JP2009000638A - Method for purifying muddy water - Google Patents
Method for purifying muddy water Download PDFInfo
- Publication number
- JP2009000638A JP2009000638A JP2007164649A JP2007164649A JP2009000638A JP 2009000638 A JP2009000638 A JP 2009000638A JP 2007164649 A JP2007164649 A JP 2007164649A JP 2007164649 A JP2007164649 A JP 2007164649A JP 2009000638 A JP2009000638 A JP 2009000638A
- Authority
- JP
- Japan
- Prior art keywords
- water
- particles
- muddy water
- storage space
- purifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
本発明は、例えば、赤土などの極微粒で沈降しにくい難沈降性粒子を含む濁水を浄化する方法に関する。 The present invention relates to a method for purifying muddy water containing hardly settled particles that are hard to settle, such as red clay.
河川流域では一般に雨が降ると、地面に浸透しきらない雨水は下水道を流下或いは地表面を流れ河川に流れ込む。その中で特に一般家庭排水と雨水排水が分けられている分流式下水道地域では、雨水用下水道は下水処理センターと連結されておらず河川に直接放流されることが一般的である。このため下水道未整備地域や、分流式下水道地域では地面に浸透しない雨水が全て河川に流入することになる。
また、一般排水と雨水排水が連結されている合流式下水道地域にあっても、時間当たり100mm以上(場合によっては30mm以上)の豪雨の場合、下水道の流下容量を超えてしまい、雨水が地表面に滞留する場合がある。したがって、この地表面滞留雨水が、地表面を流下し、結果的に地表面滞留雨水の大半が河川に流れ込むことになる。
In general, when it rains in a river basin, rainwater that does not penetrate the ground flows down the sewer or the ground surface and flows into the river. In particular, in sewerage sewer areas where general household wastewater and rainwater drainage are separated, it is common for rainwater sewers to be discharged directly into rivers without being connected to a sewage treatment center. For this reason, all rainwater that does not permeate the ground flows into the river in areas where sewerage is not yet developed or in sewerage sewerage areas.
Even in a combined sewer area where general drainage and rainwater drainage are connected, in the case of heavy rain of 100 mm or more (30 mm or more in some cases) per hour, the drainage capacity of the sewer will be exceeded, and rainwater May stay. Therefore, the ground surface stagnant rainwater flows down the ground surface, and as a result, most of the ground surface stagnant rainwater flows into the river.
このように雨水は、多くの場合において河川に流れ込むことが多いが、この雨水の流下の際、近隣の田畑や工事区域、グランドなどからの土砂が雨水に混入した濁水となって河川に流入し、河川を汚染する場合がある。
なお、一般的には日本の河川はその総距離が長く、また土砂成分が流入しやすいのは市街化の進んでいない上流側であるため、流下の途中で河川に堆積し、その自浄作用により降雨が終了すると汚濁が解消され、土砂が海洋までほとんど流れ込まないことが主である。また、土砂が海洋まで流入したとしてもその量が少量であるため、海洋に拡散し、生態系に影響を及ぼすことは余りない。
In this way, rainwater often flows into rivers, but when this rainwater flows, earth and sand from nearby fields, construction areas, grounds, etc. become muddy water mixed in rainwater and flow into the river. May contaminate rivers.
In general, Japanese rivers have a long total distance, and sediment components tend to flow into the upstream, where urbanization has not progressed. The main problem is that when the rain is over, the pollution is eliminated and the soil hardly flows into the ocean. In addition, even if earth and sand flows into the ocean, the amount is small, so it will not spread to the ocean and affect the ecosystem.
しかしながら、日本の河川のうち、離島や、山岳から海域まで距離の短い河川では、その河川距離が短くかつ急峻であるために、河川に流れ込んだ土砂の大半が河川の途中で堆積することなく、海洋に流入してしまう地域がある。特に離島においては流域に農業集落や畑が多く、流出する土砂は更に増える場合が多い。 However, among the rivers in Japan, remote islands and rivers with a short distance from the mountains to the sea area are short and steep, so most of the sediment flowing into the river does not accumulate in the middle of the river, There are areas that flow into the ocean. In remote islands in particular, there are many agricultural settlements and fields in the basin, and the amount of sediment that flows out often increases.
更に南方の離島においては、島の周囲を珊瑚礁に覆われている場合もあり、この場合堆積した土砂は珊瑚礁帯から外に出ることができず、堆積量を増加させていく場合が多い。
このため珊瑚が死滅し、或いは白い浜辺が土色に置換するなど、その河川の河口付近が観光地域である場合、観光資源が破壊され、重大な問題となる場合もある。
Further, in the remote islands in the south, there are cases where the periphery of the island is covered with a coral reef, and in this case, the accumulated sediment cannot go out from the coral reef zone, and the amount of accumulation is often increased.
For this reason, if the vicinity of the river mouth is a tourist area, such as when the coral died or the white beach is replaced with earth, tourism resources may be destroyed and become a serious problem.
例えば、沖縄本島における赤土のような微細粒径土壌の場合、降雨による侵食を受け、多くの場合2000ppm以上の濃度で沈砂池に流入するが、粒径20μm以下の成分が50%以上を占める様な微細粒径であるため、自然沈降では数時間でも充分に沈降せず、河川・海洋への流出を食い止められない。
また、沖縄本島北部に多い国頭マージと呼ばれる赤土の場合、強酸性であるため、この赤土が海水に入ると海水のpHを低下させ、海が酸性に傾きアルミニウムイオンの溶出が起こり、これによってサンゴをはじめとする海の生物は持続的な被害を受ける虞がある。
For example, in the case of a soil with a fine particle size such as red soil on the main island of Okinawa, it is eroded by rainfall and often flows into a sand basin at a concentration of 2000 ppm or more, but a component with a particle size of 20 μm or less occupies 50% or more. Because of its fine particle size, natural sedimentation does not sufficiently settle for several hours, and it cannot stop the outflow to rivers and oceans.
In addition, the red soil called Kunigami Marge, which is often found in the northern part of the main island of Okinawa, is strongly acidic, so when the red soil enters the seawater, the pH of the seawater is lowered, the sea becomes acidic and aluminum ions are leached, which causes coral to dissolve. There is a risk that sea creatures such as will be sustained.
このような濁水を浄化する方法としては、まず、濁水を沈降槽に導入し、濁水中の小石、砂、土塊等の易沈降性粒子を沈降させ、上澄水を膜ろ過等によってろ過する方法が既に提案されている(特許文献1参照)。 As a method for purifying such muddy water, first, there is a method in which muddy water is introduced into a sedimentation tank, and sedimentary particles such as pebbles, sand, and clots in muddy water are allowed to settle, and the supernatant water is filtered by membrane filtration or the like. It has already been proposed (see Patent Document 1).
しかし、上記のような濁水の浄化方法の場合、工事現場等で発生する濁水の処理を行う場合には、それほど問題はないが、豪雨等によって沈降槽に多量の濁水が速い流入速度で流れ込んだりする条件の下では、以下のような問題がある。
すなわち、通常の沈砂池等の沈降槽では、例えば豪雨の場合ように流入速度が大きくなると、先に底に溜まった易沈降性粒子等の沈降物を沈降槽内で巻き上げてしまい、巻き上げられた粗い砂や土塊等がろ過装置に流入し、ろ過装置を傷めるという問題がある。
However, in the case of the turbid water purification method as described above, there is no problem when treating the turbid water generated at the construction site, etc., but a large amount of turbid water flows into the sedimentation tank at a high inflow rate due to heavy rain. Under such conditions, there are the following problems.
In other words, in a sedimentation tank such as a normal sand basin, when the inflow speed increases, for example, in the case of heavy rain, sediments such as easily settled particles that have accumulated at the bottom of the sedimentation tank are wound up in the sedimentation tank. There is a problem that rough sand or a lump of soil flows into the filtration device and damages the filtration device.
本発明は、上記事情に鑑みて、豪雨などの場合のように沈降槽に流入する濁水の流入速度が速くなっても、先に沈降した沈降物を巻き上げることがない、河川越流水、河川堆積濁水および海洋堆積濁水のいずれかの難沈降性粒子を懸濁成分に含む濁水の浄化方法を提供することを目的としている。 In view of the above circumstances, the present invention does not roll up sediment that has settled first, even if the inflow speed of turbid water flowing into the sedimentation tank becomes faster as in heavy rain, river overflow water, river sediment It is an object of the present invention to provide a method for purifying turbid water containing hardly settled particles of either turbid water or marine sediment turbid water as a suspended component.
上記目的を達成するために、本発明の請求項1に記載の濁水の浄化方法(以下、「請求項1の濁水の浄化方法」と記す)は、河川越流水、河川堆積濁水および海洋堆積濁水のいずれかの難沈降性粒子を懸濁成分に含む濁水を沈降槽内に導入し、沈降槽内で易沈降性粒子を沈降させたのち、沈降槽内の難沈降性粒子を含む上澄水を浄化処理する濁水の浄化方法であって、前記沈降槽が貯水空間を有し、平面視略正方形の板状をして一方に傾斜する傾斜板部を有する充填部材が、傾斜板部と傾斜板部との間に隙間を形成し、易沈降性粒子が傾斜板部の傾斜面に沿って前記貯水空間の底に向かって流下するように上下方向に複数段積み重ねられた状態に前記貯水空間内に充填されていることを特徴としている。 In order to achieve the above object, the method for purifying muddy water according to claim 1 of the present invention (hereinafter referred to as “the method for purifying muddy water according to claim 1”) includes river overflow water, river sediment turbid water and marine sediment muddy water. After introducing turbid water containing any of the difficult-to-settling particles in the suspension component into the sedimentation tank and precipitating the easy-settling particles in the sedimentation tank, the supernatant water containing the hardly-settable particles in the sedimentation tank is used. A method for purifying muddy water for purification treatment, wherein the settling tank has a water storage space, and a filling member having a substantially square plate shape and having an inclined plate portion inclined to one side includes an inclined plate portion and an inclined plate. In the water storage space in a state where a plurality of layers are stacked in the vertical direction so that easily settleable particles flow down toward the bottom of the water storage space along the inclined surface of the inclined plate portion. It is characterized by being filled.
本発明の請求項2に記載の濁水の浄化方法(以下、「請求項2の濁水の浄化方法」と記す)は、請求項1の濁水の浄化方法において、貯水空間の底に凹部を設け、沈降槽内に流入した濁水中の易沈降性粒子を、傾斜板部の傾斜によって前記凹部に導く経路を形成するように、貯水空間内で充填部材を組み上げられていることを特徴としている。 The method for purifying muddy water according to claim 2 of the present invention (hereinafter referred to as "the method for purifying muddy water according to claim 2") is the muddy water purifying method according to claim 1, wherein a recess is provided at the bottom of the water storage space. A filling member is assembled in the water storage space so as to form a path that guides easily settleable particles in muddy water flowing into the settling tank to the recess by the inclination of the inclined plate portion.
本発明の請求項3に記載の濁水の浄化方法(以下、「請求項3の濁水の浄化方法」と記す)は、請求項1又は請求項2の濁水の浄化方法において上澄水に凝集剤を添加し懸濁成分を凝集沈殿させ、得られた沈殿物を脱水ろ過装置で固液分離する工程を備えていることを特徴としている。 The method for purifying muddy water according to claim 3 of the present invention (hereinafter referred to as “the method for purifying muddy water according to claim 3”) is the method of purifying muddy water according to claim 1 or claim 2, wherein a flocculant is added to the supernatant water. It is characterized by comprising a step of adding and coagulating and suspending suspended components, and solid-liquid separation of the resulting precipitate with a dehydration filtration device.
本発明の請求項4に記載の濁水の浄化方法(以下、「請求項4の濁水の浄化方法」と記す)は、請求項1又は請求項2の濁水の浄化方法において、上澄水を第一のろ過装置にてろ過水と高濃度難沈降性粒子含有懸濁液とに分離する工程と、前記高濃度難沈降性粒子含有懸濁液に凝集剤を添加し凝集沈殿させ、得られた沈殿物を第二のろ過装置で脱水ろ過して固液分離する工程とを備えることを特徴としている。 The method for purifying muddy water according to claim 4 of the present invention (hereinafter referred to as “the method for purifying muddy water according to claim 4”) is the method for purifying muddy water according to claim 1 or claim 2. A step of separating into filtered water and a suspension containing high concentration hardly sedimentable particles by adding a flocculant to the suspension containing high concentration hardly settleable particles, and aggregating and precipitating And a step of subjecting the product to dehydration filtration and solid-liquid separation with a second filtration device.
本発明において、充填部材は、特に限定されないが、施工性を考慮すると合成樹脂製等の軽量な材料で形成されていることが好ましい。
本発明において使用される凝集剤としては、特に限定されず、公知の凝集剤を使用できるが、多価金属イオンによって凝集するとともに水に対して易分散性を有する分子中に−O−CO−構造部分を有する粘性高分子材料を凝集剤として用いることが好ましい。
すなわち、−O−CO−構造部分のマイナス電荷と多価金属塩のプラス電荷の架橋反応が急速に起こる。したがって、近接する粘性高分子同士が架橋し凝集塊を短時間で確実に形成することができる。
In the present invention, the filling member is not particularly limited, but is preferably formed of a lightweight material such as a synthetic resin in consideration of workability.
The flocculant used in the present invention is not particularly limited, and a known flocculant can be used. However, -O-CO- in a molecule that aggregates with a polyvalent metal ion and is easily dispersible in water. It is preferable to use a viscous polymer material having a structural portion as a flocculant.
That is, the cross-linking reaction between the minus charge of the —O—CO— structure portion and the plus charge of the polyvalent metal salt occurs rapidly. Therefore, adjacent viscous polymers can be cross-linked to form an aggregate in a short time.
上記粘性高分子材料としては、特に限定されないが、アルギン酸塩、ペクチン、グルコマンナン、フコイダンなどの天然物由来の分子中に−O−CO−構造部分を有する粘性多糖類が挙げられ、コンブ、ワカメ、ヒジキ、メカブ、コンニャク、モズク等のようなアルギン酸塩、ペクチン、グルコマンナン、フコイダンなどを含む天然物乾燥微粉末を用いるようにしても構わない。 The viscous polymer material is not particularly limited, and examples thereof include viscous polysaccharides having a —O—CO— structure moiety in molecules derived from natural products such as alginate, pectin, glucomannan, and fucoidan. Natural product dry fine powders containing alginates such as hinoki, mekabu, konjac and mozuku, pectin, glucomannan, fucoidan and the like may be used.
また、天然物乾燥微粉末としては、廃棄物の有効利用を図り、廃棄物の処理費用や廃棄物の処理にかかる大気汚染等を防止できることから、廃棄天然物の粉砕物を用いるようにしてもよい。特に微細粒径土壌混入水を固液分離しようとする地域での天然系粘性多糖類植物製品製造時の廃材成分を使用することも有効で、天然物乾燥微粉末の原料の適用部位は粘性を生じれば特に限定されない。 In addition, as natural product dry fine powder, it is possible to use waste pulverized material because it can effectively use waste and prevent waste processing costs and air pollution related to waste processing. Good. In particular, it is also effective to use the waste material component in the production of natural viscous polysaccharide plant products in the area where solid-liquid separation of fine particle size soil contaminated water is desired. If it occurs, it is not particularly limited.
凝集剤として天然物乾燥微粉末を用いる場合、天然物乾燥微粉末の粒子径は、特に限定されないが、平均で1〜100μm程度とすることが好ましい。すなわち、天然物乾燥微粉末の粒子径が細かすぎると、空気中の水分を吸湿し、粘ちょうなペースト状になってしまい、ハンドリングのし難さに加え、溶液中への分散性も悪い。一方、粒子径が粗すぎると、溶液中への粘性成分の溶出が充分でなくなり、多価金属イオンを添加しても充分な凝集反応を起こさない虞がある。 When natural product dry fine powder is used as the aggregating agent, the particle size of the natural product dry fine powder is not particularly limited, but is preferably about 1 to 100 μm on average. That is, when the particle size of the natural product dry fine powder is too fine, it absorbs moisture in the air and forms a viscous paste, which is difficult to handle and has poor dispersibility in the solution. On the other hand, if the particle diameter is too coarse, the elution of the viscous component into the solution is not sufficient, and there is a possibility that sufficient aggregation reaction will not occur even if polyvalent metal ions are added.
なお、天然物乾燥微粉末の場合、天然物乾燥微粉末を投入し膨潤させるとともに、均一攪拌して膨潤した天然物乾燥微粉末に前記難沈降性粒子を吸着させて天然物乾燥微粉末とともに沈降させることもできる。すなわち、このようにすれば、少ない種類の材料の添加により、難沈降性粒子を膨潤した天然物乾燥微粉末の周囲に天然物乾燥微粉末から伸びる粘性多糖類の繊維状物に絡まった状態で難沈降性微粒子が吸着(捕捉)されて天然物乾燥微粉末とともに短時間で沈降し、懸濁水が短時間で浄化される。
また、天然物乾燥微粉末を用いているので、凝集塊をそのまま埋め立て処理しても、天然物乾燥微粉末および溶け出た粘性多糖類が土中で生分解されるため、公害等を引き起こすことがない。
In the case of a natural product dry fine powder, the natural product dry fine powder is charged and swollen, and the hardly settleable particles are adsorbed on the natural product dry fine powder swollen by uniform stirring to settle together with the natural product dry fine powder. It can also be made. That is, in this way, with the addition of a few kinds of materials, in the state of being entangled with the fibrous material of the viscous polysaccharide extending from the natural product dry fine powder around the natural product dry fine powder swollen the hardly sedimentable particles. The hardly settleable fine particles are adsorbed (trapped) and settled together with the natural product dry fine powder in a short time, and the suspended water is purified in a short time.
In addition, because natural product dry fine powder is used, even if the agglomerate is treated as it is, the natural product dry fine powder and the dissolved viscous polysaccharide are biodegraded in the soil, causing pollution and the like. There is no.
そして、上記のように、天然物乾燥微粉末に難沈降性粒子を吸着させて天然物乾燥微粉末とともに沈降させる方法において、天然物乾燥微粉末としては、より確実に難沈降性微粒子を天然物乾燥微粉末に吸着して沈降させることができることから、平均粒径が100〜3000μmであるものを用いることが好ましい。
天然物乾燥微粉末に難沈降性粒子を吸着させて天然物乾燥微粉末とともに沈降させる方法において、より確実に難沈降性微粒子を天然物乾燥微粉末に吸着して沈降させることができるように、処理される難沈降性微粒子濃度を10000ppm以下で、天然物乾燥微粉末の添加濃度を5ppm以上とすることが好ましい。
As described above, in the method of adsorbing the hardly sedimentable particles to the natural product dry fine powder and precipitating together with the natural product dry fine powder, the natural product dry fine powder is more reliably used as the natural product dry fine powder. It is preferable to use one having an average particle diameter of 100 to 3000 μm because it can be adsorbed and settled on the dry fine powder.
In the method of adsorbing the hardly sedimentable particles to the natural product dry fine powder and precipitating with the natural product dry fine powder, in order to more reliably adsorb the hardly settled fine particles to the natural product dry fine powder, It is preferable that the concentration of hardly settled fine particles to be treated is 10,000 ppm or less and the concentration of the natural product dry fine powder is 5 ppm or more.
上記粘性高分子材料によって懸濁水中の懸濁成分を凝集させる方法としては、まず、懸濁水に粘性高分子材料を溶解後、多価金属イオンからなる多価金属塩粉粒体又はその準飽和水溶液を一気に懸濁水中に投入し、急速撹拌し、多価金属イオンを素早く溶解させることが好ましい。
多価金属塩としては、カルシウム塩やマグネシウム塩が好ましく、中でも顆粒状の塩化カルシウムや塩化マグネシウムが特に好ましい。
As a method of aggregating the suspended components in the suspension water with the viscous polymer material, first, after dissolving the viscous polymer material in the suspension water, a polyvalent metal salt granular material composed of polyvalent metal ions or its subsaturation It is preferable that the aqueous solution is poured into the suspension water at once and rapidly stirred to dissolve the polyvalent metal ions quickly.
As the polyvalent metal salt, calcium salt and magnesium salt are preferable, and granular calcium chloride and magnesium chloride are particularly preferable.
上記のように、多価金属塩粉粒体又はその準飽和水溶液を投入し、急速攪拌混合することによって、少ない種類の材料の添加により、粘性が少なく懸濁水中の難沈降性粒子を大きな凝集塊を形成して、凝集塊を短時間に沈降させて、懸濁水を短時間で浄化することができる。すなわち、粘性高分子材料を均一に分散させた混合液中に、一気に多価金属塩粉粒体を投入すると、多価金属イオンの働きによって高重合のゲル化が一気に進行し、難沈降性粒子を巻き込んで短時間で大きな凝集塊が形成される。一方、多価金属塩を懸濁水に先に混合し、その後、粘性高分子材料を加えた場合には、粘性高分子材料を添加するや否や多価金属による凝集が起こり、粘性高分子材料ゲルのみのビーズが生じてしまい膨潤ゲルとして水分を固定するだけの役目にしかならない。また、多価金属塩を水溶液化して添加したのでは、小さな凝集塊しか得られない。 As described above, by adding the polyvalent metal salt granular material or its semi-saturated aqueous solution and rapidly stirring and mixing, the addition of a small number of materials causes a large agglomeration of less sedimentable particles in suspension water with low viscosity. A lump can be formed, the agglomerate can settle in a short time, and the suspended water can be purified in a short time. That is, when a polyvalent metal salt powder is charged at once into a mixed liquid in which a viscous polymer material is uniformly dispersed, gelation of high polymerization proceeds at a stretch by the action of polyvalent metal ions, and hardly settled particles A large agglomerate is formed in a short time. On the other hand, when the polyvalent metal salt is first mixed with the suspension water and then the viscous polymer material is added, the aggregation with the polyvalent metal occurs as soon as the viscous polymer material is added, and the viscous polymer material gel Only bead is produced and it serves only to fix water as a swollen gel. In addition, when the polyvalent metal salt is added in the form of an aqueous solution, only small aggregates can be obtained.
急速攪拌とは、多価金属塩粉粒体又はその準飽和水溶液を一気に投入後、多価金属塩が30秒以内に懸濁水全体に均一に溶解できるような攪拌を意味する。
また、多価金属塩粉粒体又はその準飽和水溶液の投入は、懸濁水の処理槽全面に一気かつ均一に投入することが好ましい。
なお、準飽和水溶液とは、飽和濃度の50%以上の高濃度水溶液のことである。
Rapid stirring means stirring so that the polyvalent metal salt can be uniformly dissolved in the entire suspended water within 30 seconds after the polyvalent metal salt powder or its semi-saturated aqueous solution is charged at once.
In addition, it is preferable that the polyvalent metal salt particles or the semi-saturated aqueous solution thereof is added all at once to the entire surface of the treatment tank of the suspended water.
The semi-saturated aqueous solution is a high concentration aqueous solution having a saturation concentration of 50% or more.
撹拌方法としては、特に限定されないが、通常の撹拌羽根を用いた撹拌以外に、懸濁水に粘性高分子材料を混合した混合液を搬送する配管内部に、配管の流路の一部を遮るように、配管の管軸方向に複数の邪魔板を間欠的に設けるとともに、各邪魔板の長軸が、配管の管軸方向で隣り合う邪魔板の長軸に対して角度が90度ずれて配置し、混合液が邪魔板にあたることによって、配管内で混合液を撹拌状態にする方法などが挙げられる。 The stirring method is not particularly limited, but in addition to stirring using a normal stirring blade, a part of the flow path of the pipe is blocked inside the pipe that transports the mixed liquid obtained by mixing the viscous polymer material with the suspension water. In addition, a plurality of baffle plates are intermittently provided in the pipe axis direction of the pipe, and the long axis of each baffle plate is arranged with an angle shifted by 90 degrees with respect to the long axis of the adjacent baffle plate in the pipe axis direction of the pipe. In addition, there is a method of bringing the mixed solution into a stirring state in the pipe by causing the mixed solution to hit the baffle plate.
上記邪魔板を配管中に間欠的に設ける方法は、構造が簡単で設備コストを低減することができる。しかも、隣接した邪魔板同士が90度ずれた形で配置されるため、配管内水流が邪魔板によって左右に分割され乱流を生じることが繰り返し起こされ、効率よく急速に攪拌することができる。すなわち、邪魔板による水流の分割では板の裏側に水流が回りこんで乱流を生じる。 The method of intermittently providing the baffle plate in the pipe has a simple structure and can reduce the equipment cost. In addition, since the adjacent baffle plates are arranged so as to be displaced by 90 degrees, the water flow in the pipe is repeatedly divided into left and right by the baffle plates to cause turbulent flow, and can be efficiently and rapidly stirred. That is, in the division of the water flow by the baffle plate, the water flow circulates on the back side of the plate and generates turbulent flow.
さらに、上記邪魔板は、管の内断面積の20%〜70%の大きさとするとともに、配管内径の0.5倍から2倍の間隔を置いて配置されていることが好ましい。
すなわち、配管内を流れる処理液の流速や粘度によっては、邪魔板の大きさが、配管の内断面積の20%未満であると、分割効率が小さく効果が発現しにくく、70%を超えると抵抗が大きくなりすぎて、混合攪拌が不十分となる恐れがある。また、配管内を流れる処理液の流速や粘度によっては、間隔が0.5倍より短いと邪魔板による抵抗だけが発生し混合に有効とならず、2倍より大きいと乱流の乱れが収まってしまってから次ぎの邪魔板に当たることになり、効率的な攪拌ができなくなる恐れがある
Furthermore, it is preferable that the baffle plate has a size of 20% to 70% of the inner cross-sectional area of the pipe and is arranged with an interval of 0.5 to 2 times the inner diameter of the pipe.
That is, depending on the flow velocity and viscosity of the processing liquid flowing in the pipe, if the size of the baffle is less than 20% of the inner cross-sectional area of the pipe, the division efficiency is small and the effect is difficult to be exhibited, and if it exceeds 70% There is a possibility that the resistance becomes too large and mixing and stirring becomes insufficient. In addition, depending on the flow rate and viscosity of the processing liquid flowing in the pipe, if the interval is shorter than 0.5 times, only the resistance due to the baffle plate is generated, and the mixing is not effective. After that, it will hit the next baffle plate and there is a risk that efficient stirring will not be possible
上記多価金属塩としては、より素早く大きな凝集塊を得ることができることからカルシウム塩やマグネシウム塩からなるものが好ましく、中でも顆粒状の塩化カルシウムや塩化マグネシウムが特に好ましい。また、凝集塊を固液分離した液中成分は、残存カルシウムイオンなどとカルシウムイオンなどに置換されたナトリウムイオンなど及び塩素イオンなので、生態系への影響も無い。 As the polyvalent metal salt, those comprising a calcium salt or a magnesium salt are preferable because large aggregates can be obtained more quickly, and granular calcium chloride or magnesium chloride is particularly preferable. In addition, the components in the liquid obtained by solid-liquid separation of the agglomerates are residual calcium ions, sodium ions substituted with calcium ions, and the like, and chloride ions, so there is no impact on the ecosystem.
凝集剤による凝集によって生じた凝集塊は、特に限定されないが、凝集塊を含む処理済水を脱水機や、サイクロン式分離装置によって水と分離し、そのまま埋め立て処理をしたり、加熱乾燥して結合剤と混合したのち、成形品に成形したり、そのまま焼結して土質改良材として用いたり、消波ブロックや舗装用タイルとして用いたりすることができる。 The agglomerates produced by agglomeration by the aggregating agent are not particularly limited, but the treated water containing the agglomerates is separated from the water by a dehydrator or a cyclone separator, and then subjected to landfill treatment as it is, or bonded by heat drying. After mixing with the agent, it can be molded into a molded product, or sintered as it is to be used as a soil improvement material, or used as a wave-dissipating block or paving tile.
本発明において、沈降槽は、上部が開口していても、全体が地下に埋設されていてもよいが、異物の投入防止や、人や動物の誤落下、藻の発生による悪臭の発生抑制、並びに埋設することにより地上部の有効利用が可能になるため、地下埋設型が好ましい。 In the present invention, the sedimentation tank may be open at the top or embedded in the basement, but it is possible to prevent the introduction of foreign matter, accidental fall of humans and animals, the generation of malodor due to the generation of algae, In addition, since the above-ground part can be effectively used, the underground type is preferable.
また、河川や海洋からは合成樹脂製の袋を始めとして、浄化処理を実施する場合に邪魔になる異物が沈降槽内へ流入する恐れがあるので、沈降槽の流入部の前には上記のような異物が沈降槽に流入しないようにする粗い目のスクリーン等を設けることが好ましい。 In addition, from the rivers and oceans, there is a risk that foreign substances that may interfere with the purification process, including synthetic resin bags, may flow into the sedimentation tank. It is preferable to provide a coarse screen to prevent such foreign matter from flowing into the sedimentation tank.
また、沈降槽の上部には、オーバーフロー部を設けることが好ましい。 Moreover, it is preferable to provide an overflow part in the upper part of a sedimentation tank.
請求項4の濁水の浄化方法において、第1のろ過装置としては、比較的粒径の細かい懸濁成分まで除去できれば特に限定されないが、例えば、精密ろ過膜(MF)、限外ろ過膜(UF)、逆浸透膜(RO)等をろ材として用いたろ過装置が挙げられ、珊瑚やその他の生物環境に影響を及ぼすのは0.1μm以上の粒径の懸濁成分であるので、コスト面や取り扱い易さなどから精密ろ過膜を用いることが好ましい。精密ろ過膜の形状は中空糸であっても膜状であってもよい。省スペースの面から中空糸タイプが好ましい。中空糸へは圧力ポンプを用いて中空糸内部から外に向けてろ過しても、吸引して外部から内部空隙部へ吸引してもよいが、エネルギー効率の面から吸引によりろ過することが好ましい。また、塩分も除去したい場合は逆浸透膜を用いるようにしてもよい。 In the method for purifying muddy water according to claim 4, the first filtration device is not particularly limited as long as it can remove a suspended component having a relatively small particle diameter. For example, a microfiltration membrane (MF), an ultrafiltration membrane (UF) ), A filtration device using a reverse osmosis membrane (RO) or the like as a filter medium, and it is a suspended component having a particle size of 0.1 μm or more that affects the cocoon and other biological environments. It is preferable to use a microfiltration membrane from the viewpoint of ease of handling. The shape of the microfiltration membrane may be a hollow fiber or a membrane. The hollow fiber type is preferable from the viewpoint of space saving. The hollow fiber may be filtered from the inside of the hollow fiber to the outside using a pressure pump, or may be sucked and sucked from the outside to the internal gap, but it is preferable to filter by suction from the viewpoint of energy efficiency. . Further, when it is desired to remove salt, a reverse osmosis membrane may be used.
請求項4の濁水の浄化方法において、高濃度難沈降性粒子含有懸濁液を得る方法としては、一定時間毎或いはろ過圧が一定以上になった時点でろ材を逆洗し、逆洗水を沈降槽に戻し、沈降槽内の難沈降性粒子濃度を高める方法や、一定時間毎或いはろ過圧が一定以上になった時点でろ材の詰りを解消できる程度の極短時間、逆洗し、ろ過装置内で高濃度難沈降性粒子含有懸濁液を得る方法が挙げられる。
なお、逆洗は、清水をろ過方向とは逆に流して行う。また、中空糸外部から内部に吸引して分離した懸濁成分を除去する場合は、フィルター外面にバブリングを行って洗浄してもよい。泡はウッドストーンのような穴を通じてもよいし、ベンチュリー管を用いて空気を微細化したり、旋回流方式や加圧溶解したものを開放させて発生させたり超音波によるキャビテーションを用いてもよい。
In the method for purifying muddy water according to claim 4, as a method for obtaining a suspension containing highly-concentrated hardly settled particles, the filter medium is back-washed at regular time intervals or when the filtration pressure exceeds a certain level, Return to the settling tank, increase the concentration of difficult-to-set particles in the settling tank, or backwash and filter for a very short time so that the clogging of the filter medium can be eliminated at regular intervals or when the filtration pressure exceeds a certain level. There is a method of obtaining a suspension containing highly-concentrated hardly settleable particles in the apparatus.
In addition, backwashing is performed by flowing fresh water in the direction opposite to the filtration direction. Moreover, when removing the suspended component which attracted | sucked and isolate | separated inside from the hollow fiber exterior, you may wash by performing bubbling on the filter outer surface. Foam may be passed through a hole such as a woodstone, or may be generated by refining air using a Venturi tube, or by opening a swirling flow method or a pressure-dissolved one, or using ultrasonic cavitation.
第1のろ過装置にて分離したろ過水は河川や海洋に主に放流するが、必要に応じ田畑や道路に散水してもよい。
また、得られる高濃度懸濁成分含有懸濁液は、そのまま回収してもよいが、含水率が高く廃棄のための輸送効率が悪くコスト高になる恐れがある。周囲にそのまま散布すると、乾燥した後飛散し、再度河川や海洋に堆積する恐れがあるので注意して行う。また粉塵被害も懸念されるので、散布する場合は飛散防止対策を施すことが好ましい。
The filtered water separated by the first filtering device is mainly discharged into rivers and oceans, but may be sprayed onto fields and roads as necessary.
Moreover, although the obtained suspension containing a high concentration suspension component may be recovered as it is, the water content is high and the transportation efficiency for disposal may be poor and the cost may be high. Be careful when spraying around the area as it may dry out and scatter and accumulate in rivers and oceans again. In addition, since dust damage is also a concern, it is preferable to take measures to prevent scattering when spraying.
また、濁水中に海洋堆積汚泥を含む場合は、塩分も含むので、パイプ並びにろ過設備はプラスチック製で構成されることが好ましい。鋼管を使用する場合は、内部をプラスチック等で被覆されたライニング鋼管を使用することが好ましい。 Moreover, when marine sediment sludge is contained in muddy water, since salt content is also included, it is preferable that a pipe and filtration equipment are comprised with plastics. When using a steel pipe, it is preferable to use a lining steel pipe whose inside is covered with plastic or the like.
第2のろ過装置としては、特に限定されないが、例えば、フィルタープレス、スクリュープレス、水分蒸発方式、フィルターろ過方式、膜ろ過方式いずれであってもよいが、循環型ろ布方式が省スペースの面から好ましい。ろ布等は、清水で常時或いは逐次洗浄されることが好ましいが、特に限定されるものではない。また洗浄はろ過方向とは逆向きに行ってもよいし、ろ過面に直接散水してもよい。汚れのひどい場合は次亜塩素酸等の酸や苛性ソーダ等のアルカリを用いてもよい。 Although it does not specifically limit as a 2nd filtration apparatus, For example, any of a filter press, a screw press, a moisture evaporation system, a filter filtration system, and a membrane filtration system may be sufficient, but a circulation type filter cloth system is a space-saving surface. To preferred. The filter cloth or the like is preferably always or sequentially washed with clean water, but is not particularly limited. Further, the washing may be performed in the direction opposite to the filtration direction, or water may be sprayed directly on the filtration surface. If the dirt is severe, an acid such as hypochlorous acid or an alkali such as caustic soda may be used.
以上のように、本発明にかかる濁水の浄化方法は、河川越流水、河川堆積濁水および海洋堆積濁水のいずれかの難沈降性粒子を懸濁成分に含む濁水を沈降槽内に導入し、沈降槽内で易沈降性粒子を沈降させたのち、沈降槽内の難沈降性粒子を含む上澄水を浄化処理する濁水の浄化方法であって、前記沈降槽が貯水空間を有し、平面視略正方形の板状をして一方に傾斜する傾斜板部を有する充填部材が、傾斜板部と傾斜板部との間に隙間を形成するように上下方向に複数段積み重ねられた状態に前記貯水空間内で組み上げられているので、豪雨等で濁水が一度に多量に流れ込んでも、沈降槽の底に溜まった易沈降性粒子等の沈降物が巻き上げられることがない。 As described above, the method for purifying turbid water according to the present invention introduces turbid water containing suspended sediments of any one of river overflow water, river sediment turbid water and marine sediment turbid water into a sedimentation tank, A method for purifying muddy water in which a sedimentary liquid in a sedimentation tank is settled after the sedimentation of easily settleable particles in the tank, wherein the sedimentation tank has a water storage space, and is omitted in plan view. The water storage space in a state in which a filling member having a square plate shape and having an inclined plate portion inclined to one side is stacked in a plurality of stages in the vertical direction so as to form a gap between the inclined plate portion and the inclined plate portion. Therefore, even if a large amount of muddy water flows at a time due to heavy rain or the like, sediment such as easily settled particles collected at the bottom of the sedimentation tank is not rolled up.
また、貯水空間の底に凹部を設け、沈降槽内に流入した濁水中の易沈降性粒子を、傾斜板部の傾斜によって前記凹部に導く経路を形成するように、貯水空間内で充填部材を組み上げるようにすれば、この凹部内に沈降した易沈降性粒子等の沈降物が溜まる。したがって、凹部に溜まった沈降物を吸引ポンプ等で吸い上げることによって沈降槽内の浚渫を容易に行える。 In addition, a recess is provided at the bottom of the water storage space, and a filling member is provided in the water storage space so as to form a path that guides easily settleable particles in muddy water flowing into the sedimentation tank to the recess by the inclination of the inclined plate portion. When assembled, sediments such as easily settled particles settled in the recesses. Therefore, dredging in the sedimentation tank can be easily performed by sucking up the sediment accumulated in the recess with a suction pump or the like.
以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
図1は、本発明にかかる濁水の浄化方法に用いるシステムの1例をあらわし、図2〜図4はこのシステムに用いられる沈降槽部分をあらわしている。
図1に示すように、この処理システムは、フィルター付き枡126と、沈降槽100と、第1のろ過装置42と、懸濁水処理装置43と、引水装置としてのポンプ44と、第2のろ過装置45と、貯槽46と、転動輪を有する載置台としてのトラック47とを備えている。
FIG. 1 shows an example of a system used in the method for purifying muddy water according to the present invention, and FIGS. 2 to 4 show a sedimentation tank portion used in this system.
As shown in FIG. 1, this processing system includes a filter-equipped 126, a sedimentation tank 100, a first filtration device 42, a suspension water treatment device 43, a pump 44 as a water drawing device, and a second filtration. The apparatus 45, the storage tank 46, and the track | truck 47 as a mounting base which has a rolling wheel are provided.
図1〜図4に示すように、この処理システムでは、濁水48は、導入管125、フィルター付き枡126、フィルター付き枡126から分岐された導入管125を通って、沈降槽100に流れ込むようになっている。
フィルター付き枡126は、濁水48が導入管125を介して沈降槽100に流入する前に、濁水48中の合成樹脂製の袋を始めとする大きな異物を取り除くように設けられている。
As shown in FIGS. 1 to 4, in this treatment system, the muddy water 48 flows into the sedimentation tank 100 through the introduction pipe 125, the filter-attached tub 126, and the introduction pipe 125 branched from the filter-attached tub 126. It has become.
The filter-equipped trough 126 is provided so as to remove large foreign substances such as a synthetic resin bag in the muddy water 48 before the muddy water 48 flows into the sedimentation tank 100 through the introduction pipe 125.
沈降槽100は、図2に示すように、地面101を平面形状が矩形状に掘下げて掘削部102を造成するとともに、掘削部102の底面に割栗石等を敷き詰めて突き固めて基礎部103を形成した貯水空間110内に、図2〜図4に示すように、後述する多数の充填部材130が、以下のようにして、後述する角型マンホール115,116部分を除く部分に水平に並べられると共に、上下方向に連結された状態で設置されている。
貯水空間110の底面は、基本的には平坦面となっており、底面の長辺方向の中央部には平坦面から一段落ち込んだ溝状をした凹部111が底面の短手方向全幅に亘って形成されている。
As shown in FIG. 2, the sedimentation tank 100 is formed by digging the ground surface 101 into a rectangular shape to form the excavation portion 102, and laying and solidifying a crushed stone or the like on the bottom surface of the excavation portion 102 to fix the foundation portion 103. In the formed water storage space 110, as shown in FIGS. 2 to 4, a large number of filling members 130, which will be described later, are horizontally arranged in portions other than the rectangular manholes 115, 116 described later, as described below. In addition, it is installed in a state of being connected in the vertical direction.
The bottom surface of the water storage space 110 is basically a flat surface, and a groove-shaped recess 111 that is stepped down from the flat surface at the center in the long side direction of the bottom surface covers the entire width of the bottom surface in the short direction. Is formed.
凹部111の底面を含む貯水空間110の底面全面には、防水シート112が敷設されている。防水シート112としては厚さが1.5mm以上の合成ゴム又は樹脂系シート又はアスファルト系シートが使用されている。そして、凹部111には格子状のフレーム114が嵌め込まれ、フレーム114の上端面が貯水空間110の平坦面とほぼ面一となっている。
なお、割栗石等から形成される基礎部103上に保護ボード113を敷き、その上に防水シート112を敷設するようにしてもよい。また、前記した保護ボード113の代わりに、防水シート112の下に必要に応じてポリエステル系不織布シート等の基礎用シート(図示せず)を敷設し、防水シート112を基礎部103の割栗石から保護するようにしてもよい。
A waterproof sheet 112 is laid on the entire bottom surface of the water storage space 110 including the bottom surface of the recess 111. As the waterproof sheet 112, a synthetic rubber, a resin sheet or an asphalt sheet having a thickness of 1.5 mm or more is used. A lattice-shaped frame 114 is fitted into the recess 111, and the upper end surface of the frame 114 is substantially flush with the flat surface of the water storage space 110.
Note that a protective board 113 may be laid on the base portion 103 formed of cracked stone or the like, and the waterproof sheet 112 may be laid thereon. In addition, instead of the protective board 113 described above, a base sheet (not shown) such as a polyester-based non-woven sheet is laid under the waterproof sheet 112 as necessary, and the waterproof sheet 112 is removed from the cracked stone of the base portion 103. You may make it protect.
各充填部材130は、ポリエチレン、ポリプロピレン、塩化ビニル、ポリエチレンテレフタレート等のプラスチックや、これらの廃プラスチック等から形成され、図5〜7に詳細に示すように、後述する貯水空間110の上部を覆う被覆部材140の垂直荷重、及び水圧による水平荷重を支持し、貯水空間110内に通水路を確保する4本の柱状の連結部131と、4本の連結部131に固定され水平面に対して5度程度の角度で傾斜する平面視ほぼ正方形をした傾斜板部132とから構成され、特に限定されないが、例えば、1辺が50cm〜1m程度で高さが10〜15cm程度の直方体に納まるような形状をしている。 Each filling member 130 is formed of a plastic such as polyethylene, polypropylene, vinyl chloride, or polyethylene terephthalate, or a waste plastic thereof, and as shown in detail in FIGS. The four columnar connecting portions 131 that support the vertical load of the member 140 and the horizontal load due to water pressure and secure a water passage in the water storage space 110, and are fixed to the four connecting portions 131 and 5 degrees with respect to the horizontal plane It is composed of an inclined plate portion 132 having a substantially square shape in plan view that is inclined at an angle of about, and is not particularly limited. For example, a shape that fits in a rectangular parallelepiped having a side of about 50 cm to 1 m and a height of about 10 to 15 cm. I am doing.
連結部131は、厚さが4〜5mm程度の肉厚の板材で形成され、高さが10〜15cm程度の三角パイプ状に形成され、大きい断面の三角パイプ状の上部柱部131aの下方には、上部柱部131aの内部に嵌合する小さい断面の三角パイプ状の下部柱部131bが形成されている。したがって、充填部材130の上部柱部131aに、他の充填部材130の下部柱部131bを内嵌させることにより充填部材130同士を小さいピッチ、すなわち連結部131の高さのピッチで積み重ねることができる。三角パイプ状の連結部131の底面と側面には上下に貫通孔131c,131dが形成され、下方の貫通孔から水が進入することができ、側方の貫通孔から内部の空気が逃げることができるようになっている。なお、下部柱部131bは、コーナー部が切欠かれているが連続したものでもよい。また、連結部131内の底面は土砂等を傾斜板部132に誘導するために、側面の貫通孔方向に傾斜していることが好ましい。 The connecting portion 131 is formed of a thick plate material having a thickness of about 4 to 5 mm, is formed in a triangular pipe shape having a height of about 10 to 15 cm, and is formed below the upper pillar portion 131a having a large cross-section of the triangular pipe shape. Is formed with a triangular pipe-shaped lower column part 131b having a small cross section that fits inside the upper column part 131a. Therefore, the filling member 130 can be stacked at a small pitch, that is, the height of the connecting portion 131 by fitting the lower pillar portion 131b of the other filling member 130 into the upper pillar portion 131a of the filling member 130. . Through holes 131c and 131d are formed on the bottom and side surfaces of the triangular pipe-shaped connecting portion 131 so that water can enter from the lower through holes, and the internal air can escape from the side through holes. It can be done. In addition, although the corner part is notched, the lower pillar part 131b may be continuous. Further, it is preferable that the bottom surface in the connecting portion 131 is inclined in the direction of the through hole on the side surface in order to guide earth and sand to the inclined plate portion 132.
傾斜板部132は、厚さが4〜5mm程度の肉厚の板材で例えば1辺が50cm〜1m程度のほぼ正方形に形成され、流入した濁水48等の流入水を所定方向に誘導する誘導手段を構成するようになっている。 The inclined plate portion 132 is a thick plate member having a thickness of about 4 to 5 mm, is formed in a substantially square shape with a side of about 50 cm to 1 m, for example, and guides for guiding inflowing water such as muddy water 48 flowing in a predetermined direction. Is configured.
傾斜板部132の上面は平坦で、傾斜方向Sの先端方向に向かって低くとなっている。
傾斜角度は、緩やかすぎると、流入水中に含まれる砂等の易沈降性粒子が流入水と共に流れず、傾斜板部132上に滞留するため、5度程度の傾斜角度が好ましい。
The upper surface of the inclined plate portion 132 is flat and becomes lower toward the tip direction of the inclined direction S.
If the inclination angle is too gentle, easy-settling particles such as sand contained in the inflowing water do not flow with the inflowing water but stay on the inclined plate portion 132, and therefore an inclination angle of about 5 degrees is preferable.
傾斜板部132の下面には、所定の間隔で一体的に縦横に立設された格子状の補強リブ133が補強のために形成されている。この補強リブ133は傾斜板部132の中央部の上下幅が大きく、周辺に行くにしたがって上下幅が徐々に小さくなるように形成されている。この構成により、傾斜板部132の上面に荷重が加わっても傾斜板部132の変形は小さくなり、上面に施工者が載ってもひび割れ等の破損が生じることを防止できる。なお、補強リブ133は格子状でなくてもよいが、格子状にすると一方向のものと比較して強度が大きくなり好ましく、六角形のハニカム格子状が強度面からより好ましい。 On the lower surface of the inclined plate portion 132, lattice-like reinforcing ribs 133 are formed for reinforcement so as to stand vertically and horizontally integrally at a predetermined interval. The reinforcing rib 133 is formed so that the vertical width of the central portion of the inclined plate portion 132 is large and the vertical width gradually decreases toward the periphery. With this configuration, even if a load is applied to the upper surface of the inclined plate portion 132, the deformation of the inclined plate portion 132 is reduced, and it is possible to prevent breakage such as cracks from occurring even if the installer is placed on the upper surface. The reinforcing rib 133 does not have to be in a lattice shape, but if it is in a lattice shape, the strength is preferably higher than that in one direction, and a hexagonal honeycomb lattice shape is more preferable in terms of strength.
また、補強リブ133には、この補強リブ133で囲まれた下方開口の空間が形成され、この空間の上部と連通する開放部134が形成してある。開放部134としては、補強リブ133の一部を切欠き、隣接する下方開口の空間と連通するように構成する。この構成により、貯水空間110に下方から徐々に河川越流水等の流入水が溜まって上昇してきたとき、この下方開口の空間に空気が溜まったままとならず、空気が開放部134から隣接する空間に移動して代わりに流入水が進入することができると共に、浮力による充填部材の浮き上がりを防止することができることとなり、貯水空間110に雨水を充満させて所定の貯留量を確保することができるものとなる。なお、補強リブ133を切り欠いた開放部134でなく、補強リブ133の上部を水平方向に貫通する孔(図示せず)を形成して連通させてもよい。 Further, the reinforcing rib 133 is formed with a space of a lower opening surrounded by the reinforcing rib 133, and an open portion 134 communicating with the upper portion of the space is formed. The opening 134 is configured such that a part of the reinforcing rib 133 is notched and communicates with the space of the adjacent lower opening. With this configuration, when inflow water such as river overflow water gradually accumulates and rises from below in the water storage space 110, air does not remain in the space of the lower opening, and the air is adjacent from the opening portion 134. The inflowing water can enter instead of moving to the space, and the floating of the filling member due to buoyancy can be prevented, and the water storage space 110 can be filled with rainwater to ensure a predetermined storage amount. It will be a thing. In addition, instead of the opening portion 134 in which the reinforcing rib 133 is cut out, a hole (not shown) penetrating the upper portion of the reinforcing rib 133 in the horizontal direction may be formed and communicated.
さらに、充填部材130は、連結部131の上部に連結部材135を挟んで積み上げることにより、大きいピッチで積み重ねることができる。連結部材135は三角パイプ状の連結部131を繋ぐものであり、図8に示すように上方の大きい三角パイプ状の連結部136は充填部材130の下部柱部131bを外嵌し、下方の小さい略三角パイプ状の連結部137は充填部材130の上部柱部131aに内嵌されるように構成されている。連結部材135の高さを調整することにより、充填部材130を積み重ねるピッチを任意に設定することができる。また、図示していないが、連結部の高さの大きい充填部材と、小さい充填部材の2種類の充填部材を準備し、小さいピッチ又は大きいピッチで積み重ねるようにしてもよい。なお、連結部137は一部が切欠かれているが、連続したものでもよい。 Furthermore, the filling members 130 can be stacked at a large pitch by stacking the connecting members 135 on top of the connecting portions 131. The connecting member 135 connects the triangular pipe-shaped connecting portion 131. As shown in FIG. 8, the upper large triangular pipe-shaped connecting portion 136 externally fits the lower column portion 131b of the filling member 130 and the lower small portion. The substantially triangular pipe-shaped connecting portion 137 is configured to be fitted into the upper column portion 131 a of the filling member 130. By adjusting the height of the connecting member 135, the pitch at which the filling members 130 are stacked can be arbitrarily set. Although not shown, two kinds of filling members, that is, a filling member having a large connecting portion and a small filling member may be prepared and stacked at a small pitch or a large pitch. The connecting portion 137 is partially cut out, but may be continuous.
また、連結部材135は、外側の直交する垂直面に水平方向の接合部138を備えている。垂直面の一方には接合凸部138aが突出形成され、垂直面の他方には接合凸部138aが嵌合する接合孔138bが形成されている。接合凸部138aは、接合孔とほぼ同じ直径の根元の小径部と、その上部の先端が傾斜している大径部とから構成され、小径部と大径部に掛けてスリットが形成され、大径部は内側に湾曲して縮径することができる。この構成により、接合凸部138aは接合孔138bに嵌合して保持され、連結部材135同士を水平方向に接合することができる。連結部材135は土砂を傾斜板部132に誘導するために傾斜した仕切り板を備えており、この仕切り板の低い位置には貫通孔139が形成され、雨水の進入と空気の排出も可能となっている。 In addition, the connecting member 135 includes a horizontal joint 138 on the outer perpendicular surface. One of the vertical surfaces is formed with a protruding projection 138a, and the other vertical surface is formed with a bonding hole 138b into which the bonding projection 138a is fitted. The joint convex portion 138a is composed of a root small diameter portion having the same diameter as that of the joint hole and a large diameter portion having an inclined tip at the top, and a slit is formed between the small diameter portion and the large diameter portion. The large diameter portion can be curved inward to reduce the diameter. With this configuration, the joint protrusion 138a is fitted and held in the joint hole 138b, and the connecting members 135 can be joined in the horizontal direction. The connecting member 135 includes an inclined partition plate for guiding earth and sand to the inclined plate portion 132, and a through hole 139 is formed at a lower position of the partition plate, so that rainwater can enter and air can be discharged. ing.
連結部材135は、図9(a)、図10(a)に示すように、接合部138の接合凸部138aを接合孔138bに嵌合させることにより2個の連結部材135を接合することができる。このように2個を接合させた連結部材は、充填部材130が貯水空間110の外周側に位置しているときに使用する。また、図9(b)、図10(b)に示すように、接合部138の接合凸部138aを接合孔138bに嵌合させることにより4個の連結部材135を接合することができる。この場合は、充填部材130が貯水空間110の中心側に位置しているときに使用する。なお、使用していない接合凸部138aで突出しているものは、刃物等で切断して平坦としてもよい。また、角型マンホール115,116の角部に対向する充填部材130を接合するときは、図示していないが3個の連結部材を接合して使用する。 As shown in FIG. 9A and FIG. 10A, the connecting member 135 can join the two connecting members 135 by fitting the joint convex portion 138a of the joint portion 138 into the joint hole 138b. it can. The two connecting members joined in this way are used when the filling member 130 is located on the outer peripheral side of the water storage space 110. Further, as shown in FIGS. 9B and 10B, the four connecting members 135 can be joined by fitting the joint projection 138a of the joint 138 into the joint hole 138b. In this case, it is used when the filling member 130 is located on the center side of the water storage space 110. In addition, what protrudes in the joint convex part 138a which is not used may be cut | disconnected with a blade etc., and may be flat. Further, when the filling member 130 facing the corners of the square manholes 115 and 116 is joined, although not shown, three connecting members are joined and used.
そして、本実施の形態では、上記充填部材130および連結部材135を用いて、貯水空間110内に凹部111の両端側の角型マンホール115,116を除く部分に上下方向に以下のようにして組み上げられている。
すなわち、図3において左端の縦一列の4個の充填部材130は流入水を誘導する傾斜方向S1が右方向に向くように、すなわち貯水空間110の中央の凹部111に向けて誘導するように配置され、右端の縦一列の4個の充填部材130も傾斜方向S1が左方向に向いて貯水空間110の中央の凹部111に向けて誘導するように配置されている。そして、左端から2番目の縦一列の4個の充填部材130は、上から順に傾斜方向Sが下向きS3、右向きS1、上向きS4、上向きS3になるように配置され、右端から2番目の縦一列の4個の充填部材130は上から順に傾斜方向Sが下向きS3、左向きS1、左向きS1、上向きS3になるように配置される。中央上側の充填部材130は、傾斜方向Sが同図において下向きS2になるように配置され、中央下側の充填部材130は左向きS3になるように配置されている。
In the present embodiment, the filling member 130 and the connecting member 135 are used to assemble the water storage space 110 in the vertical direction in the portion excluding the square manholes 115 and 116 on both ends of the recess 111 as follows. It has been.
That is, the four filling members 130 in the vertical line at the left end in FIG. 3 are arranged so that the inclined direction S1 for guiding the inflowing water is directed rightward, that is, directed toward the concave portion 111 at the center of the water storage space 110. The four filling members 130 in the vertical line at the right end are also arranged so that the inclination direction S1 is directed leftward and directed toward the concave portion 111 at the center of the water storage space 110. The four filling members 130 in the second vertical line from the left end are arranged so that the inclination direction S is downward S3, rightward S1, upward S4, upward S3 in order from the top, and the second vertical line from the right end. The four filling members 130 are arranged so that the inclination direction S is downward S3, leftward S1, leftward S1, and upward S3 in order from the top. The center upper filling member 130 is disposed such that the inclination direction S is downward S2 in the figure, and the center lower filling member 130 is disposed leftward S3.
前記の傾斜方向は以下のように決定されている。第1に充填部材130の傾斜方向S1は凹部111に向けられる。第2に凹部111の上部に位置する充填部材130は傾斜方向S2のように流出側に向けられる。第3に連通路であるマンホール115,116部分では、流入水が行き止まりにならないように別の方向に傾斜方向S3のように逃がす。そして、第4に隣同士の充填部材の傾斜方向が向き合わないように傾斜方向S4とする。この結果、流出側のマンホール部分では、一部の流入水が右回りに旋回する旋回流S5が生じて徐々に傾斜板部の隙間から落下するように構成される。なお、傾斜方向S3を右向きとし、右側の充填部材の傾斜方向S4を上向きにすることにより旋回流を中央より右側に、左回りとするようにしてもよい。 The inclination direction is determined as follows. First, the inclination direction S <b> 1 of the filling member 130 is directed to the recess 111. Secondly, the filling member 130 located on the upper portion of the recess 111 is directed toward the outflow side as in the inclination direction S2. Thirdly, in the manholes 115 and 116 which are communication paths, the inflowing water escapes in another direction as in the inclined direction S3 so as not to reach a dead end. And it is set as the inclination direction S4 so that the inclination direction of the adjacent filling member may not face 4th. As a result, in the manhole part on the outflow side, a part of the inflowing water is configured to generate a swirl flow S5 that swirls clockwise and gradually falls from the gap of the inclined plate part. Note that the swirl flow may be counterclockwise from the center to the right by setting the tilt direction S3 to the right and the tilt direction S4 of the right filling member to the upward.
上記のように構成されているため、流入水は充填部材130により中央の凹部111に向けて誘導されると共に、凹部111に向けて徐々に落下して誘導される。充填部材130を小さいピッチで積み重ねた場合は、傾斜板部132は下段側の誘導方向の傾斜板部132と僅かな段差で連続し、流入水を連続的に誘導できる。 Since it is configured as described above, the inflow water is guided toward the concave portion 111 at the center by the filling member 130, and gradually falls toward the concave portion 111 and is guided. In the case where the filling members 130 are stacked at a small pitch, the inclined plate portion 132 is continuous with the inclined plate portion 132 in the lower guiding direction with a slight step, and the inflow water can be continuously guided.
例えば、充填部材130を小さいピッチで7段積み重ねたあと、大きいピッチで4段積み重ねれば、基礎に相当する下半分が小さいピッチで積み重ねられて強度が大きくなっており、上半分は大きいピッチで空隙率が大きくなっている。また、充填部材130を高く積み重ねると不安定となるが、上部の充填部材130は連結部材135の接合部138で水平方向に接合されているため安定し、施工が容易となる。さらに、充填部材130は積み重ね状態が安定しているため、上部の被覆部材140を安定して支持することができる。 For example, if the filling members 130 are stacked in seven stages at a small pitch and then stacked in four stages at a large pitch, the lower half corresponding to the foundation is stacked at a small pitch to increase the strength, and the upper half is at a large pitch. The porosity is large. Further, when the filling member 130 is stacked high, it becomes unstable. However, since the upper filling member 130 is joined in the horizontal direction at the joint portion 138 of the connecting member 135, the construction is stable and the construction is easy. Furthermore, since the filling member 130 is stable in the stacked state, the upper covering member 140 can be stably supported.
充填部材130は、単位体積当たりの空隙率が高いことや、実用上十分な強度、耐久性を有することが要求されると共に、運搬施工が容易であり、維持管理が容易であることが要求され、耐荷重は例えば垂直方向は1平方メートル当たり5〜20トン、水平方向は5〜16トン、空隙率は90%程度が好ましい。 The filling member 130 is required to have a high porosity per unit volume, to have practically sufficient strength and durability, and to be easy to carry and maintain and easy to maintain. The load resistance is preferably 5 to 20 tons per square meter in the vertical direction, 5 to 16 tons in the horizontal direction, and the porosity is preferably about 90%.
上記のようにして充填部材130が上下に積層され設置されたあと、充填部材130の側面を覆う壁材120が立設され、その外側に防水シート121が垂直方向に配置され、さらに外側には砂利や砕石等の埋め戻し材122が掘削部102との間に充填される。壁材120は、この外側に位置する防水シート121が貯水空間110の空間に入り込むのを防止している。防水シート121は貯水空間110の底面に敷いたものと同等の合成ゴム又は樹脂系シートを使用し、底面の防水シート112と漏水しないように、融着又は防水性の接着剤等で接合されている。防水シート121を砂利等の埋め戻し材122から保護するため、防水シート121の外側に壁材120と同等の保護板123を配置してもよい。 After the filling member 130 is vertically stacked and installed as described above, the wall material 120 that covers the side surface of the filling member 130 is erected, and the waterproof sheet 121 is disposed vertically on the outer side, and further on the outer side. A backfilling material 122 such as gravel or crushed stone is filled between the excavation part 102. The wall material 120 prevents the waterproof sheet 121 located on the outside from entering the water storage space 110. The waterproof sheet 121 uses a synthetic rubber or resin-based sheet equivalent to that laid on the bottom surface of the water storage space 110 and is joined to the waterproof sheet 112 on the bottom surface with a fusion or waterproof adhesive so as not to leak. Yes. In order to protect the waterproof sheet 121 from the backfill material 122 such as gravel, a protective plate 123 equivalent to the wall material 120 may be disposed outside the waterproof sheet 121.
貯水空間110の上部からは、オーバーフロー管127が突出しており、貯水空間110の下部からは貯留水吸引管128が突出している。
オーバーフロー管127は、貯水空間110内に貯留される流入水の水位かオーバーフロー管127より高くなると、流入水をオーバーフロー管127から放流できるようになっている。
貯留水吸引管128は、図1に示すように、後述する第1のろ過装置42に接続されている。
An overflow pipe 127 protrudes from the upper part of the water storage space 110, and a stored water suction pipe 128 protrudes from the lower part of the water storage space 110.
The overflow pipe 127 can discharge the inflow water from the overflow pipe 127 when the level of the inflow water stored in the water storage space 110 becomes higher than the overflow pipe 127.
As shown in FIG. 1, the stored water suction pipe 128 is connected to a first filtration device 42 described later.
貯水空間110の上部開口は被覆部材140が覆っている。被覆部材140は多数の充填部材130の上部に載置される被覆ボード141と、この上に敷設された防水シート142と、この上に埋め戻された埋め戻し層143とから構成される。被覆ボード141は、図示していないが充填部材130の上部の連結部が嵌合する凹部を有すると充填部材に安定して載置できて好ましい。被覆ボード141の角型マンホール115,116に対応する位置に連通口117を固定する。そして、防水シート142を連通口117に接合すると共に、防水シート142と側面の防水シート121は重ね合わせて側面で接合する。これにより凹部111は、角型マンホール115,116と、連通口117を通して地面に開口し、連通口117から洗浄水やバキューム等のホースを挿入して凹部111にホースの先端を到達させることができる。連通口117は通常は図示していない蓋により閉じられている。なお、防水シート142の上に、保護ボード144や保護シートを敷くようにしてもよい。 A covering member 140 covers the upper opening of the water storage space 110. The covering member 140 includes a covering board 141 placed on top of a large number of filling members 130, a waterproof sheet 142 laid thereon, and a backfill layer 143 backfilled thereon. Although not shown, it is preferable that the covering board 141 has a recess in which the upper connecting portion of the filling member 130 is fitted, so that the covering board 141 can be stably placed on the filling member. The communication port 117 is fixed at a position corresponding to the square manholes 115 and 116 of the covering board 141. Then, the waterproof sheet 142 is joined to the communication port 117, and the waterproof sheet 142 and the side waterproof sheet 121 are overlapped and joined at the side. As a result, the recess 111 opens to the ground through the rectangular manholes 115 and 116 and the communication port 117, and a hose such as cleaning water or vacuum can be inserted from the communication port 117 so that the tip of the hose can reach the recess 111. . The communication port 117 is normally closed by a lid (not shown). A protective board 144 or a protective sheet may be laid on the waterproof sheet 142.
このようにして貯水空間110は、底面の防水シート112と、側面の防水シート121と、上面の被覆部材140の防水シート142とにより構成される。そして、被覆部材140の埋め戻し層143により、地面1と同じ平面に埋め戻される。なお、被覆部材は前記の構成に限らず、充填部材の上部に単にコンクリート板等を並べるような構成でもよい。
そして、沈降槽100は、上記のようになっているので、沈降槽100内が空の場合には、フィルター付き枡126を通り、大きな異物が取り除かれた濁水48は、4本の導入管125から沈降槽100の貯水空間110の最上段に配置された充填部材130の傾斜板部132上に受けられるように貯水空間110内に流入する。
In this way, the water storage space 110 is constituted by the waterproof sheet 112 on the bottom surface, the waterproof sheet 121 on the side surface, and the waterproof sheet 142 of the covering member 140 on the top surface. Then, it is backfilled in the same plane as the ground 1 by the backfill layer 143 of the covering member 140. The covering member is not limited to the above-described configuration, and may be a configuration in which a concrete plate or the like is simply arranged above the filling member.
And since the sedimentation tank 100 is as described above, when the sedimentation tank 100 is empty, the muddy water 48 from which large foreign matters have been removed through the filter-equipped 126 is provided with four introduction pipes 125. To the water storage space 110 so as to be received on the inclined plate portion 132 of the filling member 130 arranged at the uppermost stage of the water storage space 110 of the settling tank 100.
貯水空間110内に流入した濁水48は、充填部材130の傾斜板部132の傾斜によって次々に下段の充填部材130の傾斜板部132に乗り移りながら、最後に凹部111へ流入する。
そして、流入した濁水48の水位が、凹部111上端より上昇してきても、流入してくる濁水48中の易沈降性粒子は、充填部材130の傾斜板部132の傾斜によって次々に下段の充填部材130の傾斜板部132に乗り移りながら、最後に凹部111へ流入する。
The muddy water 48 that has flowed into the water storage space 110 finally flows into the concave portion 111 while transferring to the inclined plate portion 132 of the lower filling member 130 due to the inclination of the inclined plate portion 132 of the filling member 130.
Even if the water level of the muddy water 48 that has flowed in rises from the upper end of the concave portion 111, the easily settleable particles in the muddy water 48 that has flowed in are successively placed in the lower filling member due to the inclination of the inclined plate portion 132 of the filling member 130. Finally, it flows into the recess 111 while transferring to the 130 inclined plate portions 132.
すなわち、次々に流入してくる濁水48中の易沈降性粒子は、凹部111内に溜まる。しかも、一度に多量の濁水48が沈降槽100内に流入しても、貯水空間110内は、充填部材130の傾斜板部132によって多層に仕切られていて、傾斜板132の緩い傾斜によって凹部111方向に流下するので、流下速度が遅くなり、既に凹部111およびその近傍に堆積している易沈降性粒子を巻き上げることが抑えられる。 That is, the easily settleable particles in the muddy water 48 that flow in one after another accumulate in the recess 111. Moreover, even if a large amount of muddy water 48 flows into the sedimentation tank 100 at one time, the water storage space 110 is partitioned into multiple layers by the inclined plate portion 132 of the filling member 130, and the concave portion 111 is formed by the gentle inclination of the inclined plate 132. Since it flows down in the direction, the flow down speed becomes slow, and it is possible to suppress the easy sedimentation particles already deposited in the recess 111 and the vicinity thereof.
一方、凹部111に溜まった易沈降性粒子は、連通口117から図1に破線で示すように、バキューム等のホースHを挿入して凹部111にホースHの先端を到達させ、吸い上げることによって沈降槽100内から容易に除去することができる。 On the other hand, the easily settleable particles accumulated in the concave portion 111 are settled by inserting a hose H such as a vacuum from the communication port 117 and causing the tip of the hose H to reach the concave portion 111 and sucking it up. It can be easily removed from the tank 100.
第1のろ過装置42は、精密ろ過膜(MF)、限外ろ過膜(UF)、逆浸透膜(RO)等をろ材として用いたものであって、易沈降性粒子の沈降によって、ほぼ難沈降性粒子からなる懸濁水となった沈降槽100の貯水空間110内に溜まった上澄水を、貯留水吸引管128からろ過装置42のろ過水出口後方に設けられた真空ポンプ等(図示せず)によってろ過装置42内に吸引し、ろ材によって難沈降性SSを除去し、清浄となったろ過水を一旦タンクに貯留するか、そのまま放流するようになっている。 The first filtration device 42 uses a microfiltration membrane (MF), an ultrafiltration membrane (UF), a reverse osmosis membrane (RO) or the like as a filter medium, and is almost difficult due to sedimentation of easily settleable particles. The supernatant water collected in the water storage space 110 of the settling tank 100, which has become suspended water composed of settling particles, is supplied from a stored water suction pipe 128 to the rear of the filtered water outlet of the filtration device 42 (not shown). ), The hard-to-settling SS is removed by the filter medium, and the purified filtered water is once stored in the tank or discharged as it is.
また、ろ過装置42は、20分から1時間の連続除去運転の後、真空ポンプによる吸引を停止し、ろ材の詰りを解消するように短時間逆洗されたのち、再び真空ポンプによる吸引を行うという動作を繰り返すようになっている。
すなわち、逆洗は、別途用意した清水又は上記のようにタンクに貯留されたろ過水をろ過方向とは逆に流すことで行い、逆洗によってろ材の目詰りを解消してろ材の交換頻度を少なくするとともに、ろ過装置42内で難沈降性粒子の高濃度化を図るようになっている。
In addition, after the continuous removal operation from 20 minutes to 1 hour, the filtration device 42 stops suction by the vacuum pump, and after being back-washed for a short time so as to eliminate clogging of the filter medium, the suction is again performed by the vacuum pump. The operation is repeated.
In other words, backwashing is performed by flowing separately prepared fresh water or filtered water stored in the tank as described above in the direction opposite to the filtration direction. In addition to the reduction, the concentration of hardly settled particles is increased in the filtration device 42.
なお、ろ材としての中空糸外部から内部に吸引して分離した難沈降性SSを除去する場合は、フィルター外面にバブリングを行って洗浄してもよい。泡はウッドストーンのような穴を通じてもよいし、ベンチュリー管を用いて空気を微細化したり、旋回流方式や加圧溶解したものを開放させて発生させたり超音波によるキャビテーションを用いてもよい。 In addition, when removing the hard-to-seduce SS that has been sucked into and separated from the outside of the hollow fiber as a filter medium, the outer surface of the filter may be bubbled and washed. Foam may be passed through a hole such as a woodstone, or may be generated by refining air using a Venturi tube, or by opening a swirling flow method or a pressure-dissolved one, or using ultrasonic cavitation.
そして、ろ過装置42は、ろ過装置42内の難沈降性SS濃度が上昇し、ろ過圧が所定以上になると、停止される。
ろ過装置42の停止後、ろ過装置42内に残った高濃度懸濁水は、懸濁水処理装置43で処理される。
すなわち、懸濁水処理装置43は、沈殿槽43aと、ろ過装置42内に残った高濃度懸濁水をポンプ44によってこの沈殿槽43aへ送る配管43bとを備えている。
And the filtration apparatus 42 will be stopped if the difficulty sedimentation SS density | concentration in the filtration apparatus 42 rises and the filtration pressure becomes more than predetermined.
After the filtration device 42 is stopped, the high-concentration suspension water remaining in the filtration device 42 is processed by the suspension water treatment device 43.
That is, the suspension water treatment device 43 includes a sedimentation tank 43a and a pipe 43b for sending the high-concentration suspension water remaining in the filtration device 42 to the sedimentation tank 43a by the pump 44.
配管43bは、図示していないが、内部に多数の邪魔板を備え、この邪魔板の間を縫いながら処理水が撹拌されながら送られるようになっているとともに、配管43bの途中に天然材料系の粘性高分子材料を配管43b内へ供給する粘性高分子材料供給部、多価金属塩粉粒体又はその準飽和水溶液を配管43b内へ供給する多価金属塩供給部を順に備えている。すなわち、配管43bで搬送される間に高濃度懸濁水と粘性高分子材料とが急速攪拌されたのち、この混合液と多価金属塩粉粒体又はその準飽和水溶液とが急速攪拌され、高濃度懸濁水中のSSが凝集し、沈殿槽43aに送られる。 Although not shown, the pipe 43b includes a large number of baffle plates inside, and the treated water is sent while being stirred between the baffle plates, and the viscosity of the natural material system is placed in the middle of the pipe 43b. A viscous polymer material supply unit that supplies the polymer material into the pipe 43b, and a polyvalent metal salt supply unit that supplies the polyvalent metal salt powder or a semi-saturated aqueous solution thereof into the pipe 43b are sequentially provided. That is, after the high-concentration suspended water and the viscous polymer material are rapidly stirred while being conveyed by the pipe 43b, the mixed solution and the polyvalent metal salt powder or its semi-saturated aqueous solution are rapidly stirred, SS in the concentration suspension water aggregates and is sent to the precipitation tank 43a.
なお、各邪魔板は、配管43bの内断面積の20%〜70%の大きさをしていて、配管43b内に設けられた支柱に支持されて配管43bの内径の0.5倍から2倍の間隔を置いて配置されているとともに、配管43bの管軸方向で隣り合う邪魔板の長軸に対して角度が90度ずれて配置されている。 Each baffle plate has a size of 20% to 70% of the inner cross-sectional area of the pipe 43b, is supported by a support provided in the pipe 43b, and is 0.5 to 2 times the inner diameter of the pipe 43b. It is arranged with a double interval, and the angle is shifted by 90 degrees with respect to the major axis of the baffle plates adjacent in the pipe axis direction of the pipe 43b.
沈殿槽43aは、配管43bから排出される凝集物を含む処理水が供給され、凝集物を沈殿槽43aの底に沈殿させるとともに、上澄水をオーバーフローによって河川や海洋に放流できるようになっている。 The settling tank 43a is supplied with treated water containing aggregates discharged from the pipe 43b, precipitates the aggregates at the bottom of the settling tank 43a, and allows the supernatant water to be discharged into a river or ocean by overflow. .
第2のろ過装置45は、沈殿槽43aの底の溜まった凝集沈殿物を脱水ろ過するようになっている。ろ過により得られた清水は、河川や海洋に放流されたり、ろ過装置42の逆洗水として使用されたりする。
貯槽46は、ろ過装置45によって得られる低含水率の固形分を貯めるようになっている。
The second filtration device 45 dehydrates and filters the aggregated sediment accumulated at the bottom of the sedimentation tank 43a. The fresh water obtained by filtration is discharged into rivers and oceans, or used as backwash water for the filtration device 42.
The storage tank 46 is configured to store a low moisture solid content obtained by the filtration device 45.
また、本実施形態では、懸濁水処理装置43と、ポンプ44と、第2のろ過装置45と、貯槽46とがトラック47の荷台部分に搭載されてトラック47とともに移動可能になっている。 In the present embodiment, the suspended water treatment device 43, the pump 44, the second filtration device 45, and the storage tank 46 are mounted on the loading platform portion of the truck 47 and are movable together with the truck 47.
この処理システムを用いた浄化方法によれば、以上のように、沈降槽100内のSSを含む上澄水を膜ろ過である第1のろ過装置42にてろ過するようにしたので、得られる清水中には、薬剤の混入がなく、そのまま放流しても河川や海洋を汚染したりすることがない。 According to the purification method using this treatment system, as described above, since the supernatant water containing SS in the sedimentation tank 100 is filtered by the first filtration device 42 that is membrane filtration, the resulting fresh water There are no chemicals inside, and even if it is released as it is, it will not pollute the river or the ocean.
また、ろ過装置42でろ過される上澄水は、難沈降性SSが含まれているだけであるので、ろ過装置42だけでなくポンプの故障も低減することが可能であり、メンテナンスの手間やそれに伴うコストの低減が図れる。 In addition, since the supernatant water filtered by the filtration device 42 contains only the non-sedimentable SS, it is possible to reduce not only the filtration device 42 but also the failure of the pump. The accompanying cost can be reduced.
また、凝集剤には天然材料系を使用するため、凝集ろ過後の清水に溶解した薬剤は環境への負荷が著しく小さい。更に、凝集粒径が大きいため不織布脱水でも目詰まりが無く、装置が簡易になる。また脱水後の固形物含水率は30〜40重量%であり、回収のための容量が小さくて済む。結果として懸濁水処理装置43、ポンプ44、第2のろ過装置45、貯槽46等の設備全体が小さくなり、懸濁水処理装置43、ポンプ44、第2のろ過装置45、貯槽46等がトラック47に積載しての運搬が可能になる。 In addition, since a natural material system is used for the flocculant, the drug dissolved in the fresh water after the flocculent filtration has a remarkably small environmental load. Furthermore, since the aggregated particle size is large, there is no clogging even when the nonwoven fabric is dehydrated, and the apparatus becomes simple. Further, the water content of the solid after dehydration is 30 to 40% by weight, and the capacity for recovery can be small. As a result, the entire equipment of the suspension water treatment device 43, the pump 44, the second filtration device 45, the storage tank 46, etc. is reduced, and the suspension water treatment device 43, the pump 44, the second filtration device 45, the storage tank 46, etc. Can be transported by loading on the
したがって、懸濁水処理装置43、ポンプ44、第2のろ過装置45、貯槽46等を沈降槽41に隣接して常設することが不要で複数の沈降槽41内の汚泥の除去を定期的に行うことができるようになる。これにより人件費の節減や設備費の低減が図れるほか、故障時の修理の容易化、人為的・自然的な故障や妨害の防止、薬剤切れの防止、など様々なメリットを得ることができる。
さらには、浚渫を含め定期的な回収業務が可能になるために、地場の事業として安定的な運営が可能となり、計画的な運営が可能となる。結果、計画的に土砂等の除去が行えるため、南方の離島の計画的珊瑚礁復元計画や自治体の年度予算作成に貢献することが可能になる。
Therefore, it is unnecessary to permanently install the suspension water treatment device 43, the pump 44, the second filtration device 45, the storage tank 46, etc. adjacent to the settling tank 41, and the sludge in the plurality of settling tanks 41 is periodically removed. Will be able to. As a result, labor costs can be reduced and equipment costs can be reduced, and various advantages can be obtained such as facilitating repairs at the time of failure, prevention of artificial and natural failures and interference, and prevention of running out of drugs.
Furthermore, since periodic collection work including dredging becomes possible, stable operation as a local business becomes possible, and planned operation becomes possible. As a result, it is possible to remove sediments and the like in a planned manner, so that it is possible to contribute to the planned reef restoration plan for the remote islands in the south and the yearly budget for the local government.
上記トラック47は、定期巡回して複数の沈降槽100内の難沈降性粒子を処理してもよいし、特定の沈降槽100の処理を行ってもよい。安定した業務とするには、複数の沈降槽100を定期巡回することがコストや人材配置の面から好ましい。 The truck 47 may periodically circulate and process the hardly sedimentable particles in the plurality of sedimentation tanks 100, or may treat the specific sedimentation tank 100. In order to achieve stable work, it is preferable from the viewpoint of cost and personnel arrangement that the plurality of settling tanks 100 are periodically circulated.
なお、凝集剤の攪拌は、プロペラやポンプ等の機械的攪拌であってもよいが、荷台上のスペース確保の面、機械的メンテナンス性の面から上記のように自然流下による配管43b内での混練で凝集を行うことが好ましい。
また、懸濁水処理装置43、ポンプ44、第2のろ過装置45、貯槽46等は、処理頻度が高い場合は固定式であってもよいが、通常の処理頻度はろ過装置の稼働率よりも低くなるので、上記のように、移動可能にすることが好ましい。
The aggregating agent may be mechanically stirred by a propeller, a pump, or the like. However, from the viewpoint of securing space on the loading platform and mechanical maintenance, as described above, in the pipe 43b by natural flow as described above. Aggregation is preferably performed by kneading.
The suspension water treatment device 43, the pump 44, the second filtration device 45, the storage tank 46, etc. may be fixed when the treatment frequency is high, but the normal treatment frequency is higher than the operation rate of the filtration device. Since it becomes low, it is preferable to make it movable as described above.
しかも、沈降槽100が平面視略正方形の板状をして一方に傾斜する傾斜板部132を有する充填部材130が、傾斜板部132と傾斜板部132との間に隙間を形成するように上下方向に複数段積み重ねられた状態に前記貯水空間110内で組み上げられているので、豪雨等によって一度に多量の濁水が沈降槽100内に流入しても、先に沈降した沈降物が巻き上げられたりすることがない。 In addition, the filling member 130 having the inclined tank portion 132 having a substantially square plate shape in plan view and having the inclined plate portion 132 inclined to one side forms a gap between the inclined plate portion 132 and the inclined plate portion 132. Since the water storage space 110 is assembled in a state of being stacked in a plurality of stages in the vertical direction, even if a large amount of muddy water flows into the sedimentation tank 100 at a time due to heavy rain or the like, the sediment that has settled first is wound up. There is nothing to do.
図11は、本発明にかかる濁水の浄化方法の第2の実施の形態をあらわしている。
図11に示すように、この浄化方法は、上記沈降槽100で同様にして易沈降性粒子を沈降させたのち、上澄水3を前処理槽4に移す。なお、上澄水3中の難沈降性粒子の濃度が50000ppmを超える場合は、希釈により難沈降性粒子の濃度が50000ppm以下となるように調整する。
FIG. 11 shows a second embodiment of the method for purifying muddy water according to the present invention.
As shown in FIG. 11, in this purification method, after precipitating easily settled particles in the settling tank 100, the supernatant water 3 is transferred to the pretreatment tank 4. In addition, when the density | concentration of the difficulty sedimentation particle | grains in the supernatant water 3 exceeds 50000 ppm, it adjusts so that the density | concentration of a difficulty sedimentation particle may be 50000 ppm or less by dilution.
つぎに、易分散性を有する粘性高分子材料であるアルギン酸塩、ペクチン、グルコマンナン、フコイダン等の粘性多糖類5を濃度が5〜200ppmとなるように、前処理槽4の懸濁水3に加え、図示していないが、攪拌機によって攪拌して均一溶解させた混合液6を得る。
そして、この混合液6を凝集処理槽7内で図示していない攪拌機によって攪拌しながら、顆粒状の塩化カルシウム微粉末(又は塩化カルシウムの準飽和水溶液)8を凝集処理槽7に一気に投入し、粘性多糖類を高重合のゲル化して難沈降性微粒子を巻き込んで大きな凝集塊を短時間で得る。
Next, viscous polysaccharides 5 such as alginate, pectin, glucomannan, fucoidan, etc., which are viscous polymer materials having easy dispersibility, are added to the suspension water 3 of the pretreatment tank 4 so that the concentration is 5 to 200 ppm. Although not shown, a mixed solution 6 is obtained by stirring and stirring uniformly with a stirrer.
Then, while stirring this mixed solution 6 with a stirrer (not shown) in the agglomeration treatment tank 7, granular calcium chloride fine powder (or a quasi-saturated aqueous solution of calcium chloride) 8 is poured into the agglomeration treatment tank 7 at once, A viscous polysaccharide is gelled by high polymerization, and fine sediment particles are entrained to obtain a large aggregate in a short time.
つぎに、凝集塊の沈降により生じた上澄水をそのまま放流するとともに、凝集処理槽7の底に溜まった凝集塊を高濃度で含む処理済水を無端ベルト式のろ過装置9でろ過してろ過水を放流するとともに、無端ベルト上に残った凝集塊10を回収するようになっている。 Next, the supernatant water generated by the sedimentation of the agglomerates is discharged as it is, and the treated water containing the agglomerates accumulated at the bottom of the agglomeration treatment tank 7 at a high concentration is filtered by an endless belt type filtration device 9 and filtered. While discharging water, the agglomerates 10 remaining on the endless belt are collected.
図12は、本発明にかかる濁水の浄化方法の第3の実施の形態をあらわしている。
図12に示すように、この浄化方法は、上記沈降槽100で同様にして易沈降性粒子を沈降させたのち、懸濁水3を凝集処理槽7に貯め、まず、凝集処理槽7に磁性体粒子25と粘性多糖類5を投入して攪拌機29で攪拌して均一分散混合したのち、この混合液にさらに顆粒状の塩化カルシウム微粉末(又は塩化カルシウムの準飽和水溶液)8を凝集処理槽7に一気に投入し、粘性多糖類を高重合のゲル化して難沈降性粒子を巻き込んで大きな凝集塊を短時間で得る。
FIG. 12 shows a third embodiment of the method for purifying muddy water according to the present invention.
As shown in FIG. 12, in this purification method, after precipitating easily settleable particles in the sedimentation tank 100, the suspension water 3 is stored in the agglomeration treatment tank 7, and first, the magnetic substance is stored in the agglomeration treatment tank 7. After the particles 25 and the viscous polysaccharide 5 are charged and stirred and uniformly dispersed by a stirrer 29, a granular calcium chloride fine powder (or a quasi-saturated aqueous solution of calcium chloride) 8 is further added to the mixed solution 7 The viscous polysaccharide is gelled in a highly polymerized state, and hardly settled particles are entrained to obtain a large aggregate in a short time.
つぎに、この凝集塊を含む処理水を凝集塊の吸着除去装置30に流し込んで、処理水中の凝集塊のみを吸着除去するようになっている。
すなわち、吸着除去装置30は、水槽31と、永久磁石からなる円筒ドラム32と、ブレード33とを備え、凝集処理槽7の底に沈殿した凝集塊を水槽31の入口に供給できるようになっている。
Next, the treated water containing the agglomerates is poured into the agglomerate adsorption / removal device 30 to adsorb and remove only the agglomerates in the treated water.
That is, the adsorption removing device 30 includes a water tank 31, a cylindrical drum 32 made of a permanent magnet, and a blade 33, and can supply the aggregate that has settled at the bottom of the aggregation treatment tank 7 to the inlet of the water tank 31. Yes.
水槽31は,入口31a側が出口31b側より高くなった1/4半円弧状の底面31cを備えている。
円筒ドラム32は、底面31cとの間に数ミリ程度の隙間Sを形成するように設けられ、矢印X方向に回転するようになっているので、凝集処理槽7の底に沈殿した凝集塊を入口側から水槽31に供給すると、凝集塊中に磁性体粒子が包含されているので、凝集塊が水槽31の出口に到る間に、円筒ドラム32の磁力によって円筒ドラム32の表面に吸着され、ほとんど水のみが出口から排出される。
The water tank 31 includes a quarter semicircular arc-shaped bottom surface 31c whose inlet 31a side is higher than the outlet 31b side.
The cylindrical drum 32 is provided so as to form a gap S of about several millimeters between the bottom surface 31c and is rotated in the direction of the arrow X. When supplied to the water tank 31 from the inlet side, since the magnetic particles are included in the aggregate, the aggregate is adsorbed on the surface of the cylindrical drum 32 by the magnetic force of the cylindrical drum 32 while reaching the outlet of the water tank 31. Almost only water is discharged from the outlet.
そして、円筒ドラム32の表面に吸着した凝集塊は、吸着状態でブレード33のところまで搬送され、ブレード33によって掻き落とされるようになっている。 The agglomerates adsorbed on the surface of the cylindrical drum 32 are conveyed to the blade 33 in the adsorbed state and scraped off by the blade 33.
この浄化方法によれば、難沈降性粒子を含む凝集塊を含水率が少ない固形状態として取り除くことができる。しかも、沈降が遅い小さな凝集塊も短時間で容易に取り除くことができる。
そして、取り除かれた凝集塊は、含水率が低いため、後の廃棄や再利用工程における乾燥工程を簡略化することが出来る。
According to this purification method, agglomerates containing hardly sedimentable particles can be removed as a solid state with a low water content. In addition, small agglomerates that are slow to settle can be easily removed in a short time.
And since the removed agglomerates have a low water content, the drying process in the subsequent disposal or reuse process can be simplified.
本発明の濁水の浄化方法は、上記の実施の形態に限定されない。
例えば、上記の実施の形態では、充填部材130の傾斜板部132は平板を傾斜させた例を示したが、平板でなく傾斜方向に沿って緩やかに凹んだ、或いは緩やかに凸状に膨らんだ湾曲面でもよく、小さい段差が連続して勾配が付いた階段状の傾斜面でもよい。さらに、急勾配から緩勾配に途中で変化するような傾斜面で構成してもよい。また、充填部材の大きさは、1辺が30cm程度の大きさでも、また1辺が1m以上の大きさでもよい。
The method for purifying muddy water of the present invention is not limited to the above embodiment.
For example, in the above embodiment, the inclined plate portion 132 of the filling member 130 is an example in which a flat plate is inclined. However, the inclined plate portion 132 is not a flat plate but is gently recessed along the inclined direction, or is gently bulged into a convex shape. It may be a curved surface or may be a stepped inclined surface with a small step and a continuous gradient. Furthermore, you may comprise the inclined surface which changes on the way from a steep slope to a gentle slope. The size of the filling member may be about 30 cm on a side or 1 m or more on a side.
上記の実施の形態では、凹部は、一個所であったが、貯水空間の広さに応じて複数個所形成し、充填部材によって、複数の凹部分かれて易沈降性粒子を誘導するようにしてもよい。
上記の実施の形態では、逆洗によってろ材表面から剥がれた難沈降性粒子は、フィルタ装置内に残り、フィルタ装置内で難沈降性粒子の高濃度化が図れるようになっていたが、沈降槽の上澄水を一旦沈降槽に隣接して設けた別の貯槽に移すとともに、この貯槽に逆洗水を返送することによって貯槽中で難沈降性粒子の高濃度化を図るようにしても構わない。
In the above embodiment, the concave portion is a single location, but a plurality of concave portions are formed according to the width of the water storage space, and a plurality of concave portions are divided by the filling member to induce easily settleable particles. Good.
In the above embodiment, the hardly settleable particles peeled off from the filter medium surface by backwashing remain in the filter device, and the concentration of the hardly settled particles can be increased in the filter device. The supernatant water may be once transferred to another storage tank provided adjacent to the sedimentation tank, and backwash water may be returned to the storage tank to increase the concentration of hardly settled particles in the storage tank. .
3 上澄水
42 第1のろ過装置
45 第2のろ過装置
48 濁水
100 沈降槽
110 貯水空間
111 凹部
130 充填部材
132 傾斜板部
3 Supernatant water 42 First filtration device 45 Second filtration device 48 Turbid water 100 Sedimentation tank 110 Water storage space 111 Recess 130 Filling member 132 Inclined plate portion
Claims (4)
前記沈降槽が貯水空間を有し、平面視略正方形の板状をして一方に傾斜する傾斜板部を有する充填部材が、傾斜板部と傾斜板部との間に隙間を形成し、易沈降性粒子が傾斜板部の傾斜面に沿って前記貯水空間の底に向かって流下するように上下方向に複数段積み重ねられた状態に前記貯水空間内に充填されていることを特徴とする濁水の浄化方法。 After introducing turbid water containing suspended sediment of any one of river overflow water, river sediment turbid water and marine sediment turbid water into the sedimentation tank, the sedimentation tank settles the easily settleable particles, and then the sedimentation tank A method for purifying turbid water that purifies supernatant water containing hardly settled particles in the interior,
The settling tank has a water storage space, and a filling member having a plate shape of a substantially square shape in plan view and having an inclined plate portion inclined to one side forms a gap between the inclined plate portion and the inclined plate portion, and facilitates The muddy water is filled in the water storage space in a state of being stacked in a plurality of stages in the vertical direction so that the settling particles flow down toward the bottom of the water storage space along the inclined surface of the inclined plate portion. Purification method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007164649A JP2009000638A (en) | 2007-06-22 | 2007-06-22 | Method for purifying muddy water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007164649A JP2009000638A (en) | 2007-06-22 | 2007-06-22 | Method for purifying muddy water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009000638A true JP2009000638A (en) | 2009-01-08 |
Family
ID=40317611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007164649A Pending JP2009000638A (en) | 2007-06-22 | 2007-06-22 | Method for purifying muddy water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009000638A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100938775B1 (en) | 2009-06-05 | 2010-01-27 | 한밭대학교 산학협력단 | The water treatment apparatus having settling tank with multi-stage inclined plate |
JP2012532020A (en) * | 2009-07-06 | 2012-12-13 | ハロソース インコーポレイテッド | Binary polymers for water recovery and separation of suspended solids from aqueous media |
KR101215378B1 (en) | 2010-12-31 | 2012-12-26 | 서울대학교산학협력단 | Purification system having vertical multicompartment reactor for organic waste water |
CN103212807A (en) * | 2012-01-19 | 2013-07-24 | 昆山思拓机器有限公司 | Residue recovery method used in laser machining process of medical stents |
US9975787B2 (en) | 2014-03-07 | 2018-05-22 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
CN114180705A (en) * | 2021-12-15 | 2022-03-15 | 鄂尔多斯市安信泰环保科技有限公司 | Step catalytic oxidation filler device |
CN114632354A (en) * | 2022-03-22 | 2022-06-17 | 西南石油大学 | Pump station pump suction flow path sand settling device with adjustable modularization |
-
2007
- 2007-06-22 JP JP2007164649A patent/JP2009000638A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100938775B1 (en) | 2009-06-05 | 2010-01-27 | 한밭대학교 산학협력단 | The water treatment apparatus having settling tank with multi-stage inclined plate |
JP2012532020A (en) * | 2009-07-06 | 2012-12-13 | ハロソース インコーポレイテッド | Binary polymers for water recovery and separation of suspended solids from aqueous media |
US10040710B2 (en) | 2009-07-06 | 2018-08-07 | Dober Chemical Corporation | Use of a dual polymer system for enhanced water recovery and improved separation of suspended solids and other substances from an aqueous media |
KR101215378B1 (en) | 2010-12-31 | 2012-12-26 | 서울대학교산학협력단 | Purification system having vertical multicompartment reactor for organic waste water |
CN103212807A (en) * | 2012-01-19 | 2013-07-24 | 昆山思拓机器有限公司 | Residue recovery method used in laser machining process of medical stents |
US9975787B2 (en) | 2014-03-07 | 2018-05-22 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
US10577259B2 (en) | 2014-03-07 | 2020-03-03 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
CN114180705A (en) * | 2021-12-15 | 2022-03-15 | 鄂尔多斯市安信泰环保科技有限公司 | Step catalytic oxidation filler device |
CN114632354A (en) * | 2022-03-22 | 2022-06-17 | 西南石油大学 | Pump station pump suction flow path sand settling device with adjustable modularization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101696189B1 (en) | Apparatus for treating rainwater and overflow water of confluent water drainage | |
JP2009000638A (en) | Method for purifying muddy water | |
CN102644302A (en) | Sludge processing system for watercourses and lakes and processing method thereof | |
CN109721191A (en) | A kind of sandstone building stones production wastewater treatment system | |
KR100767754B1 (en) | Storm water treatment facility washing with water using storaged treated water and that method | |
KR101067699B1 (en) | Non-point pollution decrease facilities by using a turbulent flow and filtration function | |
JPH0999203A (en) | Treatment of rain water and/or waste water | |
CN108423917A (en) | A kind of pollutant fluxes combination unit and its technique for rainfall pumping station | |
KR101036944B1 (en) | Apparatus for reduction of nonpoint source pollution | |
JP2012035173A (en) | Water purification apparatus and method | |
KR101635966B1 (en) | River with clean water for ecological function | |
JP2006082005A (en) | Muddy water treatment system and muddy water treatment method therefor | |
KR101271740B1 (en) | Rainwater reusing system and method through purification of non-point source pollutants | |
KR101060739B1 (en) | Water-treating apparatus for water purification and sludge dehydration, water-treating method using the same | |
CN109574382A (en) | A kind of the ecology unit control method and device of city rainwater runoff pollution object | |
KR20200035535A (en) | Reduction of pollution load and Blocking system using Waterfront space | |
JP2008207167A (en) | Purification method of suspension water, treatment method of suspension water using the purification method, and treatment system of suspension water for executing this treatment method | |
JP6328883B2 (en) | Method and apparatus for removing inorganic fine particles from contaminants containing inorganic fine particles | |
CN114031249A (en) | Cast-in-situ bored pile slurry curing treatment system and curing outward transportation construction method | |
JP2001269517A (en) | Filter medium for turbid water treatment equipment | |
KR101753901B1 (en) | Filter combined with small filtering bag, apparatus therefor and facitility thereof | |
CN2584600Y (en) | Waste water treatment system with oil expeller for vehicle cleaning | |
CN218988952U (en) | Waste water recycling device for house building construction site | |
CN213707943U (en) | Sludge recovery device for sewage treatment | |
KR102356194B1 (en) | Rainwater penetration type storage system fitted with pipe line type screen |