless discharge lamp lighting device capable of dimly light an electrodeless discharge lamp in a stable state even when the temperature is low, and a luminaire. <P>SOLUTION: This electrodeless discharge lamp lighting device is equipped with a power conversion circuit 9 for outputting a high frequency voltage by receiving power supply from a dc power supply, an induction coil 5 connected between the output ends of the power conversion circuit 9 and disposed close to the electrodeless discharge lamp 6 in which a discharge gas is filled in a bulb, a frequency control circuit 12 for flickering the electrodeless discharge lamp 6 by alternately switching a lighted period for setting the magnitude of the voltage between both ends of the induction coil 5 so as to light the electrodeless discharge lamp 6 and a non-lighted period for setting the magnitude so as not to light it, and an ambient temperature detecting circuit 44 which is a temperature detecting means to detect the ambient temperature of the electrodeless discharge lamp 6. A time occupancy rate lowering means composed of a PWM oscillating circuit 13 and an on-duty setting circuit 41 decreases a restrike starting time occupancy rate by raising the lighted period when the temperature detected by the ambient temperature detecting circuit 44 is low. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、無電極放電灯点灯装置及び照明器具に関するものである。   The present invention relates to an electrodeless discharge lamp lighting device and a lighting fixture.

従来から、無電極放電灯を点灯させる無電極放電灯点灯装置として、無電極放電灯を点滅動作させて調光を行うものが提案されている(特許文献1)。ここで、上記特許文献1に開示された無電極放電灯点灯装置は、直流電源の出力を高周波電圧に変換して無電極放電灯に近接する誘導コイルへ供給する電力変換回路を備えており、電力変換回路から誘導コイルの両端間に印加する電圧を図17に示すように無電極放電灯が点灯する大きさに設定した点灯期間Tonと点灯しない大きさに設定した不点灯期間Toffとを周期的に交互に切り替えることにより無電極放電灯を点滅動作させ、点滅動作の1周期T(=Ton+Toff)に占める点灯期間Tonの割合を調節することにより調光を行うものである。
特開2000−353600号公報
2. Description of the Related Art Conventionally, as an electrodeless discharge lamp lighting device for lighting an electrodeless discharge lamp, an apparatus that performs light control by causing the electrodeless discharge lamp to blink is proposed (Patent Document 1). Here, the electrodeless discharge lamp lighting device disclosed in Patent Document 1 includes a power conversion circuit that converts the output of a DC power source into a high-frequency voltage and supplies it to an induction coil adjacent to the electrodeless discharge lamp, As shown in FIG. 17, the voltage applied between the both ends of the induction coil from the power conversion circuit is cycled between a lighting period Ton that is set to a magnitude at which the electrodeless discharge lamp is lit and a non-lighting period Toff that is set to a magnitude that is not lit. The electrodeless discharge lamp is caused to blink by switching alternately, and light control is performed by adjusting the ratio of the lighting period Ton in one cycle T (= Ton + Toff) of the blinking operation.
JP 2000-353600 A

しかしながら、上記特許文献1に開示されている無電極放電灯点灯装置では、無電極放電灯の周囲温度が常温(例えば、25℃)より低い規定温度以下の場合、初期点弧電圧と同じ高い再点弧電圧が発生するため再点弧始動時間が長くなる。しかも、前記規定温度以下であり電力変換回路に含まれる共振回路のQ値が大きい場合には、誘導コイル両端間に印加する高周波電圧のばらつきを吸収するために再点弧始動時に動作周波数をスイープさせることにより前記高周波電圧を上げていく必要があり、その分再点弧始動時間が長くなる。また、無電極放電灯の周囲温度が低温(例えば、−20℃)の場合、プラズマインピーダンスが大きく変化するので、再点弧後の誘導コイルの両端間電圧も大きく低下する。このため、図18に示すように再点弧電圧が小さくなったとしてもそれ以上に誘導コイル両端間の高周波電圧が低下するので、結果として再点弧始動時間が長くなる。これらの理由により再点弧始動時間が長くなると点灯期間Tonのうち無電極放電灯の再点弧始動に要する時間の占有率(以下、再点弧始動時間占有率という)が大きくなるため無電極放電灯の点灯が不安定になりやすいという問題がある。また、上述の無電極放電灯点灯装置では、調光比が小さくなるにつれて点灯期間Tonが短くなるので、再点弧始動時間占有率が増大し、動作が不安定になりやすく、特に、周囲温度が常温よりも低くなるほど無電極放電灯の動作が不安定になりやすい。   However, in the electrodeless discharge lamp lighting device disclosed in Patent Document 1, when the ambient temperature of the electrodeless discharge lamp is equal to or lower than a specified temperature lower than room temperature (for example, 25 ° C.), Since the ignition voltage is generated, the re-ignition start time becomes longer. Moreover, when the resonance circuit included in the power converter circuit has a large Q value that is lower than the specified temperature, the operating frequency is swept at the time of re-ignition start in order to absorb variations in the high-frequency voltage applied across the induction coil. Therefore, it is necessary to increase the high-frequency voltage, and accordingly, the re-ignition start time becomes longer. Further, when the ambient temperature of the electrodeless discharge lamp is low (for example, −20 ° C.), since the plasma impedance changes greatly, the voltage between both ends of the induction coil after re-ignition is also greatly reduced. For this reason, as shown in FIG. 18, even if the re-ignition voltage decreases, the high-frequency voltage across the induction coil further decreases, and as a result, the re-ignition start time becomes longer. For these reasons, if the re-ignition start time becomes longer, the occupancy ratio of the time required for re-ignition start of the electrodeless discharge lamp in the lighting period Ton (hereinafter referred to as the re-ignition start time occupancy ratio) increases. There is a problem that lighting of the discharge lamp tends to be unstable. In the above electrodeless discharge lamp lighting device, since the lighting period Ton becomes shorter as the dimming ratio decreases, the re-ignition start time occupancy increases and the operation tends to become unstable. The lower the temperature is, the easier the operation of the electrodeless discharge lamp becomes unstable.

本願発明は、上記事由に鑑みて為されたものであり、その目的は、低温時にも無電極放電灯を安定して調光点灯させることが可能な無電極放電灯点灯装置及び照明器具を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and an object thereof is to provide an electrodeless discharge lamp lighting device and a lighting fixture capable of stably dimming and lighting an electrodeless discharge lamp even at low temperatures. There is to do.

請求項1の発明は、直流電源からの電力供給を受け高周波電圧を出力する電力変換回路であって、少なくともスイッチング素子及び共振回路を含む電力変換回路と、前記電力変換回路の出力端間に接続され、バルブ内に放電ガスを封入した無電極放電灯に近接配置される誘導コイルと、前記電力変換回路の動作周波数を制御し、前記高周波電圧を前記無電極放電灯が点灯する大きさに設定する点灯期間と点灯しない大きさに設定する不点灯期間とを交互に切り替えて前記無電極放電灯を点滅動作させる周波数制御回路と、前記無電極放電灯の周囲温度を検出する温度検出手段と、前記温度検出手段による検出温度が常温よりも低い規定温度以下の時に前記点滅動作における点灯期間のうち前記無電極放電灯の再点弧始動に要する時間の占有率である再点弧始動時間占有率を低下させる時間占有率低下手段を有することを特徴とする
この発明によれば、前記無電極放電灯の周囲温度を検出する温度検出手段による検出温度が常温よりも低い規定温度以下の場合には、前記時間占有率低下手段が、再点弧始動時間占有率を低下させるので、低温時にも前記無電極放電灯を安定して調光点灯させることが可能となる。
The invention according to claim 1 is a power conversion circuit for receiving a power supply from a DC power supply and outputting a high-frequency voltage, and is connected between the power conversion circuit including at least a switching element and a resonance circuit, and an output terminal of the power conversion circuit And an induction coil disposed in the vicinity of an electrodeless discharge lamp in which a discharge gas is enclosed in a bulb, and an operating frequency of the power conversion circuit is controlled, and the high-frequency voltage is set to a size at which the electrodeless discharge lamp is lit. A frequency control circuit that causes the electrodeless discharge lamp to blink by alternately switching between a lighting period to be set and a non-lighting period set to a size that does not light, and a temperature detection means that detects an ambient temperature of the electrodeless discharge lamp, Occupancy rate of time required for re-ignition start of the electrodeless discharge lamp in the lighting period in the blinking operation when the temperature detected by the temperature detecting means is not more than a specified temperature lower than normal temperature According to the present invention, there is provided a time occupancy reduction means for reducing a certain re-ignition start time occupancy ratio. According to the present invention, the temperature detected by the temperature detection means for detecting the ambient temperature of the electrodeless discharge lamp is lower than the normal temperature. When the temperature is lower than the specified temperature, the time occupancy reduction means reduces the re-ignition start time occupancy, so that the electrodeless discharge lamp can be stably dimmed even at low temperatures. .

請求項2の発明は、請求項1の発明において、前記時間占有率低下手段は、前記点滅動作における前記不点灯期間に対する前記点灯期間の比を上昇させることにより前記再点弧始動時間占有率を低下させることを特徴とする
この発明によれば、前記無電極放電灯の周囲温度が前記規定温度以下の場合には、前記時間占有率低下手段が、前記点滅動作における前記不点灯期間に対する前記点灯期間の比を上昇させるので、温度低下に伴う前記無電極放電灯の光出力の急激な低下を和らげることができ、常温時の調光比と前記規定温度以下における調光比とのずれを抑制することができる。また、前記点灯期間を長くすることで前記不点灯期間が短くなるため、前記不点灯期間での前記バルブ内のイオンの拡散が減少することにより、再点弧電圧が低下し、低温時の前記無電極放電灯の点灯を安定させることができる。しかも、前記点灯期間を長くすることで、前記電力変換回路から前記誘導コイルへ供給される高周波電力が上昇するため、前記無電極放電灯が暖まるまでの時間が短縮され、結果として電源投入後から点灯が安定するまでの時間を短縮することが可能となる。
According to a second aspect of the present invention, in the first aspect of the invention, the time occupancy reduction means increases the re-ignition start time occupancy by increasing a ratio of the lighting period to the non-lighting period in the blinking operation. According to this invention, when the ambient temperature of the electrodeless discharge lamp is equal to or lower than the specified temperature, the time occupancy reduction means is configured to turn on the lighting for the non-lighting period in the blinking operation. Since the ratio of the period is increased, the rapid decrease in the light output of the electrodeless discharge lamp accompanying the temperature decrease can be mitigated, and the deviation between the light control ratio at normal temperature and the light control ratio below the specified temperature is suppressed. can do. Further, since the non-lighting period is shortened by lengthening the lighting period, the diffusion of ions in the bulb during the non-lighting period is reduced, thereby reducing the re-ignition voltage, and the low temperature Lighting of the electrodeless discharge lamp can be stabilized. Moreover, since the high frequency power supplied from the power conversion circuit to the induction coil is increased by lengthening the lighting period, the time until the electrodeless discharge lamp is warmed is shortened. It is possible to shorten the time until the lighting is stabilized.

請求項3の発明は、請求項1または請求項2の発明において、前記周波数制御回路へPWM信号を与えるPWM発振回路を有し、前記周波数制御回路は、PWM発振回路からのPWM信号に基づいて前記動作周波数の制御を行うものであり、前記時間占有率低下手段は、PWM信号の周波数を低下させることにより前記再点弧始動時間占有率を低下させることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, there is provided a PWM oscillation circuit that applies a PWM signal to the frequency control circuit, and the frequency control circuit is based on a PWM signal from the PWM oscillation circuit. The operating frequency is controlled, and the time occupancy reduction means reduces the re-ignition start time occupancy by reducing the frequency of the PWM signal.

この発明によれば、前記時間占有率低下手段は、前記周波数制御回路へ与えるPWM信号の周波数を低下させるから、前記無電極放電灯に供給される高周波電力を増やすことなく、前記再点弧始動時間占有率を小さくすることができるので、前記高周波電力を低くする目的或いは調光を深くする目的で点滅動作における前記不点灯期間に対する前記点灯期間の比を小さくした場合でも前記無電極放電灯の点灯を安定させることが可能となる。   According to the present invention, since the time occupancy reduction means reduces the frequency of the PWM signal applied to the frequency control circuit, the re-ignition start is performed without increasing the high-frequency power supplied to the electrodeless discharge lamp. Since the time occupancy can be reduced, even when the ratio of the lighting period to the non-lighting period in the blinking operation is reduced for the purpose of reducing the high-frequency power or deepening the dimming, the electrodeless discharge lamp It becomes possible to stabilize lighting.

請求項4の発明は、請求項1乃至3の発明において、前記周波数制御回路は、前記点灯期間における前記動作周波数を前記電力変換回路に含まれる共振回路の共振周波数近傍に設定することを特徴とする
この発明によれば、前記周波数制御回路が前記動作周波数を前記共振回路の共振周波数近傍に設定するので、前記共振回路の部品定数のばらつきや、前記電力変換回路の周囲温度の変化により前記共振周波数のずれが生じても前記動作周波数が前記共振回路の点灯時における共振曲線のピーク付近であるため、前記共振周波数のずれによる前記電力変換回路の出力の変化は小さく、前記無電極放電灯の点灯を安定させ、立ち消えの抑制が可能となる。
According to a fourth aspect of the present invention, in the first to third aspects of the invention, the frequency control circuit sets the operating frequency in the lighting period in the vicinity of a resonance frequency of a resonance circuit included in the power conversion circuit. According to this invention, since the frequency control circuit sets the operating frequency in the vicinity of the resonance frequency of the resonance circuit, the resonance circuit is caused by variations in component constants of the resonance circuit and changes in the ambient temperature of the power conversion circuit. Even if a frequency shift occurs, the operating frequency is near the peak of the resonance curve when the resonant circuit is lit, so the change in the output of the power conversion circuit due to the shift in the resonant frequency is small, and the electrodeless discharge lamp It is possible to stabilize the lighting and suppress the turning off.

請求項5の発明は、請求項1乃至4の発明において、前記温度検出手段は、前記スイッチング素子に流れる電流を検出することにより前記周囲温度を検出することを特徴とする
この発明によれば、前記温度検出手段を前記電力変換回路内に収めることができ、前記無電極放電灯が前記電力変換回路から離れた場所に設置されていても、前記周囲温度を検出することが可能となる。
According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, the temperature detecting means detects the ambient temperature by detecting a current flowing through the switching element. The temperature detection means can be housed in the power conversion circuit, and the ambient temperature can be detected even when the electrodeless discharge lamp is installed at a location away from the power conversion circuit.

請求項6の発明は、請求項1乃至4の発明において、前記温度検出手段は、感温素子により前記周囲温度を検出することを特徴とする。   According to a sixth aspect of the present invention, in the first to fourth aspects of the present invention, the temperature detecting means detects the ambient temperature with a temperature sensing element.

この発明によれば、前記温度検出手段を小型化することが可能となり、かつ、前記温度検出手段の部品コストを低減できる。   According to this invention, it is possible to reduce the size of the temperature detecting means, and it is possible to reduce the cost of parts of the temperature detecting means.

請求項7の発明は、請求項1乃至6のいずれか1項に記載の無電極放電灯点灯装置を備えることを特徴とする。   A seventh aspect of the invention is characterized by comprising the electrodeless discharge lamp lighting device according to any one of the first to sixth aspects.

この発明によれば、常温よりも低い規定温度以下でも無電極放電灯を安定に調光点灯させることが可能な照明器具の提供が可能となる。   According to the present invention, it is possible to provide a lighting fixture capable of stably dimming and lighting an electrodeless discharge lamp even at a specified temperature lower than room temperature.

本発明は、無電極放電灯の周囲温度が常温よりも低い規定温度以下でも点滅動作における点灯期間のうち再点弧始動に要する時間の占有率である再点弧始動時間占有率を低下させることによって、低温時にも無電極放電灯を安定して調光点灯させることを可能とする効果がある。   The present invention reduces the re-ignition start time occupancy ratio, which is the occupancy ratio of the time required for re-ignition start during the lighting period in the blinking operation even when the ambient temperature of the electrodeless discharge lamp is lower than the specified temperature lower than normal temperature. Therefore, there is an effect that the electrodeless discharge lamp can be stably dimmed even at a low temperature.

(実施形態1)
以下、本実施形態の無電極放電灯点灯装置について図1乃至図7に基づいて説明する。
(Embodiment 1)
Hereinafter, the electrodeless discharge lamp lighting device of the present embodiment will be described with reference to FIGS.

本実施形態の無電極放電灯点灯装置は、図1(a)に示すように、交流電源ACからの電力供給を受けて直流電圧VDCを出力する直流電源Eと、直流電源Eからの電力供給を受けて高周波電圧Vcoilを出力する電力変換回路9と、電力変換回路9の出力端間に接続され、無電極放電灯6に近接して配置される誘導コイル5と、電力変換回路9を駆動するドライブ回路11と、電力変換回路9に含まれるスイッチング素子Q3,Q4のスイッチング周波数(以下、動作周波数という)finvを制御する始動スイープ回路12と、始動スイープ回路12にPWM信号Vpwmを入力するPWM発振回路13とを備えている。なお、本実施形態の無電極放電灯点灯装置は、直流電源E、電力変換回路9、ドライブ回路11、始動スイープ回路12及びPWM発振回路13により点灯回路1が構成されている。   As shown in FIG. 1A, the electrodeless discharge lamp lighting device of the present embodiment receives a power supply from an AC power supply AC and outputs a DC voltage VDC, and a power supply from the DC power supply E. The power conversion circuit 9 that outputs the high-frequency voltage Vcoil, the induction coil 5 that is connected between the output terminals of the power conversion circuit 9 and is disposed in the vicinity of the electrodeless discharge lamp 6, and the power conversion circuit 9. Drive circuit 11, a start sweep circuit 12 that controls the switching frequency (hereinafter referred to as an operating frequency) finv of the switching elements Q 3 and Q 4 included in the power conversion circuit 9, and a PWM that inputs the PWM signal Vpwm to the start sweep circuit 12 And an oscillation circuit 13. In the electrodeless discharge lamp lighting device of this embodiment, the lighting circuit 1 is configured by the DC power source E, the power conversion circuit 9, the drive circuit 11, the start sweep circuit 12, and the PWM oscillation circuit 13.

直流電源Eは、交流電源ACを整流するダイオードブリッジ10と、ダイオードブリッジ10の出力を昇圧する昇圧チョッパとから構成されている。ここで、昇圧チョッパは、ダイオードブリッジ10の出力端間にインダクタL10とMOSFETからなるスイッチング素子Q6との直列回路が接続され、スイッチング素子Q6の両端間にダイオードD10と平滑用コンデンサC10との直列回路が接続されており、スイッチング素子Q6をオン・オフして平滑コンデンサC10の両端電圧からなる上述の直流電圧VDCを制御する制御回路2とを備えている。なお、ダイオードD10は、インダクタL10から平滑コンデンサC10に電流が流れる向きに接続される。   The DC power source E includes a diode bridge 10 that rectifies the AC power source AC and a boost chopper that boosts the output of the diode bridge 10. Here, in the step-up chopper, a series circuit of an inductor L10 and a switching element Q6 composed of a MOSFET is connected between output terminals of the diode bridge 10, and a series circuit of a diode D10 and a smoothing capacitor C10 is connected between both ends of the switching element Q6. And a control circuit 2 that controls the above-described DC voltage VDC composed of the voltage across the smoothing capacitor C10 by turning on and off the switching element Q6. The diode D10 is connected in a direction in which a current flows from the inductor L10 to the smoothing capacitor C10.

電力変換回路9は、直流電源Eの出力端間に一対のMOSFETからなるスイッチング素子Q3,Q4の直列回路が接続され、直流電源Eからの直流電圧VDCをスイッチング素子Q3,Q4でスイッチングして高周波電圧に変換する。ここで、低電位側のスイッチング素子Q4のドレイン・ソース間には、インダクタLsとコンデンサCpとの直列回路が接続されており、インダクタLsとコンデンサCpとで共振回路を構成している。また、コンデンサCpの両端間にはコンデンサCsを介して上述の誘導コイル5が接続されている。ここにおいて、電力変換回路9は、ドライブ回路11からの駆動信号によりスイッチング素子Q3,Q4が高周波で交互にオン・オフされて高周波電圧を発生させ、誘導コイル5に対して数十kHzから数百kHzの高周波電流を流すことにより、誘導コイル5に高周波電磁界を発生させる。この高周波電磁界によって無電極放電灯6から紫外線もしくは可視光が発生する
ドライブ回路11は、図1(b)に示すように、定電圧源Esの両端間に二つの抵抗R10,R11の直列回路が接続され、抵抗R11の両端間に電圧制御発振器VCOが接続されており、電圧制御発振器VCOは、入力端子VIへの入力電圧に応じた動作周波数finvでHout端子・H−GND端子間、Lout端子・L−GND端子間に、相互に位相が180°ずれた矩形波状の駆動信号を出力する。電圧制御発振器VCOの入力端子VIには、定電圧源Esの出力電圧が抵抗R10,R11で分圧されて与えられており、入力端子VIへの入力電圧が抵抗R10,R11の接続点から始動スイープ回路12に流れるシンク電流Ivpの変化に応じて変化する。なお、ドライブ回路11のHout端子・H−GND端子間はスイッチング素子Q3のゲート・ソース間に接続され、Lout端子・L−GND端子間はスイッチング素子Q4のゲート・ソース間に接続されている。
In the power conversion circuit 9, a series circuit of switching elements Q3 and Q4 made of a pair of MOSFETs is connected between the output terminals of the DC power supply E, and the DC voltage VDC from the DC power supply E is switched by the switching elements Q3 and Q4 to generate a high frequency. Convert to voltage. Here, a series circuit of an inductor Ls and a capacitor Cp is connected between the drain and source of the switching element Q4 on the low potential side, and the inductor Ls and the capacitor Cp constitute a resonance circuit. The induction coil 5 is connected between both ends of the capacitor Cp via the capacitor Cs. Here, in the power conversion circuit 9, the switching elements Q3 and Q4 are alternately turned on and off at high frequency by a drive signal from the drive circuit 11 to generate a high frequency voltage, and several tens of kHz to several hundreds of times are applied to the induction coil 5. A high frequency electromagnetic field is generated in the induction coil 5 by flowing a high frequency current of kHz. As shown in FIG. 1B, the drive circuit 11 in which ultraviolet or visible light is generated from the electrodeless discharge lamp 6 by this high frequency electromagnetic field is a series circuit of two resistors R10 and R11 across the constant voltage source Es. Is connected between both ends of the resistor R11, and the voltage controlled oscillator VCO is connected between the Hout terminal and the H-GND terminal at the operating frequency finv according to the input voltage to the input terminal VI, Lout Between the terminal and the L-GND terminal, a rectangular wave drive signal having a phase difference of 180 ° is output. The output voltage of the constant voltage source Es is applied to the input terminal VI of the voltage controlled oscillator VCO by being divided by the resistors R10 and R11, and the input voltage to the input terminal VI starts from the connection point of the resistors R10 and R11. It changes according to the change of the sink current Ivp flowing through the sweep circuit 12. Note that the Hout terminal and the H-GND terminal of the drive circuit 11 are connected between the gate and the source of the switching element Q3, and the Lout terminal and the L-GND terminal are connected between the gate and the source of the switching element Q4.

始動スイープ回路12は、直流電源(図示せず)の直流電圧E1を抵抗R1を介してコンデンサC1に与えるとともに、コンデンサC1の両端に抵抗R3とMOSFETからなるスイッチング素子Q7の直列回路と抵抗R2が接続されている。また、コンデンサC1の一端と抵抗R1との接続点はオペアンプOP8の反転入力端子に接続され、コンデンサC1の他端は抵抗R122を介してオペアンプOP8の非反転入力端子と接続されており、オペアンプOP8の非反転入力端子と出力端子間には抵抗R121が接続されている。オペアンプOP8から出力される制御電圧Vfは抵抗R4、ダイオードD4を介してドライブ回路11に印加される。この始動スイープ回路12とドライブ回路11とで、電力変換回路9の動作周波数finvを制御し、高周波電圧Vcoilを無電極放電灯6が点灯する大きさに設定する点灯期間と点灯しない大きさに設定する不点灯期間とを交互に切り替えて無電極放電灯6を点滅動作させる周波数制御回路が構成されている。   The start sweep circuit 12 applies a DC voltage E1 of a DC power source (not shown) to the capacitor C1 via a resistor R1, and a resistor R2 and a series circuit of a switching element Q7 composed of a MOSFET and a resistor R2 are connected to both ends of the capacitor C1. It is connected. The connection point between one end of the capacitor C1 and the resistor R1 is connected to the inverting input terminal of the operational amplifier OP8, and the other end of the capacitor C1 is connected to the non-inverting input terminal of the operational amplifier OP8 through the resistor R122. A resistor R121 is connected between the non-inverting input terminal and the output terminal. The control voltage Vf output from the operational amplifier OP8 is applied to the drive circuit 11 via the resistor R4 and the diode D4. The start sweep circuit 12 and the drive circuit 11 control the operating frequency finv of the power conversion circuit 9, and set the high-frequency voltage Vcoil to a lighting period for setting the electrodeless discharge lamp 6 to turn on and a magnitude for not turning on. The frequency control circuit is configured to cause the electrodeless discharge lamp 6 to blink by alternately switching between non-lighting periods.

次に、本実施形態の無電極放電灯点灯装置の基本的な動作について図2,図3を参照しながら説明する。   Next, the basic operation of the electrodeless discharge lamp lighting device of the present embodiment will be described with reference to FIGS.

図2は、電力変換回路9に含まれる上述の共振回路の始動時の共振曲線イと点灯時の共振曲線ロを示す。ここで、図2中の周波数feは無電極放電灯6の点弧始動に充分な高周波電圧Vcoilが誘導コイル5に印加されるように共振回路の共振周波数付近に設定されている。また、図2中の周波数fsは無電極放電灯6が点灯維持できない程度の高周波電圧Vcoilが誘導コイル5に印加されるように設定されている。   FIG. 2 shows a resonance curve a at the start of the above-described resonance circuit included in the power conversion circuit 9 and a resonance curve b at the time of lighting. Here, the frequency fe in FIG. 2 is set in the vicinity of the resonance frequency of the resonance circuit so that a high-frequency voltage Vcoil sufficient for starting the electrodeless discharge lamp 6 is applied to the induction coil 5. Further, the frequency fs in FIG. 2 is set such that the induction coil 5 is applied with a high-frequency voltage Vcoil that does not allow the electrodeless discharge lamp 6 to be kept on.

図3は点滅動作の説明図であり、同図(a)は高周波電圧Vcoilの時間変化を示し、同図(b)は動作周波数finvの時間変化を示し、同図(c)は始動スイープ回路12に入力されるPWM信号Vpwmの時間変化を示す。始動スイープ回路12に入力されるPWM信号Vpwmは最大値H、最小値Lの矩形波状である。時刻t1でPWM信号VpwmがLとなると、動作周波数finvは周波数fsから周波数feへ徐々に変化する(以下、周波数スイープという)。これに伴い、高周波電圧Vcoilが徐々に増大し、初期点弧始動時の最高電圧Ving1(以下、初期点弧電圧という)を越えたところで無電極放電灯6が点灯する。そして、時刻t2で動作周波数finvが周波数feとなると周波数スイープが終了する。次に、時刻t3でPWM信号VpwmがHとなると、動作周波数finvが周波数fsに変化し、これに伴って、高周波電圧Vcoilが点灯維持電圧より低くなり無電極放電灯6が消灯する。次に、時刻t4でPWM信号VpwmがLとなると再び動作周波数finvの周波数スイープが開始し、これに伴い、高周波電圧Vcoilが徐々に増大し、再点弧始動時の最大電圧Ving2(以下、再点弧電圧という)を越えたところで無電極放電灯6が点灯する。そして、時刻t5で動作周波数finvが周波数feとなると周波数スイープが終了する。次に、時刻t6でPWM信号VpwmがHとなると、動作周波数finvが周波数fsに変化し、これに伴って、高周波電圧Vcoilが点灯維持電圧より低くなり無電極放電灯6が消灯する。以降、PWM信号Vpwmに応じてこれらの一連の動作を繰り返し行うことにより無電極放電灯6がPWM信号Vpwmの周波数fpwmで点滅動作をする。そして、PWM信号Vpwmのオンデューティを可変することにより、無電極放電灯6の点灯期間Tonと不点灯期間Toffとの時間比率を変化させ、無電極放電灯6を調光することができる。   3A and 3B are explanatory diagrams of the blinking operation. FIG. 3A shows a time change of the high-frequency voltage Vcoil, FIG. 3B shows a time change of the operating frequency finv, and FIG. 3C shows a start sweep circuit. 12 shows the time change of the PWM signal Vpwm input to the circuit 12. The PWM signal Vpwm input to the start sweep circuit 12 has a rectangular wave shape having a maximum value H and a minimum value L. When the PWM signal Vpwm becomes L at time t1, the operating frequency finv gradually changes from the frequency fs to the frequency fe (hereinafter referred to as frequency sweep). Accordingly, the high-frequency voltage Vcoil gradually increases, and the electrodeless discharge lamp 6 is turned on when the maximum voltage Ving1 (hereinafter referred to as the initial ignition voltage) at the time of starting the initial ignition is exceeded. When the operating frequency finv becomes the frequency fe at time t2, the frequency sweep is finished. Next, when the PWM signal Vpwm becomes H at time t3, the operating frequency finv changes to the frequency fs, and accordingly, the high frequency voltage Vcoil becomes lower than the lighting sustain voltage, and the electrodeless discharge lamp 6 is turned off. Next, when the PWM signal Vpwm becomes L at time t4, the frequency sweep of the operating frequency finv starts again, and accordingly, the high-frequency voltage Vcoil gradually increases, and the maximum voltage Ving2 (hereinafter referred to as re-start) at the time of re-ignition start. The electrodeless discharge lamp 6 is turned on when the ignition voltage is exceeded. When the operating frequency finv becomes the frequency fe at time t5, the frequency sweep is finished. Next, when the PWM signal Vpwm becomes H at time t6, the operating frequency finv changes to the frequency fs, and accordingly, the high frequency voltage Vcoil becomes lower than the lighting sustain voltage, and the electrodeless discharge lamp 6 is turned off. Thereafter, by repeating these series of operations in accordance with the PWM signal Vpwm, the electrodeless discharge lamp 6 performs a blinking operation at the frequency fpwm of the PWM signal Vpwm. Then, by varying the on-duty of the PWM signal Vpwm, the time ratio between the lighting period Ton and the non-lighting period Toff of the electrodeless discharge lamp 6 can be changed, and the electrodeless discharge lamp 6 can be dimmed.

なお、図3に示すように、初期点弧電圧Vign1に対して再点弧電圧Vign2は小さくなるが、これは無電極放電灯6のバルブ内に残留するイオンの存在のためである。また、電力変換回路9の動作周波数finvは装置の低コスト化のため、数十kHz〜数百kHzとし、PWM信号Vpwmの周波数fpwmは人間の目にちらつき感を与えないよう、100Hz〜数kHzに設定される。   As shown in FIG. 3, the re-ignition voltage Vign2 is smaller than the initial ignition voltage Vign1, but this is due to the presence of ions remaining in the bulb of the electrodeless discharge lamp 6. In addition, the operating frequency finv of the power conversion circuit 9 is set to several tens kHz to several hundreds kHz in order to reduce the cost of the apparatus, and the frequency fpwm of the PWM signal Vpwm is set to 100 Hz to several kHz so as not to flicker the human eye. Set to

ところで、本実施形態の無電極放電灯点灯装置は、無電極放電灯6の周囲温度を検出する温度検出手段を備えており、PWM発振回路13が温度検出手段の出力に基づいてPWM信号Vpwmのオンデューティを変化させる。   By the way, the electrodeless discharge lamp lighting device of this embodiment includes temperature detection means for detecting the ambient temperature of the electrodeless discharge lamp 6, and the PWM oscillation circuit 13 generates the PWM signal Vpwm based on the output of the temperature detection means. Change the on-duty.

ここで、上述のPWM発振回路13は、入力端子46に接続された抵抗の抵抗値に応じてPWM信号Vpwmのオンデューティが変化するものである。入力端子46には、図1(c)に示すようなオンデューティ設定回路41が接続されている。オンデューティ設定回路41は、入力端子46にスイッチング素子Q42を介して感温素子(例えば、サーミスタなど)からなる感温抵抗Rth又は抵抗R45を選択的に接続する。スイッチング素子Q42は、無電極放電灯6の周囲温度を検出する温度検出手段である周囲温度検出回路44の出力に基づいて制御され、周囲温度検出回路44による検出温度が常温(例えば、図4(a)に示すように無電極放電灯6を全点灯させた時に光出力が最高を得る25℃)よりも低い規定温度(例えば、0℃)以下になると感温抵抗Rth側に接続される。ここで、感温抵抗Rthは、無電極放電灯6の周囲温度に応じてその抵抗値が変化する。すると、PWM発振回路13から出力されるPWM信号Vpwmのオンデューティは、無電極放電灯6の周囲温度が前記規定温度以下では前記周囲温度が低くなるにつれてオンデューティが下降する。すると、図4(b)に示すように、無電極放電灯6の点滅動作における一周期のうち点灯期間Tonの占める割合(以下、点灯期間占有率という)が上昇する。ここで、前記点滅動作の周期が一定であることを前提とすれば、前記点灯期間占有率の上昇に伴い、不点灯期間Toffが短くなるため、不点灯期間Toffに対する点灯期間Tonの時間比率が上昇することになる。これにより、前記規定温度を適宜設定しておくことで、図4(a)の調光時の光出力の周囲温度依存性が示すように、常温よりも低い規定温度以下での光出力の急激な低下を和らげることができる。ここで、周囲温度検出回路44は感温素子(例えば、サーミスタなど)を利用したものでもよい。なお、上述のPWM発振回路13としては、例えばルネサステクノロジ社製のM62212FPと呼ばれている集積回路を用いればよく、この集積回路のFB端子を上述の入力端子46とすればよい。   Here, in the PWM oscillation circuit 13 described above, the on-duty of the PWM signal Vpwm changes according to the resistance value of the resistor connected to the input terminal 46. An on-duty setting circuit 41 as shown in FIG. 1C is connected to the input terminal 46. The on-duty setting circuit 41 selectively connects a temperature-sensitive resistor Rth or resistor R45 including a temperature-sensitive element (for example, a thermistor) to the input terminal 46 via the switching element Q42. The switching element Q42 is controlled based on the output of the ambient temperature detection circuit 44, which is a temperature detection means for detecting the ambient temperature of the electrodeless discharge lamp 6, and the temperature detected by the ambient temperature detection circuit 44 is a normal temperature (for example, FIG. As shown in a), when the electrodeless discharge lamp 6 is fully lit, when the temperature is lower than a specified temperature (for example, 0 ° C.) lower than 25 ° C. at which the light output is maximized, the temperature-sensitive resistor Rth is connected. Here, the resistance value of the temperature-sensitive resistor Rth changes according to the ambient temperature of the electrodeless discharge lamp 6. Then, the on-duty of the PWM signal Vpwm output from the PWM oscillation circuit 13 decreases as the ambient temperature decreases when the ambient temperature of the electrodeless discharge lamp 6 is equal to or lower than the specified temperature. Then, as shown in FIG.4 (b), the ratio (henceforth a lighting period occupation rate) which the lighting period Ton occupies in one cycle in the blinking operation | movement of the electrodeless discharge lamp 6 increases. Here, if it is assumed that the cycle of the blinking operation is constant, the non-lighting period Toff becomes shorter as the lighting period occupation ratio increases, so that the time ratio of the lighting period Ton to the non-lighting period Toff is Will rise. Thereby, by setting the specified temperature appropriately, the light output suddenly decreases below the specified temperature lower than the normal temperature as shown by the ambient temperature dependency of the light output at the time of dimming in FIG. Can be relieved. Here, the ambient temperature detection circuit 44 may use a temperature sensing element (for example, a thermistor). For example, an integrated circuit called M62212FP manufactured by Renesas Technology may be used as the PWM oscillation circuit 13 described above, and the FB terminal of the integrated circuit may be used as the input terminal 46 described above.

また、オンデューティ設定回路41としては、図7に示すように、入力端子46に抵抗R53とスイッチング素子(例えば、MOSFET)Q54の直列回路を接続し、前記直列回路の両端に抵抗R52を接続したものであってもよい。ここで、スイッチング素子Q54は無電極放電灯6の周囲温度を検出する温度検出手段44からの出力に基づいて制御され、温度検出手段44は、図7に示すように定電圧源E55からの直流電圧を感温抵抗Rth,抵抗R56で分圧してスイッチング素子Q54に出力するものである。温度検出手段44による検出温度が前記規定温度以上の場合にスイッチング素子Q54がオンすることでPWM発振回路13の入力端子46に接続された抵抗の抵抗値が変化する。すると、PWM信号Vpwmのオンデューティが下降し、点灯期間占有率が上昇し、無電極放電灯6の点灯期間Tonの時間比率が上昇する。   As the on-duty setting circuit 41, as shown in FIG. 7, a series circuit of a resistor R53 and a switching element (for example, MOSFET) Q54 is connected to an input terminal 46, and a resistor R52 is connected to both ends of the series circuit. It may be a thing. Here, the switching element Q54 is controlled based on the output from the temperature detecting means 44 for detecting the ambient temperature of the electrodeless discharge lamp 6, and the temperature detecting means 44 is connected to the direct current from the constant voltage source E55 as shown in FIG. The voltage is divided by the temperature sensitive resistor Rth and the resistor R56 and output to the switching element Q54. When the temperature detected by the temperature detecting means 44 is equal to or higher than the specified temperature, the switching element Q54 is turned on to change the resistance value of the resistor connected to the input terminal 46 of the PWM oscillation circuit 13. Then, the on-duty of the PWM signal Vpwm decreases, the lighting period occupation ratio increases, and the time ratio of the lighting period Ton of the electrodeless discharge lamp 6 increases.

次に、本実施形態の無電極放電灯点灯装置の常温時の動作と低温時の動作とを図5に基づいて説明する。図5(a)は常温時での動作波形、同図(b)は低温時の動作波形を示す。なお、図5(a)(b)には誘導コイル5の両端間の高周波電圧Vcoilの包絡線のみを示す。ここで、点灯期間Tonのうち、再点弧始動期間に要する時間Tの割合(以下、再点弧始動時間占有率という)は無電極放電灯6が安定して点滅動作が行えるか否かの重要な要素でもあり、再点弧始動時間占有率が大きすぎると、例えば無電極放電灯6の周囲温度変化等による影響で、再点弧始動期間Tが変動した場合に無電極放電灯6の光出力の変化が大きくなることで、点灯が不安定になり、場合によっては立ち消えの可能性がある。 Next, the operation at normal temperature and the operation at low temperature of the electrodeless discharge lamp lighting device of the present embodiment will be described with reference to FIG. FIG. 5A shows an operation waveform at normal temperature, and FIG. 5B shows an operation waveform at low temperature. 5A and 5B show only the envelope of the high-frequency voltage Vcoil between both ends of the induction coil 5. FIG. Among the lighting period Ton, the percentage of time required for the re-ignition starting period T 1 (hereinafter, referred to as re-ignition starting time occupancy) is electrodeless discharge lamp 6 is whether perform flashing operations and stable There is also an important element of the re-ignition starting time occupancy rate is too large, for example, the influence by ambient temperature change or the like of the electrodeless discharge lamp 6, the electrodeless discharge lamp when the re-ignition starting period T 1 is fluctuated When the change in the light output of 6 becomes large, the lighting becomes unstable, and in some cases, there is a possibility that it will disappear.

本実施形態で注目すべき点は、図5(a)(b)に示すように無電極放電灯6の周囲温度が常温よりも低い規定温度以下で無電極放電灯6の点滅動作における不点灯期間Toffに対する点灯期間Tonの時間比率を上昇させる時間占有率低下手段が、PWM発振回路13とオンデューティ設定回路41とから構成され、点灯期間Tonの時間比率を増加させる点である。これにより、必然的に前記再点弧始動時間占有率が小さくなり、無電極放電灯6の点灯を安定させることができるものである。   What should be noted in the present embodiment is that the non-lighting in the blinking operation of the electrodeless discharge lamp 6 is performed when the ambient temperature of the electrodeless discharge lamp 6 is not more than a specified temperature lower than room temperature, as shown in FIGS. The time occupancy reduction means for increasing the time ratio of the lighting period Ton relative to the period Toff includes the PWM oscillation circuit 13 and the on-duty setting circuit 41, and increases the time ratio of the lighting period Ton. As a result, the re-ignition start time occupation ratio is inevitably reduced, and the lighting of the electrodeless discharge lamp 6 can be stabilized.

ここで、無電極放電灯6の周囲温度が前記規定温度以下の場合に、上述の点灯期間Tonの時間比率が上昇すると、無電極放電灯6の光出力が常温時に比べて増加することが懸念される。   Here, when the ambient temperature of the electrodeless discharge lamp 6 is equal to or lower than the specified temperature, the light output of the electrodeless discharge lamp 6 may increase as compared with the normal temperature when the time ratio of the lighting period Ton increases. Is done.

しかし、通常、図6に示すように無電極放電灯6の周囲温度が常温よりも低くなると無電極放電灯6の光出力或いは無電極放電灯6へ供給する高周波電力が急激に低下する。従って、上述のように前記規定温度以下で上述の点灯期間Tonの時間比率を上昇させることで、前記規定温度以下での光出力の急激な低下を和らげ、却って、前記規定温度以下の温度領域における温度依存性が少なくなるようにすることができる。また、それに伴い、図4(a)に示すように、常温時の全点灯時の光出力と調光時の光出力との比b/bに対する前記規定温度以下での全点灯時の光出力と調光時の光出力との比c/cのずれを抑制することができる。 However, normally, as shown in FIG. 6, when the ambient temperature of the electrodeless discharge lamp 6 becomes lower than room temperature, the light output of the electrodeless discharge lamp 6 or the high-frequency power supplied to the electrodeless discharge lamp 6 rapidly decreases. Accordingly, by increasing the time ratio of the lighting period Ton below the specified temperature as described above, the rapid decrease in light output below the specified temperature is moderated, and in the temperature region below the specified temperature. The temperature dependence can be reduced. Accordingly, as shown in FIG. 4 (a), as shown in FIG. 4A, the ratio of the light output during full lighting at normal temperature to the light output during dimming b 1 / b 2 with respect to the ratio b 1 / b 2 is less than the specified temperature. The shift of the ratio c 1 / c 2 between the light output and the light output during dimming can be suppressed.

ここで、無電極放電灯6の光出力の前記規定温度以下の温度領域における温度依存性を少なくする方法として、ドライブ回路11によって常温時の電力変換回路9における動作周波数finvを当該電力変換回路9に含まれる共振回路の共振周波数から相対的に大きくずらし、一方、前記規定温度以下では点灯期間Tonにおける動作周波数finvを前記共振周波数付近に設定することにより、前記規定温度以下で常温時に比べて高周波電圧Vcoilが増加するように制御することが考えられる。   Here, as a method of reducing the temperature dependency of the light output of the electrodeless discharge lamp 6 in the temperature region below the specified temperature, the drive circuit 11 sets the operating frequency finv in the power conversion circuit 9 at room temperature to the power conversion circuit 9. On the other hand, by setting the operating frequency finv in the lighting period Ton near the resonance frequency below the specified temperature, the operating frequency finv is set below the specified temperature to be higher than that at normal temperature. It can be considered that the voltage Vcoil is controlled to increase.

しかし、この場合は、点灯期間Tonにおける動作周波数finvが常温時では前記共振周波数から相対的に大きくずれているため、常温時では前記規定温度以下の場合に比べて立ち消えしやすくなるという問題がある。   However, in this case, since the operating frequency finv in the lighting period Ton is relatively deviated from the resonance frequency at room temperature, there is a problem in that it tends to disappear at room temperature compared to the case where the temperature is lower than the specified temperature. .

この点、本実施形態では前記規定温度以下でも点灯期間Tonにおける動作周波数finvを前記共振周波数付近に設定することができるため、無電極放電灯6の点灯を安定させつつ、前記規定温度以下の温度領域における光出力の温度依存性を少なくすることできるので有利である。   In this regard, in the present embodiment, the operating frequency finv in the lighting period Ton can be set near the resonance frequency even at the specified temperature or lower, so that the temperature of the electrodeless discharge lamp 6 can be stabilized and the temperature equal to or lower than the specified temperature. This is advantageous because the temperature dependence of the light output in the region can be reduced.

また、上述のようにPWM信号Vpwmの周波数fpwmが一定であれば、上述の点灯期間Tonの時間比率を上昇させることで、不点灯期間Toffが短縮されるため、その分不点灯期間Toffでのバルブ内のイオンの拡散を減らし、再点弧電圧Ving2を低減することができる。   Further, if the frequency fpwm of the PWM signal Vpwm is constant as described above, the non-lighting period Toff is shortened by increasing the time ratio of the lighting period Ton described above. It is possible to reduce the diffusion of ions in the bulb and to reduce the re-ignition voltage Ving2.

また、従来、無電極放電灯点灯装置では、電源投入後、無電極放電灯6が暖まるまでに相当の時間を要し、本来の光出力が得られるに至るまでに相当の時間がかかった。この点、本実施形態では、前記規定温度以下で上述のように点灯期間Tonの時間比率を上昇させることで、誘導コイル5へ供給される高周波電力が上昇するため、無電極放電灯6が暖まるまでの時間が短縮され、その結果、電源投入後から無電極放電灯6の点灯が安定するまでの時間を短縮することができる。   Conventionally, in the electrodeless discharge lamp lighting device, it takes a considerable time until the electrodeless discharge lamp 6 is warmed up after the power is turned on, and it takes a considerable time until the original light output is obtained. In this regard, in the present embodiment, since the high frequency power supplied to the induction coil 5 is increased by increasing the time ratio of the lighting period Ton below the specified temperature as described above, the electrodeless discharge lamp 6 is warmed. As a result, the time from when the power is turned on until the lighting of the electrodeless discharge lamp 6 is stabilized can be shortened.

なお、無電極放電灯6としては、例えば、図8に示すように、不活性ガスや金属蒸気等の放電ガスが封入されるガラス製のバルブ214を備え、バルブ214には、図9に示すカプラ319が挿入されるキャビティ25が形成され、キャビティ25の底部からキャビティ25の開口に向かって排気細管28が突設されているものがある。ここで、バルブ214の内壁には、保護膜22及び蛍光体膜23が塗布されている(図示では一部のみを示す)。また、無電極放電灯6のバルブネック部223には樹脂材から成る口金215が取り付けられ、その内側にキャビティ25の封止部211がある。なお、図9に示すように、カプラ319には、上述の誘導コイル5が設けられており、誘導コイル5は点灯回路1が収納された金属ケース320から導出された接続線322を介して点灯回路1と接続されている。   In addition, as the electrodeless discharge lamp 6, for example, as shown in FIG. 8, a glass bulb 214 in which a discharge gas such as an inert gas or a metal vapor is sealed is provided, and the bulb 214 is shown in FIG. In some cases, a cavity 25 into which the coupler 319 is inserted is formed, and an exhaust thin tube 28 projects from the bottom of the cavity 25 toward the opening of the cavity 25. Here, the protective film 22 and the phosphor film 23 are applied to the inner wall of the bulb 214 (only a part is shown in the drawing). A base 215 made of a resin material is attached to the bulb neck portion 223 of the electrodeless discharge lamp 6, and the sealing portion 211 of the cavity 25 is provided on the inside thereof. As shown in FIG. 9, the above-described induction coil 5 is provided in the coupler 319, and the induction coil 5 is lit through a connection line 322 derived from the metal case 320 in which the lighting circuit 1 is housed. The circuit 1 is connected.

本実施形態の無電極放電灯点灯装置を用いた照明器具は、例えば図10に示すように一つの筐体116内に無電極放電灯6及びカプラ319と共に収納されることで構成され、或いは、図11に示すような筐体126内に無電極放電灯6及びカプラ319とともに収納されることで構成される。なお、図10に示す照明器具は、屋外で例えば防犯灯として使用される。   The luminaire using the electrodeless discharge lamp lighting device of the present embodiment is configured by being housed together with the electrodeless discharge lamp 6 and the coupler 319 in one casing 116 as shown in FIG. It is configured by being housed together with the electrodeless discharge lamp 6 and the coupler 319 in a casing 126 as shown in FIG. In addition, the lighting fixture shown in FIG. 10 is used outdoors as a security light, for example.

(実施形態2)
本実施形態の無電極放電灯点灯装置は上述の図1と略同じであり、図12PWM発振回路13の構成のみが異なる。上述の実施形態1と同一の構成については説明を省略する。
(Embodiment 2)
The electrodeless discharge lamp lighting device of the present embodiment is substantially the same as that in FIG. 1 described above, and only the configuration of the PWM oscillation circuit 13 in FIG. 12 is different. The description of the same configuration as that of the first embodiment is omitted.

ところで、本実施形態の無電極放電灯点灯装置は無電極放電灯6の周囲温度を検出する温度検出手段を備えており、PWM発振回路13が温度検出手段の出力に基づいて出力されるPWM信号の周波数fpwmを変化させる。   By the way, the electrodeless discharge lamp lighting device of this embodiment is provided with temperature detection means for detecting the ambient temperature of the electrodeless discharge lamp 6, and the PWM signal output from the PWM oscillation circuit 13 based on the output of the temperature detection means. The frequency fpwm is changed.

ここで、PWM発振回路13は、入力端子136に接続されたコンデンサの容量に応じてPWM信号Vpwmの周波数が変化するものである。入力端子136には図12に示すような周波数設定回路131が接続されている。周波数設定回路131は、入力端子136にスイッチング素子Q132を介してコンデンサC133又はC134を選択的に接続する。スイッチング素子Q132は、無電極放電灯6の周囲温度を検出する温度検出手段である周囲温度検出回路44の検出温度が前記規定温度以下になると入力端子136に接続されるコンデンサを切り替える。すると、入力端子136に接続されるコンデンサの容量が変化し、PWM信号Vpwmの周波数が上昇する。ここで、周囲温度検出回路44は感温素子を利用したものでもよい。なお、上述のPWM発振回路13としては、例えばルネサステクノロジ社製のM62212FPと呼ばれている集積回路を用いればよく、この集積回路のCosc端子を上述の入力端子136とすればよい。   Here, the PWM oscillation circuit 13 has a frequency of the PWM signal Vpwm that changes according to the capacitance of the capacitor connected to the input terminal 136. A frequency setting circuit 131 as shown in FIG. 12 is connected to the input terminal 136. The frequency setting circuit 131 selectively connects the capacitor C133 or C134 to the input terminal 136 via the switching element Q132. The switching element Q132 switches the capacitor connected to the input terminal 136 when the detected temperature of the ambient temperature detection circuit 44, which is a temperature detecting means for detecting the ambient temperature of the electrodeless discharge lamp 6, becomes equal to or lower than the specified temperature. Then, the capacitance of the capacitor connected to the input terminal 136 changes, and the frequency of the PWM signal Vpwm increases. Here, the ambient temperature detection circuit 44 may use a temperature sensing element. For example, an integrated circuit called M62212FP manufactured by Renesas Technology may be used as the PWM oscillation circuit 13 described above, and the Cosc terminal of the integrated circuit may be used as the input terminal 136 described above.

次に、本実施形態の無電極放電灯点灯装置の常温時の動作と低温時の動作とを図13に基づいて説明する。図13(a)は常温時での動作波形、同図(b)は低温時の動作波形を示す。なお、図13(a)(b)には誘導コイル5の両端間の高周波電圧Vcoilの包絡線のみを示す。   Next, the operation at normal temperature and the operation at low temperature of the electrodeless discharge lamp lighting device of this embodiment will be described with reference to FIG. FIG. 13A shows an operation waveform at a normal temperature, and FIG. 13B shows an operation waveform at a low temperature. FIGS. 13A and 13B show only the envelope of the high-frequency voltage Vcoil between both ends of the induction coil 5.

本実施形態で注目すべき点は、無電極放電灯6の周囲温度が常温よりも低い規定温度以下でのPWM発振回路13と周波数設定回路131とから構成される前記時間占有率低下手段がPWM信号Vpwmの周波数fpwmを低下させることにある。これにより、前記再点弧始動時間占有率が下がり無電極放電灯6の点灯を安定させることができる。   What should be noted in the present embodiment is that the time occupancy reduction means comprising the PWM oscillation circuit 13 and the frequency setting circuit 131 when the ambient temperature of the electrodeless discharge lamp 6 is not more than a specified temperature lower than room temperature is PWM. The purpose is to reduce the frequency fpwm of the signal Vpwm. Thereby, the said re-ignition starting time occupation rate falls and the lighting of the electrodeless discharge lamp 6 can be stabilized.

また、本実施形態の無電極放電灯点灯装置では、前記規定温度以下でのみならず常温時においても周波数fe(図2)は電力変換回路9に含まれる共振回路の共振周波数付近に設定することができる。この場合、無電極放電灯6が再点弧始動を行った後の動作周波数finvは、点灯時における共振曲線ロ(図2参照)のピーク付近となるため、電力変換回路9に含まれる部品定数のばらつきや、前記電力変換回路9の周囲温度の変化により前記共振周波数のずれが生じても、前記共振周波数のずれによる電力変換回路9の出力の変化は小さく、無電極放電灯6の点灯を安定させ、立ち消えの抑制が可能となる。   Further, in the electrodeless discharge lamp lighting device of the present embodiment, the frequency fe (FIG. 2) is set near the resonance frequency of the resonance circuit included in the power conversion circuit 9 not only at the specified temperature but also at room temperature. Can do. In this case, since the operating frequency finv after the electrodeless discharge lamp 6 performs the re-ignition start is near the peak of the resonance curve (see FIG. 2) at the time of lighting, the component constant included in the power conversion circuit 9 Even when the resonance frequency shifts due to variations in the ambient temperature of the power conversion circuit 9 or changes in the ambient temperature of the power conversion circuit 9, the change in the output of the power conversion circuit 9 due to the shift in the resonance frequency is small, and the electrodeless discharge lamp 6 is turned on. It is possible to stabilize and suppress disappearance.

ここで、上述のように前記規定温度以下におけるPWM信号Vpwmの周波数fpwmを低下させたことにより、不点灯期間Toffが長くなり、点灯期間Tonでバルブ214(図8参照)内に生成されたイオンが不点灯期間Toff中に拡散することにより、再点弧電圧Ving2が上昇し、電力変換回路9に与えるストレスが増大することが懸念される。   Here, as described above, by reducing the frequency fpwm of the PWM signal Vpwm below the specified temperature, the non-lighting period Toff becomes longer, and ions generated in the bulb 214 (see FIG. 8) during the lighting period Ton. Is diffused during the non-lighting period Toff, there is a concern that the re-ignition voltage Ving2 rises and the stress applied to the power conversion circuit 9 increases.

しかし、仮に再点弧電圧Ving2が上昇したとしても前記規定温度以下では電力変換回路9に含まれる半導体素子(例えば、スイッチング素子Q3,Q4を構成するMOSFET)や共振回路のコンデンサCp(例えば、フィルムコンデンサ等)の電流・電圧に対する耐性が上昇するため、電力変換回路9へのストレスが増大しても問題にならない。   However, even if the re-ignition voltage Ving2 rises, the semiconductor element (for example, MOSFETs that constitute the switching elements Q3 and Q4) included in the power conversion circuit 9 and the capacitor Cp (for example, film) included in the power conversion circuit 9 below the specified temperature. Since the resistance of the capacitor and the like to the current / voltage is increased, there is no problem even if the stress on the power conversion circuit 9 increases.

また、従来から動作周波数が数十kHzから数MHzの間で動作する無電極放電灯装置では、誘導コイル5のインダクタンスを確保するためにカプラ319において誘導コイル5が巻装されるコア部分にはフェライトコアがよく用いられる。この場合、調光時の調光周波数を、例えば数十Hzから数kHzの間にすると、再点弧始動時に誘導コイル5に高い再点弧電圧Ving2が発生し、誘導コイル5に流れる過渡電流のためにフェライトコアに歪が発生してフェライトコアが振動し、カプラ319からの騒音が発生することがある。   Further, in the conventional electrodeless discharge lamp apparatus that operates at an operating frequency of several tens of kHz to several MHz, the core portion around which the induction coil 5 is wound in the coupler 319 is secured in order to ensure the inductance of the induction coil 5. Ferrite cores are often used. In this case, if the dimming frequency at the time of dimming is, for example, between several tens of Hz and several kHz, a high re-ignition voltage Ving2 is generated in the induction coil 5 at the time of re-ignition start, and the transient current flowing in the induction coil 5 Therefore, distortion may occur in the ferrite core, the ferrite core may vibrate, and noise from the coupler 319 may be generated.

しかし、図14に示すように、前記規定温度以下の温度領域では温度が低下するほど再点弧電圧Ving2も低下する傾向がある。従って、無電極放電灯6の周囲温度が前記規定温度以下で常温時よりもPWM発振回路13の発振周波数を低く設定したとしても、再点弧電圧Ving2が常温時に比べて上昇することはなく、電力変換回路9へのストレスの増大や、上述の騒音の発生はなく問題にならない。   However, as shown in FIG. 14, in the temperature region below the specified temperature, the re-ignition voltage Ving2 tends to decrease as the temperature decreases. Therefore, even if the ambient temperature of the electrodeless discharge lamp 6 is lower than the specified temperature and the oscillation frequency of the PWM oscillation circuit 13 is set lower than that at room temperature, the re-ignition voltage Ving2 does not increase compared to that at room temperature. There is no problem because there is no increase in stress on the power conversion circuit 9 and the generation of the noise described above.

更に、無電力放電灯6へ供給する高周波電力を低くする場合、或いは、深い調光を行い、前記再点弧始動時間占有率を大きくした場合、無電極放電灯6の周囲温度が常温では無電極放電灯6の点灯が安定していても前記規定温度以下では点灯が不安定になることが懸念される。   Further, when the high-frequency power supplied to the non-electric discharge lamp 6 is lowered, or when deep lighting control is performed and the re-ignition start time occupation ratio is increased, the ambient temperature of the electrodeless discharge lamp 6 is not normal. Even if the lighting of the electrode discharge lamp 6 is stable, there is a concern that the lighting becomes unstable below the specified temperature.

しかし、本実施形態では前記規定温度以下でPWM信号Vpwmの周波数fpwmを下げることで、前記高周波電力を増やすことなく再点弧始動時間占有率を小さくできるので、前記規定温度以下でも無電極放電灯6の点灯を安定させつつ、無電力放電灯6へ供給する高周波電力を低くしたり、調光を深くしたりすることが可能である。   However, in this embodiment, by reducing the frequency fpwm of the PWM signal Vpwm below the specified temperature, the re-ignition start time occupancy can be reduced without increasing the high-frequency power. It is possible to reduce the high-frequency power supplied to the non-powered discharge lamp 6 and to deepen the light control while stabilizing the lighting of the lamp 6.

ここで、無電極放電灯6へ供給する高周波電力を低くしたい場合に、点灯期間Tonの時間比率下げることによりある程度まで前記高周波電力を低くした後に、次に、その点灯期間Tonの時間比率を維持して前記再点弧始動時間占有率がそれ以上増加しないようにして点灯期間Tonにおける動作周波数finvを電力変換回路9に含まれる共振回路の共振周波数からずらすことにより、前記高周波電圧Vcoilを低下させる方法も考えられる。   Here, when it is desired to reduce the high-frequency power supplied to the electrodeless discharge lamp 6, the time ratio of the lighting period Ton is maintained after lowering the high-frequency power to some extent by lowering the time ratio of the lighting period Ton. Then, the high frequency voltage Vcoil is lowered by shifting the operating frequency finv in the lighting period Ton from the resonance frequency of the resonance circuit included in the power conversion circuit 9 so that the re-ignition start time occupation ratio does not increase any more. A method is also conceivable.

しかし、この場合、点灯期間Tonにおける動作周波数finvが前記共振周波数から相対的に大きくずれることになるため、無電極放電灯6の点灯が不安定になり、場合によっては立ち消えしやすくなる。   However, in this case, the operating frequency finv in the lighting period Ton is relatively deviated from the resonance frequency, so that the lighting of the electrodeless discharge lamp 6 becomes unstable and tends to disappear in some cases.

この点、本実施形態では点灯期間Tonにおける動作周波数finvを電力変換回路9に含まれる共振回路の共振周波数付近に設定することにより、無電極放電灯6の点灯を安定させつつ無電極放電灯6へ供給する高周波電力を低くしたり、或いは、深い調光を行うことができるため有利である。   In this regard, in the present embodiment, the operating frequency finv in the lighting period Ton is set near the resonance frequency of the resonance circuit included in the power conversion circuit 9, thereby stabilizing the lighting of the electrodeless discharge lamp 6 and the electrodeless discharge lamp 6. This is advantageous because the high-frequency power supplied to can be lowered or deep dimming can be performed.

(実施形態3)
本実施形態の無電極放電灯点灯装置の基本構成は実施形態1と略同じであり、図15に示すように、電力変換回路9において、スイッチング素子Q4のスイッチング素子Q3とは反対側の一端に電流検出用の抵抗R51が接続されており、温度検出手段が、抵抗51により構成され、スイッチング素子Q4に流れる電流を検出することにより無電極放電灯6の周囲温度を検出する点が相違する。なお、実施形態1と同じ構成については説明を省略する。
(Embodiment 3)
The basic configuration of the electrodeless discharge lamp lighting device of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 15, in the power conversion circuit 9, the switching element Q4 has one end opposite to the switching element Q3. A current detection resistor R51 is connected, and the temperature detection means is configured by the resistor 51, and is different in that the ambient temperature of the electrodeless discharge lamp 6 is detected by detecting the current flowing through the switching element Q4. The description of the same configuration as that of the first embodiment is omitted.

上述の図6に示すように、無電極放電灯6の周囲温度が常温よりも低い規定温度以下では低温になるほど前記高周波電力が低下する。従って、前記高周波電力を検出することでその温度依存性から無電極放電灯6の周囲温度の検出が可能となる。ここで、電力変換回路9に含まれるMOSFETからなるスイッチング素子Q4のドレイン電流値から精度良く前記高周波電力を検出できることが従来の検討で判っており、例えば、前記ドレイン電流値が小さいほど前記高周波電力が低い。すると、図6に示すように前記高周波電力が低いほど無電極放電灯6の周囲温度が低く、無電極放電灯6の点灯が不安定になる温度領域に近いと判断できる。   As shown in FIG. 6 described above, when the ambient temperature of the electrodeless discharge lamp 6 is lower than a specified temperature lower than the normal temperature, the high-frequency power decreases as the temperature decreases. Therefore, by detecting the high frequency power, the ambient temperature of the electrodeless discharge lamp 6 can be detected due to its temperature dependency. Here, it has been found by conventional studies that the high-frequency power can be detected with high accuracy from the drain current value of the switching element Q4 made of a MOSFET included in the power conversion circuit 9. For example, the smaller the drain current value, the higher the high-frequency power. Is low. Then, as shown in FIG. 6, it can be determined that the lower the high frequency power is, the lower the ambient temperature of the electrodeless discharge lamp 6 is, and it is closer to a temperature region where the lighting of the electrodeless discharge lamp 6 becomes unstable.

また、本実施形態では、前記高周波電圧Vcoil検出部を設けて、検出される高周波電圧Vcoilを検出することにより、無電極放電灯6の周囲温度を検出する構成にしてもよい。   In the present embodiment, the ambient temperature of the electrodeless discharge lamp 6 may be detected by providing the high-frequency voltage Vcoil detection unit and detecting the detected high-frequency voltage Vcoil.

本実施形態では、前記温度検出部を電力変換回路9内におさめつつ、無電極放電灯6が電力変換回路9から離れた場所に設置されていても当該無電極放電灯6の周囲温度を読み取ることが可能となる。特に、実施形態1における前記温度検出手段として本実施形態に示した温度検出手段を採用することにより、前記規定温度以下における無電極放電灯6の光出力の温度依存性をより少なくすることが可能となる。   In the present embodiment, the ambient temperature of the electrodeless discharge lamp 6 is read even when the electrodeless discharge lamp 6 is installed at a location away from the power conversion circuit 9 while keeping the temperature detection unit in the power conversion circuit 9. It becomes possible. In particular, by adopting the temperature detection unit shown in the present embodiment as the temperature detection unit in the first embodiment, it is possible to further reduce the temperature dependence of the light output of the electrodeless discharge lamp 6 below the specified temperature. It becomes.

(実施形態4)
本実施形態の無電極放電灯点灯装置の基本構成は実施形態1と略同じであって、PWM発振回路13が前記温度検出手段の出力に基づいて点灯期間Tonの時間比率及び周波数fpwmを変化させる。
(Embodiment 4)
The basic configuration of the electrodeless discharge lamp lighting device of the present embodiment is substantially the same as that of the first embodiment, and the PWM oscillation circuit 13 changes the time ratio and frequency fpwm of the lighting period Ton based on the output of the temperature detecting means. .

次に、本実施形態の無電極放電灯点灯装置の常温時の動作と低温時の動作とを図13に基づいて説明する。図16(a)は常温時での動作波形、同図(b)は低温時の動作波形を示す。なお、図16(a)(b)には誘導コイル5の両端間の高周波電圧Vcoilの包絡線のみを示す。   Next, the operation at normal temperature and the operation at low temperature of the electrodeless discharge lamp lighting device of this embodiment will be described with reference to FIG. FIG. 16A shows an operation waveform at normal temperature, and FIG. 16B shows an operation waveform at low temperature. FIGS. 16A and 16B show only the envelope of the high-frequency voltage Vcoil across the induction coil 5.

本実施形態で注目すべき点は、無電極放電灯6の周囲温度が常温よりも低い規定温度以下でのPWM発振回路13等時間占有率低下手段は、PWM信号Vpwmの周波数fpwmを低下させると同時に不点灯期間Toffが常温時と同じになるように、点灯期間Tonの時間比率を上昇させることにある。   What should be noted in this embodiment is that the time occupancy reduction means such as the PWM oscillation circuit 13 when the ambient temperature of the electrodeless discharge lamp 6 is equal to or lower than the normal temperature lowers the frequency fpwm of the PWM signal Vpwm. At the same time, the time ratio of the lighting period Ton is increased so that the non-lighting period Toff becomes the same as that at room temperature.

本実施形態では、前記規定温度以下で点灯期間Tonの時間比率を増加させることにより前記再点弧始動時間占有率を下げることができるため、前記規定温度以下で無電極放電灯6の点灯を安定させることが可能となる。また、前記規定温度以下での不点灯期間Toffは常温時の不点灯期間Toffと同じであり、前記規定温度以下における再点弧電圧Ving2は常温時と同じである。更に、前記規定温度以下で点灯期間Tonの時間比率を上昇させるため、無電極放電灯6の前記規定温度以下での光出力の大きな低下を和らげ、前記規定温度以下での光出力の周囲温度依存性を小さくすることもできる。   In this embodiment, since the re-ignition start time occupancy can be lowered by increasing the time ratio of the lighting period Ton below the prescribed temperature, the lighting of the electrodeless discharge lamp 6 can be stably performed below the prescribed temperature. It becomes possible to make it. The non-lighting period Toff below the specified temperature is the same as the non-lighting period Toff at room temperature, and the re-ignition voltage Ving2 below the specified temperature is the same as at room temperature. Furthermore, in order to increase the time ratio of the lighting period Ton below the specified temperature, the large decrease in light output of the electrodeless discharge lamp 6 below the specified temperature is moderated, and the light output below the specified temperature depends on the ambient temperature. It can also be reduced.

実施形態1における無電極放電灯点灯装置を示し、(a)は回路図、(b)はドライブ回路の回路図、(c)は要部回路図である。The electrodeless discharge lamp lighting device in Embodiment 1 is shown, (a) is a circuit diagram, (b) is a circuit diagram of a drive circuit, (c) is a principal part circuit diagram. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上に用いる無電極放電灯の特性図である。It is a characteristic view of the electrodeless discharge lamp used for the same. 同上の要部回路図である。It is a principal part circuit diagram same as the above. 同上における無電極放電灯の一部破断した概略側面図である。It is a schematic side view in which the electrodeless discharge lamp in the above is partially broken. 同上の無電極放電灯点灯装置の概略斜視図である。It is a schematic perspective view of the electrodeless discharge lamp lighting device same as the above. 同上の無電極放電灯点灯装置を備えた照明器具の概略側面図である。It is a schematic side view of the lighting fixture provided with the electrodeless discharge lamp lighting device same as the above. 同上の無電極放電灯点灯装置を備えた照明器具の一部破断した概略正面図である。It is the schematic front view which fractured | ruptured partially the lighting fixture provided with the electrodeless discharge lamp lighting device same as the above. 実施形態2における無電極放電灯点灯装置の要部回路図である。It is a principal part circuit diagram of the electrodeless discharge lamp lighting device in Embodiment 2. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上に用いる無電極放電灯の特性図である。It is a characteristic view of the electrodeless discharge lamp used for the same. 実施形態3における無電極放電灯点灯装置の回路図である。It is a circuit diagram of the electrodeless discharge lamp lighting device in the third embodiment. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 従来例の動作説明図である。It is operation | movement explanatory drawing of a prior art example. 従来例の動作説明図である。It is operation | movement explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 点灯回路
5 誘導コイル
6 無電極放電灯
9 電力変換回路
10 ダイオードブリッジ
11 ドライブ回路
12 始動スイープ回路
13 PWM発振回路
41 オンデューティ設定回路
44 周囲温度検出回路
E 直流電源
1 lighting circuit 5 induction coil 6 electrodeless discharge lamp 9 power conversion circuit 10 diode bridge 11 drive circuit 12 start sweep circuit 13 PWM oscillation circuit 41 on-duty setting circuit 44 ambient temperature detection circuit E DC power supply

Claims (7)

直流電源からの電力供給を受け高周波電圧を出力する電力変換回路であって、少なくともスイッチング素子及び共振回路を含む電力変換回路と、前記電力変換回路の出力端間に接続され、バルブ内に放電ガスを封入した無電極放電灯に近接配置される誘導コイルと、前記電力変換回路の動作周波数を制御し、前記高周波電圧を前記無電極放電灯が点灯する大きさに設定する点灯期間と点灯しない大きさに設定する不点灯期間とを交互に切り替えて前記無電極放電灯を点滅動作させる周波数制御回路と、前記無電極放電灯の周囲温度を検出する温度検出手段と、前記温度検出手段による検出温度が常温よりも低い規定温度以下の時に前記点滅動作における点灯期間のうち前記無電極放電灯の再点弧始動に要する時間の占有率である再点弧始動時間占有率を低下させる時間占有率低下手段を有することを特徴とする無電極放電灯点灯装置。   A power conversion circuit for receiving a power supply from a DC power supply and outputting a high-frequency voltage, the power conversion circuit including at least a switching element and a resonance circuit, connected between an output terminal of the power conversion circuit, and a discharge gas in a bulb An induction coil disposed in the vicinity of the electrodeless discharge lamp enclosing the electrode and an operating period of the power conversion circuit to control the operating frequency of the power conversion circuit and set the high-frequency voltage to a size at which the electrodeless discharge lamp is lit and a size that does not light up A frequency control circuit that causes the electrodeless discharge lamp to blink by alternately switching a non-lighting period to be set, temperature detection means for detecting an ambient temperature of the electrodeless discharge lamp, and a temperature detected by the temperature detection means At the time of re-ignition start, which is the occupancy rate of the time required for re-ignition start of the electrodeless discharge lamp in the lighting period in the blinking operation when the temperature is below a specified temperature lower than normal temperature An electrodeless discharge lamp lighting apparatus characterized by having a time occupancy reduction means for reducing the occupancy. 前記時間占有率低下手段は、前記点滅動作における前記不点灯期間に対する前記点灯期間の時間比率を上昇させることにより前記再点弧始動時間占有率を低下させることを特徴とする請求項1記載の無電極放電灯点灯装置。   2. The non-lighting start time occupancy rate according to claim 1, wherein the time occupancy rate lowering unit decreases the re-ignition start time occupancy rate by increasing a time ratio of the lighting period to the non-lighting period in the blinking operation. Electrode discharge lamp lighting device. 前記周波数制御回路へPWM信号を与えるPWM発振回路を有し、前記周波数制御回路は、PWM発振回路からのPWM信号に基づいて前記動作周波数の制御を行うものであり、前記時間占有率低下手段は、PWM信号の周波数を低下させることにより前記再点弧始動時間占有率を低下させることを特徴とする請求項1または請求項2に記載の無電極放電灯点灯装置。   A PWM oscillation circuit for supplying a PWM signal to the frequency control circuit, the frequency control circuit performing control of the operating frequency based on a PWM signal from the PWM oscillation circuit; 3. The electrodeless discharge lamp lighting device according to claim 1, wherein the re-ignition start time occupation ratio is reduced by lowering a frequency of the PWM signal. 4. 前記周波数制御回路は、前記点灯期間における前記動作周波数を前記共振回路の共振周波数近傍に設定することを特徴とする請求項1乃至3のいずれか1項に記載の無電極放電灯点灯装置。   4. The electrodeless discharge lamp lighting device according to claim 1, wherein the frequency control circuit sets the operating frequency in the lighting period to be close to a resonance frequency of the resonance circuit. 5. 前記温度検出手段は、前記スイッチング素子に流れる電流を検出することにより前記周囲温度を検出することを特徴とする請求項1乃至4のいずれか1項に記載の無電極放電灯点灯装置。   5. The electrodeless discharge lamp lighting device according to claim 1, wherein the temperature detection unit detects the ambient temperature by detecting a current flowing through the switching element. 6. 前記温度検出手段は、感温素子により前記周囲温度を検出することを特徴とする請求項1乃至4のいずれか1項に記載の無電極放電灯点灯装置。   The electrodeless discharge lamp lighting device according to any one of claims 1 to 4, wherein the temperature detecting means detects the ambient temperature by a temperature sensitive element. 請求項1乃至6のいずれか1項に記載の無電極放電灯点灯装置を備えたことを特徴とする照明器具。   A lighting fixture comprising the electrodeless discharge lamp lighting device according to any one of claims 1 to 6.
JP2007195258A 2007-07-26 2007-07-26 Electrodeless discharge lamp lighting device, and luminaire Pending JP2009032526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195258A JP2009032526A (en) 2007-07-26 2007-07-26 Electrodeless discharge lamp lighting device, and luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195258A JP2009032526A (en) 2007-07-26 2007-07-26 Electrodeless discharge lamp lighting device, and luminaire

Publications (1)

Publication Number Publication Date
JP2009032526A true JP2009032526A (en) 2009-02-12

Family

ID=40402839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195258A Pending JP2009032526A (en) 2007-07-26 2007-07-26 Electrodeless discharge lamp lighting device, and luminaire

Country Status (1)

Country Link
JP (1) JP2009032526A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007487A (en) * 2001-06-25 2003-01-10 Matsushita Electric Works Ltd Electric discharge lamp lighting equipment
JP2004039336A (en) * 2002-07-01 2004-02-05 Murata Mfg Co Ltd Piezoelectric inverter for cold-cathode tube
JP2005071827A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Electrodeless discharge lamp lighting device and illumination device
JP2006081350A (en) * 2004-09-10 2006-03-23 Toshiba Corp Power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007487A (en) * 2001-06-25 2003-01-10 Matsushita Electric Works Ltd Electric discharge lamp lighting equipment
JP2004039336A (en) * 2002-07-01 2004-02-05 Murata Mfg Co Ltd Piezoelectric inverter for cold-cathode tube
JP2005071827A (en) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd Electrodeless discharge lamp lighting device and illumination device
JP2006081350A (en) * 2004-09-10 2006-03-23 Toshiba Corp Power converter

Similar Documents

Publication Publication Date Title
JP2007115660A (en) High-pressure discharge lamp lighting device, and illumination device
JP2008270058A (en) High pressure discharge lamp lighting device, projector and lighting method of high pressure discharge lamp
JP4186801B2 (en) Electrodeless discharge lamp lighting device and electrodeless discharge lamp device
JP2009289492A (en) High-pressure discharge lamp lighting device and luminaire
JP2007035503A (en) Discharge lamp lighting device
JP2009032526A (en) Electrodeless discharge lamp lighting device, and luminaire
JP6244806B2 (en) Discharge lamp lighting device, discharge lamp lighting method, and projector
JP2009032527A (en) Electrodeless discharge lamp lighting device and luminaire
JP5030021B2 (en) High pressure discharge lamp lighting device, light source device and control method thereof
JP2006066226A (en) Electrodeless discharge lamp lighting device and illumination device
JP2010067974A (en) Method of increasing dielectric strength of metal oxide transistor and circuit device
JP6558018B2 (en) Discharge lamp driving device, light source device, projector, and discharge lamp driving method
JP5227112B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP2005135641A (en) Electrodeless discharge lamp lighting device
JP4971739B2 (en) Electrodeless discharge lamp lighting device and its lighting fixture
JP4710591B2 (en) Discharge lamp lighting device and image display device
JP2009266601A (en) Discharge lamp lighting device, and luminaire
JP2010009870A (en) Electrodeless discharge lamp lighting device and lighting apparatus
JP2009032520A (en) Electrodeless discharge lamp lighting device, and luminaire using it
JP2006252907A (en) Electrodeless discharge lamp lighting device an illumination apparatus using the same
JP5129703B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP4697114B2 (en) Electrodeless discharge lamp lighting device and its lighting fixture
JP2010009776A (en) Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, and illuminating apparatus
JP2009176679A (en) Discharge lamp lighting device, and luminaire
Schnell et al. HID lamp driver with phase controlled resonant-mode ignition detection and fast transition to LFSW warm-up mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828