JP2008064328A - Roasting furnace and manufacturing method of iridium oxide powder using the same - Google Patents
Roasting furnace and manufacturing method of iridium oxide powder using the same Download PDFInfo
- Publication number
- JP2008064328A JP2008064328A JP2006239574A JP2006239574A JP2008064328A JP 2008064328 A JP2008064328 A JP 2008064328A JP 2006239574 A JP2006239574 A JP 2006239574A JP 2006239574 A JP2006239574 A JP 2006239574A JP 2008064328 A JP2008064328 A JP 2008064328A
- Authority
- JP
- Japan
- Prior art keywords
- roasting
- atmospheric gas
- oxide powder
- roasting furnace
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 64
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910000457 iridium oxide Inorganic materials 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000007664 blowing Methods 0.000 claims abstract description 36
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 5
- 239000011591 potassium Substances 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 97
- 239000002994 raw material Substances 0.000 claims description 49
- -1 ammonium hexachloroiridium (IV) Chemical compound 0.000 claims description 15
- 125000006850 spacer group Chemical group 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 7
- 238000011068 loading method Methods 0.000 abstract description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 2
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 15
- 229910001882 dioxygen Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910016062 BaRuO Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004121 SrRuO Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002503 iridium Chemical class 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Furnace Details (AREA)
- Non-Adjustable Resistors (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、微細な粉末の酸化焙焼に好適な焙焼炉、およびそれを用いた厚膜抵抗体用ペーストの導電粉として好適な酸化イリジウム粉の製造方法に関する。 The present invention relates to a roasting furnace suitable for oxidative roasting of fine powder, and a method for producing iridium oxide powder suitable as a conductive powder for a thick film resistor paste using the same.
近年、電子デバイスには絶縁基板上に導体、抵抗体、コンデンサー等の電子部品をペーストを使用して印刷形成した回路配線基板が多用されている。厚膜抵抗体は、チップ抵抗器、厚膜ハイブリッドICや抵抗ネットワーク等に広く用いられている。厚膜抵抗体の製造方法としては、通常、絶縁体基板の表面に形成された導電体回路パターン又は電極の上に導電粉を均一に分散させたペーストを印刷し、これを焼成する工程を用いて製造されている。 2. Description of the Related Art In recent years, circuit wiring boards in which electronic parts such as conductors, resistors, capacitors, and the like are printed on an insulating substrate using a paste have been widely used in electronic devices. Thick film resistors are widely used in chip resistors, thick film hybrid ICs, resistor networks, and the like. As a method for manufacturing a thick film resistor, a process is generally used in which a paste in which conductive powder is uniformly dispersed is printed on a conductor circuit pattern or an electrode formed on the surface of an insulator substrate, and this is fired. Manufactured.
厚膜抵抗体の製造に用いるペーストは、導電粉とガラス結合剤をビヒクルと呼ばれる有機媒体中に均一に分散させることにより調整されている。このうち、導電粉は厚膜抵抗体の電気的特性を決定する最も重要な役割を担い、酸化ルテニウム(RuO2)やルテニウム酸鉛(Pb2Ru2O7)の微粉末が広く用いられている。
一般に、酸化ルテニウムは低抵抗値から高抵抗値まで広範囲の導電物として使用され、高抵抗領域では導電物濃度に対する抵抗値の変動がより小さいルテニウム酸鉛が用いられることが多い。
ところが、近年では、電子機器から毒性のある鉛の使用を排除する目的で、高抵抗領域の厚膜抵抗体用の導電粉として、ルテニウム酸鉛粉に代わる鉛を含有しない導電粉が望まれている。この解決策として、Bi2Ru2O7、CaRuO3、SrRuO3、BaRuO3、LaRuO3等のルテニウム複合酸化物が提案されているが、実用化までには至っていない。
A paste used for manufacturing a thick film resistor is prepared by uniformly dispersing conductive powder and a glass binder in an organic medium called a vehicle. Of these, conductive powder plays the most important role in determining the electrical characteristics of thick film resistors, and fine powders of ruthenium oxide (RuO 2 ) and lead ruthenate (Pb 2 Ru 2 O 7 ) are widely used. Yes.
In general, ruthenium oxide is used as a conductor in a wide range from a low resistance value to a high resistance value, and in the high resistance region, lead ruthenate having a smaller variation in the resistance value with respect to the conductor concentration is often used.
However, in recent years, for the purpose of eliminating the use of toxic lead from electronic devices, as a conductive powder for thick film resistors in the high resistance region, a conductive powder containing no lead instead of lead ruthenate powder is desired. Yes. As a solution to this, ruthenium composite oxides such as Bi 2 Ru 2 O 7 , CaRuO 3 , SrRuO 3 , BaRuO 3 , LaRuO 3 have been proposed, but have not yet been put into practical use.
酸化イリジウム(IrO2)は、その粉末を含むペーストで抵抗体を形成したときに、酸化ルテニウム粉に比べて高抵抗になる導電粉として一般に知られている。従って、酸化イリジウム粉は、ルテニウム酸鉛粉に代わる鉛を含有しない導電粉として有望である。
かかる酸化イリジウム粉の効率的な製造方法としては、ヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウム等の塩化イリジウム酸塩を、酸化性雰囲気下の高温において焙焼することが考えられる。
Iridium oxide (IrO 2 ) is generally known as a conductive powder that has a higher resistance than a ruthenium oxide powder when a resistor is formed from a paste containing the powder. Therefore, iridium oxide powder is promising as a conductive powder containing no lead in place of lead ruthenate powder.
As an efficient method for producing such iridium oxide powder, chlorinated iridium salts such as ammonium hexachloroiridium (IV) or potassium hexachloroiridium (IV) can be roasted at a high temperature in an oxidizing atmosphere. .
しかしながら、このような塩化イリジウム酸塩の酸化焙焼においては、得られる酸化イリジウム粉の特性を均一にするために、原料層の厚さを1〜2mm程度とし、雰囲気ガスと均一に反応させなければならず、炉床面積に対して生産性が低くなるという問題があった。炉床面積に対する生産性の低さは、原料をトレイに敷きこれを鉛直方向に積み重ねて炉の有効面積を拡大することで改善できる。焙焼炉は一般的なセラミックの焼成に用いられる焼成炉を転用することが可能である。このような焼成炉としては被焼成物を焙焼室内に複数段に収容して雰囲気を熱風循環させて、焙焼室内各部で均一に焼成できるとしたものが開示されている(例えば、特許文献1参照。)。
熱風循環式炉で焙焼室内の雰囲気を均一にしようとした場合風量を極端に大きくする必要があり、微細な粉末の焙焼には不向きである。また、風量を小さくした場合には、雰囲気のよどみ等が発生して均一な焙焼ができなくなる。
However, in such oxidative roasting of iridium chloride, the thickness of the raw material layer should be about 1 to 2 mm in order to make the properties of the obtained iridium oxide powder uniform, and it must react uniformly with the atmospheric gas. In other words, productivity is low with respect to the hearth area. The low productivity with respect to the hearth area can be improved by extending the effective area of the furnace by placing raw materials on a tray and stacking them vertically. As the roasting furnace, a general firing furnace used for firing ceramics can be used. As such a baking furnace, what is to be fired is accommodated in a plurality of stages in a roasting chamber and the atmosphere is circulated with hot air so that it can be uniformly fired in each part of the roasting chamber (for example, Patent Documents). 1).
When trying to make the atmosphere in the roasting chamber uniform in a hot air circulation furnace, it is necessary to make the air volume extremely large, which is not suitable for roasting fine powder. Further, when the air volume is reduced, stagnation of the atmosphere occurs and uniform roasting cannot be performed.
焙焼室内の雰囲気の均一化に対する改善策としては、焙焼室内に多段に設置した被熱処理物の載置面のそれぞれに供給する雰囲気ガスの流速を特定の値とするとともに、載置面を水平方向に移動させることで均一な焼成ができるとした熱処理装置の雰囲気ガス供給方法が開示されている(例えば、特許文献2参照。)。
しかしながら、積載面を移動させて熱処理する連続炉は装置が高価であるとともに、生産量が比較的小さい製品の生産には不向きであり、バッチ式炉でも載置面を移動させるようにすると複雑な構造となってしまう。また、開示されている雰囲気の均一化に必要な雰囲気ガス流速は微細な粉末の焙焼に対しては大き過ぎて、微粉末の焙焼に適しているとは言い難い。
As an improvement measure for the homogenization of the atmosphere in the roasting chamber, the flow rate of the atmospheric gas supplied to each of the mounting surfaces of the heat treatment objects installed in multiple stages in the roasting chamber is set to a specific value, and the mounting surface is An atmosphere gas supply method of a heat treatment apparatus that can perform uniform firing by moving in the horizontal direction is disclosed (for example, see Patent Document 2).
However, continuous furnaces that move heat by moving the loading surface are expensive and unsuitable for production of products with a relatively small production volume. It is complicated to move the loading surface even in a batch furnace. It becomes a structure. Further, the atmospheric gas flow rate required for the homogenization of the disclosed atmosphere is too large for fine powder roasting, and is not suitable for fine powder roasting.
また、焙焼室内雰囲気の均一化が可能な炉として、焙焼室内に匣を多段に積み重ねる構造であって、雰囲気ガスの供給管と排気管を切替えることで、雰囲気ガスの流れを切替えて雰囲気ガスを均一に焙焼室内の原料に供給できるとする焼成炉が提案されている(例えば、特許文献3参照。)。
また、雰囲気ガス供給管の噴出口の形状変更と、被熱処理物と雰囲気ガス供給管のうちの少なくとも一方が回転または移動することにより、焙焼室内の雰囲気を均一に保つことを可能とする熱処理炉も提案されている(例えば、特許文献4参照。)。
上記の焙焼炉はいずれも可動部分を有し、装置が複雑な構造となる。また、微細な粉末の焙焼には充分考慮する必要がある雰囲気ガス流速に関する記述がないばかりでなく、強制的に雰囲気ガスを循環させるために、雰囲気ガス流速を大きくせざるを得ない難点がある。
このような状況から、厚膜抵抗体形成用ペーストとしてルテニウム酸鉛粉に代わる鉛を含まない導電粉として良好な粉末特性を有する、酸化イリジウム粉の効率的な工業的製造方法が望まれており、その製造に必要な微細粉末の焙焼に好適な炉の提供が望まれている。
In addition, heat treatment that makes it possible to keep the atmosphere in the roasting chamber uniform by changing the shape of the outlet of the atmosphere gas supply pipe and rotating or moving at least one of the object to be heat-treated and the atmosphere gas supply pipe A furnace has also been proposed (see, for example, Patent Document 4).
All of the above roasting furnaces have movable parts, and the apparatus has a complicated structure. In addition, there is no description about the atmospheric gas flow rate that needs to be fully considered for the roasting of fine powders, and there is a problem that the atmospheric gas flow rate must be increased in order to forcibly circulate the atmospheric gas. is there.
Under such circumstances, an efficient industrial production method of iridium oxide powder having good powder characteristics as a conductive powder not containing lead as a thick film resistor forming paste instead of lead ruthenate powder is desired. Therefore, it is desired to provide a furnace suitable for roasting fine powders necessary for the production thereof.
かかる状況に鑑み、本発明は構造が簡単で微細な粉末の焙焼を効率的に行うことができる酸化物粉末製造に好適な焙焼炉を提供するとともに、それを用いて厚膜抵抗体形成用ペーストに好適な導電粉としての、酸化イリジウム粉の工業的に効率的な製造方法を提供することを目的とするものである。 In view of such circumstances, the present invention provides a roasting furnace suitable for the production of oxide powder that has a simple structure and can efficiently perform fine powder roasting, and uses it to form a thick film resistor. It is an object to provide an industrially efficient method for producing iridium oxide powder as a conductive powder suitable for a paste for use.
本発明者らは、微細な粉末の焙焼に関する研究を行った結果、微細な粉末の焙焼には原料表面を流れる雰囲気ガスの流れの影響が大きいこと、雰囲気ガス流には雰囲気ガス吹込み用ノズルの配置と原料を載置する空間の影響が大きいとの結論に至り、本発明を完成するに至った。
すなわち、本発明の焙焼炉は、断面形状が略角型の管状炉であって、焙焼室内の鉛直方向に多段に複数の棚板を有し、焙焼室内の軸方向の一方に雰囲気ガス吹込み用ノズルを備えるとともに他方に雰囲気ガス排出口を備えており、雰囲気ガスが原料表面を吹込み方向と略同一方向のみに流れるように構成されてなる焙焼炉とした。
断面形状を略角型とすることで、焙焼室内に無駄な空間を作ることなく複数の棚板を設置することができる。また、鉛直方向に複数の棚板を設置することで、各棚板に載置する原料の厚さを薄くしても、焙焼室内に載置できる原料の量を大幅に増大させることができる。
As a result of researches on the roasting of fine powders, the present inventors have found that the influence of the flow of the atmospheric gas flowing on the surface of the raw material is large in the roasting of the fine powder, and the atmospheric gas flow is blown into the atmospheric gas flow. It came to the conclusion that the influence of the arrangement | positioning of a nozzle and the space which mounts a raw material is large, and came to complete this invention.
That is, the roasting furnace of the present invention is a tubular furnace having a substantially square cross-sectional shape, and has a plurality of shelves in the vertical direction in the roasting chamber, and an atmosphere in one of the axial directions in the roasting chamber. A roasting furnace having a gas blowing nozzle and an atmosphere gas discharge port on the other side and configured so that the atmosphere gas flows on the surface of the raw material only in substantially the same direction as the blowing direction.
By making the cross-sectional shape into a substantially square shape, a plurality of shelf boards can be installed without creating a useless space in the roasting chamber. In addition, by installing a plurality of shelves in the vertical direction, the amount of raw materials that can be placed in the roasting chamber can be greatly increased even if the thickness of the raw materials placed on each shelf is reduced. .
本発明の焙焼炉では、原料を載置する棚板の各段に複数本の雰囲気ガス吹込み用ノズルを備え、かつ該雰囲気ガス吹込み用ノズルが鉛直方向の同一位置に水平に並んで設置するのが好ましい。
原料を載置する各段に均等に雰囲気ガスを流入させるためには、各段に雰囲気ガス吹込み用ノズルを備えることが好ましく、更に各段毎に複数本の雰囲気ガス吹込み用ノズルを備えることが好ましい。
各段に複数の雰囲気ガス吹込み用ノズルを設置することで各段毎の雰囲気ガス流量の調整が容易になり、各段内での部分的な逆流を防止し、雰囲気ガス流を均一な層流とすることが可能となる。
In the roasting furnace of the present invention, each stage of the shelf on which the raw material is placed is provided with a plurality of nozzles for blowing atmospheric gas, and the nozzles for blowing atmospheric gas are arranged horizontally at the same position in the vertical direction. It is preferable to install.
In order to allow the atmospheric gas to uniformly flow into each stage on which the raw material is placed, it is preferable to provide an atmospheric gas blowing nozzle at each stage, and further, a plurality of atmospheric gas blowing nozzles are provided at each stage. It is preferable.
By installing multiple atmospheric gas injection nozzles at each stage, it is easy to adjust the atmospheric gas flow rate at each stage, preventing partial backflow in each stage and providing a uniform layer of atmospheric gas flow. It becomes possible to make it flow.
また、雰囲気ガス吹込み用ノズルは棚板の内部まで延伸させるのが好ましい。
雰囲気ガス吹込み用ノズルを棚板の内部まで延伸させることで、各段毎のガス流量の調整が可能となり、均等に雰囲気ガスを流すことができるようになる。
The atmospheric gas blowing nozzle is preferably extended to the inside of the shelf board.
By extending the atmospheric gas blowing nozzle to the inside of the shelf board, the gas flow rate can be adjusted for each stage, and the atmospheric gas can be made to flow evenly.
さらに本発明の焙焼炉では、棚板がスペーサーをなす側壁部分を除き平坦であることが好ましい。
原料層の表面をなるべく均一に雰囲気ガスと接触させるためである。
原料の飛散防止のため、雰囲気ガス吹込み用ノズル先端と原料との間に遮蔽板を設置することも考えられるが、遮蔽板を設置すると遮蔽板に雰囲気ガス流が衝突して渦巻きは生ずるので好ましくない。従って、棚板の雰囲気ガス排出口側は、完全に開放状態とするのが好ましい。雰囲気ガス排出口側に仕切り板等障害物を設置すると、ガス流の逆流を起こす危険がある。
Furthermore, in the roasting furnace of this invention, it is preferable that a shelf board is flat except for the side wall part which makes a spacer.
This is for bringing the surface of the raw material layer into contact with the atmospheric gas as uniformly as possible.
In order to prevent scattering of the raw material, it is conceivable to install a shielding plate between the tip of the atmospheric gas blowing nozzle and the raw material. However, if the shielding plate is installed, the atmospheric gas flow collides with the shielding plate, resulting in a vortex. It is not preferable. Therefore, it is preferable to completely open the atmosphere gas discharge port side of the shelf board. If an obstacle such as a partition plate is installed on the atmosphere gas discharge port side, there is a risk of reverse flow of the gas flow.
更に、本発明の酸化イリジウム粉の製造方法は、本発明の焙焼炉を用い、ヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウムを600〜1050℃の焙焼温度で、酸素含有ガス雰囲気下で焙焼する方法を採用した。 Furthermore, the manufacturing method of the iridium oxide powder of the present invention uses the roasting furnace of the present invention and contains ammonium hexachloroiridium (IV) or potassium hexachloroiridium (IV) at a roasting temperature of 600 to 1050 ° C. and contains oxygen. A method of roasting in a gas atmosphere was adopted.
本発明の酸化イリジウム粉の製造方法では、ヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウムにカリウムを添加して焙焼することもできる。 In the manufacturing method of the iridium oxide powder of the present invention, potassium can be added to ammonium hexachloroiridium (IV) or potassium hexachloroiridium (IV) and roasted.
本発明によれば、層流となった雰囲気ガスを使用して微細な粉末原料の焙焼を効率的に行うことができるので、粒度バラツキの少ない酸化物粉末の製造に好適な焙焼炉が得られるとともに、それを用いて厚膜抵抗体形成用ペーストに好適な導電粉としての酸化イリジウム粉を工業的で効率的に製造することでき、産業に寄与する効果が非常に大きい。 According to the present invention, since the fine powder raw material can be efficiently roasted using the atmospheric gas that has become a laminar flow, there is provided a roasting furnace suitable for the production of an oxide powder with little particle size variation. In addition to being obtained, iridium oxide powder as a conductive powder suitable for a thick film resistor forming paste can be produced industrially and efficiently, and the effect of contributing to the industry is very large.
先ず本発明の焙焼炉の構造について説明する。図1は本発明の焙焼炉の内部構造を説明する図であって、(a)は透視斜視図を示し、(b)は(a)1の線A−A’に沿った断面図を示す。
本発明の焙焼炉10は、中央部に焙焼室1を有する断面形状が略角型の管状炉である。 焙焼室1の一端の側壁2には複数の雰囲気ガス吹込み用ノズル9が貫通して取り付けられており、これらの雰囲気ガス吹込み用ノズル9によって所定の雰囲気ガスが焙焼室1内に導入される。焙焼に使用された雰囲気ガスは、焙焼室1の他端の側壁3に取り付けられた雰囲気ガス排出管8によって系外に排出される
焙焼室1内の鉛直方向にはスペーサーを兼ねた原料を載置するための複数の棚板6(図では3段の例を示す。)が設置されている。炉内の断面形状を略角型とすることで、焙焼室内に無駄な空間を作ることなく、複数の棚板6を設置することができる。また、鉛直方向に複数の棚板6を設置することで、各棚板6に載置する原料の厚さを薄くしても、焙焼室1内に載置できる原料の量を大幅に増大させることができる。
First, the structure of the roasting furnace of the present invention will be described. FIG. 1 is a view for explaining the internal structure of a roasting furnace according to the present invention. FIG. 1 (a) is a perspective view, and FIG. 1 (b) is a sectional view taken along line AA ′ in FIG. Show.
The roasting furnace 10 of the present invention is a tubular furnace having a substantially square cross section with the roasting chamber 1 in the center. A plurality of atmospheric gas blowing nozzles 9 are attached to the side wall 2 at one end of the roasting chamber 1, and predetermined atmospheric gases are introduced into the roasting chamber 1 by these atmospheric gas blowing nozzles 9. be introduced. The atmospheric gas used for the roasting is discharged out of the system by the atmospheric gas discharge pipe 8 attached to the side wall 3 at the other end of the roasting chamber 1 and also serves as a spacer in the vertical direction in the roasting chamber 1. A plurality of shelf boards 6 (three-stage examples are shown in the figure) for placing raw materials are installed. By making the cross-sectional shape in the furnace substantially square, a plurality of shelf boards 6 can be installed without creating a useless space in the roasting chamber. In addition, by installing a plurality of shelf boards 6 in the vertical direction, the amount of raw materials that can be placed in the roasting chamber 1 is greatly increased even if the thickness of the raw materials placed on each shelf board 6 is reduced. Can be made.
図1(b)に示すように、棚板6は焙焼室1の長手方向に沿った両側に適当な高さの側壁6a,6aを有しており、棚板6を多数積み重ねて載置する際のスペーサーの役割を果たしている。棚板6の天板6bは平坦であって、薄くひろげた被処理原料15を載置するためのトレイ(皿)の役割を果たしているが、別途トレイを準備してトレイ上に被処理原料を薄くひろげてから天板上に載置してもよい。
焙焼室1内に被処理原料15を載置した棚板6を複数重ねて載置し、棚板6の下側に形成されたトンネル部分の空間に、焙焼用の雰囲気ガスを一方向に静かに流すことにより焙焼処理を行う。
棚板6はアルミナ等のセラミックスあるいはステンレス鋼等の耐熱性材料で作成する。
As shown in FIG. 1B, the shelf board 6 has side walls 6a and 6a having appropriate heights on both sides along the longitudinal direction of the roasting chamber 1, and a plurality of shelf boards 6 are stacked and placed. It plays the role of spacer when doing. The top plate 6b of the shelf board 6 is flat and plays the role of a tray (dish) for placing the thinly spread raw material 15 to be processed. However, a separate tray is prepared and the raw material to be processed is placed on the tray. After thinly spreading, it may be placed on the top board.
A plurality of shelves 6 on which the raw material 15 to be treated is placed are placed in the roasting chamber 1, and the atmosphere gas for roasting is unidirectionally placed in the space of the tunnel portion formed below the shelf 6. The roasting process is performed by pouring gently.
The shelf board 6 is made of a heat-resistant material such as ceramics such as alumina or stainless steel.
各段を形成している棚板6は、棚板を重ねて載置するための鉛直方向に延びるスペーサーを兼ねた側壁6a,6aを有している。棚板6はこのスペーサーを兼ねた側壁6a,6aを除き平坦であることが好ましい。原料飛散防止のため、雰囲気ガス吹込み用ノズル端部と原料の間に遮蔽板を設置すると、遮蔽板により雰囲気ガス流の巻込みが発生するため好ましくない。必要上、どうしても遮蔽板を設置する場合には可能な限り高さを低くすることが好ましい。また、棚板6の雰囲気ガス排出側は完全に開放状態とすることが好ましい。雰囲気ガス排出側に仕切り板等を設置すると雰囲気ガス流が逆流してしまう。このため、各棚板6に設けるスペーサーを兼ねた側壁6a,6aは、焙焼室1の長さ方向に沿った両側に鉛直方向に延びる柱状の突起のみを設けるのが望ましい。 The shelf board 6 forming each step has side walls 6a, 6a that also serve as spacers extending in the vertical direction for stacking the shelf boards. The shelf board 6 is preferably flat except for the side walls 6a, 6a which also serve as spacers. In order to prevent the raw material from scattering, it is not preferable to install a shielding plate between the end of the atmospheric gas blowing nozzle and the raw material because the atmospheric gas flow is generated by the shielding plate. When necessary, it is preferable to reduce the height as much as possible when a shielding plate is inevitably installed. Moreover, it is preferable that the atmosphere gas discharge side of the shelf board 6 is completely opened. If a partition plate or the like is installed on the atmosphere gas discharge side, the atmosphere gas flow is reversed. For this reason, it is desirable that the side walls 6 a, 6 a serving also as spacers provided on the respective shelf boards 6 are provided with only columnar protrusions extending in the vertical direction on both sides along the length direction of the roasting chamber 1.
管状の焙焼室1の一端の側壁2には、貫通した雰囲気ガス吹込み用ノズル9を備えている。雰囲気ガス吹込み用ノズル9は、棚板6の格段上部に複数個配置し、かつ鉛直方向の同一位置に水平に並んで設置するのが好ましい。
本発明の焙焼炉では、雰囲気ガスを層流にして各段に均等に流入させることが重要である。また、各段に設置した雰囲気ガス供給用ノズル間においても流量を均等にすることが好ましい。層流にすることで、微粉末原料でも飛散させることなく均一に焙焼することができる。また、流入量を均等にすることで、焙焼室内の原料を品質にバラツキなく焙焼することができるからである。
本発明では、雰囲気ガスとして空気や酸素ガス等の酸素含有ガスを使用するが、これら酸素含有ガスで層流を得るには、雰囲気ガスの流速は100cm/sec以下とするのが適当である。
A side wall 2 at one end of the tubular roasting chamber 1 is provided with a penetrating nozzle 9 for blowing atmospheric gas. It is preferable that a plurality of the atmosphere gas blowing nozzles 9 are arranged in a particularly upper portion of the shelf board 6 and are arranged horizontally at the same vertical position.
In the roasting furnace of the present invention, it is important that the atmospheric gas is made into a laminar flow and flows uniformly into each stage. Further, it is preferable that the flow rate is made uniform between the atmosphere gas supply nozzles installed in each stage. By laminar flow, even fine powder raw material can be uniformly roasted without being scattered. Moreover, it is because the raw material in a roasting chamber can be roasted without variation in quality by equalizing the amount of inflow.
In the present invention, an oxygen-containing gas such as air or oxygen gas is used as the atmosphere gas. In order to obtain a laminar flow using these oxygen-containing gases, the flow rate of the atmosphere gas is suitably 100 cm / sec or less.
雰囲気ガスの流量を均等に調整するには、各段毎あるいは各雰囲気ガス吹込み用ノズル毎に簡易的な流量調整装置を取り付けても容易に行うことができる。
層流となる雰囲気ガスの流速は、雰囲気ガス吹込み用ノズルの配置により可能となる。雰囲気ガスを一方向のみに流す雰囲気ガス吹込み用ノズルの配置は、市販ソフト(例えば、汎用流体解析ソフトCFX)を用いて数値計算を行えば容易に得ることができる。焙焼規模によって変更される条件、即ち、棚板の段数・間隔および形状、焙焼室内の棚板と流入側および排出側の空間量、雰囲気ガス吹込み用ノズルの本数および間隔、焙焼温度条件等を入力して計算してやればよい。
Evenly adjusting the flow rate of the atmospheric gas can be easily performed by installing a simple flow rate adjusting device for each stage or for each nozzle for blowing atmospheric gas.
The flow rate of the atmospheric gas that becomes a laminar flow is made possible by the arrangement of the nozzle for blowing the atmospheric gas. The arrangement of the atmospheric gas blowing nozzle for flowing the atmospheric gas in only one direction can be easily obtained by performing numerical calculation using commercially available software (for example, general-purpose fluid analysis software CFX). Conditions changed by the roasting scale, that is, the number, interval and shape of the shelves, the amount of space between the shelves in the roasting chamber and the inlet and outlet sides, the number and interval of the nozzles for blowing atmospheric gas, and the roasting temperature What is necessary is just to input and calculate conditions.
本発明の焙焼炉では、雰囲気ガス吹込み用ノズル9は棚板6の内部まで延伸させるのが好ましい。
延伸する位置は特に限定するものではないが、流入した雰囲気ガスがすべて棚板各段内を流れる程度に、棚板が形成するトンネル部分の内部で、かつ棚板に載置される被処理原料よりもガス流入口側の位置まで入れればよい。
雰囲気ガス吹込み用ノズルを棚板の内部まで延伸させることで、各段毎のガス流量の調整が可能となり、より均等に雰囲気ガスを流すことができるようになる。
In the roasting furnace of the present invention, the atmospheric gas blowing nozzle 9 is preferably extended to the inside of the shelf board 6.
The extending position is not particularly limited, but the raw material to be processed placed inside the tunnel part formed by the shelf and on the shelf so that all the atmospheric gas that flows in flows through each stage of the shelf. What is necessary is just to enter to the position of the gas inflow side rather than.
By extending the atmospheric gas blowing nozzle to the inside of the shelf board, the gas flow rate can be adjusted for each stage, and the atmospheric gas can flow more evenly.
雰囲気ガスを流入させた後は、原料表面を雰囲気ガスが吹込み方向と略同一方向のみに流れるようにすることが必要である。雰囲気ガスが部分的に逆流すると原料と雰囲気ガスの反応が均一に行われず、棚板内での焙焼に斑ができて、得られる製品の品質にバラツキが生じる。逆流させることなく雰囲気ガスを一方向のみ流すには、雰囲気ガスの流速を遅くして層流とする必要がある。層流とすれば雰囲気ガスは被処理原料層に沿って平行に流れ、たとえ被処理原料が微粉末であっても飛散することもなく、均一な焙焼物を得ることができる。 After the atmospheric gas is introduced, it is necessary that the atmospheric gas flows on the surface of the raw material only in substantially the same direction as the blowing direction. When the atmospheric gas partially flows backward, the reaction between the raw material and the atmospheric gas is not uniformly performed, and unevenness occurs in baking in the shelf board, resulting in variations in the quality of the product obtained. In order to flow the atmospheric gas in only one direction without backflow, it is necessary to slow down the flow velocity of the atmospheric gas to make it laminar. If the laminar flow is used, the atmosphere gas flows in parallel along the raw material layer to be processed, and even if the raw material to be processed is a fine powder, it is not scattered and a uniform roasted product can be obtained.
本発明の焙焼炉は、他の微細な金属酸化物粉の製造にも用いることができ、特に酸化ルテニウム粉等の厚膜抵抗体用ペーストの導電粉の製造に好適に用いることができる。 The roasting furnace of the present invention can also be used for the production of other fine metal oxide powders, and can be suitably used particularly for the production of conductive powders for thick film resistor pastes such as ruthenium oxide powders.
本発明の焙焼炉を用いて、酸化イリジウム粉を製造する場合には、原料としてヘキサクロロイリジウム(IV)酸アンモニウム又はヘキサクロロイリジウム(IV)酸カリウムを用いて、焙焼に使用する雰囲気ガスを酸素含有ガスとする。焙焼温度は600〜1050℃とする。
原料としてヘキサクロロイリジウム(IV)酸アンモニウムを用いる場合には、カリウム成分を全量に対し0.02〜0.3重量%含有させることが好ましい。カリウムを含有させることで、焙焼中に塩化カリウムが生成して酸化イリジウムの異常粒成長を抑制することができる。焙焼温度が600℃未満では、未酸化のイリジウム金属が残り、1050℃を超えると酸化イリジウムの揮発が多くなり収率が低下する。
In the case of producing iridium oxide powder using the roasting furnace of the present invention, ammonium hexachloroiridium (IV) or potassium hexachloroiridium (IV) is used as a raw material, and the atmospheric gas used for roasting is oxygen. Contained gas. A roasting temperature shall be 600-1050 degreeC.
When ammonium hexachloroiridium (IV) is used as a raw material, the potassium component is preferably contained in an amount of 0.02 to 0.3% by weight based on the total amount. By including potassium, potassium chloride is generated during roasting and abnormal grain growth of iridium oxide can be suppressed. When the roasting temperature is less than 600 ° C., unoxidized iridium metal remains, and when it exceeds 1050 ° C., volatilization of iridium oxide increases and the yield decreases.
焙焼温度は所望する酸化イリジウム粉の一次粒子径によって調整すればよい。好ましい一次粒子径は30〜100nmであり、粒子径をこの範囲とすることで、厚膜抵抗体用ペーストの導電粉として好ましい特性を持った酸化イリジウム粉を得ることができる。
焙焼温度を760℃以上とすると、塩化カリウムの蒸発量が多くなるが、焙焼条件により、塩化カリウムが残存する場合がある。このときは水洗することで容易に単相の酸化イリジウム粉が得られる。
焙焼の際、各段の原料は、層厚が3mm以下であることが好ましい。層厚を3mmより厚くすると、内部に未反応の塩化イリジウム酸塩もしくはイリジウム金属が残ってしまう。層厚を薄くしても問題ないが、焙焼室内に載置できる原料が減り、生産性が低下する。焙焼時間を短時間としたい場合でも、層厚を1mm程度にすれば十分である。
The roasting temperature may be adjusted by the desired primary particle diameter of the iridium oxide powder. A preferable primary particle diameter is 30 to 100 nm, and by setting the particle diameter within this range, an iridium oxide powder having preferable characteristics as a conductive powder of the thick film resistor paste can be obtained.
If the roasting temperature is 760 ° C. or higher, the amount of potassium chloride evaporated increases, but potassium chloride may remain depending on the roasting conditions. In this case, single-phase iridium oxide powder can be easily obtained by washing with water.
During roasting, the raw material of each stage preferably has a layer thickness of 3 mm or less. If the layer thickness is thicker than 3 mm, unreacted chloroiridate or iridium metal remains inside. Although there is no problem even if the layer thickness is reduced, the raw materials that can be placed in the roasting chamber are reduced, and the productivity is lowered. Even when it is desired to shorten the roasting time, it is sufficient to make the layer thickness about 1 mm.
[実施例]
以下に、本発明の比較例及び実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
(比較例1)
出発原料として、イリジウム濃度43.6重量%のヘキサクロロインジウム(IV)酸アンモニウム((NH4)2IrCl6(株)フルヤ金属製)を使用した。このヘキサクロロインジウム(IV)酸アンモニウム140gを等分して150mm角のアルミナ板6枚の上に2mmの層厚で載置し、このアルミナ板16を図2に示す角型管状炉の焙焼室1(内側寸法:190mmH×440mmW×1500mmL)内の底面に、焙焼炉の長軸方向に沿って3列にして並べて配置した。また、雰囲気ガス(酸素ガス)吹込み用ノズル9と原料の間に25mmH×280mmWの遮蔽板13を焙焼室内底面の全幅に亘って設置した。 酸素ガス吹込み用ノズル9は、内径6mmの円筒状のアルミナ管を用い、管状炉端部のガス進行方向に垂直な面に均等に4本取り付けた。そして各酸素ガス吹込み用ノズル9から10リットル/分、合計40リットル/分の酸素ガスを流した。この結果、焙焼室内の酸素ガスの平均流速は約48cm/分となった。
[Example]
Hereinafter, the present invention will be described in more detail with reference to comparative examples and examples of the present invention, but the present invention is not limited to these examples.
(Comparative Example 1)
As the starting material, ammonium hexachloroindium (IV) acid (made of (NH 4 ) 2 IrCl 6 (Furuya Metal Co., Ltd.)) having an iridium concentration of 43.6% by weight was used. 140 g of this ammonium hexachloroindium (IV) is equally divided and placed on six 150 mm square alumina plates at a layer thickness of 2 mm, and this alumina plate 16 is roasted in the rectangular tube furnace shown in FIG. 1 (inner dimensions: 190 mmH × 440 mmW × 1500 mmL) were arranged in three rows along the long axis direction of the roasting furnace. Further, a shielding plate 13 of 25 mmH × 280 mmW was installed across the entire width of the bottom of the roasting chamber between the atmosphere gas (oxygen gas) blowing nozzle 9 and the raw material. The oxygen gas blowing nozzle 9 was a cylindrical alumina tube having an inner diameter of 6 mm, and four nozzles were uniformly attached to a surface perpendicular to the gas traveling direction at the end of the tubular furnace. Then, oxygen gas was supplied from each oxygen gas blowing nozzle 9 at a rate of 10 liters / minute for a total of 40 liters / minute. As a result, the average flow rate of oxygen gas in the roasting chamber was about 48 cm / min.
焙焼温度を900℃に保持して4時間焙焼した。得られた焙焼物を評価したところ、平均一次粒子径は34nmで、原料載置位置による粒子径の分散は0.9であり、厚膜抵抗体用ペーストの導電粉に適した酸化イリジウム粉であったが、生成量は70gと僅かであった。 The roasting temperature was kept at 900 ° C. and roasted for 4 hours. When the obtained roasted product was evaluated, the average primary particle size was 34 nm, the dispersion of the particle size depending on the raw material placement position was 0.9, and the iridium oxide powder was suitable for the conductive powder of the thick film resistor paste. However, the amount produced was as small as 70 g.
(比較例2)
比較例1の焙焼炉の高さを約3倍にした焙焼炉を使用してイリジウム濃度43.6重量%のヘキサクロロイリジウム(IV)酸アンモニウムの焙焼を行った。図3(a),(b)に示すように焙焼室内に3枚のスペーサーを兼ねた棚板6を重ねて載置して、各段の棚板の流入側に遮蔽板13を設置し、排出側にも棚板端部に遮蔽板14を設置した。
(Comparative Example 2)
Using a roasting furnace in which the height of the roasting furnace of Comparative Example 1 was about three times, ammonium hexachloroiridium (IV) having an iridium concentration of 43.6% by weight was roasted. As shown in FIGS. 3 (a) and 3 (b), shelves 6 serving as three spacers are stacked and placed in the roasting chamber, and a shielding plate 13 is installed on the inflow side of each shelf. The shielding plate 14 was also installed at the end of the shelf on the discharge side.
被処理原料を層厚2mmでアルミナ板上に載置して、上記棚板6を使用して被処理原料を3枚2列、各段に6枚並べ3段積みとして、合計18枚で420gの原料を焙焼した。
また、内径6mmのアルミナ製の酸素ガス吹込み用ノズル9を各段に炉の中心線に対称にして2本、合計6本配置し、それぞれの酸素ガス吹込み用ノズル9から10リットル/分で合計60リットル/分の酸素ガスを流して焙焼中は酸化性雰囲気とした。各棚板6のトンネル部分の平均酸素ガス流速は20cm/分となった。雰囲気ガス流の数値解析結果を図4に示す。図に示すように、酸素ガス吹込み用ノズルに近い遮蔽板13の後方部分に渦巻きの発生が認められる。
The raw material to be processed is placed on an alumina plate with a layer thickness of 2 mm, and the shelf plate 6 is used to arrange the raw materials to be processed in two rows of three, six in each stage, and stacked in three stages, for a total of 18 grams, 420 g Roasted raw materials.
Also, two oxygen gas injection nozzles 9 made of alumina with an inner diameter of 6 mm are arranged in each stage symmetrically with the center line of the furnace, for a total of six, and 10 liters / minute from each of the oxygen gas injection nozzles 9. Then, oxygen gas was flown at a total of 60 liters / minute to create an oxidizing atmosphere during roasting. The average oxygen gas flow rate in the tunnel portion of each shelf 6 was 20 cm / min. The numerical analysis results of the atmospheric gas flow are shown in FIG. As shown in the figure, the occurrence of vortex is observed in the rear portion of the shielding plate 13 near the oxygen gas blowing nozzle.
得られた焙焼物を評価したところ、平均一次粒子径は33nmであるが、原料載置位置による分散が18とバラツキが大きく、厚膜抵抗体用ペーストの導電粉には適さない酸化イリジウム粉であった。
また、市販のソフト(CFX、ANSYS(株))を用いて焙焼室内の雰囲気ガス流を数値解析した。結果を図4に示す。図4に示すように焙焼室内には部分的な渦や澱みが多数あり、原料表面で均一な流速分布が得られていない結果となった。
When the obtained roasted product was evaluated, the average primary particle diameter was 33 nm, but the dispersion due to the raw material placement position was large with a variation of 18, and it was an iridium oxide powder that was not suitable for the conductive powder of the thick film resistor paste. there were.
The atmospheric gas flow in the roasting chamber was numerically analyzed using commercially available software (CFX, ANSYS Co., Ltd.). The results are shown in FIG. As shown in FIG. 4, there were many partial vortices and starches in the roasting chamber, and a uniform flow velocity distribution was not obtained on the raw material surface.
図1に示す本発明の焙焼炉を使用して、比較例2と同量の原料を2列、3枚、3段積みとした場合について数値解析を行い、原料表面で流入側から排出側へ均一に雰囲気ガスが流れるような条件を導き出した。焙焼室の内側寸法は、比較例2と同様に比較例1の高さを3倍にしたものである。酸素ガスの流量を各酸素ガス吹込み用ノズル1本当たり10リットル/分としたまま、酸素ガス吹込み用ノズルを各段2本から4本に増やして合計12本とし、吹込みノズルの内径を8mmに変更した。この結果、棚板格段のトンネル部分を流れる酸素ガスの平均流速は40cm/分となった。また、各段の流入側に設置していた遮蔽板を撤去し、排出側も棚板端部は完全な開放状態に変更した。
変更後の雰囲気ガス流の数値解析結果を図5に示す。焙焼室内に発生していた部分的な渦や澱みが解消され、原料表面で均一な流速分布が得られているのがわかる。
得られた焙焼物を評価したところ、平均一次粒子径は33nmで、原料載置位置による分散は2となり、バラツキを解消することができ、厚膜抵抗体用ペーストの導電粉に適した酸化イリジウム粉が得られた。また、1バッチ当たりの生成量は210gであった。
Using the roasting furnace of the present invention shown in FIG. 1, numerical analysis was performed for the case where the same amount of raw material as in Comparative Example 2 was made into two rows, three sheets, and three layers, and the raw material surface was inflow side to discharge side. The condition that the atmospheric gas flows uniformly was derived. The inner dimensions of the roasting chamber are three times the height of Comparative Example 1 as in Comparative Example 2. While maintaining the oxygen gas flow rate at 10 liters / minute for each oxygen gas blowing nozzle, the number of oxygen gas blowing nozzles is increased from 2 to 4 in each stage to a total of 12 nozzles. Was changed to 8 mm. As a result, the average flow rate of oxygen gas flowing through the tunnel portion of the shelf plate was 40 cm / min. In addition, the shielding plate installed on the inflow side of each stage was removed, and the end of the shelf plate was changed to a completely open state on the discharge side.
The numerical analysis result of the atmosphere gas flow after the change is shown in FIG. It can be seen that the partial vortex and stagnation generated in the roasting chamber are eliminated, and a uniform flow velocity distribution is obtained on the surface of the raw material.
When the obtained roasted product was evaluated, the average primary particle diameter was 33 nm, the dispersion due to the raw material placement position was 2, and the variation could be eliminated, and iridium oxide suitable for the conductive powder of the thick film resistor paste A powder was obtained. Moreover, the production amount per batch was 210 g.
以上のように、比較例2に比べて実施例1では、得られた酸化イリジウム粉の原料載置位置による分散が小さく、品質が安定していることがわかる。また、比較例1に比べ実施例は焙焼室内を有効に使い、生産性を大幅に向上できており、本発明によって、品質の安定した酸化イリジウム粉を効率よく生産できることが分かる。 As described above, it can be seen that in Example 1, compared to Comparative Example 2, the dispersion of the obtained iridium oxide powder depending on the raw material placement position is small, and the quality is stable. Moreover, compared with the comparative example 1, the Example can use the roasting chamber effectively and can improve productivity significantly, and it turns out that iridium oxide powder with stable quality can be produced efficiently by the present invention.
1 焙焼室
2、3 側壁
6 棚板
8 雰囲気ガス排出管
9 雰囲気ガス吹込み用ノズル
10 焙焼炉
13、14 遮蔽板
15 被処理原料
16 アルミナ板
DESCRIPTION OF SYMBOLS 1 Roasting chamber 2, 3 Side wall 6 Shelf board 8 Atmospheric gas discharge pipe 9 Atmospheric gas blowing nozzle 10 Roasting furnace 13, 14 Shield plate 15 Raw material to be processed 16 Alumina plate
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006239574A JP2008064328A (en) | 2006-09-04 | 2006-09-04 | Roasting furnace and manufacturing method of iridium oxide powder using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006239574A JP2008064328A (en) | 2006-09-04 | 2006-09-04 | Roasting furnace and manufacturing method of iridium oxide powder using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008064328A true JP2008064328A (en) | 2008-03-21 |
Family
ID=39287201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006239574A Pending JP2008064328A (en) | 2006-09-04 | 2006-09-04 | Roasting furnace and manufacturing method of iridium oxide powder using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008064328A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114440619A (en) * | 2020-10-20 | 2022-05-06 | 中国石油化工股份有限公司 | Roasting furnace |
-
2006
- 2006-09-04 JP JP2006239574A patent/JP2008064328A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114440619A (en) * | 2020-10-20 | 2022-05-06 | 中国石油化工股份有限公司 | Roasting furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102192092B1 (en) | Cooling unit, heat insulating structure, substrate processing apparatus, and method of manufacturing semiconductor device | |
JP5877358B2 (en) | Heat treatment equipment | |
WO2006006391A1 (en) | Wafer heating equipment and semiconductor manufacturing equipment | |
JP6294930B2 (en) | Substrate processing equipment | |
JP6192493B2 (en) | Heat treatment furnace and heat treatment method | |
JP5732655B2 (en) | Batch type firing furnace | |
JP2008064328A (en) | Roasting furnace and manufacturing method of iridium oxide powder using the same | |
KR101638844B1 (en) | Kiln apparatus for firing electriceramic products be capable of improving productivity and yields | |
JP5444604B2 (en) | Method for producing oxide powder, method for producing iridium oxide powder | |
CN111770899B (en) | Glass product manufacturing equipment | |
KR100873088B1 (en) | Method for manufacturing target material for sputtering target | |
KR20050035499A (en) | Apparatus for refining a glass melt | |
JP5468318B2 (en) | Heat treatment furnace | |
JP2012225557A (en) | Heat treatment device | |
CN103215566B (en) | Gas supply shower nozzle and substrate board treatment | |
JP2013007525A (en) | Baking method for batch-type kiln | |
JP2005114284A (en) | Kiln | |
JP5318373B2 (en) | Continuous firing equipment | |
JP2014122720A (en) | Method and device for adjusting atmosphere of pusher type continuous calcination furnace | |
JP3089922B2 (en) | Manufacturing method of ceramic laminated electronic component | |
CN118361967B (en) | A mesh belt type atmosphere oxidation furnace and reoxidation method | |
CN112384737A (en) | Apparatus for thermal destruction of volatile organic compounds | |
KR102558921B1 (en) | Heat treatment apparatus and control method thereof | |
WO2017038189A1 (en) | Method for manufacturing ntc thermistor | |
CN104418596B (en) | Frame |