[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009089574A - Ground-fault circuit interrupter - Google Patents

Ground-fault circuit interrupter Download PDF

Info

Publication number
JP2009089574A
JP2009089574A JP2007259885A JP2007259885A JP2009089574A JP 2009089574 A JP2009089574 A JP 2009089574A JP 2007259885 A JP2007259885 A JP 2007259885A JP 2007259885 A JP2007259885 A JP 2007259885A JP 2009089574 A JP2009089574 A JP 2009089574A
Authority
JP
Japan
Prior art keywords
circuit
test
leakage
current
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259885A
Other languages
Japanese (ja)
Other versions
JP4931754B2 (en
Inventor
Tatsuyuki Tsukamoto
龍幸 塚本
Shintaro Kamiya
慎太郎 神谷
Kenji Kanayama
健志 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007259885A priority Critical patent/JP4931754B2/en
Priority to CN2008100945513A priority patent/CN101404405B/en
Publication of JP2009089574A publication Critical patent/JP2009089574A/en
Application granted granted Critical
Publication of JP4931754B2 publication Critical patent/JP4931754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground-fault circuit interrupter which lowers the voltage applied across the contacts of a test switch and can reduce the isolation resistance between a test coil and the secondary coil of a zero-phase current transformer. <P>SOLUTION: The ground-fault circuit interrupter includes: the zero-phase current transformer inserted in an ac current path; a leakage detecting circuit which generates an output signal, when a leak current flowing through the zero phase current transformer exceeds a given level; a tripping circuit which trips a breaker unit inserted in the ac current path, in response to the output signal from the leak detecting circuit; a rectifying circuit which rectifies the voltage of the ac current path, to supply the rectified voltage to the leak detecting circuit; and a test circuit which supplies a flow of pseudo-leakage current to a test coil which are coiled around the zero-phase current transformer. The test circuit is made up of a serial connection constituted of the test coils, test switches, limiting resistances, and optical insulating means, the serial connection which is connected to the output end of the rectifying circuit. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、交流電路に漏電や地絡が発生したときにその電路を遮断する漏電遮断器に係り、特に、電路に疑似漏電電流を流して漏電をテストするテスト回路を備えた漏電遮断器に関するものである。   The present invention relates to an earth leakage circuit breaker that interrupts an electric circuit when a leakage or ground fault occurs in an AC circuit, and more particularly, to an earth leakage circuit breaker having a test circuit that tests a circuit leakage by causing a pseudo-leakage current to flow through the circuit. Is.

従来からこの種の漏電遮断器に対し種々の提案がなされているが、例えば、三相交流電路に零相変流器を挿入し、上記三相交流電路のいずれか2相の1次導体間に、テストスイッチ、テスト抵抗、および零相変流器のテスト巻線の直列回路からなるテスト回路を接続し、上記テストスイッチを操作することにより上記テスト回路に擬似漏電電流を流し、これを漏電検出部器により検知し、漏電電流のレベル判定をして交流電路を遮断するように構成したものがある。(例えば、特許文献1参照)   Various proposals have been made for this type of earth leakage circuit breaker. For example, a zero-phase current transformer is inserted in a three-phase AC circuit, and the two-phase primary conductors of the three-phase AC circuit are connected. Is connected to a test circuit consisting of a series circuit of a test switch, a test resistor, and a test winding of a zero-phase current transformer, and a pseudo-leakage current is caused to flow through the test circuit by operating the test switch. There is one configured to detect the current by a detector and determine the level of the leakage current to interrupt the AC circuit. (For example, see Patent Document 1)

特開2002−78187号公報JP 2002-78187 A

上記した従来の漏電遮断器においては、擬似漏電電流が流れるテストスイッチが主回路の交流電路に接続されており、主回路の電圧がテストスイッチの接点間に印加されるため、スイッチの定格が主回路電圧に対応する必要があり、スイッチの外形が大きくなるという問題があった。また、漏電遮断器の電子回路の電源の構成が、主回路電圧に近い電圧で整流される回路構成の場合、零相変流器のテスト用巻線と2次巻線間にほぼ主回路電圧に等しい電位差が発生するため、零相変流器のテスト用巻線と2次巻線間の絶縁を高耐圧なものにする必要があった。   In the above-described conventional earth leakage breaker, the test switch through which the pseudo earth leakage current flows is connected to the AC circuit of the main circuit, and the voltage of the main circuit is applied between the contact points of the test switch. There is a problem that the external shape of the switch becomes large because it is necessary to cope with the circuit voltage. In addition, when the configuration of the power supply of the electronic circuit of the earth leakage breaker is a circuit configuration in which rectification is performed with a voltage close to the main circuit voltage, the main circuit voltage is approximately between the test winding and the secondary winding of the zero-phase current transformer. Therefore, the insulation between the test winding and the secondary winding of the zero-phase current transformer must have a high withstand voltage.

本発明は、前記のような課題を解決するためになされたもので、漏電遮断器のテスト回路において、テストスイッチの接点間の電圧を低くでき、テストスイッチに定格電圧の低い、小形で安価なスイッチを使用でき、かつ、零相変流器のテスト用巻線と2次巻線間の絶縁耐量を、耐電圧が低く簡素に構成できる漏電遮断器を得ることを目的としている。   The present invention has been made to solve the above-described problems, and in a test circuit for an earth leakage circuit breaker, the voltage between the contacts of the test switch can be lowered, and the test switch has a low rated voltage and is small and inexpensive. It is an object of the present invention to provide an earth leakage circuit breaker that can use a switch and that can easily configure a dielectric strength between a test winding and a secondary winding of a zero-phase current transformer with a low withstand voltage.

本発明に係る漏電遮断器は、交流電路に挿入された零相変流器と、この零相変流器に巻回された2次巻線に接続され前記交流電路に流れる漏電電流が所定のレベルを越えたとき出力を発生する漏電検出回路と、前記漏電検出回路の出力により前記交流電路に挿入された遮断部を開離する引きはずし回路と、前記交流電路の電圧を整流して前記漏電検出回路に供給する整流回路と、前記零相変流器に巻回されたテスト巻線に擬似漏電電流を流すテスト回路を備えた漏電遮断器において、前記テスト回路は、前記整流回路の出力側に、前記テスト巻線とテストスイッチと制限抵抗と光絶縁手段との直列接続体を接続したものから構成したことを特徴とするものである。   An earth leakage breaker according to the present invention is connected to a zero-phase current transformer inserted in an AC circuit and a secondary winding wound around the zero-phase current transformer. A leakage detection circuit that generates an output when the level is exceeded, a tripping circuit that opens the interrupter inserted in the AC circuit by the output of the leakage detection circuit, and a voltage that rectifies the voltage of the AC circuit to rectify the leakage An earth leakage breaker comprising a rectifier circuit to be supplied to a detection circuit and a test circuit for causing a pseudo-leakage current to flow through a test winding wound around the zero-phase current transformer, wherein the test circuit is connected to an output side of the rectifier circuit Further, the test winding, the test switch, the limiting resistor, and the optical insulating means are connected in series.

本発明は以上説明したように、テスト回路を整流回路の出力側に接続したので、テストスイッチに定格電圧の低い、安価なスイッチを使用でき、かつ、零相変流器のテスト用巻線と2次巻線間の絶縁を簡素化することができる。   As described above, since the test circuit is connected to the output side of the rectifier circuit as described above, an inexpensive switch with a low rated voltage can be used as the test switch, and the test winding of the zero-phase current transformer and Insulation between the secondary windings can be simplified.

実施の形態1.
図1は本発明の実施形態1における漏電遮断器の構成を示すブロック図である。図2は図1の動作を示すタイムチャートである。
図1において、漏電遮断器10は、電源側端子R、S、T及び上記電源側端子R、S、Tに対応して負荷側端子U、V、Wを有しており、漏電遮断器10内には、上記電源側端子と負荷側端子とを結ぶ1次導体(R−U)、(S−V)、(T−W)の開閉を行う接点からなる遮断部9、各1次導体(R−U)、(S−V)、(T−W)毎の過電流を検出し図示しない引外し部を介して上記遮断部9の接点を開放させる図示しない過電流検出部を有している。なお、上記遮断部9の接点の投入は図示しないハンドルを手動操作することによって行われる。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of an earth leakage circuit breaker according to Embodiment 1 of the present invention. FIG. 2 is a time chart showing the operation of FIG.
In FIG. 1, the earth leakage breaker 10 has power side terminals R, S, T and load side terminals U, V, W corresponding to the power side terminals R, S, T. Inside, a blocking portion 9 comprising contacts for opening and closing the primary conductors (RU), (SV), and (TW) connecting the power supply side terminal and the load side terminal, and each primary conductor. An overcurrent detection unit (not shown) that detects an overcurrent for each of (RU), (SV), and (T-W) and opens the contact of the blocking unit 9 via a tripping unit (not shown) ing. Note that the contact of the blocking portion 9 is made by manually operating a handle (not shown).

また、自身の環状鉄心2cを貫通鎖交する1次導体(R−U)、(S−V)、(T−W)を流れる(本例では三相分の)電流に含まれる零相電流(負荷側の漏電や地絡によって流れる)を検出するための零相変流器2を有しており、鉄心2cには零相電流を取出すための2次巻線2a、漏電遮断機能テスト用のテスト巻線2bが巻回されている。   In addition, the zero-phase current included in the current (for three phases in this example) flowing through the primary conductors (RU), (SV), and (TW) passing through the ring-shaped iron core 2c. It has a zero-phase current transformer 2 for detecting (load-side leakage or ground fault), and the iron core 2c has a secondary winding 2a for taking out the zero-phase current, for testing the leakage breaker function The test winding 2b is wound.

また、1次導体(R−U)、(S−V)、(T−W)に整流回路3、定電圧回路4を介してテスト回路1が接続され、前記テスト回路1は、前記零相変流器2に巻回されたテスト巻線2bと、前記零相変流器2に流れる擬似漏電電流を入切りするテストスイッチ11と、上記テスト巻線2bに流れる擬似漏洩電流を制限する電流制限素子12と、光絶縁手段131との直列接続体で構成され、前記整流回路3の出力側の定電圧回路4とアースとの間に接続されている。また、前記光絶縁手段131は、互いに絶縁された一次側と二次側とで構成され、一次側に前記交流電路のいずれかと前記整流回路3の交流側との間に接続された発光素子131aが存在し、二次側に上記電流制限素子12に接続され擬似漏電電流にリップルを発生させるよう制御する受光素子131bが存在している。   A test circuit 1 is connected to primary conductors (RU), (SV), and (TW) via a rectifier circuit 3 and a constant voltage circuit 4, and the test circuit 1 is connected to the zero phase. A test winding 2b wound around the current transformer 2, a test switch 11 for turning on and off the pseudo leakage current flowing through the zero-phase current transformer 2, and a current for limiting the pseudo leakage current flowing through the test winding 2b. The limiting element 12 and the optical insulating means 131 are connected in series, and are connected between the constant voltage circuit 4 on the output side of the rectifier circuit 3 and the ground. The light insulating means 131 is composed of a primary side and a secondary side which are insulated from each other, and a light emitting element 131a connected between one of the AC electric circuits and the AC side of the rectifier circuit 3 on the primary side. And a light receiving element 131b that is connected to the current limiting element 12 and controls to generate a ripple in the pseudo leakage current.

更に、上記発光素子131aには整流素子141が発光素子131aの極性と逆並列の関係に接続されている。また、零相変流器2の2次巻線2aには前記交流電路に流れる漏電電流が所定のレベルを越えたとき出力を発生する漏電検出回路5が接続されており、この漏電検出回路5の出力を受けて遮断部9の接点を開放させる引きはずし回路6を有している。引きはずし回路6は、電磁装置61と、漏電検出回路5の出力を受けて電磁装置61を制御するスイッチング手段62とで構成されている。   Further, a rectifying element 141 is connected to the light emitting element 131a in an antiparallel relationship with the polarity of the light emitting element 131a. The secondary winding 2a of the zero-phase current transformer 2 is connected to a leakage detection circuit 5 that generates an output when a leakage current flowing through the AC circuit exceeds a predetermined level. Is provided with a tripping circuit 6 that opens the contact of the blocking section 9. The tripping circuit 6 includes an electromagnetic device 61 and switching means 62 that receives the output of the leakage detection circuit 5 and controls the electromagnetic device 61.

次に、以上のように構成されたこの発明の実施の形態1における漏電遮断器の漏電テスト動作について説明する。
いま、遮断部9の接点が閉成されている状態で、テストスイッチ11の接点が閉じられると、光絶縁手段131の発光素子131aに流れる半波電流に応じて受光素子131bで制御したリップル電流(半波電流)が擬似漏電電流として零相変流器2のテスト巻線2bに流れる。
Next, the leakage test operation of the leakage breaker according to Embodiment 1 of the present invention configured as described above will be described.
Now, when the contact of the test switch 11 is closed while the contact of the blocking section 9 is closed, the ripple current controlled by the light receiving element 131b according to the half-wave current flowing through the light emitting element 131a of the optical insulating means 131. (Half-wave current) flows in the test winding 2b of the zero-phase current transformer 2 as a pseudo-leakage current.

この時、テスト巻線2bには、電流制限素子12によって制限された所定の擬似漏電電流が通電されるので、環状鉄心2cに発生した磁束によって2次巻線2aに電流が発生し、その電流を漏電検出部5が検出し、これが所定のレベルを越えたとき漏電発生と判定して引きはずし回路6に出力する。引きはずし回路6のスイッチング手段62が漏電検出部5の出力を受けて、電磁装置61を動作させると遮断部9が遮断動作をし、漏電テストが行なわれる。
なお、光絶縁手段131の一次側の発光素子131aと並列に発光素子の極性と逆向きに整流素子141が接続されているので、交流電流を連続的に整流回路3に供給できるため、上記テスト回路1の構成による漏電検出回路5へ電源供給が安定して行なわれる。
At this time, since a predetermined pseudo-leakage current limited by the current limiting element 12 is applied to the test winding 2b, a current is generated in the secondary winding 2a by the magnetic flux generated in the annular core 2c. Is detected by the leakage detection unit 5, and when this exceeds a predetermined level, it is determined that leakage has occurred and is output to the trip circuit 6. When the switching means 62 of the tripping circuit 6 receives the output of the leakage detection unit 5 and operates the electromagnetic device 61, the blocking unit 9 performs a blocking operation, and a leakage test is performed.
Since the rectifying element 141 is connected in parallel with the light emitting element 131a on the primary side of the light insulating means 131 in the direction opposite to the polarity of the light emitting element, an alternating current can be continuously supplied to the rectifying circuit 3, so that the above test Power is stably supplied to the leakage detection circuit 5 having the configuration of the circuit 1.

テスト回路1は整流回路3から出力された電圧を所定の電圧に維持する定電圧回路4の後段に接続されており、テストスイッチ11の接点間に印加される電圧は、例えば30V以下に設定できるものである。
同様に零相変流器2の2次巻線2aとテスト巻線2bは、共に定電圧回路4の下流側に接続されるため、巻線間の電位差を例えば30V以下に設定でき、2次巻線2aとテスト巻線2b間の絶縁を簡素化できる。
The test circuit 1 is connected to the subsequent stage of the constant voltage circuit 4 that maintains the voltage output from the rectifier circuit 3 at a predetermined voltage, and the voltage applied between the contacts of the test switch 11 can be set to 30 V or less, for example. Is.
Similarly, since the secondary winding 2a and the test winding 2b of the zero-phase current transformer 2 are both connected to the downstream side of the constant voltage circuit 4, the potential difference between the windings can be set to 30 V or less, for example. The insulation between the winding 2a and the test winding 2b can be simplified.

図2は図1の動作を示すタイムチャートである。図において、111はテストスイッチ11の開閉タイミング、133は光絶縁手段131の発光素子131aに流れる電流波形、201はテスト巻線2bに流れる擬似漏電電流波形、202は2次巻線2aの出力波形、501は漏電検出回路5の出力波形、621はトリガ素子62の動作波形、611は引きはずし装置61の電流波形である。   FIG. 2 is a time chart showing the operation of FIG. In the figure, 111 is the opening / closing timing of the test switch 11, 133 is a current waveform flowing through the light emitting element 131a of the optical insulating means 131, 201 is a pseudo leakage current waveform flowing through the test winding 2b, and 202 is an output waveform of the secondary winding 2a. , 501 is an output waveform of the leakage detection circuit 5, 621 is an operation waveform of the trigger element 62, and 611 is a current waveform of the tripping device 61.

光絶縁手段131の発光素子131aには、波形133のような電流が流れており、テストスイッチ11の接点が波形111のポイントAのタイミングで閉じられると、テストスイッチ11と受光素子131bの開閉によって制御された波形201のような波形の擬似漏電電流が零相変流器2のテスト巻線2bに流れる。そして、擬似漏電電流によって零相変流器2の2次巻線2aに波形202のような出力電流が発生し、漏電検出回路5が所定レベルC以上の漏電を検出すると、波形501のような出力を行なう。引きはずし回路6の例えばトランジスタで構成されるスイッチング手段62が漏電検出回路5の波形501の出力を受けて、波形621のようなタイミングで動作し、電磁装置61に波形611のように電流が流れ、遮断部9の遮断動作が行われ、漏電テストをすることができる。   A current like a waveform 133 flows in the light emitting element 131a of the optical insulating means 131. When the contact of the test switch 11 is closed at the timing of point A of the waveform 111, the test switch 11 and the light receiving element 131b are opened and closed. A pseudo leakage current having a waveform like the controlled waveform 201 flows in the test winding 2 b of the zero-phase current transformer 2. When an output current such as waveform 202 is generated in the secondary winding 2a of the zero-phase current transformer 2 due to the pseudo-leakage current, and the leakage detection circuit 5 detects a leakage of a predetermined level C or higher, a waveform 501 Output. The switching means 62 composed of, for example, a transistor of the tripping circuit 6 receives the output of the waveform 501 of the leakage detection circuit 5 and operates at the timing as shown by the waveform 621, and current flows through the electromagnetic device 61 as shown by the waveform 611. Then, the interruption operation of the interruption unit 9 is performed, and a leakage test can be performed.

なお、テスト巻線2bに流れる電流は、2次巻線2aの出力が漏電検出部5に設定された漏電検出部5が引はずし回路6を動作させるしきい値C以上になるように設定されている。前記の実施例では三相電路に対応した遮断器の例にて説明したが、単相電路または三相4線式電路に対応した遮断器でも、いずれかの相の一次導体と整流回路間に光絶縁手段を接続した場合でも、同様の効果が得られる。   The current flowing through the test winding 2b is set so that the output of the secondary winding 2a is equal to or higher than the threshold C at which the leakage detection unit 5 set to the leakage detection unit 5 operates the tripping circuit 6. ing. In the above-described embodiment, the example of the circuit breaker corresponding to the three-phase electric circuit has been described. However, the circuit breaker corresponding to the single-phase electric circuit or the three-phase four-wire electric circuit may be connected between the primary conductor of one of the phases and the rectifier circuit. Even when the optical insulating means is connected, the same effect can be obtained.

以上のようにこの発明の実施の形態1によれば、テスト回路を整流回路の出力側に接続したので、テストスイッチに定格電圧の低い、安価なスイッチを使用でき、かつ、零相変流器のテスト用巻線と2次巻線間の絶縁を簡素化できるため、零相変流器を小形で安価なものを使用することができるという効果がある。   As described above, according to the first embodiment of the present invention, since the test circuit is connected to the output side of the rectifier circuit, an inexpensive switch with a low rated voltage can be used as the test switch, and the zero-phase current transformer Since the insulation between the test winding and the secondary winding can be simplified, there is an effect that a small and inexpensive zero-phase current transformer can be used.

実施の形態2.
図3は本発明の実施形態2における漏電遮断器を示すブロック図である。
実施の形態2の特徴は、図において、光絶縁手段131のうち、1次側の発光素子131aが1次導体のいずれかと整流回路3の交流側との間に制限抵抗151と直列に接続され、上記発光素子131aと制限抵抗151との直列体に並列に発光素子の極性と逆向きに定電圧ダイオード143を接続している点である。上記以外は、上述した実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 3 is a block diagram showing a leakage breaker in Embodiment 2 of the present invention.
In the figure, the feature of the second embodiment is that in the optical insulating means 131, the primary side light emitting element 131a is connected in series with the limiting resistor 151 between one of the primary conductors and the AC side of the rectifier circuit 3. The constant voltage diode 143 is connected in parallel to the series body of the light emitting element 131a and the limiting resistor 151 in the direction opposite to the polarity of the light emitting element. Other than the above, the second embodiment is the same as the first embodiment.

今、一次導体間にサージ電圧が印加された場合、光絶縁手段131の発光素子131aにサージ電流が流れるが、制限抵抗151の電圧が上昇し、発光素子131aと制限抵抗151に並列に発光素子の極性と逆向きに接続された定電圧ダイオード143により、発光素子131aと制限抵抗151への印加電圧を制限するため、発光素子131aに流れるサージ電流が制限できる。この時、制限抵抗151の抵抗値は、後段回路の電源供給への影響を少なくするため、例えば10Ω以下などできるだけ低くすることが望ましい。上記以外の動作は、上述した実施の形態1と同様である。   Now, when a surge voltage is applied between the primary conductors, a surge current flows through the light emitting element 131a of the optical insulating means 131, but the voltage of the limiting resistor 151 rises, and the light emitting element parallels the light emitting element 131a and the limiting resistor 151. Since the voltage applied to the light emitting element 131a and the limiting resistor 151 is limited by the constant voltage diode 143 connected in the direction opposite to the polarity of the current, the surge current flowing through the light emitting element 131a can be limited. At this time, the resistance value of the limiting resistor 151 is desirably as low as possible, for example, 10Ω or less in order to reduce the influence on the power supply of the subsequent circuit. Operations other than those described above are the same as those in the first embodiment.

以上のようにこの発明の実施の形態2によれば、上述した実施の形態1と同様、テストスイッチに定格電圧の低い、安価なスイッチを使用でき、かつ、零相変流器のテスト用巻線と2次巻線間の絶縁を簡素化できるため、零相変流器を小形で安価なものを使用できると共に、さらに光絶縁手段の発光素子側にサージ電流耐量の小さい小形で安価なものを使用できるという効果がある。   As described above, according to the second embodiment of the present invention, as in the first embodiment described above, an inexpensive switch with a low rated voltage can be used as the test switch, and the test winding of the zero-phase current transformer can be used. Since the insulation between the wire and the secondary winding can be simplified, a small and inexpensive zero-phase current transformer can be used, and a small and inexpensive one with a small surge current resistance on the light emitting element side of the optical insulation means There is an effect that can be used.

実施の形態3.
図4は本発明の実施形態3における漏電遮断器を示すブロック図である。
図5は図4の動作を示すタイムチャートである。
実施の形態3の特徴は、光絶縁手段131とは別に光絶縁手段132を備えた点である。図において、光絶縁手段132は、光絶縁手段131と同様に他の1次導体と整流回路3の交流側との間に接続された発光素子132aと、光絶縁手段131の受光素子131bに並列に接続された2次側の受光素子132bとから構成され、光絶縁手段131と132の発光素子131a、132aにそれぞれ並列に発光素子の極性と逆向きに接続された整流素子141、142を接続した点である。上記以外は、上述した実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 4 is a block diagram showing an earth leakage circuit breaker according to Embodiment 3 of the present invention.
FIG. 5 is a time chart showing the operation of FIG.
The feature of the third embodiment is that the optical insulating means 132 is provided separately from the optical insulating means 131. In the figure, the optical insulating means 132 is in parallel with the light emitting element 132 a connected between the other primary conductor and the AC side of the rectifier circuit 3 and the light receiving element 131 b of the optical insulating means 131 in the same manner as the optical insulating means 131. Rectifying elements 141 and 142 connected in parallel to the light emitting elements 131a and 132a of the optical insulating means 131 and 132 in parallel with the polarities of the light emitting elements, respectively. This is the point. Other than the above, the second embodiment is the same as the first embodiment.

次に、以上のように構成されたこの発明の実施の形態3における漏電遮断器の動作について図5を参照して説明する。
図において、テストスイッチ11の接点が閉じられると、光絶縁手段131、132の発光素子131a、132aに流れる半波電流に応じて受光素子131bと132bにより制御したリップル電流(半波電流)が擬似漏電電流として零相変流器2のテスト巻線2bに流れ、その後は実施の形態1と同様の動作で漏電テストをすることができる。
Next, the operation of the ground fault circuit breaker according to Embodiment 3 of the present invention configured as described above will be described with reference to FIG.
In the figure, when the contact of the test switch 11 is closed, the ripple current (half wave current) controlled by the light receiving elements 131b and 132b in accordance with the half wave current flowing through the light emitting elements 131a and 132a of the optical insulating units 131 and 132 is simulated. The leakage current flows to the test winding 2b of the zero-phase current transformer 2, and thereafter the leakage test can be performed by the same operation as in the first embodiment.

なお、光絶縁手段131、132の発光素子131a、132aと並列に発光素子の極性と逆向きに整流素子141、142が接続されているので、交流電流を連続的に整流回路3に供給でき、上記テスト回路1の構成による漏電検出回路5へ電源供給が安定して行なわれる。   In addition, since the rectifier elements 141 and 142 are connected in parallel with the light emitting elements 131a and 132a of the optical insulating means 131 and 132 in the direction opposite to the polarity of the light emitting elements, an alternating current can be continuously supplied to the rectifying circuit 3. The power supply to the leakage detection circuit 5 having the configuration of the test circuit 1 is stably performed.

図5は図4の動作を示す、タイムチャートである。
図において、111はテストスイッチ11の開閉タイミング、133は光絶縁手段131の発光素子131aに流れる電流波形、134は光絶縁手段132の発光素子132aに流れる電流波形、201はテスト巻線2bに流れる擬似漏電電流波形、202は2次巻線2aの出力波形、501は漏電検出回路5の出力波形、621は電磁装置スイッチング手段62の動作波形、611は電磁装置61の電流波形である。
FIG. 5 is a time chart showing the operation of FIG.
In the figure, 111 is the opening / closing timing of the test switch 11, 133 is a current waveform flowing through the light emitting element 131a of the optical insulating means 131, 134 is a current waveform flowing through the light emitting element 132a of the optical insulating means 132, and 201 is flowing through the test winding 2b. The pseudo-leakage current waveform, 202 is the output waveform of the secondary winding 2a, 501 is the output waveform of the leakage detection circuit 5, 621 is the operation waveform of the electromagnetic device switching means 62, and 611 is the current waveform of the electromagnetic device 61.

光絶縁手段131の発光素子131aには波形133、光絶縁手段132の発光素子132aには波形134のような電流が流れており、テストスイッチ11の接点が波形111のポイントAのタイミング閉じられると、テストスイッチ11と受光素子131bと受光素子132bの開閉によって制御された、波形201のような波形の擬似漏電電流が零相変流器2のテスト巻線2bに流れる。 A current like a waveform 133 flows in the light emitting element 131a of the optical insulating means 131 and a waveform 134 flows in the light emitting element 132a of the optical insulating means 132, and the contact of the test switch 11 is closed at the point A of the waveform 111. A pseudo-leakage current having a waveform like waveform 201 controlled by opening / closing of the test switch 11, the light receiving element 131b, and the light receiving element 132b flows in the test winding 2b of the zero-phase current transformer 2.

そして、擬似漏電電流によって零相変流器2の2次巻線2aに波形202のような出力電流が発生し、漏電検出回路5が漏電を検出すると、波形501のような出力を行なう。引きはずし回路6のスイッチング手段62が漏電検出回路5の波形501の出力を受けて、波形621のようなタイミングで動作し、電磁装置61に波形611のように電流が流れ、遮断部9の遮断動作が行われ、漏電テストをすることができる。
ここで、テスト巻線2bに流れる電流は、2次巻線2aの出力が漏電検出部5に設定された漏電検出部5が引はずし回路6を動作させるしきい値C以上になるように設定されている。
Then, an output current such as a waveform 202 is generated in the secondary winding 2a of the zero-phase current transformer 2 due to the pseudo leakage current, and when the leakage detection circuit 5 detects a leakage, an output such as a waveform 501 is performed. The switching means 62 of the tripping circuit 6 receives the output of the waveform 501 of the leakage detection circuit 5 and operates at the timing as shown by the waveform 621, the current flows through the electromagnetic device 61 as shown by the waveform 611, so The operation is performed and a leakage test can be performed.
Here, the current flowing through the test winding 2b is set so that the output of the secondary winding 2a is equal to or higher than the threshold C at which the leakage detection unit 5 set to the leakage detection unit 5 operates the tripping circuit 6. Has been.

以上のようにこの発明の実施の形態3によれば、テストスイッチを直流回路内に構成したので、テストスイッチに定格電圧の低い、安価なスイッチを使用でき、かつ、零相変流器のテスト用巻線と2次巻線間の絶縁を簡素化できるため、零相変流器を小形で安価なものを使用することができると共に、三相の一次導体のうち2つの一次導体に光絶縁手段131、132の発光素子131a、132aが接続されているため、三相のうちどの相が欠相、または未接続となっても他の相で漏電テストが可能となる。   As described above, according to the third embodiment of the present invention, since the test switch is configured in the DC circuit, an inexpensive switch having a low rated voltage can be used as the test switch, and the zero-phase current transformer test can be performed. Insulation between the primary winding and the secondary winding can be simplified, so that a small and inexpensive zero-phase current transformer can be used, and two primary conductors among the three-phase primary conductors are optically insulated. Since the light emitting elements 131a and 132a of the means 131 and 132 are connected, the leakage test can be performed in the other phase even if any of the three phases is missing or not connected.

実施の形態4.
図6は本発明の実施形態4における漏電遮断器を示すブロック図であり、図7は図6の動作を示すタイムチャートである。
この実施の形態4は上述の実施の形態2と実施の形態3とを合体して両者の特徴を併せ持つようにしたものである。すなわち、先ずは、光絶縁手段の一次側を2個設け、それぞれの一方を発光素子131aと制限抵抗151の直列体に並列に発光素子131aの極性と逆向きに定電圧ダイオード143を接続したものから構成し、他方を発光素子132aと制限抵抗152の直列体に並列に発光素子132aの極性と逆向きに定電圧ダイオード144を接続したものから構成している。なお、1次導体(R−U)、(S−V)、(T−W)から整流回路3に至る回路にそれぞれ制限抵抗8a〜8cが新しく挿入されている。
Embodiment 4 FIG.
FIG. 6 is a block diagram showing an earth leakage circuit breaker according to Embodiment 4 of the present invention, and FIG. 7 is a time chart showing the operation of FIG.
In the fourth embodiment, the above-described second and third embodiments are combined to have both characteristics. That is, first, two primary sides of the optical insulating means are provided, and one of each is connected in parallel with the series body of the light emitting element 131a and the limiting resistor 151, and the constant voltage diode 143 is connected in the direction opposite to the polarity of the light emitting element 131a. The other is composed of a constant voltage diode 144 connected in parallel to a series body of a light emitting element 132a and a limiting resistor 152 in a direction opposite to the polarity of the light emitting element 132a. In addition, limiting resistors 8a to 8c are newly inserted in the circuits from the primary conductors (RU), (SV), and (TW) to the rectifier circuit 3, respectively.

一方、光絶縁手段の二次側が挿入されるテスト回路1は、定電圧回路4に零相変流器2のテスト巻線2bを介してテスト電流を制限する電流制限素子12と、これと直列に接続されたテスト電流を制御する擬似漏電電流スイッチング素子17とを接続し、更に、上記定電圧回路4とスイッチング素子17の入力端子間にはテストスイッチ11と、電流制限素子16との直列回路と、光絶縁手段の二次側の2個の受光素子131b、132bの並列回路とが直列関係に接続されている。   On the other hand, the test circuit 1 in which the secondary side of the optical insulating means is inserted includes a current limiting element 12 for limiting the test current to the constant voltage circuit 4 via the test winding 2b of the zero-phase current transformer 2, and a series circuit therewith. And a series circuit of a test switch 11 and a current limiting element 16 between the constant voltage circuit 4 and the input terminal of the switching element 17. And a parallel circuit of two light receiving elements 131b and 132b on the secondary side of the optical insulating means are connected in series.

また、零相変流器2の2次巻線2aに接続された漏電検出回路5と、この漏電検出回路5の出力を受けて遮断部9の接点を開放させる引きはずし回路6を有しているが、引きはずし回路6は、電磁装置61と、漏電検出回路5の出力を受けて電磁装置61を制御する電磁装置駆動用のスイッチング手段62と、上記スイッチング素子17の入力端子に接続され漏電検出回路5の出力を受けて上記スイッチング素子17をOFFする擬似漏電電流制御手段73と、上記漏電検出回路5の入力側に挿入されテスト回路1の動作時に漏電検出回路5の電圧安定化に寄与する平滑コンデンサ72と、上記平滑コンデンサ72から上記テスト回路1側への電流流出を防止する整流素子71で構成されている。   In addition, it has a leakage detection circuit 5 connected to the secondary winding 2a of the zero-phase current transformer 2, and a tripping circuit 6 that receives the output of the leakage detection circuit 5 and opens the contact of the breaking unit 9. However, the tripping circuit 6 is connected to the electromagnetic device 61, the electromagnetic device driving switching means 62 that receives the output of the leakage detection circuit 5 and controls the electromagnetic device 61, and the input terminal of the switching element 17. A pseudo-leakage current control means 73 that receives the output of the detection circuit 5 and turns off the switching element 17 and is inserted on the input side of the leakage detection circuit 5 and contributes to voltage stabilization of the leakage detection circuit 5 when the test circuit 1 is operated. And a rectifying element 71 for preventing current from flowing from the smoothing capacitor 72 to the test circuit 1 side.

次に、以上のように構成されたこの発明の実施の形態4における漏電遮断器の動作にいて説明する。
今、遮断部9の接点が閉成されている状態でテストスイッチ11の接点が閉じられると、光絶縁手段131、132の発光素子131a、132aに流れる半波電流に応じて受光素子131bと132bが擬似漏洩電流スイッチング素子17を介して制御したリップル電流(半波電流)が擬似漏電電流として零相変流器2のテスト巻線2bに流れる。
Next, the operation of the ground fault circuit breaker according to Embodiment 4 of the present invention configured as described above will be described.
Now, when the contact of the test switch 11 is closed in a state where the contact of the blocking unit 9 is closed, the light receiving elements 131b and 132b according to the half-wave currents flowing through the light emitting elements 131a and 132a of the optical insulating means 131 and 132. The ripple current (half-wave current) controlled through the pseudo-leakage current switching element 17 flows through the test winding 2b of the zero-phase current transformer 2 as a pseudo-leakage current.

この時、テスト巻線2bには、電流制限素子12によって制限された所定の擬似漏電電流が通電されるので、環状鉄心2cに発生した磁束によって2次巻線2aに電流が発生し、その電流を漏電検出部5が検出し、所定レベル以上の電流が流れると漏電発生と判定して引きはずし回路6に出力する。引きはずし回路6のスイッチング手段62が漏電検出部5の出力を受けて、電磁装置61を動作させると遮断部9が遮断動作をし、漏電テストが行なわれる。   At this time, since a predetermined pseudo-leakage current limited by the current limiting element 12 is applied to the test winding 2b, a current is generated in the secondary winding 2a by the magnetic flux generated in the annular core 2c. Is detected by the leakage detection unit 5, and if a current of a predetermined level or more flows, it is determined that leakage has occurred and is output to the trip circuit 6. When the switching means 62 of the tripping circuit 6 receives the output of the leakage detection unit 5 and operates the electromagnetic device 61, the blocking unit 9 performs a blocking operation, and a leakage test is performed.

漏電テストにより漏電検出回路5が上述のように電磁装置61を動作させると同時に、擬似漏電電流制御手段73をONし、テスト電流を制御する擬似漏電電流スイッチング素子17をOFFするため、電磁装置61の動作時には擬似漏電電流を流さないようにしている。そのため、制限抵抗8a〜8cや定電圧回路4の構成により使用電流に制限がある場合でも、安定したテスト動作が可能となる。なお、主回路電圧が低く、テスト回路1の動作により、定電圧回路4から出力される電流のほとんどが擬似漏電電流に費やされる場合でも、漏電検出回路5の電圧は、平滑コンデンサ72と整流素子71との作用により安定化補償される。   Due to the leakage test, the leakage detection circuit 5 operates the electromagnetic device 61 as described above, and at the same time, the pseudo leakage current control means 73 is turned on and the pseudo leakage current switching element 17 that controls the test current is turned off. During the operation, pseudo-leakage current is prevented from flowing. Therefore, a stable test operation is possible even when the operating current is limited by the configuration of the limiting resistors 8a to 8c and the constant voltage circuit 4. Even when the main circuit voltage is low and most of the current output from the constant voltage circuit 4 is consumed by the pseudo leakage current due to the operation of the test circuit 1, the voltage of the leakage detection circuit 5 is the smoothing capacitor 72 and the rectifying element. Stabilization is compensated by the action of 71.

また、実施の形態3のように、光絶縁手段131、132の発光素子131a、132aと並列に発光素子の極性と逆向きに定電圧ダイオード143、144が接続されているので、交流電流を連続的に整流回路3に供給でき、上記テスト回路1の構成による漏電検出回路5へ電源供給が安定して行なわれるものである。   Moreover, since the constant voltage diodes 143 and 144 are connected in parallel with the light emitting elements 131a and 132a of the optical insulating means 131 and 132 in the opposite direction to the polarity of the light emitting elements as in the third embodiment, the alternating current is continuously supplied. Thus, the power can be supplied to the rectifier circuit 3 in a stable manner, and the power supply to the leakage detection circuit 5 having the configuration of the test circuit 1 can be stably performed.

また、一次導体間にサージ電圧が印加された場合、光絶縁手段131の発光素子131aにサージ電流が流れるが、制限抵抗151の電圧が上昇し、発光素子131aと制限抵抗151の直列体に逆並列に接続された定電圧ダイオード143が、発光素子131aと制限抵抗151への印加電圧を制限するため、発光素子131aに流れるサージ電流が制限される。光絶縁手段132の発光素子132aと制限抵抗152と定電圧ダイオード144の組合せも上述と同様の動作をし、発光素子132aに流れるサージ電流が制限される。   In addition, when a surge voltage is applied between the primary conductors, a surge current flows through the light emitting element 131a of the optical insulating means 131, but the voltage of the limiting resistor 151 rises and reverses to the series of the light emitting element 131a and the limiting resistor 151. Since the constant voltage diode 143 connected in parallel limits the voltage applied to the light emitting element 131a and the limiting resistor 151, the surge current flowing through the light emitting element 131a is limited. The combination of the light emitting element 132a, the limiting resistor 152, and the constant voltage diode 144 of the optical insulating means 132 operates in the same manner as described above, and the surge current flowing through the light emitting element 132a is limited.

三相の一次導体のうち2つの一次導体に光絶縁手段131、132の発光素子131a、132aが接続されているため、三相のうちどの相が欠相、または未接続となってもテスト可能となると共により安定したテスト回路が実現できる。
この時、制限抵抗151、152の抵抗値は、後段回路の電源供給への影響を少なくするため、例えば10Ω以下などできるだけ低くすることが望ましい。
Since the light-emitting elements 131a and 132a of the optical insulating means 131 and 132 are connected to two primary conductors of the three-phase primary conductors, testing is possible regardless of which of the three phases is missing or not connected. As a result, a more stable test circuit can be realized.
At this time, the resistance values of the limiting resistors 151 and 152 are desirably as low as possible, for example, 10Ω or less in order to reduce the influence on the power supply of the subsequent circuit.

図7のタイムチャートにおいて、111はテストスイッチ11の開閉タイミング、133は光絶縁手段131の発光素子131aに流れる電流波形、134は光絶縁手段132の発光素子132aに流れる電流波形、201はテスト巻線2bに流れる擬似漏洩電流波形、202は2次巻線2aの出力波形、501は漏電検出回路5の出力波形、621は電磁装置スイッチング手段62の動作波形、611は電磁装置61の電流波形、731は擬似漏電電流制御手段73の動作波形である。   In the time chart of FIG. 7, 111 is the opening / closing timing of the test switch 11, 133 is a current waveform flowing through the light emitting element 131a of the optical insulating means 131, 134 is a current waveform flowing through the light emitting element 132a of the optical insulating means 132, 201 is a test winding. Quasi-leakage current waveform flowing in the line 2b, 202 is an output waveform of the secondary winding 2a, 501 is an output waveform of the leakage detection circuit 5, 621 is an operation waveform of the electromagnetic device switching means 62, 611 is a current waveform of the electromagnetic device 61, Reference numeral 731 denotes an operation waveform of the pseudo leakage current control means 73.

光絶縁手段131の発光素子131aには波形133、光絶縁手段132の発光素子132aには波形134のような電流が流れており、テストスイッチ11の接点が波形111のポイントAのタイミング閉じられると、テストスイッチ11と受光素子131bと受光素子132bの開閉によって制御された、波形201のような波形の擬似漏洩電流が零相変流器2のテスト巻線2bに流れる。そして、擬似漏電電流によって零相変流器2の2次巻線2aに波形202のような出力電流が発生し、漏電検出回路5が漏電を検出すると、波形501のような出力を行なう。   A current like a waveform 133 flows in the light emitting element 131a of the optical insulating means 131 and a waveform 134 flows in the light emitting element 132a of the optical insulating means 132, and the contact of the test switch 11 is closed at the point A of the waveform 111. The pseudo-leakage current having the waveform 201, which is controlled by opening / closing the test switch 11, the light receiving element 131b, and the light receiving element 132b, flows in the test winding 2b of the zero-phase current transformer 2. Then, an output current such as a waveform 202 is generated in the secondary winding 2a of the zero-phase current transformer 2 due to the pseudo leakage current, and when the leakage detection circuit 5 detects a leakage, an output such as a waveform 501 is performed.

引きはずし回路6の擬似漏電電流制御手段73が漏電検出回路5の波形501の出力を受けて、波形731のようなタイミングで動作し、擬似漏洩電流スイッチング素子をOFFさせるため、波形201のポイントBの位置で擬似漏洩電流が流れなくなる。それと同時に、引きはずし回路6の電磁装置スイッチング手段62が漏電検出回路5の波形501の出力を受けて、波形621のようなタイミングで動作し、引きはずし装置61に波形611のように電流が流れ、遮断部9の遮断動作が行われ、漏電テストをすることができる。ここで、テスト巻線2bに流れる電流は、2次巻線2aの出力が漏電検出部5に設定された漏電検出部5が引はずし回路6を動作させるしきい値C以上になるように設定されている。   The pseudo leakage current control means 73 of the tripping circuit 6 receives the output of the waveform 501 of the leakage detection circuit 5 and operates at the timing as shown by the waveform 731 to turn off the pseudo leakage current switching element. The pseudo leakage current does not flow at the position. At the same time, the electromagnetic device switching means 62 of the trip circuit 6 receives the output of the waveform 501 of the leakage detection circuit 5 and operates at the timing as shown by the waveform 621, and a current flows through the trip device 61 as shown by the waveform 611. Then, the interruption operation of the interruption unit 9 is performed, and a leakage test can be performed. Here, the current flowing through the test winding 2b is set so that the output of the secondary winding 2a is equal to or higher than the threshold C at which the leakage detection unit 5 set to the leakage detection unit 5 operates the tripping circuit 6. Has been.

以上のようにこの発明の実施の形態4によれば、テストスイッチを直流回路内に構成したので、テストスイッチに定格電圧の低い、安価なスイッチを使用でき、かつ、零相変流器のテスト用巻線と2次巻線間の絶縁を簡素化できるため、零相変流器を小形で安価なものを使用することができる。さらに光絶縁手段の発光素子側にサージ電流耐量の小さい小形で安価なものを使用でき、かつ、出力電流が小さく構成が単純で安価な電源回路を使用できるという効果がある。   As described above, according to the fourth embodiment of the present invention, since the test switch is configured in the DC circuit, an inexpensive switch with a low rated voltage can be used as the test switch, and the zero-phase current transformer test can be performed. Since the insulation between the primary winding and the secondary winding can be simplified, a small and inexpensive zero-phase current transformer can be used. Further, there is an effect that a small and inexpensive device having a small surge current resistance can be used on the light emitting element side of the optical insulating means, and that an inexpensive power supply circuit having a small output current and a simple configuration can be used.

なお、上記の各実施例では三相電路に対応した遮断器の例にて説明したが、三相4線式電路に対応した遮断器でも、いずれか3つの相の一次導体と整流回路間に光絶縁手段を接続した場合でも、同様の効果が得られることはもちろんである。   In each of the above embodiments, the example of the circuit breaker corresponding to the three-phase electric circuit has been described. However, even in the circuit breaker corresponding to the three-phase four-wire electric circuit, between the primary conductor and the rectifier circuit of any three phases. Of course, the same effect can be obtained even when the optical insulating means is connected.

本発明の実施形態1における漏電遮断器の構成を示すブロック図である。It is a block diagram which shows the structure of the earth-leakage circuit breaker in Embodiment 1 of this invention. 図1のタイムチャートである。It is a time chart of FIG. 本発明の実施形態2における漏電遮断器の構成を示すブロック図である。It is a block diagram which shows the structure of the earth-leakage circuit breaker in Embodiment 2 of this invention. 本発明の実施形態3における漏電遮断器の構成を示すブロック図である。It is a block diagram which shows the structure of the earth-leakage circuit breaker in Embodiment 3 of this invention. 図4のタイムチャートである。It is a time chart of FIG. 本発明の実施形態4における漏電遮断器の構成を示すブロック図である。It is a block diagram which shows the structure of the earth-leakage circuit breaker in Embodiment 4 of this invention. 図6のタイムチャートである。It is a time chart of FIG.

符号の説明Explanation of symbols

1 テスト回路、 2 零相変流器、 2a 2次巻線、
2b テスト巻線、 2c 鉄心、 3 整流回路、
4 定電圧回路、 5 漏電検出回路、 6 引きはずし回路、
8a 制限抵抗、 8b 制限抵抗、 8c 制限抵抗、
9 遮断部、 10 漏電遮断器、 11 テストスイッチ、
12 電流制限素子、 16電流制限素子、
17 擬似漏電電流スイッチング素子、 61 電磁装置、
62 電磁装置駆動用スイッチング手段、 71 整流素子、
72 平滑コンデンサ、 73 擬似漏電電流制御手段、
131 光絶縁手段、 131a 発光素子、 131b 受光素子、
141 整流素子、 142 整流素子、 143 定電圧ダイオード、144 定電圧ダイオード、 151 制限抵抗、 152 制限抵抗。
1 test circuit, 2 zero-phase current transformer, 2a secondary winding,
2b test winding, 2c iron core, 3 rectifier circuit,
4 Constant voltage circuit, 5 Earth leakage detection circuit, 6 Trip circuit,
8a limiting resistor, 8b limiting resistor, 8c limiting resistor,
9 circuit breaker, 10 earth leakage circuit breaker, 11 test switch,
12 current limiting elements, 16 current limiting elements,
17 pseudo leakage current switching element, 61 electromagnetic device,
62 electromagnetic device driving switching means, 71 rectifying element,
72 smoothing capacitor, 73 pseudo leakage current control means,
131 optical insulating means, 131a light emitting element, 131b light receiving element,
141 rectifier element, 142 rectifier element, 143 constant voltage diode, 144 constant voltage diode, 151 limiting resistor, 152 limiting resistor.

Claims (8)

交流電路に挿入された零相変流器と、この零相変流器に巻回された2次巻線に接続され前記交流電路に流れる漏電電流が所定のレベルを越えたとき出力を発生する漏電検出回路と、前記漏電検出回路の出力により前記交流電路に挿入された遮断部を開離する引きはずし回路と、前記交流電路の電圧を整流して前記漏電検出回路に供給する整流回路と、前記零相変流器に巻回されたテスト巻線に擬似漏電電流を流すテスト回路を備えた漏電遮断器において、前記テスト回路は、前記整流回路の出力側に、前記テスト巻線とテストスイッチと制限抵抗と光絶縁手段との直列接続体を接続したものから構成したことを特徴とする漏電遮断器。   A zero-phase current transformer inserted in the AC circuit and a secondary winding wound around this zero-phase current transformer are connected to generate an output when the leakage current flowing through the AC circuit exceeds a predetermined level. A leakage detection circuit, a tripping circuit that opens the interrupter inserted in the AC circuit by the output of the leakage detection circuit, a rectification circuit that rectifies the voltage of the AC circuit and supplies the voltage to the leakage detection circuit, An earth leakage circuit breaker having a test circuit for supplying a pseudo-leakage current to a test winding wound around the zero-phase current transformer, wherein the test circuit is connected to the test winding and a test switch on an output side of the rectifier circuit. An earth leakage circuit breaker comprising: a series connection body of a limiting resistor and optical insulating means. 前記光絶縁手段は、一次側が前記交流電路と前記整流回路との間に挿入された発光素子と、二次側が前記テスト回路に流れる擬似漏電電流を制御する受光素子とで構成したことを特徴とする請求項1に記載の漏電遮断器。   The optical insulating means comprises a light emitting element whose primary side is inserted between the AC circuit and the rectifier circuit, and a light receiving element whose secondary side controls a pseudo-leakage current flowing in the test circuit. The earth leakage circuit breaker according to claim 1. 前記光絶縁手段の発光素子に逆並列に整流素子を接続したことを特徴とする請求項2に記載の漏電遮断器。   The earth leakage breaker according to claim 2, wherein a rectifying element is connected in antiparallel to the light emitting element of the optical insulating means. 前記光絶縁手段の発光素子に直列に制限抵抗を接続し、前記発光素子と制限抵抗の直列回路に前記発光素子の極性と逆向きの定電圧ダイオードを接続したことを特徴とする請求項1に記載の漏電遮断器。   2. A limiting resistor is connected in series to the light emitting element of the optical insulating means, and a constant voltage diode having a direction opposite to the polarity of the light emitting element is connected to a series circuit of the light emitting element and the limiting resistor. The earth leakage breaker described. 前記光絶縁手段を複数配設し、それぞれの光絶縁手段の一次側を前記交流電路のうち少なくとも2相と前記整流回路との間に接続し、それぞれの光絶縁手段の二次側を上記テスト回路内で並列接続したこと特徴とする請求項1に記載の漏電遮断器。   A plurality of the optical insulating means are arranged, and the primary side of each optical insulating means is connected between at least two phases of the AC circuit and the rectifier circuit, and the secondary side of each optical insulating means is tested as described above. The earth leakage circuit breaker according to claim 1, wherein the circuit breakers are connected in parallel in the circuit. 前記漏電検出回路の出力により前記テスト回路による擬似漏電電流を制御する擬似漏電電流制御手段を備えたことを特徴とする請求項1に記載の漏電遮断器。   The earth leakage circuit breaker according to claim 1, further comprising pseudo earth leakage current control means for controlling a pseudo earth leakage current generated by the test circuit based on an output of the earth leakage detection circuit. 前記整流回路の出力側から定電圧回路を介して上記テスト回路および漏電検出回路に供給したことを特徴とする請求項1に記載の漏電遮断器。   2. The leakage breaker according to claim 1, wherein the leakage breaker is supplied from the output side of the rectifier circuit to the test circuit and the leakage detection circuit via a constant voltage circuit. 前記引きはずし回路は、電磁装置と、漏電検出回路の出力を受けて電磁装置を制御する電磁装置駆動用のスイッチング手段と、上記スイッチング素子の入力端子に接続され漏電検出回路の出力を受けて上記スイッチング素子をOFFする擬似漏電電流制御手段と、上記漏電検出回路の入力側に挿入されテスト回路の動作時に漏電検出回路の電圧安定化に寄与する平滑コンデンサと、上記平滑コンデンサから上記テスト回路側への電流流出を防止する整流素子で構成されていることを特徴とする請求項1に記載の漏電遮断器。   The trip circuit includes an electromagnetic device, switching means for driving the electromagnetic device that receives the output of the leakage detection circuit and controls the electromagnetic device, and the output of the leakage detection circuit connected to the input terminal of the switching element. A pseudo-leakage current control means for turning off the switching element, a smoothing capacitor that is inserted on the input side of the leakage detection circuit and contributes to voltage stabilization of the leakage detection circuit during operation of the test circuit, and from the smoothing capacitor to the test circuit side 2. The earth leakage circuit breaker according to claim 1, wherein the circuit breaker is constituted by a rectifying element that prevents current from flowing out.
JP2007259885A 2007-10-03 2007-10-03 Earth leakage breaker Active JP4931754B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007259885A JP4931754B2 (en) 2007-10-03 2007-10-03 Earth leakage breaker
CN2008100945513A CN101404405B (en) 2007-10-03 2008-05-12 Creepage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259885A JP4931754B2 (en) 2007-10-03 2007-10-03 Earth leakage breaker

Publications (2)

Publication Number Publication Date
JP2009089574A true JP2009089574A (en) 2009-04-23
JP4931754B2 JP4931754B2 (en) 2012-05-16

Family

ID=40538306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259885A Active JP4931754B2 (en) 2007-10-03 2007-10-03 Earth leakage breaker

Country Status (2)

Country Link
JP (1) JP4931754B2 (en)
CN (1) CN101404405B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074930A (en) * 2009-11-19 2011-05-25 黄华道 Electric leakage detection protective circuit
CN102306924A (en) * 2011-09-14 2012-01-04 黄华道 Leakage detecting protection circuit capable of periodically automatically detecting function integrity
CN103701091A (en) * 2013-10-22 2014-04-02 博耳(宜兴)电力成套有限公司 Electric leakage controller for circuit breaker
CN105449627A (en) * 2014-08-18 2016-03-30 施耐德电气工业公司 Electric leakage protection device and method thereof
KR20180032018A (en) * 2016-09-21 2018-03-29 주식회사 이진스 Earth Leakage Breaker

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396945B1 (en) * 2010-10-05 2014-05-19 엘에스산전 주식회사 Earth leakage current breaker
WO2012127307A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Earth leakage detection device
KR101348526B1 (en) * 2011-04-27 2014-01-06 미쓰비시덴키 가부시키가이샤 Power source circuit and earth leakage breaker using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819166A (en) * 1994-06-24 1996-01-19 Mitsubishi Electric Corp Grounding detector
JP2002078187A (en) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd Leakage breaker
JP2005158559A (en) * 2003-11-27 2005-06-16 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker
JP2005251410A (en) * 2004-03-01 2005-09-15 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker
JP2007149603A (en) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp Earth leakage breaker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966280A (en) * 1993-08-24 1999-10-12 Xerox Corporation Modular, distributed equipment leakage circuit interrupter
JP2992449B2 (en) * 1994-11-15 1999-12-20 松下電工株式会社 Circuit breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819166A (en) * 1994-06-24 1996-01-19 Mitsubishi Electric Corp Grounding detector
JP2002078187A (en) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd Leakage breaker
JP2005158559A (en) * 2003-11-27 2005-06-16 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker
JP2005251410A (en) * 2004-03-01 2005-09-15 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker
JP2007149603A (en) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp Earth leakage breaker

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074930A (en) * 2009-11-19 2011-05-25 黄华道 Electric leakage detection protective circuit
CN102306924A (en) * 2011-09-14 2012-01-04 黄华道 Leakage detecting protection circuit capable of periodically automatically detecting function integrity
CN103701091A (en) * 2013-10-22 2014-04-02 博耳(宜兴)电力成套有限公司 Electric leakage controller for circuit breaker
CN105449627A (en) * 2014-08-18 2016-03-30 施耐德电气工业公司 Electric leakage protection device and method thereof
CN105449627B (en) * 2014-08-18 2019-02-01 施耐德电气工业公司 Earth leakage protective device and its method
KR20180032018A (en) * 2016-09-21 2018-03-29 주식회사 이진스 Earth Leakage Breaker
KR101889535B1 (en) * 2016-09-21 2018-08-22 주식회사 이진스 Earth Leakage Breaker

Also Published As

Publication number Publication date
CN101404405B (en) 2012-01-04
JP4931754B2 (en) 2012-05-16
CN101404405A (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4931754B2 (en) Earth leakage breaker
WO2011115863A1 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
JP2009224198A (en) Ground-fault circuit interrupter
KR101759598B1 (en) Digital relay with sensibility of secondary circuit opening
JP2005158559A (en) Earth leakage breaker
US10014679B2 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
JP5148435B2 (en) Inrush current suppressing device for transformer and control method thereof
JP4935455B2 (en) Earth leakage detector
US9455110B2 (en) Two-pole circuit breakers
KR101326418B1 (en) A test circuit for earth leakage breaker under phase fault
JP4369417B2 (en) Earth leakage breaker
JP3962340B2 (en) Earth leakage breaker
JP2009224285A (en) Circuit breaker unit
KR101509667B1 (en) Non-polar earth leakage breaker
JP6848204B2 (en) Circuit breaker
KR102485205B1 (en) Electric leakage circuit breaker
JP2010177067A (en) Earth leakage breaker
JP2010040326A (en) Ground fault interrupter
JP2016024963A (en) Earth leakage breaker
JP4395009B2 (en) Earth leakage breaker
US11562872B2 (en) Circuit interrupter for detecting breaker fault conditions and interrupting an electric current
RU2677857C1 (en) Protection device of the converter plant with transformer with 2n secondary windings and 2n rectifiers
KR101068700B1 (en) Rccb and mathod for setting sensitivity current
JPS6240924B2 (en)
CN104851758A (en) Residual-current circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R151 Written notification of patent or utility model registration

Ref document number: 4931754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250