[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009096646A - Manufacturing method of oxide powder, manufacturing method of iridium oxide powder, and roasting furnace - Google Patents

Manufacturing method of oxide powder, manufacturing method of iridium oxide powder, and roasting furnace Download PDF

Info

Publication number
JP2009096646A
JP2009096646A JP2007267131A JP2007267131A JP2009096646A JP 2009096646 A JP2009096646 A JP 2009096646A JP 2007267131 A JP2007267131 A JP 2007267131A JP 2007267131 A JP2007267131 A JP 2007267131A JP 2009096646 A JP2009096646 A JP 2009096646A
Authority
JP
Japan
Prior art keywords
furnace
roasting
temperature
heating
atmosphere gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267131A
Other languages
Japanese (ja)
Other versions
JP5444604B2 (en
Inventor
Toshiteru Maeda
俊輝 前田
Fujio Makuta
富士雄 幕田
Yoshihiro Okabe
良宏 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007267131A priority Critical patent/JP5444604B2/en
Publication of JP2009096646A publication Critical patent/JP2009096646A/en
Application granted granted Critical
Publication of JP5444604B2 publication Critical patent/JP5444604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roasting furnace which has a simple structure and can efficiently roast a fine powder, and an efficient manufacturing method of an iridium oxide powder preferable for forming a thick film resistor using the furnace. <P>SOLUTION: The roasting furnace to be used has an inside of the roasting furnace divided into a plurality of heating areas and can control the temperature of the each heating area separately. The inside of the roasting furnace is generally rectangular in cross section, and the atmosphere gas generally flows as a layer only in the same direction as the blow-in direction of the atmosphere gas. A plurality of blow-in nozzles of the atmosphere gas is arranged in parallel. Using this roasting furnace, an iridium oxide powder having stable qualities is obtained by oxidatively roasting ammonium hexachloroiridate (IV) or potassium hexachloroiridate (IV) at 600-1,050°C while controlling the temperature of the each heating area separately when raising the temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸化物粉末の製造方法、酸化イリジウム粉の製造方法および微細な粉末の酸化焙焼に好適な焙焼炉に関する。   The present invention relates to a method for producing oxide powder, a method for producing iridium oxide powder, and a roasting furnace suitable for oxidative roasting of fine powder.

近年、電子機器には絶縁基板上にペーストを使用して印刷形成して作製した抵抗器、コンデンサ等の電子部品を搭載した回路配線基板が多用されている。厚膜抵抗体は、チップ抵抗器、厚膜ハイブリッドICや抵抗ネットワーク等に広く用いられている。厚膜抵抗体の製造方法としては、通常、絶縁体基板の表面に形成された導電体回路パターン又は電極の上に導電粉とガラス粉を均一に分散させた抵抗ペーストを印刷し、これを焼成する工程を用いて製造されている。   2. Description of the Related Art In recent years, circuit wiring boards on which electronic parts such as resistors and capacitors that are produced by printing a paste on an insulating substrate are mounted on electronic devices. Thick film resistors are widely used in chip resistors, thick film hybrid ICs, resistor networks, and the like. As a method of manufacturing a thick film resistor, usually, a resistor paste in which conductive powder and glass powder are uniformly dispersed is printed on a conductor circuit pattern or electrode formed on the surface of an insulating substrate, and this is fired. It is manufactured using the process to do.

厚膜抵抗体の製造に用いるペーストは、導電粉とガラス結合剤をビヒクルと呼ばれる有機媒体中に均一に分散させることにより調整されている。このうち、導電粉は厚膜抵抗体の電気的特性を決定する最も重要な役割を担い、酸化ルテニウム(RuO)やルテニウム酸鉛(PbRu)の微粉末が広く用いられている。
一般に、酸化ルテニウムは低抵抗値から高抵抗値まで広範囲の導電物として使用され、高抵抗領域では導電物濃度に対する抵抗値の変動がより小さいルテニウム酸鉛が用いられることが多い。
ところが、近年では、電子機器から毒性のある鉛の使用を排除する目的で、高抵抗領域の厚膜抵抗体用の導電粉として、ルテニウム酸鉛粉に代わる鉛を含有しない導電粉が望まれている。この解決策として、BiRu、CaRuO、SrRuO、BaRuO、LaRuO等のルテニウム複合酸化物が提案されているが、実用化までには至っていない。
A paste used for manufacturing a thick film resistor is prepared by uniformly dispersing conductive powder and a glass binder in an organic medium called a vehicle. Of these, conductive powder plays the most important role in determining the electrical characteristics of thick film resistors, and fine powders of ruthenium oxide (RuO 2 ) and lead ruthenate (Pb 2 Ru 2 O 7 ) are widely used. Yes.
In general, ruthenium oxide is used as a conductor in a wide range from a low resistance value to a high resistance value, and in the high resistance region, lead ruthenate having a smaller variation in the resistance value with respect to the conductor concentration is often used.
However, in recent years, for the purpose of eliminating the use of toxic lead from electronic devices, as a conductive powder for thick film resistors in the high resistance region, a conductive powder containing no lead instead of lead ruthenate powder is desired. Yes. As a solution to this, ruthenium composite oxides such as Bi 2 Ru 2 O 7 , CaRuO 3 , SrRuO 3 , BaRuO 3 , LaRuO 3 have been proposed, but have not yet been put into practical use.

酸化イリジウム(IrO)は、その粉末を含むペーストで抵抗体を形成したときに、酸化ルテニウム粉に比べて高抵抗になる導電粉として一般に知られている。従って、酸化イリジウム粉は、ルテニウム酸鉛粉に代わる鉛を含有しない導電粉として有望である。
かかる酸化イリジウム粉の効率的な製造方法としては、ヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウム等の塩化イリジウム酸塩を、酸化性雰囲気下の高温において焙焼することが考えられる。
Iridium oxide (IrO 2 ) is generally known as a conductive powder that has a higher resistance than a ruthenium oxide powder when a resistor is formed from a paste containing the powder. Therefore, iridium oxide powder is promising as a conductive powder containing no lead in place of lead ruthenate powder.
As an efficient method for producing such iridium oxide powder, chlorinated iridium salts such as ammonium hexachloroiridium (IV) or potassium hexachloroiridium (IV) can be roasted at a high temperature in an oxidizing atmosphere. .

しかしながら、このような塩化イリジウム酸塩の酸化焙焼においては、得られる酸化イリジウム粉の特性を均一にするために、原料層の厚さを1〜2mm程度とし、雰囲気ガスと均一に反応させなければならず、炉床面積に対して生産性が低くなるという問題があった。炉床面積に対する生産性の低さは、原料をトレーに敷きこれを鉛直方向に複数段積み重ねて炉の有効面積を拡大することで改善できる。しかしながら、トレーを鉛直方向に複数段積み重ねた場合、段が多くなると各段の熱の伝わり方に大きな差が生じ、均一な焙焼は困難になる。よって、段の数には制限があり、生産量を確保するには、トレー一段あたりの面積をできるだけ広くとる必要がある。このような焼成炉としては被焼成物を焙焼室内に複数段に収容して雰囲気を熱風循環させて、焙焼室内各部で均一に焼成できるとしたものが開示されている(例えば、特許文献1参照。)。
熱風循環式炉で焙焼室内の雰囲気を均一にしようとした場合風量を極端に大きくする必要があり、微細な粉末の焙焼には不向きである。なぜならば、循環する熱風は、乱流となり、粉末が飛散するからである。また、風量を小さくした場合には、雰囲気のよどみ等が発生して均一な焙焼ができなくなる。
However, in such oxidative roasting of iridium chloride, the thickness of the raw material layer should be about 1 to 2 mm in order to make the properties of the obtained iridium oxide powder uniform, and it must react uniformly with the atmospheric gas. In other words, productivity is low with respect to the hearth area. The low productivity with respect to the hearth area can be improved by spreading the raw material on a tray and stacking it in multiple stages in the vertical direction to increase the effective area of the furnace. However, when the trays are stacked in a plurality of stages in the vertical direction, if the number of stages increases, a large difference occurs in how heat is transferred from each stage, and uniform roasting becomes difficult. Therefore, the number of stages is limited, and in order to secure the production amount, it is necessary to make the area per tray as wide as possible. As such a baking furnace, what is to be fired is accommodated in a plurality of stages in a roasting chamber and the atmosphere is circulated with hot air so that it can be uniformly fired in each part of the roasting chamber (for example, Patent Documents). 1).
When trying to make the atmosphere in the roasting chamber uniform in a hot air circulation furnace, it is necessary to make the air volume extremely large, which is not suitable for roasting fine powder. This is because the circulating hot air becomes turbulent and the powder is scattered. Further, when the air volume is reduced, stagnation of the atmosphere occurs and uniform roasting cannot be performed.

焙焼室内の雰囲気の均一化に対する改善策としては、焙焼室内に多段に設置した被熱処理物の載置面のそれぞれに供給する雰囲気ガスの流速を特定の値とするとともに、載置面を水平方向に移動させることで均一な焼成ができるとした熱処理装置の雰囲気ガス供給方法が開示されている(例えば、特許文献2参照。)。
しかしながら、積載面を移動させて熱処理する連続炉は装置が高価であるとともに、生産量が比較的小さい製品の生産には不向きであり、バッチ式炉でも載置面を移動させるようにすると複雑な構造となってしまう。また、開示されている雰囲気の均一化に必要な雰囲気ガス流速は微細な粉末の焙焼に対しては大き過ぎて、微粉末の焙焼に適しているとは言い難い。
As an improvement measure for the homogenization of the atmosphere in the roasting chamber, the flow rate of the atmospheric gas supplied to each of the mounting surfaces of the heat treatment objects installed in multiple stages in the roasting chamber is set to a specific value, and the mounting surface is An atmosphere gas supply method of a heat treatment apparatus that can perform uniform firing by moving in the horizontal direction is disclosed (for example, see Patent Document 2).
However, continuous furnaces that move heat by moving the loading surface are expensive and unsuitable for production of products with a relatively small production volume. It is complicated to move the loading surface even in a batch furnace. It becomes a structure. Further, the atmospheric gas flow rate required for the homogenization of the disclosed atmosphere is too large for fine powder roasting, and is not suitable for fine powder roasting.

また、焙焼室内雰囲気の均一化が可能な炉として、焙焼室内に匣を多段に積み重ねる構造であって、雰囲気ガスの供給管と排気管を切替えることで、雰囲気ガスの流れを切替えて雰囲気ガスを均一に焙焼室内の原料に供給できるとする焼成炉が提案されている(例えば、特許文献3参照。)。
また、雰囲気ガス供給管の噴出口の形状変更と、被熱処理物と雰囲気ガス供給管のうちの少なくとも一方が回転または移動することにより、焙焼室内の雰囲気を均一に保つことを可能とする熱処理炉も提案されている(例えば、特許文献4参照。)。
上記の焙焼炉はいずれも可動部分を有し、装置が複雑な構造となる。また、微細な粉末の焙焼には充分考慮する必要がある雰囲気ガス流速に関する記述がないばかりでなく、強制的に雰囲気ガスを循環させるために、雰囲気ガス流速を大きくせざるを得ない難点がある。
このような状況から、厚膜抵抗体形成用ペーストとしてルテニウム酸鉛粉に代わる鉛を含まない導電粉として良好な粉末特性を有する、酸化イリジウム粉の効率的な工業的製造方法が望まれており、その製造に必要な微細粉末の焙焼に好適な炉の提供が望まれている。
特開平05−172464号公報 特開2005−50849号公報 特開平04−273988号公報 特開2002−39691号公報
In addition, as a furnace that can homogenize the atmosphere in the roasting chamber, it has a structure in which soot is stacked in multiple stages in the roasting chamber, and the atmosphere gas flow is switched by switching the atmosphere gas supply pipe and exhaust pipe. A firing furnace that can supply gas uniformly to the raw material in the roasting chamber has been proposed (see, for example, Patent Document 3).
In addition, heat treatment that makes it possible to keep the atmosphere in the roasting chamber uniform by changing the shape of the outlet of the atmosphere gas supply pipe and rotating or moving at least one of the object to be heat-treated and the atmosphere gas supply pipe A furnace has also been proposed (see, for example, Patent Document 4).
All of the above roasting furnaces have movable parts, and the apparatus has a complicated structure. In addition, there is no description about the atmospheric gas flow rate that needs to be fully considered for the roasting of fine powders, and there is a problem that the atmospheric gas flow rate must be increased in order to forcibly circulate the atmospheric gas. is there.
Under such circumstances, an efficient industrial production method of iridium oxide powder having good powder characteristics as a conductive powder containing no lead as a substitute for ruthenate lead powder as a thick film resistor forming paste is desired. Therefore, it is desired to provide a furnace suitable for roasting fine powders necessary for the production thereof.
JP 05-172464 A JP-A-2005-50849 Japanese Patent Laid-Open No. 04-273388 JP 2002-39691 A

かかる状況に鑑み、本発明は構造が簡単で微細な粉末の焙焼を効率的に行うことができる酸化物粉末製造方法を提供するとともに、酸化物粉末製造に好適な焙焼炉並びにそれを用いた厚膜抵抗体形成用ペーストに好適な導電粉としての酸化イリジウム粉の工業的に効率的な製造方法を提供することを目的とするものである。   In view of such a situation, the present invention provides an oxide powder manufacturing method capable of efficiently roasting fine powder with a simple structure, and a roasting furnace suitable for manufacturing oxide powder and the use thereof. An object of the present invention is to provide an industrially efficient method for producing iridium oxide powder as a conductive powder suitable for the thick film resistor forming paste.

本発明の酸化物粉末の製造方法は、焙焼炉内に雰囲気ガスの流れ方向に沿って複数の加熱領域を設け、該加熱領域内に載置された原料表面に雰囲気ガスを層流で流し、前記複数の加熱領域に温度差を設け、かつ雰囲気ガスの流れと直交する方向は同一の温度で昇温し、各加熱領域の昇温が完了した後に全原料を同一の温度で加熱して原料を焙焼することを特徴とするものである。   In the method for producing oxide powder of the present invention, a plurality of heating regions are provided in the roasting furnace along the flow direction of the atmosphere gas, and the atmosphere gas is flowed in a laminar flow on the surface of the raw material placed in the heating region. The temperature difference between the plurality of heating regions and the direction orthogonal to the flow of the atmospheric gas are increased at the same temperature, and after the heating of each heating region is completed, all the raw materials are heated at the same temperature. The raw material is roasted.

本発明の酸化物粉末の製造方法においては、前記雰囲気ガスとして酸化性雰囲気ガスを用いることができる。
また、前記複数の加熱領域の温度差は80℃〜100℃であることが好ましい。
In the method for producing oxide powder of the present invention, an oxidizing atmosphere gas can be used as the atmosphere gas.
The temperature difference between the plurality of heating regions is preferably 80 ° C to 100 ° C.

本発明の酸化イリジウム粉の製造方法は、焙焼炉内の酸化性雰囲気ガスの流れ方向に沿って複数の加熱領域を設け、該加熱領域内に載置されたヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウムからなる原料表面に酸化性雰囲気ガスを層流で流し、前記複数の加熱領域に80℃〜100℃の温度差を設け、かつ雰囲気ガスの流れと直交する方向は同一の温度で昇温し、各加熱領域の昇温が600℃まで完了した後に全原料を600〜1050℃の温度で加熱して焙焼することを特徴とするものである。   The method for producing iridium oxide powder according to the present invention includes a plurality of heating regions along the flow direction of the oxidizing atmosphere gas in the roasting furnace, and ammonium hexachloroiridium (IV) placed in the heating region or An oxidizing atmosphere gas is made to flow in a laminar flow on the raw material surface made of potassium hexachloroiridium (IV), a temperature difference of 80 ° C. to 100 ° C. is provided in the plurality of heating regions, and the direction orthogonal to the flow of the atmosphere gas is the same. The temperature is raised at 600 ° C., and after the heating of each heating region is completed up to 600 ° C., all the raw materials are heated at a temperature of 600 to 1050 ° C. and roasted.

本発明の酸化物粉末製造用の焙焼炉は、炉内に複数の加熱領域を設け、炉内に層流を生じさせる雰囲気ガス供給排出機構を炉内の両端に具備し、前記複数の加熱領域の加熱速度を独立して任意に制御する温度制御機構とを備えた焙焼炉とした。   The roasting furnace for producing the oxide powder of the present invention is provided with a plurality of heating regions in the furnace, and is provided with an atmosphere gas supply / discharge mechanism that generates a laminar flow in the furnace at both ends of the furnace. A roasting furnace provided with a temperature control mechanism for independently and arbitrarily controlling the heating rate of the region.

本発明の酸化物粉末製造用の焙焼炉においては、前記雰囲気ガス供給排出機構が、雰囲気ガス供給ノズルを焙焼炉内壁の一つの面に設け、雰囲気ガス排出口を雰囲気ガス供給ノズルが設けられた面に対称の面に備えた焙焼炉とすることが好ましい。   In the roasting furnace for producing oxide powder according to the present invention, the atmosphere gas supply / discharge mechanism is provided with an atmosphere gas supply nozzle on one surface of the inner wall of the roasting furnace, and the atmosphere gas discharge port is provided with the atmosphere gas supply nozzle. It is preferable to provide a roasting furnace provided on a plane symmetrical to the formed plane.

また、本発明の酸化物粉末製造用の焙焼炉においては、焙焼炉が管状炉であっても良いし、管状炉の断面形状が略角型であっても良い。   In the roasting furnace for producing oxide powder of the present invention, the roasting furnace may be a tubular furnace, or the tubular furnace may have a substantially square cross section.

本発明によれば、微細な粉末原料の焙焼を効率的に行うことができるので、粒度バラツキの少ない酸化物粉末の製造に好適な焙焼炉が得られるとともに、それを用いて厚膜抵抗体形成用ペーストに好適な導電粉としての酸化イリジウム粉を工業的で効率的に製造することでき、産業に寄与する効果が非常に大きい。   According to the present invention, since fine powder raw material can be efficiently roasted, a roasting furnace suitable for the production of oxide powder with little particle size variation can be obtained, and thick film resistance can be obtained using it. An iridium oxide powder as a conductive powder suitable for a body forming paste can be produced industrially and efficiently, and the effect of contributing to the industry is very large.

本発明の酸化物粉末の製造方法は、載置された原料表面に雰囲気ガスの同一方向のみの層流を流し、該原料への加熱は、該層流の流れる方向には温度差を設けて昇温し、かつ雰囲気ガスの層流の流れと直交する方向には同一の温度で昇温し、昇温が完了した後に全原料を同一の温度で加熱して、原料を焙焼するものである。
焙焼炉の構造について具体的に説明する。
図1は本発明の焙焼炉の概略図である。雰囲気ガス供給機構と温度制御機構を説明する図であって本体1を管状炉で構成した場合である。雰囲気ガス供給機構は、炉心管2の長軸方向の一方に雰囲気ガスを供給する雰囲気ガス吹き込みノズル4と他方に雰囲気ガス排出口10を備えている。雰囲気ガス吹き込みノズル4から吹き込まれた雰囲気ガスは、吹き込まれた方向の層流となるように緩やかに流す。雰囲気ガスを層流とするのは、雰囲気ガスの逆流を防ぎ、雰囲気ガスと原料の反応を均一にするためである。
焙焼炉本体1内には、雰囲気ガスの流れ方向に沿って複数の加熱領域を設ける(図1ではA,B,Cの3加熱領域を設けた例を示す)
温度制御機構は、炉心管2を加熱する発熱体3が各加熱領域の上下にあって、複数の発熱体から構成されている。上下の発熱体一組を1加熱領域とし、各加熱領域は別々に温度制御することができる。各加熱領域は、雰囲気ガスの層流の流れる方向に複数配してあり、昇温の際には原料が載置された炉心管2内の全トレー7面を均一に加熱するのではなく、積極的にトレー7間に温度差を作ることで、焙焼反応に時差を設けて原料と雰囲気ガスとの接触を良好に保ち、原料の分解によって発生する分解ガスを制御することができる。その結果、雰囲気ガスと原料との接触を均一に行うことができるからである。
In the production method of the oxide powder of the present invention, a laminar flow in only the same direction of the atmospheric gas is caused to flow on the surface of the placed raw material. The temperature is raised and the temperature is raised at the same temperature in the direction perpendicular to the laminar flow of the atmospheric gas. After the temperature rise is completed, all the raw materials are heated at the same temperature to roast the raw materials. is there.
The structure of the roasting furnace will be specifically described.
FIG. 1 is a schematic view of a roasting furnace of the present invention. It is a figure explaining an atmospheric gas supply mechanism and a temperature control mechanism, and is a case where the main body 1 is comprised with the tubular furnace. The atmospheric gas supply mechanism includes an atmospheric gas blowing nozzle 4 for supplying atmospheric gas to one side of the long axis direction of the furnace core tube 2 and an atmospheric gas discharge port 10 on the other side. The atmospheric gas blown from the atmospheric gas blowing nozzle 4 flows gently so as to form a laminar flow in the blowing direction. The reason why the atmospheric gas is laminar is to prevent the atmospheric gas from flowing backward and to make the reaction between the atmospheric gas and the raw material uniform.
A plurality of heating regions are provided in the roasting furnace main body 1 along the flow direction of the atmospheric gas (FIG. 1 shows an example in which three heating regions A, B, and C are provided).
The temperature control mechanism is composed of a plurality of heating elements, with heating elements 3 for heating the core tube 2 above and below each heating region. One set of upper and lower heating elements is set as one heating region, and the temperature of each heating region can be controlled separately. A plurality of heating regions are arranged in the direction in which the laminar flow of the atmospheric gas flows, and instead of heating all trays 7 in the core tube 2 on which the raw material is placed at the time of temperature rise, By making a temperature difference between the trays 7 positively, it is possible to provide a time difference in the roasting reaction to maintain good contact between the raw material and the atmospheric gas, and to control the cracked gas generated by the decomposition of the raw material. As a result, the atmosphere gas and the raw material can be contacted uniformly.

雰囲気ガスは層流にして焙焼室内に流入させることが重要である。雰囲気ガスを層流とするには、炉内の雰囲気ガス流速を100cm/秒以下にする必要がある。
本発明の焙焼炉の雰囲気ガス供給機構は、雰囲気ガス供給ノズル4を焙焼炉内壁の一つの側面に設けることと、雰囲気ガス排出口10を雰囲気ガス供給ノズル4が設けられた面に相対する側面に備える。図1の管状焙焼炉では焙焼室6の一端の側壁に複数の雰囲気ガス吹込み用ノズル4が取り付けられ、他端は完全に開いた状態になっている。各雰囲気ガス吹込み用ノズル4によって焙焼室6に導入された雰囲気ガスは、炉心管2の長軸方向に沿って流れ、そのまま系外に排出される。
It is important for the atmospheric gas to flow into the roasting chamber in a laminar flow. In order to make the atmospheric gas laminar, the atmospheric gas flow rate in the furnace needs to be 100 cm / second or less.
The atmosphere gas supply mechanism of the roasting furnace according to the present invention has the atmosphere gas supply nozzle 4 provided on one side surface of the inner wall of the roasting furnace and the atmosphere gas discharge port 10 relative to the surface on which the atmosphere gas supply nozzle 4 is provided. Prepare for the side to do. In the tubular roasting furnace of FIG. 1, a plurality of atmospheric gas blowing nozzles 4 are attached to the side wall of one end of the roasting chamber 6, and the other end is completely open. The atmospheric gas introduced into the roasting chamber 6 by each atmospheric gas blowing nozzle 4 flows along the major axis direction of the furnace core tube 2 and is directly discharged out of the system.

図2は本発明の焙焼炉の内部構造を説明する図であって、(a)は透視斜視図を示し、(b)は(a)の線A−A’に沿った断面図を示す。4本の雰囲気ガス供給ノズル4は水平に並んで設置され、その口径は出来るだけ大きいものが好ましい。さらに、各雰囲気ガス供給ノズル4間においても流量を均等にすることが好ましい。雰囲気ガス供給ノズル4の位置、大きさ、ガスの流量から雰囲気ガスを層流とすることができるのである。
雰囲気ガスの流量を調整するには、雰囲気ガス吹込み用ノズル4毎に図示省略の簡易的な流量調整装置を取り付けても容易に行うことができる。
層流をなす雰囲気ガスの流速は、雰囲気ガス吹込み用ノズル4の配置と口径により調節可能となる。雰囲気ガスを一方向のみに流す雰囲気ガス吹込み用ノズルの配置は、市販ソフト(例えば、汎用流体解析ソフトCFX)を用いて数値計算を行えば容易に得ることができる。焙焼規模によって変更される条件、即ち、雰囲気ガス吹込み用ノズルの本数および間隔、焙焼温度条件等を入力して計算してやればよい。
2A and 2B are diagrams for explaining the internal structure of the roasting furnace according to the present invention. FIG. 2A is a perspective view, and FIG. 2B is a cross-sectional view taken along line AA ′ in FIG. . It is preferable that the four atmosphere gas supply nozzles 4 are installed horizontally and have a diameter as large as possible. Furthermore, it is preferable that the flow rate be uniform between the atmospheric gas supply nozzles 4. The atmosphere gas can be made into a laminar flow from the position, size, and gas flow rate of the atmosphere gas supply nozzle 4.
The flow rate of the atmospheric gas can be adjusted easily even if a simple flow rate adjusting device (not shown) is attached to each atmospheric gas blowing nozzle 4.
The flow rate of the atmospheric gas forming the laminar flow can be adjusted by the arrangement and the diameter of the atmospheric gas blowing nozzle 4. The arrangement of the atmospheric gas blowing nozzle for flowing the atmospheric gas in only one direction can be easily obtained by performing numerical calculation using commercially available software (for example, general-purpose fluid analysis software CFX). What is necessary is just to input and calculate the conditions changed by the roasting scale, that is, the number and interval of nozzles for blowing atmospheric gas, the roasting temperature condition, and the like.

焙焼炉内に設ける複数の加熱領域A,B,Cは、雰囲気ガスの流れに沿った焙焼炉内を複数の領域に分け、各加熱領域の加熱速度を独立して制御して時間差を設けて昇温する。 この昇温する過程で原料の焙焼反応はほぼ終了する。各加熱領域毎に時間差を持って順次焙焼反応が進行するので、原料と雰囲気ガスとの接触が充分行われると共に、反応生成ガスを速やかに系外に搬出することができるので、焙焼反応を効率的かつ均一に進行させることができる。
本発明では作業はバッジ操業となるので、原料を少しずつ確実に反応させることが重要である。全量の原料を一時に同時に反応させたのでは、均一な焙焼反応は期待できない。この点本発明の焙焼方法によれば、炉内原料が少量ずつ順次反応していくので、均一な焙焼生成物を効率よく得ることができる。
A plurality of heating areas A, B, and C provided in the roasting furnace are divided into a plurality of areas in the roasting furnace along the flow of the atmospheric gas, and the heating rate of each heating area is controlled independently to thereby provide a time difference. Provide and heat up. In the process of raising the temperature, the raw material roasting reaction is almost completed. Since the roasting reaction proceeds sequentially with a time difference for each heating region, the contact between the raw material and the atmospheric gas is sufficiently performed, and the reaction product gas can be quickly carried out of the system, so that the roasting reaction Can proceed efficiently and uniformly.
In the present invention, since the operation is a badge operation, it is important to react the raw materials little by little. If all the raw materials are reacted at the same time, a uniform roasting reaction cannot be expected. In this regard, according to the roasting method of the present invention, since the raw materials in the furnace are reacted in small amounts, a uniform roasted product can be obtained efficiently.

各加熱領域の昇温は各加熱領域の温度が所定温度に達するまで続く。各加熱領域の温度差は80℃〜100℃程度を保持して昇温させる。各加熱領域が所定の焙焼温度に達したなら、昇温を停止して、全体を一定温度で加熱し、焙焼反応を完結させる。この段階ではほとんど焙焼が終わっているので、雰囲気ガスが不足することはない。該温度差は、温度傾斜でもよいし、階段状の温度差でもよい。また、雰囲気ガスの層流方向の各加熱領域の長さは、炉内原料が少量ずつ反応できる長さであればよく、原料の投入量、雰囲気ガスの流量等により適宜定めることができる。
さらに、雰囲気ガスの層流の方向に直交する方向では、同一の温度で昇温することも必要である。本発明の炉内の温度差は、雰囲気ガスの層流方向に温度差が生じかつ、層流と直交する方向には同一温度の帯を形成することである。このように温度差の帯を設けるのは、温度管理の煩雑さを避けて、原料の反応を管理しやすくするためである。
なお、ここで、同一の温度とは、略同一の温度であり、望ましくは温度差が±10℃の範囲、より望ましくは±5℃の範囲にあれば略同一の温度といえる。また、直交とは、略直交の意味であり、望ましくは80°〜100°の範囲である。
本発明の製造方法では、温度差を有して昇温するので、焙焼時間が異なる酸化物粉末が存在する。しかし、焙焼時間が異なっても酸化物粉末の粒径に影響することはない。
The heating of each heating area continues until the temperature of each heating area reaches a predetermined temperature. The temperature difference between the heating regions is kept at about 80 ° C. to 100 ° C. to raise the temperature. When each heating region reaches a predetermined roasting temperature, the temperature rise is stopped, and the whole is heated at a constant temperature to complete the roasting reaction. At this stage, the roasting is almost finished, so there is no shortage of atmospheric gas. The temperature difference may be a temperature gradient or a stepped temperature difference. Further, the length of each heating region in the laminar flow direction of the atmospheric gas may be any length as long as the raw material in the furnace can react little by little, and can be appropriately determined depending on the input amount of the raw material, the flow rate of the atmospheric gas, and the like.
Furthermore, it is also necessary to raise the temperature at the same temperature in the direction orthogonal to the laminar flow direction of the atmospheric gas. The temperature difference in the furnace of the present invention is that a temperature difference occurs in the laminar flow direction of the atmospheric gas, and a band of the same temperature is formed in the direction orthogonal to the laminar flow. The reason for providing the temperature difference band is to avoid the complexity of temperature management and to facilitate the reaction of the raw materials.
Here, the same temperature is substantially the same temperature, and is preferably substantially the same if the temperature difference is in the range of ± 10 ° C., more preferably in the range of ± 5 ° C. Further, the term “orthogonal” means substantially orthogonal, and desirably ranges from 80 ° to 100 °.
In the production method of the present invention, the temperature rises with a temperature difference, so there are oxide powders having different roasting times. However, even if the baking time is different, the particle size of the oxide powder is not affected.

雰囲気ガスを一方向に流れる層流にすることと、温度差をもうけることで、雰囲気ガスと原料との接触を均一に行って、焙焼反応を完全に遂行させることができる。炉内の原料のうち、分解温度に達した原料より、分解ガスが発生し、雰囲気ガスとの接触が開始する。分解ガスが、分解温度以下の原料と接触しても、悪影響を与えない。また、分解が完了した原料に分解ガスが接触しても、反応が完了しているので悪影響を受けることはない。
分解ガスの悪影響とは、原料が雰囲気ガスと接触することを阻害することである。分解温度以上に達した原料が雰囲気ガスに接触できないでいると、原料又は原料から生じた中間物質の焼結が起こり、得られる酸化物粉末の粒径が大きくなるので、酸化物粉末の粒径のバラツキを大きくする。
By making the atmospheric gas into a laminar flow that flows in one direction and creating a temperature difference, the contact between the atmospheric gas and the raw material can be performed uniformly, and the roasting reaction can be performed completely. Among the raw materials in the furnace, the decomposition gas is generated from the raw material that has reached the decomposition temperature, and contact with the atmospheric gas starts. Even if the cracked gas comes into contact with a raw material having a temperature equal to or lower than the cracking temperature, no adverse effect is caused. Further, even if the cracked gas comes into contact with the raw material that has been decomposed, the reaction is completed, so there is no adverse effect.
The adverse effect of the cracked gas is to inhibit the raw material from coming into contact with the atmospheric gas. If the raw material that has reached the decomposition temperature or more cannot be in contact with the atmospheric gas, sintering of the raw material or the intermediate substance generated from the raw material occurs, and the particle size of the resulting oxide powder becomes large. Increase the variation.

例えば、ヘキサクロロイリジウム(IV)酸アンモニウムを加熱していくと、約400〜600℃でイリジウムと分解ガスが発生する。一方で、雰囲気ガス中の酸素とイリジウムの反応は約500℃で起こるため、両者の温度領域は重なる。
原料全体を、均一に加熱して昇温させて焙焼した場合、400℃を過ぎると原料全体の表面から均一に分解ガスが発生し、約500℃に達した時に雰囲気ガス中の酸素とイリジウムが反応する。しかし、焙焼室内の気相の流れは、吹込み方向と略同一方向のみに流れるようになっているため、吹込ノズルに近い所に置かれている原料では酸素とイリジウムが反応しやすいものの、排出口に近い所に置かれている原料では、吹込ノズルに近い所に置かれている原料から発生した分解ガスが流れてくるため、この分解ガスにより酸素とイリジウムの反応が阻害されやすい。このようにして生成した未反応イリジウムは焙焼室内の温度上昇にともない粒子の焼結・凝集を引き起こし、焙焼後の酸化イリジウムは粗大化してしまう。
結果として、原料全体を均一に加熱し昇温させて焙焼した場合では、吹込み口付近と排出口付近の酸化イリジウムで粒度の差が大きくなる。
For example, when ammonium hexachloroiridium (IV) is heated, iridium and decomposition gas are generated at about 400 to 600 ° C. On the other hand, since the reaction between oxygen and iridium in the atmospheric gas occurs at about 500 ° C., the temperature regions of both overlap.
When the whole raw material is heated uniformly and heated to be roasted, the decomposition gas is uniformly generated from the surface of the whole raw material after 400 ° C, and when it reaches about 500 ° C, oxygen and iridium in the atmosphere gas Reacts. However, since the gas phase flow in the roasting chamber is designed to flow only in substantially the same direction as the blowing direction, oxygen and iridium are likely to react with the raw material placed near the blowing nozzle, In the raw material placed near the discharge port, the cracked gas generated from the raw material placed near the blowing nozzle flows, so the reaction between oxygen and iridium tends to be hindered by the cracked gas. The unreacted iridium thus produced causes the particles to sinter and aggregate as the temperature in the roasting chamber rises, and the iridium oxide after roasting becomes coarse.
As a result, when the whole raw material is uniformly heated and heated to be baked, the difference in particle size between iridium oxide near the blow inlet and the outlet becomes large.

一方、吹き込みノズル側の原料から逐次的に加熱を始めると、吹き込みノズル側の原料が高温となる温度勾配が形成され、焙焼温度に至るまで昇温される。
吹込ノズル側の温度を高いので、先ず吹込ノズルに近い所に置かれている原料から分解ガスが発生する。分解ガスは排出口に向かって流れるが、排出口に近い所に置かれている原料は、酸素とイリジウムが反応する温度に達していないため、流れてきた分解ガスの影響はない。吹込ノズル側から流れてくる分解ガスがなくなってから、排出口に近い所に置かれている原料を酸素とイリジウムが反応する温度にしてやることで、分解ガスに阻害されずに酸素とイリジウムを反応させることができる。
また、排出口側の原料から加熱すると、先ず排出口に近い所に置かれている原料から酸素とイリジウムが反応する。この時、吹込ノズルに近い所に置かれている原料は、分解ガスが発生する温度に達していないため、排出口に向かって分解ガスは流れない。よって、分解ガスに阻害されずに酸素とイリジウムを反応させることができる。排出口側での反応終了後、吹込ノズルに近い所に置かれている原料の温度を上げて分解ガスが発生させればよい。
結果として、昇温の際に温度差を設けて焙焼した場合では、吹込み口付近と排出口付近の酸化イリジウムで粒度の差が小さくなる。
On the other hand, when heating is started sequentially from the raw material on the blowing nozzle side, a temperature gradient is formed at which the temperature of the raw material on the blowing nozzle side becomes high, and the temperature is raised to the roasting temperature.
Since the temperature on the side of the blowing nozzle is high, cracked gas is first generated from the raw material placed near the blowing nozzle. The cracked gas flows toward the discharge port, but the raw material placed near the discharge port does not reach the temperature at which oxygen and iridium react with each other, so there is no influence of the cracked gas that has flowed. After there is no cracked gas flowing from the blow nozzle side, the raw material placed near the discharge port is brought to a temperature at which oxygen and iridium will react. Can be made.
In addition, when heating is performed from the raw material on the outlet side, oxygen and iridium first react from the raw material placed near the outlet. At this time, since the raw material placed near the blowing nozzle has not reached the temperature at which the cracked gas is generated, the cracked gas does not flow toward the discharge port. Therefore, oxygen and iridium can be reacted without being inhibited by the cracked gas. After completion of the reaction at the discharge port side, the temperature of the raw material placed near the blowing nozzle may be raised to generate cracked gas.
As a result, when a temperature difference is provided at the time of temperature increase and roasting is performed, the difference in particle size between the iridium oxide near the inlet and the outlet becomes small.

本発明の焙焼炉は、断面形状が略角型の管状炉とすることができる。断面形状を略角型にすることで、炉内に無駄な空間を作ることなく原料を設置することができる。
管状炉とする場合の炉心管は、石英ガラス、アルミナなどの公知の耐熱性材料とすることができる。雰囲気ガスや分解ガスにより化学的な耐食性を考慮して適宜選択されるものである。
The roasting furnace of the present invention can be a tubular furnace having a substantially square cross section. By making the cross-sectional shape substantially square, the raw material can be installed without creating a useless space in the furnace.
The core tube in the case of a tubular furnace can be a known heat resistant material such as quartz glass or alumina. It is appropriately selected in consideration of chemical corrosion resistance by the atmospheric gas or the decomposition gas.

さらに、本発明の焙焼炉では鉛直方向に複数の棚板を設置し、炉内に載置できる原料の量を大幅に増大させることもできる。図3は棚板8を一段設置した場合の炉内構造を説明する図である。棚板8を焙焼室の一端の側壁まで設置することで上下の2つ焙焼室6,6’が炉内に形成され、炉心管2の大きさは棚板8の数に合わせて大きくしてある。また、側壁5には各焙焼室6,6’の位置に合わせて雰囲気ガス吹込み用ノズル4を設置してある。棚板8の天板は平坦であって、その上に原料が栽置されたトレー7を配置する。棚板8はアルミナ等のセラミックス、石英ガラスあるいはステンレス鋼等の公知の耐熱性材料で作製する。これにより、各棚板8に載置する原料の厚さを薄くしても、原料の量を大幅に増大させることができる。   Furthermore, in the roasting furnace of the present invention, a plurality of shelves can be installed in the vertical direction to greatly increase the amount of raw material that can be placed in the furnace. FIG. 3 is a view for explaining the in-furnace structure when the shelf board 8 is installed in one stage. By installing the shelf plate 8 up to the side wall at one end of the roasting chamber, two upper and lower roasting chambers 6 and 6 ′ are formed in the furnace. It is. In addition, an atmospheric gas blowing nozzle 4 is installed on the side wall 5 in accordance with the positions of the roasting chambers 6, 6 '. The top plate of the shelf plate 8 is flat, and the tray 7 on which the raw material is placed is placed thereon. The shelf board 8 is made of a known heat-resistant material such as ceramics such as alumina, quartz glass or stainless steel. Thereby, even if it reduces the thickness of the raw material mounted in each shelf board 8, the quantity of a raw material can be increased significantly.

本発明の焙焼炉は、他の微細な金属酸化物粉の製造にも用いることができ、特に酸化ルテニウム粉等の厚膜抵抗体用ペースト用導電粉の製造に好適に用いることができる。
本発明の焙焼炉を用いて、酸化イリジウム粉を製造する場合には、原料としてヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウムを用いて、焙焼に使用する雰囲気ガスを酸素含有ガスとする。焙焼温度は600〜1050℃とする。
原料としてヘキサクロロイリジウム(IV)酸アンモニウムを用いる場合には、カリウム成分を全量に対し0.02〜0.3重量%含有させることが好ましい。カリウム成分としては、特に限定されるものではなく、ヘキサクロロイリジウム(IV)酸カリウム、塩化カリウム、水酸化カリウム、又は炭酸カリウム、重炭酸カリウム、塩基性炭酸カリウム等のカリウムの炭酸塩から選ばれる少なくとも1種を用いることが好ましく、ヘキサクロロイリジウム(IV)酸カリウム又は塩化カリウムがより好ましい。カリウムを含有させることで、焙焼中に塩化カリウムが生成して酸化イリジウムの異常粒成長を抑制することができる。焙焼温度が600℃未満では、未酸化のイリジウム金属が残り、1050℃を超えると酸化イリジウムの揮発が多くなり収率が低下する。
The roasting furnace of the present invention can also be used for the production of other fine metal oxide powders, and can be suitably used for the production of conductive powders for pastes for thick film resistors such as ruthenium oxide powders.
In the case of producing iridium oxide powder using the roasting furnace of the present invention, ammonium hexachloroiridium (IV) or potassium hexachloroiridium (IV) is used as a raw material, and the atmospheric gas used for roasting is oxygen. Contained gas. A roasting temperature shall be 600-1050 degreeC.
When ammonium hexachloroiridium (IV) is used as a raw material, the potassium component is preferably contained in an amount of 0.02 to 0.3% by weight based on the total amount. The potassium component is not particularly limited, and is at least selected from potassium hexachloroiridium (IV), potassium chloride, potassium hydroxide, or potassium carbonate such as potassium carbonate, potassium bicarbonate, basic potassium carbonate and the like. One type is preferably used, and potassium hexachloroiridium (IV) or potassium chloride is more preferable. By including potassium, potassium chloride is generated during roasting and abnormal grain growth of iridium oxide can be suppressed. When the roasting temperature is less than 600 ° C., unoxidized iridium metal remains, and when it exceeds 1050 ° C., volatilization of iridium oxide increases and the yield decreases.

焙焼温度を760℃以上とすると、塩化カリウムの蒸発量が多くなる。しかし、焙焼条件により、塩化カリウムが残存する場合がある。このときは水洗することで容易に単相の酸化イリジウム粉が得られる。
焙焼温度は所望する酸化イリジウム粉の一次粒子径によって調整すればよい。好ましい一次粒子径は30〜100nmであり、粒子径をこの範囲とすることで、厚膜抵抗体用ペーストの導電粉として好ましい特性を持った酸化イリジウム粉を得ることができる。
なお、特に断わらない限り、粉末平均の粒径はBET法で比表面積を求め、算出した値である。
焙焼の際、各段の原料は、層厚が3mm以下で載置されることが好ましい。層厚を3mmより厚くすると、層の厚さ方向に粒子径の差が大きくなる。層厚を薄くしても問題ないが、焙焼室内に載置できる原料が減り、生産性が低下する。焙焼時間を短時間としたい場合でも、層厚を1mm程度にすれば十分である。
When the roasting temperature is 760 ° C. or higher, the amount of evaporation of potassium chloride increases. However, potassium chloride may remain depending on roasting conditions. In this case, single-phase iridium oxide powder can be easily obtained by washing with water.
The roasting temperature may be adjusted by the desired primary particle diameter of the iridium oxide powder. A preferable primary particle diameter is 30 to 100 nm, and by setting the particle diameter within this range, an iridium oxide powder having preferable characteristics as a conductive powder of the thick film resistor paste can be obtained.
Unless otherwise specified, the average particle size of the powder is a value obtained by calculating the specific surface area by the BET method.
At the time of roasting, the raw material of each stage is preferably placed with a layer thickness of 3 mm or less. When the layer thickness is greater than 3 mm, the difference in particle diameter increases in the layer thickness direction. Although there is no problem even if the layer thickness is reduced, the raw materials that can be placed in the roasting chamber are reduced, and the productivity is lowered. Even when it is desired to shorten the roasting time, it is sufficient to make the layer thickness about 1 mm.

これまで、抵抗ペーストに用いる酸化物粉末の製造に用いる焙焼炉と酸化物粉末の製造方法について説明してきたが、酸化物粉末の用途は、抵抗ペーストに限られず、触媒等nmオーダーの粉末を必要とする用途に用いることができる。
[実施例及び比較例]
So far, the roasting furnace used for the production of the oxide powder used for the resistance paste and the method for producing the oxide powder have been described. However, the use of the oxide powder is not limited to the resistance paste, and a catalyst of nm order such as a catalyst is used. It can be used for required applications.
[Examples and Comparative Examples]

以下に、本発明の比較例及び実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
(比較例1)
Hereinafter, the present invention will be described in more detail with reference to comparative examples and examples of the present invention, but the present invention is not limited to these examples.
(Comparative Example 1)

出発原料として、イリジウム濃度43.6重量%のヘキサクロロイリジウム(IV)酸アンモニウム((NH)IrCl(株)フルヤ金属製)を使用した。このヘキサクロロイリジウム(IV)酸アンモニウム140gを等分して、図4に示す角型環状炉の150mm角のアルミナ板9、6枚の上に2mmの層厚で載置し、このアルミナ板9を角型管状炉の焙焼室(内側寸法:40mmH×350mmW×900mmL)内の底面に置いた。各アルミナ板は焙焼炉の長軸方向に沿って2列にして図中に示す番号の位置に配置した。雰囲気ガス導入ノズルは焙焼室端部のガス進行方向に垂直な面に炉の中心線に対称にして4本均等に取り付けた。ノズルには内径35mmの円筒状の石英管を用い、そして各雰囲気ガス吹込み用ノズルから空気を6リットル/分、合計24リットル/分を流した。 As a starting material, ammonium hexachloroiridium (IV) acid ((NH 4 ) 2 IrCl 6 manufactured by Furuya Metal Co., Ltd.) having an iridium concentration of 43.6% by weight was used. 140 g of this ammonium hexachloroiridium (IV) is equally divided and placed on the 150 mm square alumina plates 9 and 6 of the square annular furnace shown in FIG. 4 with a layer thickness of 2 mm. It was set | placed on the bottom face in the roasting chamber (inside dimension: 40mmHx350mmWx900mmL) of a square tube furnace. Each alumina plate was arranged in two rows along the major axis direction of the roasting furnace, and was placed at the position indicated by the number in the figure. Four atmosphere gas introduction nozzles were evenly mounted on the surface perpendicular to the gas traveling direction at the end of the roasting chamber, symmetrically about the center line of the furnace. A cylindrical quartz tube having an inner diameter of 35 mm was used as the nozzle, and air was blown from each atmosphere gas blowing nozzle at a rate of 6 liters / minute, for a total of 24 liters / minute.

図1に示す管状炉で発熱体の各加熱領域の温度プロファイルを同じにして、昇温速度15℃/分で、焙焼温度を850℃に保持して4時間焙焼した。その後、得られた酸化イリジウムのBET径を評価した。表1に得られた焙焼物のBET径を示す。平均一次粒子径は71nmで、原料載置位置による粒子径は最小が43nm、最大が181nmあり、BET径の差は138nmと大きかった。なお、酸化イリジウムの最大粒径と最小粒径の差は15μm以下であることが望ましい。   In the tubular furnace shown in FIG. 1, the temperature profile of each heating region of the heating element was made the same, and the roasting temperature was kept at 850 ° C. at a heating rate of 15 ° C./min for 4 hours. Thereafter, the BET diameter of the obtained iridium oxide was evaluated. Table 1 shows the BET diameter of the roasted product obtained. The average primary particle diameter was 71 nm, the particle diameter depending on the raw material placement position was 43 nm at the minimum, 181 nm at the maximum, and the difference in BET diameter was as large as 138 nm. The difference between the maximum particle size and the minimum particle size of iridium oxide is preferably 15 μm or less.

発熱体の各加熱領域の温度プロファイルを加熱領域Aから加熱領域Cの順番に加熱していき、各加熱領域間の温度差を100℃に維持しながら昇温した以外は比較例1と同様に行った。加熱領域Bの焙焼時間が4時間となるようにした。その後、得られた酸化イリジウムのBET径を評価した。表1に得られた焙焼物BET径を示す。平均一次粒子径は39nmで、原料載置位置による粒子径は最小が38nm、最大が41nmあり、BET径の差は3nmと小さかった。   The temperature profile of each heating region of the heating element is heated in the order of the heating region A to the heating region C, and the temperature is increased while maintaining the temperature difference between the heating regions at 100 ° C. went. The roasting time of the heating area B was set to 4 hours. Thereafter, the BET diameter of the obtained iridium oxide was evaluated. Table 1 shows the roasted BET diameter obtained. The average primary particle diameter was 39 nm, the particle diameter depending on the raw material placement position was 38 nm minimum and 41 nm maximum, and the difference in BET diameter was as small as 3 nm.

発熱体の各加熱領域の温度プロファイルを加熱領域Cから加熱領域Aの順番に加熱していき、各加熱領域間の温度差を100℃に維持しながら昇温した以外は実施例1と同様に行い、その後、得られた酸化イリジウムのBET径を評価した。表1に得られた焙焼物のBET径を示す。表1に得られた焙焼物BET径を示す。平均一次粒子径は39nmで、原料載置位置による粒子径は最小が37nm、最大が42nmあり、BET径の差は5nmと小さかった。   The temperature profile of each heating region of the heating element was heated in the order of the heating region C to the heating region A, and the temperature was increased while maintaining the temperature difference between the heating regions at 100 ° C., as in Example 1. After that, the BET diameter of the obtained iridium oxide was evaluated. Table 1 shows the BET diameter of the roasted product obtained. Table 1 shows the roasted BET diameter obtained. The average primary particle diameter was 39 nm, the particle diameter depending on the raw material placement position was 37 nm minimum and 42 nm maximum, and the difference in BET diameter was as small as 5 nm.

出発原料として、イリジウム濃度39.5重量%のヘキサクロロイリジウム(IV)酸カリウム(KIrCl(株)フルヤ金属製)を使用し、焙焼温度を920℃に保持して4時間焙焼した以外は実施例1と同様に行い、その後、得られた酸化イリジウムのBET径を評価した。表1に得られた焙焼物のBET径を示す。表1に得られた焙焼物BET径を示す。平均一次粒子径は62nmで、原料載置位置による粒子径は最小が57nm、最大が65nmあり、BET径の差は8nmと小さかった。 As a starting material, an iridium concentration of 39.5 wt% of potassium hexachloroiridate (IV) (K 2 IrCl 6 (KK) Furuya metal) was used to roast 4 hours holding the roasting temperature to 920 ° C. Was performed in the same manner as in Example 1, and then the BET diameter of the obtained iridium oxide was evaluated. Table 1 shows the BET diameter of the roasted product obtained. Table 1 shows the roasted BET diameter obtained. The average primary particle diameter was 62 nm, the particle diameter depending on the raw material placement position was 57 nm minimum and 65 nm maximum, and the difference in BET diameter was as small as 8 nm.

以上のように、比較例1に比べて実施例1〜3では、得られた酸化イリジウム粉の原料載置位置による分散が小さく、本発明によって、品質の安定した酸化イリジウム粉を効率よく生産できることが分かる。   As described above, in Examples 1 to 3 as compared with Comparative Example 1, the dispersion of the obtained iridium oxide powder depending on the raw material placement position is small, and the present invention can efficiently produce iridium oxide powder with stable quality. I understand.

本発明の焙焼炉のヒーター構成を説明する図である。It is a figure explaining the heater structure of the roasting furnace of this invention. 本発明の焙焼炉の内部構造を説明する図であって、(a)は透視斜視図を、(b)は線A−A’に沿った断面図である。It is a figure explaining the internal structure of the roasting furnace of this invention, Comprising: (a) is a perspective view, (b) is sectional drawing along line A-A '. 本発明の焙焼炉に棚板を設置した場合の内部構造を説明する図である。It is a figure explaining the internal structure at the time of installing a shelf board in the roasting furnace of this invention. 比較例1の原料積載方法を示す図である。It is a figure which shows the raw material loading method of the comparative example 1. FIG.

符号の説明Explanation of symbols

1 焙焼炉本体
2 炉心管
3 発熱体
4 雰囲気ガス吹込み用ノズル
5 側壁
6 焙焼室
7 トレー
8 棚板
9 アルミナ板
10 雰囲気ガス排出口
DESCRIPTION OF SYMBOLS 1 Roasting furnace main body 2 Furnace core tube 3 Heating body 4 Nozzle for atmospheric gas blowing 5 Side wall 6 Roasting chamber 7 Tray 8 Shelf board 9 Alumina plate 10 Atmospheric gas discharge port

Claims (9)

焙焼炉内に雰囲気ガスの流れ方向に沿って複数の加熱領域を設け、該加熱領域内に載置された原料表面に雰囲気ガスを層流で流し、前記複数の加熱領域に温度差を設け、かつ雰囲気ガスの流れと直交する方向は同一の温度で昇温し、各加熱領域の昇温が完了した後に全原料を同一の温度で加熱して原料を焙焼することを特徴とする酸化物粉末の製造方法。   A plurality of heating regions are provided in the roasting furnace along the flow direction of the atmosphere gas, the atmosphere gas is flowed in a laminar flow on the surface of the raw material placed in the heating region, and a temperature difference is provided in the plurality of heating regions. The oxidation is characterized in that the directions orthogonal to the flow of the atmospheric gas are heated at the same temperature, and after the heating of each heating region is completed, all the raw materials are heated at the same temperature to roast the raw materials. A method for producing powder. 前記雰囲気ガスが酸化性雰囲気ガスであることを特徴とする請求項1に記載の酸化物粉末の製造方法。   The method for producing an oxide powder according to claim 1, wherein the atmospheric gas is an oxidizing atmospheric gas. 前記複数の加熱領域の温度差が80℃〜100℃であることを特徴とする請求項1または2に記載の酸化物粉末の製造方法。   The method for producing an oxide powder according to claim 1 or 2, wherein a temperature difference between the plurality of heating regions is 80 ° C to 100 ° C. 焙焼炉内の酸化性雰囲気ガスの流れ方向に沿って複数の加熱領域を設け、該加熱領域内に載置されたヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウムからなる原料表面に酸化性雰囲気ガスを層流で流し、前記複数の加熱領域に80℃〜100℃の温度差を設け、かつ雰囲気ガスの流れと直交する方向は同一の温度で昇温し、各加熱領域の昇温が600℃まで完了した後に全原料を600〜1050℃の温度で加熱して焙焼することを特徴とする酸化イリジウム粉の製造方法。   A raw material surface made of ammonium hexachloroiridium (IV) or potassium hexachloroiridium (IV) placed in the heating area, provided with a plurality of heating areas along the flow direction of the oxidizing atmosphere gas in the roasting furnace An oxidizing atmosphere gas is caused to flow in a laminar flow, a temperature difference of 80 ° C. to 100 ° C. is provided in the plurality of heating regions, and the direction perpendicular to the flow of the atmosphere gas is increased at the same temperature, A method for producing iridium oxide powder, characterized in that after the temperature rise is completed to 600 ° C, all raw materials are heated and roasted at a temperature of 600 to 1050 ° C. 前記ヘキサクロロイリジウム(IV)酸アンモニウムにカリウムを添加して焙焼することを特徴とする請求項4に記載の酸化イリジウム粉の製造方法。   The method for producing iridium oxide powder according to claim 4, wherein potassium is added to the ammonium hexachloroiridium (IV) and baked. 炉内に複数の加熱領域を設け、炉内に層流を生じさせる雰囲気ガス供給排出機構を炉内の両端に具備し、前記複数の加熱領域の加熱速度を独立して任意に制御する温度制御機構を備えたことを特徴とする酸化物粉末製造用の焙焼炉。   Temperature control in which a plurality of heating regions are provided in the furnace, and an atmosphere gas supply / discharge mechanism for generating a laminar flow in the furnace is provided at both ends of the furnace, and the heating rate of the plurality of heating regions is arbitrarily controlled independently. A roasting furnace for producing oxide powder, characterized by comprising a mechanism. 前記雰囲気ガス供給排出機構が、雰囲気ガス供給ノズルを焙焼炉内壁の一つの面に設けることと、雰囲気ガス排出口を雰囲気ガス供給ノズルが設けられた面に相対する面に備えてなることを特徴とする請求項6に記載の焙焼炉。   The atmosphere gas supply / discharge mechanism is provided with an atmosphere gas supply nozzle provided on one surface of the inner wall of the roasting furnace and an atmosphere gas discharge port provided on a surface opposite to the surface provided with the atmosphere gas supply nozzle. The roasting furnace according to claim 6, characterized in that 前記焙焼炉が管状炉であることを特徴とする請求項6または7に記載の焙焼炉。   The roasting furnace according to claim 6 or 7, wherein the roasting furnace is a tubular furnace. 前記焙焼炉の断面形状が略角型であることを特徴とする請求項6から8のいずれか1項に記載の焙焼炉。   The cross-sectional shape of the said roasting furnace is a substantially square shape, The roasting furnace of any one of Claim 6 to 8 characterized by the above-mentioned.
JP2007267131A 2007-10-12 2007-10-12 Method for producing oxide powder, method for producing iridium oxide powder Active JP5444604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267131A JP5444604B2 (en) 2007-10-12 2007-10-12 Method for producing oxide powder, method for producing iridium oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267131A JP5444604B2 (en) 2007-10-12 2007-10-12 Method for producing oxide powder, method for producing iridium oxide powder

Publications (2)

Publication Number Publication Date
JP2009096646A true JP2009096646A (en) 2009-05-07
JP5444604B2 JP5444604B2 (en) 2014-03-19

Family

ID=40699997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267131A Active JP5444604B2 (en) 2007-10-12 2007-10-12 Method for producing oxide powder, method for producing iridium oxide powder

Country Status (1)

Country Link
JP (1) JP5444604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116772598A (en) * 2023-06-13 2023-09-19 宁夏鑫中奥智能装备有限公司 Method for controlling sintering soaking temperature following of slender piece

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191597U (en) * 1983-06-07 1984-12-19 新日本製鐵株式会社 Shaft furnace reaction test equipment
JPH04113893U (en) * 1991-03-19 1992-10-06 有限会社神田技研サービス Mobile multi-stage high temperature furnace
JPH063057A (en) * 1992-06-16 1994-01-11 Toshiba Ceramics Co Ltd Roller hearth furnace
JPH06129774A (en) * 1992-10-20 1994-05-13 Tdk Corp Furnace
JPH07206431A (en) * 1993-11-30 1995-08-08 Sumitomo Chem Co Ltd Production of alpha-alumina powder
JPH08320188A (en) * 1996-04-02 1996-12-03 Taiyo Yuden Co Ltd Fabrication method for ceramic electronic parts
JP2002062052A (en) * 2000-08-21 2002-02-28 Tokai Konetsu Kogyo Co Ltd Furnace operating method and electric furnace for performing furnace operating method
JP2004085157A (en) * 2002-08-29 2004-03-18 Denkoo:Kk Method and apparatus for forced cooling/heating of plate-like treated object
JP2004162974A (en) * 2002-11-12 2004-06-10 Tokai Konetsu Kogyo Co Ltd Batch furnace for examining continuous burning
JP2005050849A (en) * 2003-07-29 2005-02-24 Murata Mfg Co Ltd Gas supply method of heat treatment equipment and process for producing ceramic electronic component
JP2006273636A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Mining Co Ltd Iridium oxide powder and method for manufacturing the same
WO2007020865A1 (en) * 2005-08-17 2007-02-22 Sumitomo Metal Mining Co., Ltd. Iridium oxide powder, process for producing the same, and paste containing the same for thick film resistor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191597U (en) * 1983-06-07 1984-12-19 新日本製鐵株式会社 Shaft furnace reaction test equipment
JPH04113893U (en) * 1991-03-19 1992-10-06 有限会社神田技研サービス Mobile multi-stage high temperature furnace
JPH063057A (en) * 1992-06-16 1994-01-11 Toshiba Ceramics Co Ltd Roller hearth furnace
JPH06129774A (en) * 1992-10-20 1994-05-13 Tdk Corp Furnace
JPH07206431A (en) * 1993-11-30 1995-08-08 Sumitomo Chem Co Ltd Production of alpha-alumina powder
JPH08320188A (en) * 1996-04-02 1996-12-03 Taiyo Yuden Co Ltd Fabrication method for ceramic electronic parts
JP2002062052A (en) * 2000-08-21 2002-02-28 Tokai Konetsu Kogyo Co Ltd Furnace operating method and electric furnace for performing furnace operating method
JP2004085157A (en) * 2002-08-29 2004-03-18 Denkoo:Kk Method and apparatus for forced cooling/heating of plate-like treated object
JP2004162974A (en) * 2002-11-12 2004-06-10 Tokai Konetsu Kogyo Co Ltd Batch furnace for examining continuous burning
JP2005050849A (en) * 2003-07-29 2005-02-24 Murata Mfg Co Ltd Gas supply method of heat treatment equipment and process for producing ceramic electronic component
JP2006273636A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Mining Co Ltd Iridium oxide powder and method for manufacturing the same
WO2007020865A1 (en) * 2005-08-17 2007-02-22 Sumitomo Metal Mining Co., Ltd. Iridium oxide powder, process for producing the same, and paste containing the same for thick film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116772598A (en) * 2023-06-13 2023-09-19 宁夏鑫中奥智能装备有限公司 Method for controlling sintering soaking temperature following of slender piece

Also Published As

Publication number Publication date
JP5444604B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
US20030000937A1 (en) Ceramic heater
CN100561613C (en) Method for manufacturing ferrite material, ferrite core and burnt furnace system
KR20190003872A (en) Aluminum nitride sintered compact and members for semiconductor manufacturing apparatus including the same
JP5444604B2 (en) Method for producing oxide powder, method for producing iridium oxide powder
EP1280380A1 (en) Ceramic board
JP2010223563A (en) Roller hearth kiln for atmospheric baking
JP2008064328A (en) Roasting furnace and manufacturing method of iridium oxide powder using the same
JP2015137814A (en) Saggar and powder production method using the same
JP6243389B2 (en) Heating furnace and heating method
KR100873088B1 (en) Method for manufacturing target material for sputtering target
JP2020205406A (en) Heating unit, temperature control system, processing device, and manufacturing method of semiconductor device
JP4357886B2 (en) Debinding tool and electronic component manufacturing method
KR101062481B1 (en) Simultaneous monitoring method and device for annealing temperature and residual stress
JP2000310491A (en) Continuous tunnelling electric kiln
JP2006273636A (en) Iridium oxide powder and method for manufacturing the same
JP2010219145A (en) Film forming device
KR101862338B1 (en) MoSi2 alloyed with W and the manufacturing method of the same
JP2582835B2 (en) Method for manufacturing surface conductive ceramic substrate
WO2017038189A1 (en) Method for manufacturing ntc thermistor
JP3395803B2 (en) Method for producing iron oxide by roasting method
JP4235886B2 (en) Firing method of inorganic powder compact
JP2007302498A (en) Ruthenium oxide powder and its production method
JP4314795B2 (en) Method for firing ceramic electronic components
EP0541937A1 (en) Process for high temperature sintering of a resistor material based on ruthenium oxide or compounds thereof
EP3769843A1 (en) Heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5444604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150