[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006066226A - Electrodeless discharge lamp lighting device and illumination device - Google Patents

Electrodeless discharge lamp lighting device and illumination device Download PDF

Info

Publication number
JP2006066226A
JP2006066226A JP2004247348A JP2004247348A JP2006066226A JP 2006066226 A JP2006066226 A JP 2006066226A JP 2004247348 A JP2004247348 A JP 2004247348A JP 2004247348 A JP2004247348 A JP 2004247348A JP 2006066226 A JP2006066226 A JP 2006066226A
Authority
JP
Japan
Prior art keywords
circuit
chopper
voltage
discharge lamp
electrodeless discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004247348A
Other languages
Japanese (ja)
Other versions
JP4155249B2 (en
Inventor
Akira Nakashiro
明 中城
Hiroshi Kido
大志 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004247348A priority Critical patent/JP4155249B2/en
Publication of JP2006066226A publication Critical patent/JP2006066226A/en
Application granted granted Critical
Publication of JP4155249B2 publication Critical patent/JP4155249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeless discharge lamp lighting device which can prevent flickerings of an electrodeless discharge lamp, even if operation of a chopper circuit is stopped once, and to provide an illumination device. <P>SOLUTION: The chopper control circuit 6 comprises a PFC control IC 21 which has the function of stopping the operation of a chopper circuit 3, when the output voltage of the chopper circuit rises in voltage and the detected voltage detected by a voltage detecting circuit 22 surpasses a first threshold voltage and the function of restarting the operation of the chopper circuit 3, when the detected voltage becomes below a second threshold voltage established lower than the first threshold voltage, in a state with the operation of the chopper circuit 3 stopped. The speed of the transient response of the chopper control circuit 6 is determined by an integration circuit 23, and the integration circuit 23 makes the transient response of the chopper control circuit, at least at the restarting of the chopper circuit 3, faster than that at the normal lighting of the electrodeless discharge lamp 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放電ガスを封入した誘導コイルを近接配置してなる無電極放電灯の誘導コイルに高周波出力を与えることにより無電極放電灯を点灯させる無電極放電灯点灯装置および照明装置に関するものである。   The present invention relates to an electrodeless discharge lamp lighting device and an illuminating device for lighting an electrodeless discharge lamp by applying a high frequency output to an induction coil of an electrodeless discharge lamp in which an induction coil enclosing a discharge gas is disposed in proximity. is there.

この種の無電極放電灯点灯装置1(以下「点灯装置」と略称する)として、一般に、図10に示すように、交流電源ACを電源として無電極放電灯2を点灯させるものが知られている。この点灯装置1は、交流電源ACの電源電圧を整流するたとえばダイオードブリッジよりなる整流器DBと、整流器DBの出力を所望の大きさの直流電圧に変換するチョッパ回路3と、チョッパ回路3の出力を高周波出力に変換して無電極放電灯2の誘導コイル12に与えることにより無電極放電灯2を点灯させる電力変換回路4とを備える。また、詳述しないが、図10に示す点灯装置1では、整流器DBとチョッパ回路3との間に、スイッチング素子Q5を有し無電極放電灯2の定常点灯時にチョッパ回路3の出力電圧を下げる降圧回路15が設けられている。   As this type of electrodeless discharge lamp lighting device 1 (hereinafter abbreviated as “lighting device”), generally, as shown in FIG. 10, an electrodeless discharge lamp 2 is lit using an AC power supply AC as a power source. Yes. The lighting device 1 includes a rectifier DB formed of, for example, a diode bridge that rectifies a power supply voltage of an AC power supply AC, a chopper circuit 3 that converts an output of the rectifier DB into a DC voltage having a desired magnitude, and an output of the chopper circuit 3. And a power conversion circuit 4 for turning on the electrodeless discharge lamp 2 by converting it into a high frequency output and applying it to the induction coil 12 of the electrodeless discharge lamp 2. Although not described in detail, the lighting device 1 shown in FIG. 10 has a switching element Q5 between the rectifier DB and the chopper circuit 3, and lowers the output voltage of the chopper circuit 3 during steady lighting of the electrodeless discharge lamp 2. A step-down circuit 15 is provided.

チョッパ回路3は、整流器DBの出力端間において、インダクタL1とMOSFETからなるスイッチング素子Q1との直列回路がインダクタL1を整流器DBの正極側にして接続され、スイッチング素子Q1の両端間に、平滑コンデンサC1とダイオードD1との直列回路がダイオードD1のアノードをスイッチング素子Q1とインダクタL1との接続点に接続する形で接続された構成を有し、平滑コンデンサC1の両端間に出力電圧を出力する。さらに、スイッチング素子Q1に接続された駆動トランスT1を有するドライブ回路5と、駆動トランスT1を介してスイッチング素子Q1のオンオフを制御するチョッパ制御回路6とが設けられ、チョッパ制御回路6がチョッパ回路3の出力電圧に基づいてドライブ回路5をフィードバック制御することによって、チョッパ回路3は整流器DBからの入力電圧を所望の大きさに昇圧して出力する。   In the chopper circuit 3, a series circuit of an inductor L1 and a switching element Q1 composed of a MOSFET is connected between the output terminals of the rectifier DB with the inductor L1 as a positive side of the rectifier DB, and a smoothing capacitor is connected between both ends of the switching element Q1. A series circuit of C1 and a diode D1 has a configuration in which the anode of the diode D1 is connected to a connection point between the switching element Q1 and the inductor L1, and outputs an output voltage between both ends of the smoothing capacitor C1. Further, a drive circuit 5 having a drive transformer T1 connected to the switching element Q1 and a chopper control circuit 6 for controlling on / off of the switching element Q1 via the drive transformer T1 are provided. The chopper control circuit 6 is provided with the chopper circuit 3 By performing feedback control of the drive circuit 5 based on the output voltage, the chopper circuit 3 boosts the input voltage from the rectifier DB to a desired magnitude and outputs the boosted voltage.

一方、電力変換回路4は、MOSFETからなりチョッパ回路3の出力電圧が印加されるスイッチング要素Q2およびスイッチング要素Q3の直列回路と、スイッチング要素Q2、Q3を高周波で交互にオンオフする駆動回路7とを備える。駆動回路7は、水晶振動子X1を有した発振回路8と、2次側に各スイッチング要素Q2、Q3が夫々接続された駆動トランスT2を有し発振回路8の出力を増幅する増幅回路9とで構成される。駆動回路7の動作電源である駆動電源回路10は、チョッパ回路3の出力端間に接続されたMOSFETからなるスイッチング素子Q4およびダイオードD2の直列回路と、ダイオードD2と並列に接続されたインダクタL2およびコンデンサC3の直列回路と、チョッパ回路3の出力電圧を降圧して駆動電源回路10の出力とするようにコンデンサC3の両端電圧を検出してスイッチング素子Q4のオンオフを制御する降圧制御回路11とで構成される。電力変換回路4は、スイッチング要素Q2、Q3を高周波で交互にオンオフすることによって無電極放電灯2を構成する誘導コイル12に高周波出力を与える。   On the other hand, the power conversion circuit 4 includes a series circuit of a switching element Q2 and a switching element Q3 made of MOSFET to which the output voltage of the chopper circuit 3 is applied, and a drive circuit 7 that alternately turns on and off the switching elements Q2 and Q3 at a high frequency. Prepare. The drive circuit 7 includes an oscillation circuit 8 having a crystal resonator X1 and an amplification circuit 9 having a drive transformer T2 to which switching elements Q2 and Q3 are respectively connected on the secondary side and amplifying the output of the oscillation circuit 8. Consists of. A drive power supply circuit 10 which is an operation power supply of the drive circuit 7 includes a series circuit of a switching element Q4 and a diode D2 made of a MOSFET connected between output terminals of the chopper circuit 3, an inductor L2 connected in parallel with the diode D2, and A series circuit of the capacitor C3 and a step-down control circuit 11 that detects the voltage across the capacitor C3 so as to step down the output voltage of the chopper circuit 3 and use it as the output of the drive power supply circuit 10 to control on / off of the switching element Q4. Composed. The power conversion circuit 4 gives a high frequency output to the induction coil 12 constituting the electrodeless discharge lamp 2 by alternately turning on and off the switching elements Q2 and Q3 at a high frequency.

さらに、図10においては、電力変換回路4から無電極放電灯2に効率よく高周波出力を与えることができるように、電力変換回路4と誘導コイル12とのインピーダンスを整合するマッチング回路13が設けられている。電力変換回路4とマッチング回路13との間には、インダクタL3およびコンデンサC4の直列回路が挿入されている。   Further, in FIG. 10, a matching circuit 13 for matching impedances of the power conversion circuit 4 and the induction coil 12 is provided so that a high frequency output can be efficiently given from the power conversion circuit 4 to the electrodeless discharge lamp 2. ing. Between the power conversion circuit 4 and the matching circuit 13, a series circuit of an inductor L3 and a capacitor C4 is inserted.

誘導コイル12は、金属蒸気と不活性ガスとの混合気体である放電ガス(たとえば水銀および希ガス)が封入されたバルブ14に近接して配置される形でバルブ14とともに無電極放電灯2を構成し、電力変換回路4の出力を受けて数十kHzから数百MHzの高周波電流が流れることによって、バルブ14内の放電ガスに対して高周波電磁界を作用させて無電極放電灯2を点灯させる(たとえば特許文献1参照)。   The induction coil 12 is disposed in the vicinity of the bulb 14 in which a discharge gas (for example, mercury and rare gas), which is a mixed gas of metal vapor and inert gas, is enclosed, and the electrode 14 together with the bulb 14. The electrodeless discharge lamp 2 is turned on by applying a high-frequency electromagnetic field to the discharge gas in the bulb 14 when a high-frequency current of several tens of kHz to several hundreds of MHz flows upon receiving the output of the power conversion circuit 4 (For example, refer to Patent Document 1).

ところで、無電極放電灯2はフィラメントを有さず、上述した点灯装置1においては無電極放電灯2の始動時(電力変換回路4の動作が開始する前)に先行予熱による電力の消費がないので、チョッパ回路3が無電極放電灯2の始動時に定常点灯時と同様に動作することによってチョッパ回路3の出力電圧が過度に上昇してしまうことを防止するために、チョッパ回路3の出力電圧が所定の電圧を超えた場合にチョッパ回路3の動作を一旦停止させる機能を点灯装置1に付加することが考えられる。
特開2002−43082号公報(第7−8頁、図6)
By the way, the electrodeless discharge lamp 2 does not have a filament, and in the lighting device 1 described above, there is no power consumption due to pre-heating when the electrodeless discharge lamp 2 is started (before the operation of the power conversion circuit 4 starts). Therefore, in order to prevent the output voltage of the chopper circuit 3 from excessively rising due to the chopper circuit 3 operating in the same manner as during steady lighting when the electrodeless discharge lamp 2 is started, the output voltage of the chopper circuit 3 is prevented. It is conceivable to add a function to the lighting device 1 to temporarily stop the operation of the chopper circuit 3 when the voltage exceeds a predetermined voltage.
Japanese Patent Laid-Open No. 2002-43082 (page 7-8, FIG. 6)

しかし、上述した点灯装置1においてチョッパ回路3の動作が停止した状態では、無電極放電灯2が点灯することにより電力が消費されるとチョッパ回路3の出力電圧(平滑コンデンサの両端電圧)が急激に低下することがあるので、チョッパ回路3の出力電圧が所定の電圧を下回った場合にチョッパ回路3の動作を再開させるようにしていても、チョッパ回路3の出力電圧が前記所定の電圧を下回ってからチョッパ回路3が動作を再開するまでの期間にチョッパ回路3の出力電圧にアンダーシュートが生じることにより、無電極放電灯2がちらついてしまう可能性がある。   However, in the state where the operation of the chopper circuit 3 is stopped in the lighting device 1 described above, the output voltage of the chopper circuit 3 (the voltage across the smoothing capacitor) suddenly increases when power is consumed by lighting the electrodeless discharge lamp 2. Therefore, even if the operation of the chopper circuit 3 is resumed when the output voltage of the chopper circuit 3 falls below a predetermined voltage, the output voltage of the chopper circuit 3 falls below the predetermined voltage. There is a possibility that the electrodeless discharge lamp 2 may flicker due to an undershoot in the output voltage of the chopper circuit 3 during a period from when the chopper circuit 3 resumes operation.

本発明は上記事由に鑑みてなされたものであって、チョッパ回路の動作を一旦停止させても、無電極放電灯がちらつくことを防止できる無電極放電灯点灯装置および照明装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an electrodeless discharge lamp lighting device and an illumination device that can prevent the electrodeless discharge lamp from flickering even if the operation of the chopper circuit is temporarily stopped. Objective.

請求項1の発明は、スイッチング素子を有し直流電源から電力供給され出力する直流電圧の大きさをスイッチング素子のデューティ比によって決定するチョッパ回路と、チョッパ回路のスイッチング素子をオンオフさせるドライブ回路と、チョッパ回路の出力を高周波出力に変換するとともに放電ガスを封入したバルブに誘導コイルを近接配置してなる無電極放電灯を点灯させる高周波出力を無電極放電灯の誘導コイルに供給する電力変換回路と、チョッパ回路の出力電圧に比例する電圧を検出電圧として検出する電圧検出回路と、検出電圧に基づいてドライブ回路をフィードバック制御するチョッパ制御回路とを備え、チョッパ制御回路が、検出電圧が所定の第1のしきい値電圧を越えるとチョッパ回路の動作を停止させる異常昇圧防止手段と、異常昇圧防止手段によりチョッパ回路の動作が停止した状態において検出電圧が第1のしきい値電圧より低く設定された第2のしきい値電圧を下回るとチョッパ回路の動作を再開させる解除手段と、少なくとも解除手段によりチョッパ回路の動作が再開する際のチョッパ制御回路における過渡応答を無電極放電灯の定常点灯時よりも速くする過渡応答制御手段とを有することを特徴とする。   The invention of claim 1 includes a chopper circuit that has a switching element and determines the magnitude of a DC voltage supplied and output from a DC power source according to the duty ratio of the switching element, a drive circuit that turns on and off the switching element of the chopper circuit, A power conversion circuit that converts the output of the chopper circuit into a high-frequency output and supplies a high-frequency output to the induction coil of the electrodeless discharge lamp for lighting an electrodeless discharge lamp in which an induction coil is disposed close to a bulb filled with a discharge gas; A voltage detection circuit that detects a voltage proportional to the output voltage of the chopper circuit as a detection voltage, and a chopper control circuit that feedback-controls the drive circuit based on the detection voltage. The chopper control circuit has a predetermined detection voltage. Abnormal voltage booster that stops chopper circuit operation when threshold voltage of 1 is exceeded And a release means for resuming the operation of the chopper circuit when the detected voltage falls below a second threshold voltage set lower than the first threshold voltage in a state where the operation of the chopper circuit is stopped by the abnormal boost prevention means And a transient response control means for making the transient response in the chopper control circuit when the operation of the chopper circuit is restarted at least by the releasing means faster than in the steady lighting of the electrodeless discharge lamp.

この構成によれば、少なくとも解除手段によりチョッパ回路の動作が再開する際のチョッパ制御回路の過渡応答を無電極放電灯の定常点灯時よりも速くしているので、異常昇圧防止手段によりチョッパ回路の動作が停止した状態で検出電圧が第2のしきい値電圧を下回った直後にチョッパ回路の動作を再開させることができる。要するに、検出電圧が第2のしきい値電圧を下回ってからチョッパ回路の動作が再開するまでの時間が短く、チョッパ回路の動作が停止した状態でチョッパ回路の出力電圧が急激に低下したとしても、チョッパ回路の出力電圧は大きく低下する前に低下が抑制されるので、チョッパ回路の出力電圧にアンダーシュートが生じることにより無電極放電灯がちらつくことを防止できる。   According to this configuration, the transient response of the chopper control circuit when the operation of the chopper circuit is resumed by at least the release means is made faster than that during steady lighting of the electrodeless discharge lamp. The operation of the chopper circuit can be resumed immediately after the detection voltage falls below the second threshold voltage in a state where the operation is stopped. In short, even if the time from when the detected voltage falls below the second threshold voltage to when the chopper circuit operation resumes is short and the chopper circuit operation stops, the output voltage of the chopper circuit suddenly drops. Since the decrease in the output voltage of the chopper circuit is suppressed before it greatly decreases, it is possible to prevent the electrodeless discharge lamp from flickering due to an undershoot in the output voltage of the chopper circuit.

請求項2の発明は、請求項1の発明において、前記チョッパ制御回路が、前記電力変換回路が動作を開始する前に前記異常昇圧防止手段により前記チョッパ回路の動作が停止すると、電力変換回路が動作を開始してから前記解除手段によりチョッパ回路の動作が再開するまでの期間を含む一定時間を時限するタイマ回路を有し、前記過渡応答制御手段が、タイマ回路が前記一定時間を時限する期間にチョッパ制御回路の過渡応答を前記無電極放電灯の定常点灯時よりも速くすることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, when the chopper control circuit stops the operation of the chopper circuit by the abnormal boost prevention means before the power conversion circuit starts operation, the power conversion circuit A timer circuit for timing a fixed time including a period from the start of operation until the operation of the chopper circuit is restarted by the canceling means, and the transient response control means is a period for which the timer circuit times the fixed time Further, the transient response of the chopper control circuit is made faster than that during steady lighting of the electrodeless discharge lamp.

この構成によれば、無電極放電灯の始動時において、チョッパ回路の動作が停止した状態で電力変換回路が動作を開始することによりチョッパ回路の出力電圧が急激に低下したとしても、チョッパ制御回路の過渡応答が無電極放電灯の定常点灯時よりも速いから、解除手段によりチョッパ回路の動作を再開させる際に無電極放電灯がちらつくことを防止できる。   According to this configuration, even when the output voltage of the chopper circuit suddenly decreases due to the operation of the power conversion circuit with the operation of the chopper circuit stopped when the electrodeless discharge lamp is started, the chopper control circuit Therefore, the electrodeless discharge lamp can be prevented from flickering when the operation of the chopper circuit is resumed by the release means.

請求項3の発明は、請求項1の発明において、前記過渡応答制御手段が、前記第1のしきい値電圧以下であって前記無電極放電灯の定常点灯時における検出電圧より高く設定された第3のしきい値電圧を前記検出電圧が超えると前記チョッパ制御回路の過渡応答を無電極放電灯の定常点灯時よりも速くすることを特徴とする。   According to a third aspect of the invention, in the first aspect of the invention, the transient response control means is set to be lower than the first threshold voltage and higher than a detection voltage when the electrodeless discharge lamp is steadily lit. When the detected voltage exceeds a third threshold voltage, the transient response of the chopper control circuit is made faster than that during steady lighting of the electrodeless discharge lamp.

この構成によれば、無電極放電灯の始動時に限らず定常点灯時であっても、解除手段によりチョッパ回路の動作を再開させる際に無電極放電灯がちらつくことを防止できる。   According to this configuration, the electrodeless discharge lamp can be prevented from flickering when the operation of the chopper circuit is resumed by the release means, not only when the electrodeless discharge lamp is started but also during steady lighting.

請求項4の発明は、請求項3の発明において、前記第3のしきい値電圧が前記第1のしきい値電圧であることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the third threshold voltage is the first threshold voltage.

ところで、チョッパ制御回路の過渡応答は、無電極放電灯の定常点灯時においては、ノイズや他の誤差発生源からの信号がレギュレーションされて入力電流歪みの悪化や力率低下につながることを防止するために、比較的遅く設定されることが望ましい。ここにおいて、請求項4の構成によれば、チョッパ回路の動作が異常昇圧防止手段により停止された場合にのみチョッパ制御回路の過渡応答が速くなるので、無電極放電灯の定常点灯時に検出電圧が第1のしきい値電圧を越えない範囲で上昇してもチョッパ制御回路の過渡応答を遅いままで動作させることができ、チョッパ回路の入力電流歪みの悪化や力率低下を防止した状態で無電極放電灯を点灯維持することができる。   By the way, the transient response of the chopper control circuit prevents the noise and other signals from error sources from being regulated during steady lighting of the electrodeless discharge lamp, leading to deterioration of input current distortion and power factor reduction. Therefore, it is desirable that the setting is relatively slow. According to the fourth aspect of the present invention, since the transient response of the chopper control circuit is accelerated only when the operation of the chopper circuit is stopped by the abnormal boost prevention means, the detection voltage is maintained during steady lighting of the electrodeless discharge lamp. Even if the voltage rises within a range that does not exceed the first threshold voltage, the chopper control circuit can be operated with a slow transient response, and it is not in a state where deterioration of input current distortion and power factor reduction of the chopper circuit are prevented. The electrode discharge lamp can be kept on.

請求項5の発明は、請求項1の発明において、前記チョッパ制御回路が前記検出電圧の変化率を検出する変化率検出回路を有し、前記過渡応答制御手段が、変化率検出回路により検出される変化率が所定値を超える期間にチョッパ制御回路の過渡応答を前記無電極放電灯の定常点灯時よりも速くすることを特徴とする。   According to a fifth aspect of the present invention, in the first aspect of the invention, the chopper control circuit includes a change rate detection circuit that detects a change rate of the detection voltage, and the transient response control means is detected by the change rate detection circuit. The transient response of the chopper control circuit is made to be faster than that during steady lighting of the electrodeless discharge lamp during a period in which the change rate exceeds a predetermined value.

この構成によれば、無電極放電灯の始動時に限らず定常点灯時であっても、解除手段によりチョッパ回路の動作を再開させる際に無電極放電灯がちらつくことを防止できる。   According to this configuration, the electrodeless discharge lamp can be prevented from flickering when the operation of the chopper circuit is resumed by the release means, not only when the electrodeless discharge lamp is started but also during steady lighting.

請求項6の発明は、請求項1ないし請求項4のいずれかに記載の無電極放電灯点灯装置と、放電ガスを封入したバルブに前記電力変換回路から高周波出力を受ける誘導コイルを近接配置した無電極放電灯とを備えることを特徴とする。   According to a sixth aspect of the present invention, the electrodeless discharge lamp lighting device according to any one of the first to fourth aspects and an induction coil that receives a high-frequency output from the power conversion circuit are disposed close to a bulb in which discharge gas is sealed. An electrodeless discharge lamp is provided.

この構成によれば、少なくとも解除手段によりチョッパ回路の動作が再開する際のチョッパ制御回路の過渡応答を無電極放電灯の定常点灯時よりも速くしているので、異常昇圧防止手段によりチョッパ回路の動作が停止した状態で検出電圧が第2のしきい値電圧を下回った直後にチョッパ回路の動作を再開させることができる。要するに、検出電圧が第2のしきい値電圧を下回ってからチョッパ回路の動作が再開するまでの時間が短く、チョッパ回路の動作が停止した状態でチョッパ回路の出力電圧が急激に低下したとしても、チョッパ回路の出力電圧は大きく低下する前に低下が抑制されるので、チョッパ回路の出力電圧にアンダーシュートが生じることにより無電極放電灯がちらつくことを防止できる。   According to this configuration, the transient response of the chopper control circuit when the operation of the chopper circuit is resumed by at least the release means is made faster than that during steady lighting of the electrodeless discharge lamp. The operation of the chopper circuit can be resumed immediately after the detection voltage falls below the second threshold voltage in a state where the operation is stopped. In short, even if the time from when the detected voltage falls below the second threshold voltage to when the chopper circuit operation resumes is short and the chopper circuit operation stops, the output voltage of the chopper circuit suddenly drops. Since the decrease in the output voltage of the chopper circuit is suppressed before it greatly decreases, it is possible to prevent the electrodeless discharge lamp from flickering due to an undershoot in the output voltage of the chopper circuit.

本発明は、少なくとも解除手段によりチョッパ回路の動作が再開する際のチョッパ制御回路の過渡応答を無電極放電灯の定常点灯時よりも速くしているので、異常昇圧防止手段によりチョッパ回路の動作が停止した状態で検出電圧が第2のしきい値電圧を下回った直後にチョッパ回路の動作を再開させることができるという効果を奏する。要するに、検出電圧が第2のしきい値電圧を下回ってからチョッパ回路の動作が再開するまでの時間が短く、チョッパ回路の動作が停止した状態でチョッパ回路の出力電圧が急激に低下したとしても、チョッパ回路の出力電圧は大きく低下する前に低下が抑制されるので、チョッパ回路の出力電圧にアンダーシュートが生じることにより無電極放電灯がちらつくことを防止できる。   In the present invention, since the transient response of the chopper control circuit when the operation of the chopper circuit is resumed by at least the release means is made faster than that during steady lighting of the electrodeless discharge lamp, the operation of the chopper circuit is prevented by the abnormal boost prevention means. There is an effect that the operation of the chopper circuit can be restarted immediately after the detection voltage falls below the second threshold voltage in the stopped state. In short, even if the time from when the detected voltage falls below the second threshold voltage to when the chopper circuit operation resumes is short and the chopper circuit operation stops, the output voltage of the chopper circuit suddenly drops. Since the decrease in the output voltage of the chopper circuit is suppressed before it greatly decreases, it is possible to prevent the electrodeless discharge lamp from flickering due to an undershoot in the output voltage of the chopper circuit.

以下の各実施形態において、従来構成と同様の機能および構成については従来構成と同じ符号を用いて説明を省略する。   In the following embodiments, the same functions and configurations as those of the conventional configuration are denoted by the same reference numerals as those of the conventional configuration, and description thereof is omitted.

(実施形態1)
本実施形態の無電極放電灯点灯装置1(以下では「点灯装置」と略称する)は、図1に示すように、電力変換回路4におけるスイッチング要素Q3の両端間に、インダクタL3とコンデンサC4との直列回路が接続され、コンデンサC4の両端間にコンデンサC5,C6を介して無電極放電灯2を構成する誘導コイル12が接続された構成を有する。インダクタL3およびコンデンサC4〜C6は無電極放電灯2とともに負荷回路Lを構成するものとする。図1では省略しているが、交流電源ACと整流器DBとの間には、チョッパ回路3が動作することにより交流電源AC側に高周波成分が漏洩することを防止するラインフィルタが挿入される。
(Embodiment 1)
As shown in FIG. 1, the electrodeless discharge lamp lighting device 1 of the present embodiment (hereinafter abbreviated as “lighting device”) includes an inductor L3 and a capacitor C4 between both ends of the switching element Q3 in the power conversion circuit 4. The induction coil 12 which comprises the electrodeless discharge lamp 2 is connected between the both ends of the capacitor | condenser C4 via the capacitors C5 and C6. The inductor L3 and the capacitors C4 to C6 constitute the load circuit L together with the electrodeless discharge lamp 2. Although omitted in FIG. 1, a line filter is inserted between the AC power supply AC and the rectifier DB to prevent high frequency components from leaking to the AC power supply AC side when the chopper circuit 3 operates.

図1に示す無電極放電灯2は、バルブ14が図の上方に向かって凹む凹部16を有する形状に形成されており、この凹部16内に誘導コイル12が巻回された円筒状のコア17が挿入されている。コア17は磁気性材料を用いて形成されており、コア17の内側には熱伝導性材料を用いて形成された熱伝導部材18がコア17に接触する形で設けられている。熱伝導部材18は、バルブ14の外方にまで延長されており、バルブ14から突出した先端部が円盤状の基台19に固定されている。基台19とバルブ14との間には、熱伝導部材18の周囲を包囲するカバー20が設けられている。ここにおいて、図2に示すように、上述した無電極放電灯2における基台19とバルブ14との間のカバー20に包囲された空間に本実施形態の点灯装置1を収納することにより、無電極放電灯2を点灯させる照明装置が構成される。この照明装置は、バルブ14の凹部16内に誘導コイル12が収納されるともに、バルブ14と基台19との間に点灯装置1が収納されているので、全体の形状が比較的コンパクトになる。図2に示した照明装置は、白熱灯用のソケット(図示せず)に取付可能な形状に形成されている。   An electrodeless discharge lamp 2 shown in FIG. 1 is formed in a shape in which a bulb 14 has a recess 16 that is recessed upward in the figure, and a cylindrical core 17 around which an induction coil 12 is wound. Has been inserted. The core 17 is formed using a magnetic material, and a heat conductive member 18 formed using a heat conductive material is provided inside the core 17 in contact with the core 17. The heat conducting member 18 is extended to the outside of the valve 14, and the tip protruding from the valve 14 is fixed to a disk-shaped base 19. A cover 20 is provided between the base 19 and the valve 14 to surround the periphery of the heat conducting member 18. Here, as shown in FIG. 2, the lighting device 1 of the present embodiment is accommodated in the space surrounded by the cover 20 between the base 19 and the bulb 14 in the electrodeless discharge lamp 2 described above. An illumination device that turns on the electrode discharge lamp 2 is configured. In this lighting device, the induction coil 12 is housed in the concave portion 16 of the bulb 14, and the lighting device 1 is housed between the bulb 14 and the base 19, so that the overall shape is relatively compact. . The lighting device shown in FIG. 2 is formed in a shape that can be attached to a socket (not shown) for an incandescent lamp.

本実施形態では、チョッパ制御回路6の構成部品としてPFC制御IC21を用いており、電力変換回路4の駆動回路7における発振回路8(図10参照)としての機能はPFC制御IC21に備わっている。さらに、チョッパ回路3の出力電圧に比例する電圧を検出電圧として検出する電圧検出回路22が設けられる。PFC制御IC21は、検出電圧が反転入力端子に入力される誤差アンプ(図示せず)が組み込まれており、検出電圧に基づいてドライブ回路5をフィードバック制御する。図1の点灯装置1では、PFC制御IC21は、チョッパ回路3の出力電圧を一定に維持するようにチョッパ回路3のスイッチング素子Q1のデューティ比を決定する。電圧検出回路22は、チョッパ回路3の出力端間(つまり平滑コンデンサC1の両端間)に接続された分圧抵抗R1と分圧抵抗R2との直列回路であって、チョッパ回路3の低電位側の出力端と両分圧抵抗R1,R2の接続点との間に生じる電圧を検出電圧としてPFC制御IC21に出力する。   In the present embodiment, the PFC control IC 21 is used as a component of the chopper control circuit 6, and the function as the oscillation circuit 8 (see FIG. 10) in the drive circuit 7 of the power conversion circuit 4 is provided in the PFC control IC 21. Furthermore, a voltage detection circuit 22 that detects a voltage proportional to the output voltage of the chopper circuit 3 as a detection voltage is provided. The PFC control IC 21 incorporates an error amplifier (not shown) in which the detection voltage is input to the inverting input terminal, and feedback-controls the drive circuit 5 based on the detection voltage. In the lighting device 1 of FIG. 1, the PFC control IC 21 determines the duty ratio of the switching element Q1 of the chopper circuit 3 so that the output voltage of the chopper circuit 3 is kept constant. The voltage detection circuit 22 is a series circuit of a voltage dividing resistor R1 and a voltage dividing resistor R2 connected between output ends of the chopper circuit 3 (that is, between both ends of the smoothing capacitor C1), and is a low potential side of the chopper circuit 3. Is output to the PFC control IC 21 as a detection voltage, which is generated between the output terminal of the first and second voltage dividing resistors R1 and R2.

ところで、PFC制御IC21は、検出電圧が第1のしきい値電圧Vth1(図3参照)を越えると、ドライブ回路5への出力を停止することによりチョッパ回路3の動作を停止させる異常昇圧防止手段としての機能を備えている。さらにPFC制御IC21は、異常昇圧防止手段によりチョッパ回路3の動作が停止した状態において検出電圧が第1のしきい値電圧Vth1より低く設定された第2のしきい値電圧Vth2を下回ると、ドライブ回路5への出力を再開することによりチョッパ回路3の動作を再開させる解除手段としての機能を備えている。ここでは、第1のしきい値電圧Vth1は無電極放電灯2の定常点灯時における検出電圧より高く設定され、第2のしきい値電圧Vth2は、チョッパ回路3の出力電圧を無電極放電灯2の点灯に必要な最低電圧にしたときの検出電圧と、無電極放電灯2の定常点灯時における検出電圧との間の大きさに設定されている。   By the way, the PFC control IC 21 stops the operation of the chopper circuit 3 by stopping the output to the drive circuit 5 when the detected voltage exceeds the first threshold voltage Vth1 (see FIG. 3). It has the function as. Further, when the detected voltage falls below the second threshold voltage Vth2 which is set lower than the first threshold voltage Vth1 in a state where the operation of the chopper circuit 3 is stopped by the abnormal boost prevention means, the PFC control IC 21 drives A function as release means for resuming the operation of the chopper circuit 3 by resuming the output to the circuit 5 is provided. Here, the first threshold voltage Vth1 is set higher than the detection voltage during steady lighting of the electrodeless discharge lamp 2, and the second threshold voltage Vth2 determines the output voltage of the chopper circuit 3 as an electrodeless discharge lamp. 2 is set to a magnitude between the detection voltage when the minimum voltage necessary for lighting 2 is set and the detection voltage when the electrodeless discharge lamp 2 is steadily lit.

ここにおいて、本実施形態では、異常昇圧防止手段によりチョッパ回路3の動作が停止した状態でチョッパ回路3の出力電圧が急激に低下しても、チョッパ回路3の動作が再開するまでにチョッパ回路3の出力電圧にアンダーシュートが生じることを防止できるように、少なくとも解除手段によりチョッパ回路3の動作が再開する際のチョッパ制御回路6の過渡応答を比較的速くする。ただし、無電極放電灯2の定常点灯時においては、ノイズや他の誤差発生源からの信号(たとえば交流電源ACによる平滑コンデンサC1のリプル電圧)がレギュレーションされて入力電流歪みの悪化や力率低下につながることを防止するために、チョッパ制御回路6の過渡応答を比較的遅くすることが望ましい。そこで、本実施形態では、解除手段によりチョッパ回路3の動作が再開した後にチョッパ制御回路6の過渡応答の速さを切り換えて、無電極放電灯2の定常点灯時にはチョッパ制御回路6の過渡応答を比較的遅くする。   Here, in the present embodiment, even if the output voltage of the chopper circuit 3 suddenly decreases in a state where the operation of the chopper circuit 3 is stopped by the abnormal boost prevention means, the chopper circuit 3 is not yet operated until the operation of the chopper circuit 3 is resumed. The transient response of the chopper control circuit 6 when the operation of the chopper circuit 3 is resumed at least by the release means is made relatively fast so that the undershoot can be prevented from occurring in the output voltage. However, when the electrodeless discharge lamp 2 is steadily lit, noise or a signal from another error generation source (for example, the ripple voltage of the smoothing capacitor C1 by the AC power supply AC) is regulated to deteriorate the input current distortion or reduce the power factor. It is desirable to make the transient response of the chopper control circuit 6 relatively slow. Therefore, in the present embodiment, the speed of the transient response of the chopper control circuit 6 is switched after the operation of the chopper circuit 3 is restarted by the release means, and the transient response of the chopper control circuit 6 is changed during steady lighting of the electrodeless discharge lamp 2. Make it relatively slow.

具体的に説明すると、本実施形態の点灯装置1では、チョッパ制御回路6の過渡応答の速さを変化させる過渡応答制御手段としての積分回路23が、PFC制御IC21における誤差アンプの出力端Outに接続されている。積分回路23は、回路の時定数によってPFC制御IC21の過渡応答の速さを変化させるものであって、本実施形態では誤差アンプの出力電圧が印加される抵抗R3およびコンデンサC7の並列回路を有する。ここにおいて、コンデンサC8とスイッチ手段SW1との直列回路が、コンデンサC7に並列に接続されており、スイッチ手段SW1がオンの期間にはコンデンサC7の容量成分にコンデンサC8の容量成分が加わることにより、スイッチ手段SW1がオフの期間よりもPFC制御IC21の過渡応答が遅くなる。ここでは図示しないが、積分回路23はたとえば電圧検出回路22の分圧抵抗R2に並列に接続されていてもよい。   More specifically, in the lighting device 1 of the present embodiment, an integration circuit 23 as a transient response control means for changing the speed of the transient response of the chopper control circuit 6 is connected to the output terminal Out of the error amplifier in the PFC control IC 21. It is connected. The integrating circuit 23 changes the speed of the transient response of the PFC control IC 21 according to the time constant of the circuit. In this embodiment, the integrating circuit 23 has a parallel circuit of a resistor R3 and a capacitor C7 to which the output voltage of the error amplifier is applied. . Here, a series circuit of the capacitor C8 and the switch means SW1 is connected in parallel to the capacitor C7, and when the switch means SW1 is on, the capacitance component of the capacitor C8 is added to the capacitance component of the capacitor C7. The transient response of the PFC control IC 21 becomes slower than the period when the switch means SW1 is off. Although not shown here, the integrating circuit 23 may be connected in parallel to the voltage dividing resistor R2 of the voltage detecting circuit 22, for example.

また、チョッパ制御回路6はスイッチ手段SW1をオンオフさせる手段として、PFC制御IC21に接続されたタイマ回路24を有する。タイマ回路24は、電力変換回路4の動作が開始してから一定時間はスイッチ手段SW1をオフ状態とするように、PFC制御IC21から電力変換回路4の動作を開始させる信号を受けて一定時間(以下では「タイマ時間」と呼ぶ)の時限を開始する。ここで、タイマ回路24が時限動作の終了時にスイッチ手段SW1をオンすることによって、積分回路23にコンデンサC8の容量成分が加わることなり、PFC制御IC21の過渡応答が遅くなる。   The chopper control circuit 6 has a timer circuit 24 connected to the PFC control IC 21 as means for turning on / off the switch means SW1. The timer circuit 24 receives a signal for starting the operation of the power conversion circuit 4 from the PFC control IC 21 so that the switch means SW1 is turned off for a predetermined time after the operation of the power conversion circuit 4 is started. In the following, it will be called “timer time”). Here, when the timer circuit 24 turns on the switch means SW1 at the end of the timed operation, the capacitance component of the capacitor C8 is added to the integrating circuit 23, and the transient response of the PFC control IC 21 is delayed.

上述した点灯装置1の動作を、無電極放電灯2の始動時を例として検出電圧の経時変化を示す図3を参照し以下に説明する。図3では横軸を時間軸とし、検出電圧の大きさを縦軸に採っている。チョッパ制御回路6の過渡応答が速い期間を図中「応答速」で示し、チョッパ制御回路6の過渡応答が遅い期間を図中「応答遅」で示す。また、検出電圧はチョッパ回路3の出力電圧である平滑コンデンサC1の両端電圧を分圧したものであるから、検出電圧の大きさはチョッパ回路3の出力電圧の大きさに比例している。   The operation of the above-described lighting device 1 will be described below with reference to FIG. 3 showing the change over time of the detected voltage, taking the case of starting the electrodeless discharge lamp 2 as an example. In FIG. 3, the horizontal axis is the time axis, and the magnitude of the detected voltage is the vertical axis. A period in which the transient response of the chopper control circuit 6 is fast is indicated by “response speed” in the drawing, and a period in which the transient response of the chopper control circuit 6 is slow is indicated by “response delay” in the drawing. Further, since the detection voltage is obtained by dividing the voltage across the smoothing capacitor C1 that is the output voltage of the chopper circuit 3, the magnitude of the detection voltage is proportional to the magnitude of the output voltage of the chopper circuit 3.

まず、時刻t0において交流電源ACが投入されると、チョッパ回路3が動作を開始する前に、平滑コンデンサC1が充電され検出電圧がVc1まで上昇する。   First, when the AC power supply AC is turned on at time t0, the smoothing capacitor C1 is charged and the detection voltage rises to Vc1 before the chopper circuit 3 starts operating.

つぎに、時刻t1においてチョッパ回路3が動作を開始し、チョッパ回路3の出力電圧である平滑コンデンサC1の両端電圧が上昇し始める。ここでは電力変換回路4がまだ動作を開始していないので無電極放電灯2への電力供給は行われず軽負荷状態となり、平滑コンデンサC1の両端電圧は無電極放電灯2の定常点灯時におけるチョッパ回路3の出力電圧を超えてさらに上昇する。   Next, at time t1, the chopper circuit 3 starts operating, and the voltage across the smoothing capacitor C1, which is the output voltage of the chopper circuit 3, begins to rise. Here, since the power conversion circuit 4 has not yet started operation, power supply to the electrodeless discharge lamp 2 is not performed, and a light load state occurs, and the voltage across the smoothing capacitor C1 is a chopper during steady lighting of the electrodeless discharge lamp 2. It rises further beyond the output voltage of circuit 3.

時刻t2において、検出電圧が第1のしきい値電圧Vth1を超えると、PFC制御IC21の異常昇圧防止手段によりチョッパ回路3の動作が停止し、その後、電力変換回路4が動作を開始する時刻t3までの期間は平滑コンデンサC1の両端電圧は略一定に保たれる。時刻t3において電力変換回路4が動作を開始すると、無電極放電灯2に電力が供給され始めるので、平滑コンデンサC1の両端電圧は低下し始める。一方、タイマ回路24は、電力変換回路4が動作を開始した時刻t3から時限動作を開始し、その後、時刻t6までのタイマ時間Taを時限する。   When the detected voltage exceeds the first threshold voltage Vth1 at time t2, the operation of the chopper circuit 3 is stopped by the abnormal boost prevention means of the PFC control IC 21, and then the time t3 when the power conversion circuit 4 starts operating. During this period, the voltage across the smoothing capacitor C1 is kept substantially constant. When the power conversion circuit 4 starts operating at time t3, power starts to be supplied to the electrodeless discharge lamp 2, and thus the voltage across the smoothing capacitor C1 starts to decrease. On the other hand, the timer circuit 24 starts the timed operation from the time t3 when the power conversion circuit 4 starts the operation, and then limits the timer time Ta until the time t6.

時刻t4において、検出電圧が第2のしきい値電圧Vth2を下回ると、PFC制御IC21の解除手段によりチョッパ回路3の動作を再開させようとする。ここにおいて、時刻t3から時刻t6までの期間は、タイマ回路24がタイマ時間Taの時限動作中であってチョッパ制御回路6の過渡応答が比較的速いので、時刻t4の直後の時刻t5においてチョッパ回路3は動作を再開し、無電極放電灯2が正常に点灯する。すなわち、時刻t4から時刻t5までの時間が短く、平滑コンデンサC1の両端電圧が大きく低下する(アンダーシュートが生じる)前にチョッパ回路3の動作が再開して平滑コンデンサC1の両端電圧の低下が抑制されるので、平滑コンデンサC1の両端電圧にアンダーシュートが生じることにより無電極放電灯2がちらつくことを防止できる。   When the detected voltage falls below the second threshold voltage Vth2 at time t4, the release means of the PFC control IC 21 tries to restart the operation of the chopper circuit 3. Here, during the period from time t3 to time t6, since the timer circuit 24 is in a timed operation of the timer time Ta and the transient response of the chopper control circuit 6 is relatively fast, the chopper circuit at time t5 immediately after time t4. 3 resumes operation, and the electrodeless discharge lamp 2 is normally lit. That is, the time from the time t4 to the time t5 is short, and the operation of the chopper circuit 3 is restarted before the voltage across the smoothing capacitor C1 greatly decreases (undershoot occurs), thereby suppressing the decrease in the voltage across the smoothing capacitor C1. Therefore, it is possible to prevent the electrodeless discharge lamp 2 from flickering due to an undershoot in the voltage across the smoothing capacitor C1.

そして、時刻t6においてタイマ回路24が時限動作を終了することにより、チョッパ制御回路6の過渡応答が切り換えられて遅くなる。したがって、時刻t6以降の無電極放電灯2の定常点灯時には、チョッパ回路3の入力電流歪みの悪化や力率低下を防止した状態で無電極放電灯2を点灯維持することができる。   Then, when the timer circuit 24 ends the timed operation at time t6, the transient response of the chopper control circuit 6 is switched and delayed. Therefore, at the time of steady lighting of the electrodeless discharge lamp 2 after time t6, the electrodeless discharge lamp 2 can be kept lit while preventing the input current distortion of the chopper circuit 3 from deteriorating and the power factor from being lowered.

また、図3に示す例では、タイマ回路24が時限動作を開始する時刻t3よりも前からチョッパ制御回路6の過渡応答を速くしているが、タイマ回路24が時限動作を開始すると同時にチョッパ制御回路6の過渡応答を速くする構成であってもよい。   In the example shown in FIG. 3, the transient response of the chopper control circuit 6 is accelerated before the time t3 when the timer circuit 24 starts the timed operation, but the chopper control is performed simultaneously with the timer circuit 24 starting the timed operation. The circuit 6 may be configured to speed up the transient response.

なお、図2に示した照明装置の他にも、たとえば図4に示すように、図の上方からバルブ14を取り外し可能な照明装置を構成することもできる。図4の照明装置においては、バルブ14を収納する上ボディ25と、誘導コイル12が巻回されたコア17と基台19とを収納する下ボディ26とを備え、点灯装置1は下ボディ26内において基台19に固定される。この照明装置は、誘導コイル12がバルブ14に近接するように上ボディ25と下ボディ26とを組み合わせた状態で無電極放電灯2を点灯させることができる。上ボディ25の一部には、無電極放電灯2からの放射ノイズ等を吸収するシールドケース27がバルブ14を覆う形で設けられる。ただし、点灯装置1と無電極放電灯2とを用いて構成される照明装置は、上述した図2あるいは図4に示したものに限定されるものではない。   In addition to the lighting device shown in FIG. 2, for example, as shown in FIG. 4, a lighting device in which the bulb 14 can be removed from the upper side of the drawing can be configured. 4 includes an upper body 25 that houses the bulb 14, a lower body 26 that houses the core 17 and the base 19 around which the induction coil 12 is wound, and the lighting device 1 includes the lower body 26. It is fixed to the base 19 inside. This illuminating device can light the electrodeless discharge lamp 2 in a state where the upper body 25 and the lower body 26 are combined so that the induction coil 12 is close to the bulb 14. A shield case 27 that absorbs radiation noise from the electrodeless discharge lamp 2 is provided in a part of the upper body 25 so as to cover the bulb 14. However, the illuminating device comprised using the lighting device 1 and the electrodeless discharge lamp 2 is not limited to what was shown in FIG. 2 or FIG. 4 mentioned above.

以下の各実施形態においては、実施形態1と同様の機能および構成については従来構成と同じ符号を用いて説明を省略する。さらに、各実施形態の構成を示す図5と図7と図9とにおいては点灯装置1の要部のみを示し、無電極放電灯2を含む負荷回路Lおよび交流電源AC、加えて電力変換回路4については省略する。   In the following embodiments, the same functions and configurations as those of the first embodiment are denoted by the same reference numerals as those of the conventional configuration, and the description thereof is omitted. 5, 7, and 9 showing the configuration of each embodiment, only the main part of the lighting device 1 is shown. 4 is omitted.

(実施形態2)
本実施形態の点灯装置1は、検出電圧が第3のしきい値電圧を越えるとチョッパ制御回路6の過渡応答を無電極放電灯2の定常点灯時よりも速くする点が実施形態1の点灯装置1と相違する。第3のしきい値電圧は、無電極放電灯2の定常点灯時における検出電圧より高く第1のしきい値電圧以下の範囲から選択され、本実施形態では第1のしきい値電圧と同値に設定されている。
(Embodiment 2)
The lighting device 1 of the present embodiment is that the transient response of the chopper control circuit 6 is made faster than the steady lighting of the electrodeless discharge lamp 2 when the detected voltage exceeds the third threshold voltage. Different from the device 1. The third threshold voltage is selected from a range higher than the detection voltage during steady lighting of the electrodeless discharge lamp 2 and lower than the first threshold voltage. In the present embodiment, the third threshold voltage is the same as the first threshold voltage. Is set to

具体的に説明すると、本実施形態のチョッパ制御回路6には、図5に示すように、検出電圧を第3のしきい値電圧Vth3と比較する比較器CP1と、比較器CP1の出力電圧が印加されるダイオードD3およびコンデンサC9の直列回路と、ダイオードD3に並列に接続される抵抗R4とを備えた比較回路28が設けられている。第3のしきい値電圧Vth3は基準電源Vrefから比較器CP1に入力されており、比較器CP1は検出電圧が第3のしきい値電圧Vth3を越える期間にダイオードD3を介してコンデンサC9を充電する。この構成により比較回路28は、検出電圧が第3のしきい値電圧Vth3を越えてから、検出電圧が第3のしきい値を下回った後コンデンサC9および抵抗R4の時定数により決まる一定時間経過するまでの期間に比較器CP1の出力端からオン信号を出力する。   More specifically, as shown in FIG. 5, the chopper control circuit 6 of the present embodiment includes a comparator CP1 that compares the detected voltage with the third threshold voltage Vth3, and an output voltage of the comparator CP1. A comparison circuit 28 including a series circuit of an applied diode D3 and a capacitor C9 and a resistor R4 connected in parallel to the diode D3 is provided. The third threshold voltage Vth3 is input from the reference power supply Vref to the comparator CP1, and the comparator CP1 charges the capacitor C9 through the diode D3 during a period when the detected voltage exceeds the third threshold voltage Vth3. To do. With this configuration, the comparison circuit 28 allows a certain time period determined by the time constant of the capacitor C9 and the resistor R4 after the detection voltage exceeds the third threshold voltage Vth3 and then the detection voltage falls below the third threshold value. The ON signal is output from the output terminal of the comparator CP1 during the period until this is done.

過渡応答制御手段としての積分回路23は、図5の点灯装置1では、実施形態1におけるコンデンサC8およびスイッチ手段SW1の直列回路に代えて、抵抗R3の両端間においてコンデンサC10およびスイッチ手段SW2の並列回路がコンデンサC7と直列に接続された構成を有する。これにより、スイッチ手段SW2がオフの期間にはコンデンサC7の容量成分にコンデンサC10の容量成分が加わるので、スイッチ手段SW2がオンの期間よりもPFC制御IC21の過渡応答が遅くなる。ここにおいて、スイッチ手段SW2には比較器CP1の出力端が接続されており、検出電圧が第3のしきい値電圧を越えるとスイッチ手段SW2がオン信号を受けてオンすることによりPFC制御IC21の過渡応答が無電極放電灯2の定常点灯時よりも速くなる。   In the lighting device 1 of FIG. 5, the integrating circuit 23 serving as a transient response control unit is replaced by the parallel connection of the capacitor C10 and the switch unit SW2 between both ends of the resistor R3, instead of the series circuit of the capacitor C8 and the switch unit SW1 in the first embodiment. The circuit has a configuration connected in series with a capacitor C7. As a result, since the capacitance component of the capacitor C10 is added to the capacitance component of the capacitor C7 when the switch means SW2 is off, the transient response of the PFC control IC 21 becomes slower than the period when the switch means SW2 is on. Here, the output terminal of the comparator CP1 is connected to the switch means SW2, and when the detection voltage exceeds the third threshold voltage, the switch means SW2 is turned on in response to the on signal, thereby turning on the PFC control IC 21. The transient response is faster than when the electrodeless discharge lamp 2 is steadily lit.

上述した点灯装置1の動作を、無電極放電灯2の始動時を例として検出電圧の経時変化を示す図6を参照し以下に説明する。図6では横軸を時間軸とし、検出電圧の大きさを縦軸に採っており、チョッパ制御回路6の過渡応答が速い期間を図中「応答速」で示し、チョッパ制御回路6の過渡応答が遅い期間を図中「応答遅」で示す。また、比較回路28は、検出電圧が第3のしきい値電圧Vth3を一旦越えると、検出電圧が第3のしきい値電圧Vth3を下回ってから一定時間Tb経過するまではオン信号を出力し続けるものとする。   The operation of the lighting device 1 described above will be described below with reference to FIG. 6 showing the change over time of the detected voltage, taking as an example the start of the electrodeless discharge lamp 2. In FIG. 6, the horizontal axis is the time axis, and the magnitude of the detected voltage is taken on the vertical axis. The period in which the transient response of the chopper control circuit 6 is fast is indicated by “response speed” in the figure, and the transient response of the chopper control circuit 6 is shown. The period when the response time is slow is indicated by “response delay” in the figure. Further, once the detection voltage exceeds the third threshold voltage Vth3, the comparison circuit 28 outputs an ON signal until a predetermined time Tb elapses after the detection voltage falls below the third threshold voltage Vth3. Shall continue.

時刻t2において、検出電圧が第1のしきい値電圧Vth1を越えると、PFC制御IC21の異常昇圧防止手段によりチョッパ回路3の動作が停止し、その後、電力変換回路4が動作を開始する時刻t3までの期間は平滑コンデンサC1の両端電圧は略一定に保たれる。時刻t3において電力変換回路4が動作を開始すると、無電極放電灯2に電力が供給され始めるので、平滑コンデンサC1の両端電圧は低下し始める。一方で、時刻t2においては検出電圧が第1のしきい値電圧Vth1を越えると同時に第3のしきい値電圧Vth3を越えることになるので、比較回路28は時刻t2から、時刻t3において検出電圧が第3のしきい値電圧を下回った後一定時間Tb経過する時刻t6までの期間にオン信号を出力する。   When the detection voltage exceeds the first threshold voltage Vth1 at time t2, the operation of the chopper circuit 3 is stopped by the abnormal boost prevention means of the PFC control IC 21, and then the time t3 when the power conversion circuit 4 starts operation. During this period, the voltage across the smoothing capacitor C1 is kept substantially constant. When the power conversion circuit 4 starts operating at time t3, power starts to be supplied to the electrodeless discharge lamp 2, and thus the voltage across the smoothing capacitor C1 starts to decrease. On the other hand, at time t2, the detection voltage exceeds the first threshold voltage Vth1, and at the same time exceeds the third threshold voltage Vth3, so that the comparison circuit 28 detects the detection voltage from time t2 to time t3. The ON signal is output in a period from time t6 when the voltage falls below the third threshold voltage to time t6 when a certain time Tb elapses.

時刻t4において、検出電圧が第2のしきい値電圧Vth2を下回ると、PFC制御IC21の解除手段によりチョッパ回路3の動作を再開させようとする。ここにおいて、時刻t2から時刻t6までの期間は、積分回路23のスイッチ手段SW2がオン状態にあってチョッパ制御回路6の過渡応答が比較的速いので、時刻t4の直後の時刻t5においてチョッパ回路3は動作を再開し、無電極放電灯2が正常に点灯する。すなわち、時刻t4から時刻t5までの時間が短く、平滑コンデンサC1の両端電圧が大きく低下する(アンダーシュートが生じる)前にチョッパ回路3の動作が再開して平滑コンデンサC1の両端電圧の低下が抑制されるので、平滑コンデンサC1の両端電圧にアンダーシュートが生じることにより無電極放電灯2がちらつくことを防止できる。   When the detected voltage falls below the second threshold voltage Vth2 at time t4, the release means of the PFC control IC 21 tries to restart the operation of the chopper circuit 3. Here, during the period from time t2 to time t6, the switching means SW2 of the integration circuit 23 is in the ON state and the transient response of the chopper control circuit 6 is relatively fast, so the chopper circuit 3 at time t5 immediately after time t4. Resumes operation, and the electrodeless discharge lamp 2 is normally lit. That is, the time from the time t4 to the time t5 is short, and the operation of the chopper circuit 3 is restarted before the voltage across the smoothing capacitor C1 greatly decreases (undershoot occurs), thereby suppressing the decrease in the voltage across the smoothing capacitor C1. Therefore, it is possible to prevent the electrodeless discharge lamp 2 from flickering due to an undershoot in the voltage across the smoothing capacitor C1.

そして、時刻t6において比較回路28からのオン信号の出力が停止することにより、チョッパ制御回路6の過渡応答が切り換えられて遅くなる。したがって、時刻t6以降の無電極放電灯2の定常点灯時には、チョッパ回路3の入力電流歪みの悪化や力率低下を防止した状態で無電極放電灯2を点灯維持することができる。   Then, when the output of the ON signal from the comparison circuit 28 stops at time t6, the transient response of the chopper control circuit 6 is switched and delayed. Therefore, at the time of steady lighting of the electrodeless discharge lamp 2 after time t6, the electrodeless discharge lamp 2 can be kept lit while preventing the input current distortion of the chopper circuit 3 from deteriorating and the power factor from being lowered.

本実施形態の点灯装置1では、上述したような無電極放電灯2の始動時に限らず、定常点灯時において、たとえばサージ電圧がチョッパ回路3に入力されるなどの理由によりチョッパ回路3の出力電圧が異常昇圧したとしても、異常昇圧防止手段により停止したチョッパ回路3の動作を再開させる際に無電極放電灯2がちらつくことを防止する効果がある。   In the lighting device 1 according to the present embodiment, the output voltage of the chopper circuit 3 is not limited to when the electrodeless discharge lamp 2 is started as described above, but during steady lighting, for example, a surge voltage is input to the chopper circuit 3. Even if the voltage rises abnormally, there is an effect of preventing the electrodeless discharge lamp 2 from flickering when the operation of the chopper circuit 3 stopped by the abnormal voltage rise prevention means is restarted.

また、第3のしきい値電圧Vth3は、無電極放電灯2の定常点灯時における検出電圧より高く第1のしきい値電圧Vth1以下の範囲から選択されていればよく、第1のしきい値電圧Vth1と同値に限定されるものではない。ただし、第3のしきい値電圧Vth3を第1のしきい値電圧Vth1と同値に設定すれば、チョッパ回路3の動作が異常昇圧防止手段により停止された場合にのみチョッパ制御回路6の過渡応答が速くなるので、無電極放電灯2の定常点灯時に検出電圧が第1のしきい値電圧Vth1を越えない範囲で上昇してもチョッパ制御回路6の過渡応答を遅いままで動作させることができ、チョッパ回路3の入力電流歪みの悪化や力率低下を防止した状態で無電極放電灯2を点灯維持することができる。その他の構成および機能は実施形態1と同様である。   The third threshold voltage Vth3 only needs to be selected from a range higher than the detection voltage during steady lighting of the electrodeless discharge lamp 2 and lower than the first threshold voltage Vth1. The value is not limited to the same value as the value voltage Vth1. However, if the third threshold voltage Vth3 is set to the same value as the first threshold voltage Vth1, the transient response of the chopper control circuit 6 only when the operation of the chopper circuit 3 is stopped by the abnormal boost prevention means. Therefore, even if the detection voltage rises within a range not exceeding the first threshold voltage Vth1 when the electrodeless discharge lamp 2 is steadily lit, the transient response of the chopper control circuit 6 can be operated while being slow. The electrodeless discharge lamp 2 can be kept on in a state where deterioration of input current distortion and power factor reduction of the chopper circuit 3 are prevented. Other configurations and functions are the same as those of the first embodiment.

(実施形態3)
本実施形態の点灯装置1は、図7に示すように、チョッパ制御回路6が検出電圧の変化率を検出する変化率検出回路29を有し、変化率検出回路29により検出される変化率が所定値を越える期間にチョッパ制御回路6の過渡応答を無電極放電灯2の定常点灯時よりも速くする構成とした点が実施形態2の点灯装置1と相違する。
(Embodiment 3)
As shown in FIG. 7, the lighting device 1 of the present embodiment includes a change rate detection circuit 29 in which the chopper control circuit 6 detects a change rate of the detected voltage, and the change rate detected by the change rate detection circuit 29 is It differs from the lighting device 1 of the second embodiment in that the transient response of the chopper control circuit 6 is made faster than that during steady lighting of the electrodeless discharge lamp 2 during a period exceeding the predetermined value.

本実施形態の変化率検出回路29は、検出電圧の変化率が所定値を越える期間にオン信号を出力するものであって、検出電圧がチョッパ制御回路6の過渡応答よりも速く変化するときにオン信号を出力し、逆に検出電圧がチョッパ制御回路6の過渡応答よりも遅く変化するときにはオン信号を停止するように構成される。すなわち、検出電圧の変化率とは検出電圧が変化する速さを意味している。ここにおいて、変化率検出回路29の出力端は積分回路23のスイッチ手段SW2に接続されており、検出電圧の変化率が所定値を越える期間にスイッチ手段SW2がオン信号を受けてオンすることによりPFC制御IC21の過渡応答が無電極放電灯2の定常点灯時よりも速くなる。   The change rate detection circuit 29 of the present embodiment outputs an ON signal during a period when the change rate of the detection voltage exceeds a predetermined value, and when the detection voltage changes faster than the transient response of the chopper control circuit 6. An ON signal is output, and conversely, when the detected voltage changes later than the transient response of the chopper control circuit 6, the ON signal is stopped. That is, the change rate of the detection voltage means the speed at which the detection voltage changes. Here, the output terminal of the change rate detection circuit 29 is connected to the switch means SW2 of the integration circuit 23, and the switch means SW2 receives an ON signal and is turned on during a period when the change rate of the detection voltage exceeds a predetermined value. The transient response of the PFC control IC 21 becomes faster than when the electrodeless discharge lamp 2 is steadily lit.

上述した点灯装置1の動作を、無電極放電灯2の始動時を例として検出電圧の経時変化を示す図8を参照し以下に説明する。図8では横軸を時間軸とし、検出電圧の大きさを縦軸に採っており、チョッパ制御回路6の過渡応答が速い期間を図中「応答速」で示し、チョッパ制御回路6の過渡応答が遅い期間を図中「応答遅」で示す。   The operation of the above-described lighting device 1 will be described below with reference to FIG. 8 showing the change over time of the detected voltage, taking the electrodeless discharge lamp 2 as an example. In FIG. 8, the horizontal axis is the time axis and the magnitude of the detected voltage is the vertical axis. The period in which the transient response of the chopper control circuit 6 is fast is indicated by “response speed” in the figure, and the transient response of the chopper control circuit 6 is shown. The period when the response time is slow is indicated by “response delay” in the figure.

時刻t2において、検出電圧が第1のしきい値電圧Vth1を越えると、PFC制御IC21の異常昇圧防止手段によりチョッパ回路3の動作が停止し、その後、電力変換回路4が動作を開始する時刻t3までの期間は平滑コンデンサC1の両端電圧は略一定に保たれる。時刻t3において電力変換回路4が動作を開始すると、無電極放電灯2に電力が供給され始めるので、平滑コンデンサC1の両端電圧は低下し始める。ここで、平滑コンデンサC1の両端電圧が低下する期間には検出電圧の変化率が所定値を越え、変化率検出回路29はオン信号を出力する。   When the detection voltage exceeds the first threshold voltage Vth1 at time t2, the operation of the chopper circuit 3 is stopped by the abnormal boost prevention means of the PFC control IC 21, and then the time t3 when the power conversion circuit 4 starts operation. During this period, the voltage across the smoothing capacitor C1 is kept substantially constant. When the power conversion circuit 4 starts operating at time t3, power begins to be supplied to the electrodeless discharge lamp 2, and thus the voltage across the smoothing capacitor C1 begins to decrease. Here, during the period in which the voltage across the smoothing capacitor C1 drops, the change rate of the detection voltage exceeds a predetermined value, and the change rate detection circuit 29 outputs an ON signal.

時刻t4において、検出電圧が第2のしきい値電圧Vth2を下回ると、PFC制御IC21の解除手段によりチョッパ回路3の動作を再開させようとする。ここにおいて、平滑コンデンサの両端電圧が低下する期間(時刻t3から時刻t5までの期間)は、積分回路23のスイッチ手段SW2がオン状態にあってチョッパ制御回路6の過渡応答が比較的速いので、時刻t4の直後の時刻t5においてチョッパ回路3は動作を再開し、無電極放電灯2が正常に点灯する。すなわち、時刻t4から時刻t5までの時間が短く、平滑コンデンサC1の両端電圧が大きく低下する(アンダーシュートが生じる)前にチョッパ回路3の動作が再開して平滑コンデンサC1の両端電圧の低下が抑制されるので、平滑コンデンサC1の両端電圧にアンダーシュートが生じることにより無電極放電灯2がちらつくことを防止できる。   When the detected voltage falls below the second threshold voltage Vth2 at time t4, the release means of the PFC control IC 21 tries to restart the operation of the chopper circuit 3. Here, during the period in which the voltage across the smoothing capacitor decreases (period from time t3 to time t5), the switching means SW2 of the integrating circuit 23 is in the ON state, and the transient response of the chopper control circuit 6 is relatively fast. At time t5 immediately after time t4, the chopper circuit 3 resumes operation, and the electrodeless discharge lamp 2 is normally lit. That is, the time from the time t4 to the time t5 is short, and the operation of the chopper circuit 3 is restarted before the voltage across the smoothing capacitor C1 greatly decreases (undershoot occurs), thereby suppressing the decrease in the voltage across the smoothing capacitor C1. Therefore, it is possible to prevent the electrodeless discharge lamp 2 from flickering due to an undershoot in the voltage across the smoothing capacitor C1.

その後、時刻t7において平滑コンデンサC1の両端電圧が略一定になると、変化率検出回路29からのオン信号が停止し、チョッパ制御回路6の過渡応答が切り換えられて遅くなる。したがって、時刻t7以降の無電極放電灯2の定常点灯時には、チョッパ回路3の入力電流歪みの悪化や力率低下を防止した状態で無電極放電灯2を点灯維持することができる。   Thereafter, when the voltage across the smoothing capacitor C1 becomes substantially constant at time t7, the ON signal from the change rate detection circuit 29 stops, and the transient response of the chopper control circuit 6 is switched and delayed. Therefore, at the time of steady lighting of the electrodeless discharge lamp 2 after time t7, the electrodeless discharge lamp 2 can be kept lit in a state where deterioration of input current distortion and power factor reduction of the chopper circuit 3 are prevented.

本実施形態の点灯装置1では、上述したような無電極放電灯2の始動時に限らず、定常点灯時において、たとえばサージ電圧がチョッパ回路3に入力されるなどの理由によりチョッパ回路3の出力電圧が異常昇圧したとしても、異常昇圧防止手段により停止したチョッパ回路3の動作を再開させる際に無電極放電灯2がちらつくことを防止する効果がある。   In the lighting device 1 according to the present embodiment, the output voltage of the chopper circuit 3 is not limited to when the electrodeless discharge lamp 2 is started as described above, but during steady lighting, for example, a surge voltage is input to the chopper circuit 3. Even if the voltage rises abnormally, there is an effect of preventing the electrodeless discharge lamp 2 from flickering when the operation of the chopper circuit 3 stopped by the abnormal voltage rise prevention means is restarted.

また、図7に示すPFC制御IC21は、無電極放電灯2の定常点灯時に検出電圧が所定の第4のしきい値電圧を下回るとチョッパ回路3の動作を停止させる異常動作防止手段としての機能をさらに備えている。第4のしきい値電圧は、チョッパ回路3の出力電圧を無電極放電灯2の点灯に必要な最低電圧にしたときの検出電圧よりも低く設定される。その他の構成および機能は実施形態2と同様である。   Also, the PFC control IC 21 shown in FIG. 7 functions as an abnormal operation preventing means for stopping the operation of the chopper circuit 3 when the detected voltage falls below a predetermined fourth threshold voltage during steady lighting of the electrodeless discharge lamp 2. Is further provided. The fourth threshold voltage is set lower than the detection voltage when the output voltage of the chopper circuit 3 is set to the minimum voltage necessary for lighting the electrodeless discharge lamp 2. Other configurations and functions are the same as those of the second embodiment.

(実施形態4)
本実施形態の点灯装置1は、図9に示すように、チョッパ制御回路6が交流電源ACの出力(チョッパ回路3の入力)によってチョッパ制御回路6の過渡応答の速さを切り換える入力監視回路30を備える点が実施形態2の点灯装置1と相違する。
(Embodiment 4)
In the lighting device 1 of the present embodiment, as shown in FIG. 9, the input monitoring circuit 30 in which the chopper control circuit 6 switches the speed of the transient response of the chopper control circuit 6 by the output of the AC power supply AC (input of the chopper circuit 3). Is different from the lighting device 1 of the second embodiment.

図9に示す積分回路23は、実施形態2の積分回路23において、抵抗R3の両端間にコンデンサC11と抵抗R5とスイッチ手段SW3との直列回路が接続された構成を有する。これにより、スイッチ手段SW3がオンの期間には積分回路23にコンデンサC11の容量成分が加わるので、スイッチ手段SW3がオフの期間よりもPFC制御IC21の過渡応答が遅くなる。また、図9の入力監視回路30は、交流電源ACの投入後にチョッパ回路3の入力電圧を検出し、交流電源ACの電源電圧(たとえば100Vと200V)によってスイッチ手段SW3のオンオフを切り換える。   The integrating circuit 23 shown in FIG. 9 has a configuration in which a series circuit of a capacitor C11, a resistor R5, and a switch means SW3 is connected between both ends of the resistor R3 in the integrating circuit 23 of the second embodiment. As a result, since the capacitance component of the capacitor C11 is added to the integrating circuit 23 while the switch means SW3 is on, the transient response of the PFC control IC 21 is delayed as compared with the period when the switch means SW3 is off. 9 detects the input voltage of the chopper circuit 3 after the AC power supply AC is turned on, and switches the switch means SW3 on and off by the power supply voltage (for example, 100 V and 200 V) of the AC power supply AC.

ここにおいて、チョッパ回路3の入力電流歪みの悪化や力率低下を防止するためのチョッパ制御回路6における過渡応答の最適な速さは、チョッパ回路3に入力される電圧によって異なるものである。図9の構成によれば、点灯装置1はチョッパ制御回路6の過渡応答の速さを交流電源ACの電源電圧に適した速さに切り換えるので、無電極放電灯2の定常点灯時にチョッパ回路3の入力電流歪みの悪化や力率低下を一層防止することができる。   Here, the optimum speed of the transient response in the chopper control circuit 6 for preventing the input current distortion of the chopper circuit 3 from deteriorating and the power factor from being lowered varies depending on the voltage input to the chopper circuit 3. According to the configuration of FIG. 9, the lighting device 1 switches the speed of the transient response of the chopper control circuit 6 to a speed suitable for the power supply voltage of the AC power supply AC. It is possible to further prevent the deterioration of the input current distortion and the power factor reduction.

また、入力監視回路30は、チョッパ回路3の入力電圧に代えて交流電源ACの周波数を検出し、この周波数(たとえば50Hzと60Hz)によってチョッパ制御回路6の過渡応答の速さを切り換える構成であってもよい。この場合に、チョッパ制御回路6の過渡応答の速さを交流電源ACの各周波数に適した速さに設定することができ、無電極放電灯2の定常点灯時にチョッパ回路3の入力電流歪みの悪化や力率低下を一層防止できる。その他の構成および機能は実施形態2と同様である。   The input monitoring circuit 30 is configured to detect the frequency of the AC power supply AC instead of the input voltage of the chopper circuit 3 and switch the speed of the transient response of the chopper control circuit 6 based on this frequency (for example, 50 Hz and 60 Hz). May be. In this case, the speed of the transient response of the chopper control circuit 6 can be set to a speed suitable for each frequency of the AC power supply AC, and the input current distortion of the chopper circuit 3 can be reduced when the electrodeless discharge lamp 2 is steadily lit. Deterioration and power factor reduction can be further prevented. Other configurations and functions are the same as those of the second embodiment.

本発明の実施形態1の構成を示す回路図である。It is a circuit diagram which shows the structure of Embodiment 1 of this invention. 同上の照明装置を示す断面図である。It is sectional drawing which shows an illuminating device same as the above. 同上の無電極放電灯の始動時の動作を示す動作説明図である。It is operation | movement explanatory drawing which shows the operation | movement at the time of a start of an electrodeless discharge lamp same as the above. 同上の他の照明装置を示す断面図である。It is sectional drawing which shows the other illuminating device same as the above. 本発明の実施形態2の構成を示す回路図である。It is a circuit diagram which shows the structure of Embodiment 2 of this invention. 同上の無電極放電灯の始動時の動作を示す動作説明図である。It is operation | movement explanatory drawing which shows the operation | movement at the time of a start of an electrodeless discharge lamp same as the above. 本発明の実施形態3の構成を示す回路図である。It is a circuit diagram which shows the structure of Embodiment 3 of this invention. 同上の無電極放電灯の始動時の動作を示す動作説明図である。It is operation | movement explanatory drawing which shows the operation | movement at the time of a start of an electrodeless discharge lamp same as the above. 本発明の実施形態4の構成を示す回路図である。It is a circuit diagram which shows the structure of Embodiment 4 of this invention. 従来例の構成を示す回路図である。It is a circuit diagram which shows the structure of a prior art example.

符号の説明Explanation of symbols

1 無電極放電灯点灯装置
2 無電極放電灯
3 チョッパ回路
4 電力変換回路
5 ドライブ回路
6 チョッパ制御回路
12 誘導コイル
14 バルブ
22 電圧検出回路
23 積分回路(過渡応答制御手段)
24 タイマ回路
29 変化率検出回路
Q1 スイッチング素子
Vth1 第1のしきい値電圧
Vth2 第2のしきい値電圧
Vth3 第3のしきい値電圧
DESCRIPTION OF SYMBOLS 1 Electrodeless discharge lamp lighting device 2 Electrodeless discharge lamp 3 Chopper circuit 4 Power conversion circuit 5 Drive circuit 6 Chopper control circuit 12 Induction coil 14 Valve 22 Voltage detection circuit 23 Integration circuit (transient response control means)
24 timer circuit 29 change rate detection circuit Q1 switching element Vth1 first threshold voltage Vth2 second threshold voltage Vth3 third threshold voltage

Claims (6)

スイッチング素子を有し直流電源から電力供給され出力する直流電圧の大きさをスイッチング素子のデューティ比によって決定するチョッパ回路と、チョッパ回路のスイッチング素子をオンオフさせるドライブ回路と、チョッパ回路の出力を高周波出力に変換するとともに放電ガスを封入したバルブに誘導コイルを近接配置してなる無電極放電灯を点灯させる高周波出力を無電極放電灯の誘導コイルに供給する電力変換回路と、チョッパ回路の出力電圧に比例する電圧を検出電圧として検出する電圧検出回路と、検出電圧に基づいてドライブ回路をフィードバック制御するチョッパ制御回路とを備え、チョッパ制御回路は、検出電圧が所定の第1のしきい値電圧を越えるとチョッパ回路の動作を停止させる異常昇圧防止手段と、異常昇圧防止手段によりチョッパ回路の動作が停止した状態において検出電圧が第1のしきい値電圧より低く設定された第2のしきい値電圧を下回るとチョッパ回路の動作を再開させる解除手段と、少なくとも解除手段によりチョッパ回路の動作が再開する際のチョッパ制御回路における過渡応答を無電極放電灯の定常点灯時よりも速くする過渡応答制御手段とを有することを特徴とする無電極放電灯点灯装置。   A chopper circuit that has a switching element and determines the magnitude of the DC voltage supplied and output from the DC power supply based on the duty ratio of the switching element, a drive circuit that turns on and off the switching element of the chopper circuit, and a high-frequency output of the output of the chopper circuit A power conversion circuit that supplies a high-frequency output to the induction coil of the electrodeless discharge lamp, and a chopper circuit output voltage. A voltage detection circuit that detects a proportional voltage as a detection voltage, and a chopper control circuit that feedback-controls the drive circuit based on the detection voltage. The chopper control circuit has a predetermined first threshold voltage as a detection voltage. Abnormal boost prevention means to stop chopper circuit operation when exceeded, and abnormal boost prevention A release means for restarting the operation of the chopper circuit when the detected voltage falls below a second threshold voltage set lower than the first threshold voltage in a state where the operation of the chopper circuit is stopped by the stage, and at least the release means And a transient response control means for making the transient response in the chopper control circuit when the operation of the chopper circuit resumes faster than during steady lighting of the electrodeless discharge lamp. 前記チョッパ制御回路は、前記電力変換回路が動作を開始する前に前記異常昇圧防止手段により前記チョッパ回路の動作が停止すると、電力変換回路が動作を開始してから前記解除手段によりチョッパ回路の動作が再開するまでの期間を含む一定時間を時限するタイマ回路を有し、前記過渡応答制御手段は、タイマ回路が前記一定時間を時限する期間にチョッパ制御回路の過渡応答を前記無電極放電灯の定常点灯時よりも速くすることを特徴とする請求項1記載の無電極放電灯点灯装置。   When the operation of the chopper circuit is stopped by the abnormal boost prevention means before the power conversion circuit starts operation, the chopper control circuit starts the operation of the chopper circuit after the power conversion circuit starts operating. And a transient response control means, wherein the transient response control means transmits the transient response of the chopper control circuit to the electrodeless discharge lamp during a period when the timer circuit times the fixed time. 2. The electrodeless discharge lamp lighting device according to claim 1, wherein the lighting speed is higher than that during steady lighting. 前記過渡応答制御手段は、前記第1のしきい値電圧以下であって前記無電極放電灯の定常点灯時における検出電圧より高く設定された第3のしきい値電圧を前記検出電圧が超えると前記チョッパ制御回路の過渡応答を無電極放電灯の定常点灯時よりも速くすることを特徴とする請求項1記載の無電極放電灯点灯装置。   When the detected voltage exceeds the third threshold voltage that is lower than the first threshold voltage and higher than the detected voltage during steady lighting of the electrodeless discharge lamp, the transient response control means 2. The electrodeless discharge lamp lighting device according to claim 1, wherein a transient response of the chopper control circuit is made faster than that during steady lighting of the electrodeless discharge lamp. 前記第3のしきい値電圧は前記第1のしきい値電圧であることを特徴とする請求項3記載の無電極放電灯点灯装置。   The electrodeless discharge lamp lighting device according to claim 3, wherein the third threshold voltage is the first threshold voltage. 前記チョッパ制御回路は前記検出電圧の変化率を検出する変化率検出回路を有し、前記過渡応答制御手段は、変化率検出回路により検出される変化率が所定値を超える期間にチョッパ制御回路の過渡応答を前記無電極放電灯の定常点灯時よりも速くすることを特徴とする請求項1記載の無電極放電灯点灯装置。   The chopper control circuit includes a change rate detection circuit that detects a change rate of the detection voltage, and the transient response control means is configured to detect a change rate of the chopper control circuit during a period in which the change rate detected by the change rate detection circuit exceeds a predetermined value. 2. The electrodeless discharge lamp lighting device according to claim 1, wherein a transient response is made faster than during steady lighting of the electrodeless discharge lamp. 請求項1ないし請求項4のいずれか1項に記載の無電極放電灯点灯装置と、放電ガスを封入したバルブに前記電力変換回路から高周波出力を受ける誘導コイルを近接配置した無電極放電灯とを備えることを特徴とする照明装置。   An electrodeless discharge lamp lighting device according to any one of claims 1 to 4, and an electrodeless discharge lamp in which an induction coil that receives a high-frequency output from the power conversion circuit is disposed close to a bulb in which discharge gas is sealed. A lighting device comprising:
JP2004247348A 2004-08-26 2004-08-26 Electrodeless discharge lamp lighting device and lighting device Expired - Fee Related JP4155249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247348A JP4155249B2 (en) 2004-08-26 2004-08-26 Electrodeless discharge lamp lighting device and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247348A JP4155249B2 (en) 2004-08-26 2004-08-26 Electrodeless discharge lamp lighting device and lighting device

Publications (2)

Publication Number Publication Date
JP2006066226A true JP2006066226A (en) 2006-03-09
JP4155249B2 JP4155249B2 (en) 2008-09-24

Family

ID=36112538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247348A Expired - Fee Related JP4155249B2 (en) 2004-08-26 2004-08-26 Electrodeless discharge lamp lighting device and lighting device

Country Status (1)

Country Link
JP (1) JP4155249B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287575A (en) * 2006-04-19 2007-11-01 Matsushita Electric Works Ltd Discharge lamp lighting device, and illumination fixture
JP2009004156A (en) * 2007-06-20 2009-01-08 Sharp Corp Light-emitting element driving circuit for lighting and lighting device equipped with it
JP2010218733A (en) * 2009-03-13 2010-09-30 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device and luminaire
WO2013171945A1 (en) * 2012-05-14 2013-11-21 パナソニック株式会社 Light source apparatus and lighting apparatus using same
JP2014072146A (en) * 2012-10-01 2014-04-21 Mitsubishi Electric Corp Lighting device and luminaire
JP2017059552A (en) * 2016-12-28 2017-03-23 三菱電機株式会社 Lighting device and luminaire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287575A (en) * 2006-04-19 2007-11-01 Matsushita Electric Works Ltd Discharge lamp lighting device, and illumination fixture
JP2009004156A (en) * 2007-06-20 2009-01-08 Sharp Corp Light-emitting element driving circuit for lighting and lighting device equipped with it
JP2010218733A (en) * 2009-03-13 2010-09-30 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device and luminaire
WO2013171945A1 (en) * 2012-05-14 2013-11-21 パナソニック株式会社 Light source apparatus and lighting apparatus using same
JP2013239283A (en) * 2012-05-14 2013-11-28 Panasonic Corp Light source device and lighting device using the same
JP2014072146A (en) * 2012-10-01 2014-04-21 Mitsubishi Electric Corp Lighting device and luminaire
JP2017059552A (en) * 2016-12-28 2017-03-23 三菱電機株式会社 Lighting device and luminaire

Also Published As

Publication number Publication date
JP4155249B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP2587710B2 (en) Lighting circuit for vehicle discharge lamps
JP2007194044A (en) Lighting circuit
JP2006324035A (en) Discharge lamp lighting circuit
JP2005158464A (en) Electrodeless discharge lamp lighting device and electrodeless discharge lamp device
JPH10511220A (en) Circuit device
JP4155249B2 (en) Electrodeless discharge lamp lighting device and lighting device
JP2007018960A (en) Discharge lamp lighting circuit
JP2006269349A (en) Discharge lamp lighting device and lighting fixture
JP5030021B2 (en) High pressure discharge lamp lighting device, light source device and control method thereof
JP4186788B2 (en) Electrodeless discharge lamp lighting device
JP5227112B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP4144506B2 (en) Electrodeless discharge lamp lighting device
JP4186789B2 (en) Electrodeless discharge lamp lighting device
JP5174440B2 (en) Electrodeless discharge lamp lighting device and lighting fixture
JP5129703B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP2006252907A (en) Electrodeless discharge lamp lighting device an illumination apparatus using the same
JP4186787B2 (en) Electrodeless discharge lamp lighting device and lighting device
JP5330768B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP4697114B2 (en) Electrodeless discharge lamp lighting device and its lighting fixture
JP2005174610A (en) Lighting system
JP3508269B2 (en) Electrodeless discharge lamp lighting device
JPH08264289A (en) Electrodeless discharge lamp lighting device
JP2010147011A (en) Electrodeless discharge lamp lightning device and lighting equipment using the same
JPH06163173A (en) Electrodeless electric discharge lamp lighting device
JP2005158462A (en) Electrodeless discharge lamp lighting device and electrodeless discharge lamp device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees