[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4935455B2 - Earth leakage detector - Google Patents

Earth leakage detector Download PDF

Info

Publication number
JP4935455B2
JP4935455B2 JP2007081786A JP2007081786A JP4935455B2 JP 4935455 B2 JP4935455 B2 JP 4935455B2 JP 2007081786 A JP2007081786 A JP 2007081786A JP 2007081786 A JP2007081786 A JP 2007081786A JP 4935455 B2 JP4935455 B2 JP 4935455B2
Authority
JP
Japan
Prior art keywords
test
circuit
leakage
winding
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007081786A
Other languages
Japanese (ja)
Other versions
JP2008243564A (en
Inventor
克己 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2007081786A priority Critical patent/JP4935455B2/en
Priority to KR1020080013774A priority patent/KR20080087654A/en
Priority to FR0800911A priority patent/FR2914428B1/en
Priority to CN2008100885353A priority patent/CN101276713B/en
Publication of JP2008243564A publication Critical patent/JP2008243564A/en
Application granted granted Critical
Publication of JP4935455B2 publication Critical patent/JP4935455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/28Provision in measuring instruments for reference values, e.g. standard voltage, standard waveform
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/02Arrangements in which the value to be measured is automatically compared with a reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/1659Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 to indicate that the value is within or outside a predetermined range of values (window)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • H01H83/04Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents with testing means for indicating the ability of the switch or relay to function properly

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

この発明は、電気回路における地絡等による漏電の発生を検知して電気回路を遮断し、負荷および電気回路を漏電から保護する漏電遮断器等に用いられる漏電検出装置に関する。   The present invention relates to a leakage detecting device used for a leakage breaker or the like that detects the occurrence of a leakage due to a ground fault or the like in an electrical circuit, interrupts the electrical circuit, and protects a load and the electrical circuit from leakage.

漏電検出装置には、これが正常に動作するか否かを確認するためのテスト回路が設けられる。図3は、漏電遮断器において、従来から最も一般的に使用されているテスト回路を備えた漏電検出装置の回路構成を示すものである。   The leakage detection device is provided with a test circuit for confirming whether or not it operates normally. FIG. 3 shows a circuit configuration of a leakage detection device including a test circuit that has been most commonly used in a conventional leakage breaker.

この図3において、1は漏電遮断器、R,S,Tはこの漏電遮断器1の電源側端子、U,V,Wはそれぞれ電源側端子R,S,Tに対応する負荷側端子である。漏電遮断器1は内部に、電源側端子R,S,Tと負荷側端子U,V,Wをそれぞれ結ぶ3相の導体からなる主電路2を備える。この主電路2には、主電路2を開閉する開閉接点を備えた遮断部2Aおよび主電路2の各相導体の過電流を検出し、引外し装置2Cを駆動して遮断部2Aの開閉接点を開いて主電路2を遮断する過電流検出装置2Bが設けられる。   In FIG. 3, 1 is a leakage circuit breaker, R, S, and T are power supply side terminals of the leakage circuit breaker 1, and U, V, and W are load side terminals corresponding to the power supply side terminals R, S, and T, respectively. . The earth leakage breaker 1 includes a main electric circuit 2 made of a three-phase conductor that connects the power-side terminals R, S, T and the load-side terminals U, V, W, respectively. The main electric circuit 2 includes an interrupting part 2A having an opening / closing contact for opening / closing the main electric circuit 2 and an overcurrent of each phase conductor of the main electric circuit 2, and driving a trip device 2C to open / close the contact of the interrupting part 2A. An overcurrent detection device 2B is provided that opens and shuts off the main electric circuit 2.

漏電遮断器1は、さらに主電路2に流れる漏電電流を検出して、引外し装置2Cを駆動して遮断部2Aの開閉接点を開放して主電路2の遮断を行う漏電検出装置3を備えている。   The earth leakage breaker 1 further includes an earth leakage detection device 3 for detecting an earth leakage current flowing in the main electric circuit 2 and driving the tripping device 2C to open the switching contact of the circuit breaker 2A and to interrupt the main electric circuit 2. ing.

漏電検出装置3は、2次巻線5およびテスト巻線を巻装した環状鉄心4Aを備えた零相変流器4、漏電検出回路6、トリップコイル7、テストスイッチ8、ダイオードブリッジ整流回路からなる整流回路10等により構成される。整流回路10は、主電路2のR相導体とT相導体との間の交流電圧を直流電圧に変換して、漏電検出回路6に作動電力を供給する直流電源となる。   The leakage detection device 3 includes a zero-phase current transformer 4, an leakage detection circuit 6, a trip coil 7, a test switch 8, and a diode bridge rectifier circuit including an annular core 4A around which a secondary winding 5 and a test winding are wound. The rectifier circuit 10 is configured. The rectifier circuit 10 is a DC power source that converts the AC voltage between the R-phase conductor and the T-phase conductor of the main circuit 2 into a DC voltage and supplies operating power to the leakage detection circuit 6.

零相変流器4は、2次巻線5およびテスト11の巻装された環状鉄心4Aに1次導体として主電路2の全相の導体を貫通させることにより、主電路2に接続された図示しない負荷回路に発生した地絡事故や、漏電事故によって主電路2に流れる零相電流を検出して2次巻線5により取り出すものである。漏電検出回路6は、零相変流器4の2次巻線5から取り出された零相検出電流(漏電検出電流)の大きさを判定し、これが予め設定した基準値より大きくなったとき、漏電の発生を示す漏電検出信号を発生する。   The zero-phase current transformer 4 is connected to the main electric circuit 2 by passing all the phase conductors of the main electric circuit 2 as the primary conductor through the secondary winding 5 and the annular core 4A around which the test 11 is wound. A zero-phase current flowing in the main circuit 2 due to a ground fault or a ground fault occurring in a load circuit (not shown) is detected and taken out by the secondary winding 5. The leakage detection circuit 6 determines the magnitude of the zero-phase detection current (leakage detection current) taken from the secondary winding 5 of the zero-phase current transformer 4, and when this becomes larger than a preset reference value, A leakage detection signal indicating the occurrence of leakage is generated.

この漏電検出回路6から漏電の発生を示す漏電検出信号が発生されると、トリップコイル7が励磁され、引き外し装置2Cが駆動されることによって、遮断部2Aが引き外され遮断する。これにより、主電路2が遮断され、漏電遮断器1に接続された図示しない負荷回路を地絡事故や漏電事故から保護することができる。   When an electric leakage detection signal indicating the occurrence of electric leakage is generated from the electric leakage detection circuit 6, the trip coil 7 is excited and the tripping device 2C is driven, whereby the interrupting portion 2A is tripped and interrupted. Thereby, the main electric circuit 2 is interrupted | blocked and the load circuit not shown connected to the earth leakage circuit breaker 1 can be protected from a ground fault accident and an earth leakage accident.

また、零相変流器4に設けたテスト巻線11を、テストスイッチ8の押ボタン8Bの押圧操作により開閉されるテスト接点8Aおよびテスト抵抗12を介して主電路2のR相導体とT相導体に接続することによりテスト回路が構成される。テストスイッチ8の押ボタン8Bを押圧操作してテスト接点8Aを閉じることにより、漏電検出装置3が正常に動作するか否かのテストをすることができる。すなわち、押ボタン8Bを押圧操作することにより、主電路2のR相導体とT相導体間の電圧によってテスト抵抗12とテスト接点8Aを介してテスト巻線11に、電流を流すことによって模擬的に零相電流を発生させることができる。この模擬的な零相電流は、テスト抵抗12によって漏電検出回路6に設定された基準値を越える所定の大きさに選定される。   Further, the test winding 11 provided in the zero-phase current transformer 4 is connected to the R-phase conductor of the main circuit 2 and the T through the test contact 8A and the test resistor 12 which are opened and closed by pressing the push button 8B of the test switch 8. A test circuit is configured by connecting to the phase conductor. By pressing the push button 8B of the test switch 8 and closing the test contact 8A, it is possible to test whether or not the leakage detecting device 3 operates normally. That is, by pressing the push button 8B, a simulation is performed by causing a current to flow through the test winding 11 via the test resistor 12 and the test contact 8A according to the voltage between the R-phase conductor and the T-phase conductor of the main circuit 2. Can generate a zero-phase current. This simulated zero-phase current is selected by the test resistor 12 to a predetermined magnitude that exceeds the reference value set in the leakage detection circuit 6.

したがって、漏電検出回路6や、漏電遮断器1の引き外し装置2Cなどが正常であれば、このとき2次巻線5から取り出される零相検出電流によって、漏電検出回路6が漏電の発生を示す漏電検出信号を発生し、引き外し装置2Cを介して遮断部2Aが遮断される。この漏電遮断器1の遮断動作によって、漏電検出装置3および漏電遮断器1自身が正常に動作していることを確認することができる。   Therefore, if the leakage detection circuit 6 or the tripping device 2C of the leakage breaker 1 is normal, the leakage detection circuit 6 indicates the occurrence of leakage due to the zero-phase detection current extracted from the secondary winding 5 at this time. An electric leakage detection signal is generated, and the interrupting unit 2A is interrupted via the trip device 2C. It is possible to confirm that the leakage detection device 3 and the leakage breaker 1 themselves are operating normally by the breaking operation of the leakage breaker 1.

また、このとき、漏電遮断器1が遮断動作をしなければ、漏電検出装置3や、漏電遮断器1のどこかに異常のあることが確認できる。   At this time, if the earth leakage breaker 1 does not perform the breaking operation, it can be confirmed that there is an abnormality somewhere in the earth leakage detection device 3 or the earth leakage breaker 1.

このような漏電検出装置のテスト回路においては、零相変流器4における2次巻線5とテスト巻線11の間には浮遊静電容量C0が存在する。そして、整流回路10の直流出力の負側端子は、漏電検出回路6等を構成する電子回路のグランド側としてのシグナルグランドSGに接続されるため、漏電検出回路6に接続されている2次巻線5は、ほぼシグナルグランドSGの電位にある。 In such a test circuit of the leakage detection device, a floating capacitance C 0 exists between the secondary winding 5 and the test winding 11 in the zero-phase current transformer 4. Since the negative terminal of the DC output of the rectifier circuit 10 is connected to the signal ground SG as the ground side of the electronic circuit constituting the leakage detection circuit 6 and the like, the secondary winding connected to the leakage detection circuit 6 Line 5 is approximately at the potential of signal ground SG.

一方、テスト巻線11は、テスト接点8Aおよびテスト抵抗12を介して主電路2の2相の導体に接続されているので、常時(つまり、テスト接点8Aが開かれ、漏電遮断器1が漏電を監視している状態)においては、整流回路10の交流入力端の一方の接続された主電路2のT相の電位にある。そして、シグナルグランドSGは、整流回路10のダイオードブリッジの下側アームを構成する2つのダイオードDr2,Dt2の導通状態に応じて、それぞれ主電路2のT相またはR相の電位となる。   On the other hand, since the test winding 11 is connected to the two-phase conductor of the main electric circuit 2 via the test contact 8A and the test resistor 12, the test contact 8A is always open (ie, the test contact 8A is opened and the leakage breaker 1 is leaked). Is in the T phase potential of the main circuit 2 connected to one of the AC input ends of the rectifier circuit 10. The signal ground SG becomes the potential of the T phase or the R phase of the main circuit 2 in accordance with the conduction state of the two diodes Dr2 and Dt2 constituting the lower arm of the diode bridge of the rectifier circuit 10.

このため、テスト巻線11と2次巻線5の間には、図5に示すようなRT相間電圧の半波整流波形の電圧eが印加される。この電圧eにより浮遊静電容量C0、漏電検出回路6の入力信号線c、漏電検出回路6、負側の直流電源線(グランドラインともいう)aの経路で図3に点線矢印で示すようなノイズ電流iが流れる。 For this reason, a voltage e having a half-wave rectified waveform of the RT interphase voltage as shown in FIG. 5 is applied between the test winding 11 and the secondary winding 5. As shown by the dotted arrows in FIG. 3, the floating capacitance C 0 , the input signal line c of the leakage detection circuit 6, the leakage detection circuit 6, and the negative DC power supply line (also referred to as a ground line) a are routed by this voltage e. Noise current i flows.

ところで、対をなす入力信号線bが接続された漏電検出回路6の対の入力端子は、図示しない比較増幅器の入力端子であり、この対の入力端子からそれぞれグランドラインa側を見たインピーダンス構成は平衡ではない。このため、このノイズ電流iによって漏電検出回路6の対の入力端子間には誘導電圧e1 が発生し、漏電遮断器1の動作感度が変化するという問題があった。 By the way, the input terminal of the pair of leakage detection circuits 6 to which the paired input signal lines b are connected is the input terminal of a comparison amplifier (not shown), and the impedance configuration when the ground line a side is viewed from the pair of input terminals. Is not in equilibrium. For this reason, there is a problem that an induced voltage e 1 is generated between the pair of input terminals of the leakage detection circuit 6 due to the noise current i, and the operation sensitivity of the leakage breaker 1 is changed.

この問題点を解決するために、特許文献1に示すような漏電検出装置が提案されている。この特許文献1に示された従来の漏電検出装置の回路構成を図4に示す。   In order to solve this problem, a leakage detection device as shown in Patent Document 1 has been proposed. FIG. 4 shows a circuit configuration of the conventional leakage detection device disclosed in Patent Document 1.

この図4の従来装置の図3に示す従来装置と相違する点は、零相変流器4のテスト巻線11の一方の端子をテスト接点8Aとテスト抵抗12の直列回路を介して主電路2のT相導体に接続し、テスト接点8Aに接続されていない他方の端子を直接、シグナルグランドSGに接続された整流回路10の直流出力の負側のグランドラインaに接続している点である。その他の構成は、図3に示す従来装置と同じである。
特開2003−249160号公報
4 differs from the conventional device shown in FIG. 3 in that one terminal of the test winding 11 of the zero-phase current transformer 4 is connected to the main circuit via a series circuit of the test contact 8A and the test resistor 12. The other terminal not connected to the test contact 8A is directly connected to the negative output ground line a of the rectifier circuit 10 connected to the signal ground SG. is there. Other configurations are the same as those of the conventional apparatus shown in FIG.
JP 2003-249160 A

このように構成すると、テスト巻線11が、整流回路10のグランドラインaに接続され、これと同電位となるため、このテスト巻線11には図5に示すような、半波整流波形となるコモンモードの電圧が誘導されなくなるので、漏電検出装置の検出感度が変化されることがなく、安定となる。   With this configuration, the test winding 11 is connected to the ground line a of the rectifier circuit 10 and has the same potential as the test winding 11, so that the test winding 11 has a half-wave rectified waveform as shown in FIG. Since the common mode voltage is not induced, the detection sensitivity of the leakage detection device is not changed and is stable.

しかし、この従来装置においては、整流回路10のグランドラインaに零相変流器4のテスト巻線11を接続するための接続線fが設けられるため、この接続線fがアンテナとなり放射電磁波ノイズに対する耐性が劣る欠点がある。すなわち、放射電磁波ノイズがこの接続線fを通してグランドラインaに誘導されると、グランドラインaの電位が変動し、漏電検出感度が変化し、安定しない問題が生じる。   However, in this conventional apparatus, since the connection line f for connecting the test winding 11 of the zero-phase current transformer 4 to the ground line a of the rectifier circuit 10 is provided, the connection line f serves as an antenna and radiated electromagnetic noise. There is a disadvantage that resistance to is poor. That is, when radiated electromagnetic wave noise is induced to the ground line a through the connection line f, the potential of the ground line a fluctuates, the leakage detection sensitivity changes, and an unstable problem arises.

この発明は、前記のような従来装置における問題点を解決するため、零相変流器のテスト巻線にコモンモードノイズが誘導されることなく、また漏電検出装置のグランドラインへの放射電磁波ノイズの誘導を抑制し、漏電検出感度の安定した漏電検出装置を提供することを課題とするものである。   In order to solve the problems in the conventional device as described above, the common mode noise is not induced in the test winding of the zero-phase current transformer, and the radiated electromagnetic wave noise to the ground line of the leakage detection device It is an object of the present invention to provide a leakage detection device that suppresses the induction of noise and has a stable leakage detection sensitivity.

この発明は、前記の課題を解決するため、2次巻線とテスト巻線の設けられた環状鉄心に主電路の導体を貫通させ、この主電路に流れる零相電流を検出して前記2次巻線から取り出す零相変流器と、この零相変流器の2次巻線から取り出された零相検出電流の大きさを判定し、これが予め設定された基準値より大きくなったとき漏電の発生を示す漏電検出信号を出力する漏電検出回路と、交流電源の交流電圧を直流電圧に変換して前記漏電検出回路に供給する整流回路からなる直流電源と、前記零相変流器に設けたテスト巻線に動作テストを行うときだけ閉成してテスト電流を供給するテストスイッチを含むテスト回路とを備えた漏電検出装置において、前記テスト回路における零相変流器のテスト巻線の一方端を、前記テストスイッチを介して前記整流回路の一方の交流入力端に接続し、前記テスト巻線のテストスイッチの接続されない他方の端子を、カソードがテスト巻線端を向く極性にしたダイオードを介して前記整流回路の他方の交流入力端に接続したことを特徴とするものである。   In order to solve the above problems, the present invention allows a conductor of a main electric circuit to pass through an annular core provided with a secondary winding and a test winding, and detects a zero-phase current flowing through the main electric circuit to detect the secondary phase. The magnitude of the zero-phase current transformer taken out from the winding and the zero-phase detection current taken out from the secondary winding of this zero-phase current transformer is judged, and when this becomes larger than a preset reference value, An earth leakage detection circuit for outputting an earth leakage detection signal indicating the occurrence of an electric current; a DC power source comprising a rectifier circuit for converting an AC voltage of an AC power source into a DC voltage and supplying the same to the earth leakage detection circuit; and the zero-phase current transformer And a test circuit including a test switch for closing and supplying a test current only when performing an operation test on the test winding, wherein one of the test windings of the zero-phase current transformer in the test circuit is provided. Through the test switch Connected to one AC input terminal of the rectifier circuit, and the other terminal not connected to the test switch of the test winding is connected to the other terminal of the rectifier circuit via a diode whose polarity is such that the cathode faces the test winding terminal. It is characterized by being connected to an AC input terminal.

この発明によれば、漏電検出回路における、テスト回路の零相変流器のテスト巻線のテストスイッチの接続された側の一方端を漏電検出回路の直流電源を構成する整流回路の交流入力端の一方に接続するとともに、テスト巻線のテストスイッチの接続されていない側の他方端を、そのカソードがテスト巻線端側に向く極性にしたダイオードを介して、前記整流回路の交流入力端の他方に接続するようにしているので、交流電源からテスト巻線に加わるコモンモード電圧がテスト回路に挿入されたダイオードによって阻止されるため、テスト巻線へのコモンモード電圧の誘導をなくすことができる。そして、漏電検出回路のグランドラインと零相変流器のテスト巻線とを接続する接続線がないので放射電磁波ノイズの誘導を抑えることができる。このため、漏電検出装置の動作感度を変動させるノイズの誘導を抑制できることにより、漏電検出装置の動作感度を安定に保つことができる。したがって、動作の安定した漏電検出装置を提供できる。   According to the present invention, in the leakage detection circuit, one end of the test winding of the zero-phase current transformer of the test circuit connected to the test switch is connected to the AC input terminal of the rectifier circuit constituting the DC power supply of the leakage detection circuit. And the other end of the test winding to which the test switch is not connected is connected to the AC input end of the rectifier circuit via a diode whose cathode faces the test winding end. Since the common mode voltage applied to the test winding from the AC power supply is blocked by the diode inserted in the test circuit, the induction of the common mode voltage to the test winding can be eliminated. . And since there is no connection line which connects the ground line of the leakage detection circuit and the test winding of the zero-phase current transformer, induction of radiated electromagnetic noise can be suppressed. For this reason, since the induction | guidance | derivation of the noise which fluctuates the operation sensitivity of a leak detection apparatus can be suppressed, the operation sensitivity of a leak detection apparatus can be kept stable. Therefore, it is possible to provide a leakage detecting device with stable operation.

この発明の実施の形態を以下に図に示す実施例に基づいて説明する。   Embodiments of the present invention will be described below based on examples shown in the drawings.

図1は、この発明を漏電遮断器に適用した実施例を示す回路構成図である。   FIG. 1 is a circuit configuration diagram showing an embodiment in which the present invention is applied to an earth leakage circuit breaker.

図1に示すこの発明の実施例1は、前記の図4に示した従来装置とは、次の点が異なる。   The first embodiment of the present invention shown in FIG. 1 is different from the conventional apparatus shown in FIG. 4 in the following points.

すなわち、漏電検出装置3の零相変流器4のテスト巻線11にテスト電流を供給するテスト回路において、テスト巻線11の一方端をテストスイッチの接点8Aを介して直流電源を構成する整流回路10の主電路2のR相導体に接続された交流入力端に接続し、テスト巻線11の他方端をグランドラインaに接続しないで、ダイオードDおよびテスト抵抗12を介して整流回路10の主電路2のT相導体に接続された交流入力端に接続している点である。このダイオードDは、カソードがテスト巻線側を向く極性で、挿入されている。
この実施例1のその他の構成は、前記従来装置と同じであるので、同一要素は同一符号で示し、その説明を省略する。
That is, in the test circuit for supplying a test current to the test winding 11 of the zero-phase current transformer 4 of the leakage detection device 3, one end of the test winding 11 is rectified to constitute a DC power supply via the contact 8A of the test switch. Connect to the AC input terminal connected to the R-phase conductor of the main circuit 2 of the circuit 10, and connect the other end of the test winding 11 to the ground line a, and connect the rectifier circuit 10 via the diode D and the test resistor 12. It is a point connected to the AC input terminal connected to the T-phase conductor of the main electric circuit 2. The diode D is inserted with a polarity in which the cathode faces the test winding side.
Since other configurations of the first embodiment are the same as those of the conventional apparatus, the same elements are denoted by the same reference numerals, and the description thereof is omitted.

この図1の実施例1の漏電検出装置を備えた漏電遮断器1は、基本的には、従来装置と同一の動作をする。すなわち、通常の漏電監視状態においては、テストスイッチ8は操作されず、テスト接点8Aが開かれた状態となっている。主電路2に漏電等による零相電流が生じると、その大きさに応じた零相検出電流が2次巻線5から取り出される。漏電検出回路6は、零相変流器4の2次巻線5から取り出された零相検出電流の大きさを判定し、これが予め設定した基準値より大きいときに、漏電の発生を示す漏電検出信号を発生する。   The earth leakage breaker 1 provided with the earth leakage detection device according to the first embodiment shown in FIG. 1 basically operates in the same manner as the conventional device. That is, in the normal leakage monitoring state, the test switch 8 is not operated and the test contact 8A is opened. When a zero-phase current due to electric leakage or the like is generated in the main circuit 2, a zero-phase detection current corresponding to the magnitude is taken out from the secondary winding 5. The leakage detection circuit 6 determines the magnitude of the zero-phase detection current taken from the secondary winding 5 of the zero-phase current transformer 4, and when this is larger than a preset reference value, the leakage indicating the occurrence of leakage Generate a detection signal.

これにより、トリップコイル7を励磁して漏電遮断器1の引き外し機構2Cを駆動し、遮断部2Aのラッチを引き外して、開閉接点を開くことにより、主電路2を遮断して、負荷側端子U,V,Wに接続された図示しない負荷回路を漏電から保護する。   As a result, the trip coil 7 is excited to drive the tripping mechanism 2C of the earth leakage circuit breaker 1, the latch of the breaking unit 2A is pulled off, and the open / close contact is opened to cut off the main electric circuit 2 and load side A load circuit (not shown) connected to the terminals U, V, and W is protected from electric leakage.

また、漏電遮断器1および漏電検出装置3の動作テストを行う場合は、テストスイッチ8のテスト釦8Bを押圧操作する。これにしたがってテスト接点8Aが閉じることより主電路2のR相導体とT相導体間の交流電圧によってテスト抵抗12とテスト接点8Aを介し、テスト巻線11に基準値レベル以上の零相電流を模擬したテスト電流を供給できる。   Further, when performing an operation test of the earth leakage breaker 1 and the earth leakage detection device 3, the test button 8B of the test switch 8 is pressed. In accordance with this, the test contact 8A is closed, so that a zero-phase current exceeding the reference value level is applied to the test winding 11 via the test resistor 12 and the test contact 8A by the AC voltage between the R-phase conductor and the T-phase conductor of the main circuit 2. Simulated test current can be supplied.

漏電検出装置3や、漏電遮断器1の引き外し装置2Cなどが正常であれば、このとき、2次巻線5から模擬零相電流に基づく検出電流が取り出され、漏電検出回路6が漏電の発生を検出し、漏電の発生を示す漏電検出信号を発生する。この漏電検出信号によりトリップコイル7、引き外し装置2Cが作動し、漏電遮断器1の遮断部2が遮断される。これにより漏電検出装置3および漏電遮断器1が正常に動作していることを確認することができる。   If the leakage detection device 3 or the tripping device 2C of the leakage breaker 1 is normal, the detection current based on the simulated zero-phase current is taken out from the secondary winding 5 and the leakage detection circuit 6 The occurrence is detected, and a leakage detection signal indicating the occurrence of leakage is generated. The trip coil 7 and trip device 2C are activated by this leakage detection signal, and the breaker 2 of the leakage breaker 1 is cut off. Thereby, it can be confirmed that the leakage detection device 3 and the leakage breaker 1 are operating normally.

このとき、漏電検出回路6、トリップコイル7および引き外し装置2C等に異常がある場合には、漏電遮断器1の遮断部2が遮断動作をしないので、これによって漏電遮断器1または漏電検出装置3の何処かに異常があることを確認することができる。   At this time, if there is an abnormality in the leakage detection circuit 6, the trip coil 7, the tripping device 2C, etc., the breaker 2 of the leakage breaker 1 does not perform the breaking operation, thereby causing the leakage breaker 1 or the leakage detection device. It can be confirmed that there is an abnormality somewhere.

一方、この実施例1における漏電遮断器1の電源側端子R,S,Tには、一般に100V〜415V程度の交流電源電圧が加わるが、漏電検出装置3の漏電検出回路6には、この交流電源電圧を整流回路10で全波整流し、制限抵抗15と平滑コンデンサ16により10V程度に低下された直流電圧が加えられる。   On the other hand, an AC power supply voltage of about 100 V to 415 V is generally applied to the power supply side terminals R, S, and T of the earth leakage breaker 1 in the first embodiment, but this AC is detected in the earth leakage detection circuit 6 of the earth leakage detection device 3. The power supply voltage is full-wave rectified by the rectifier circuit 10 and a DC voltage reduced to about 10 V by the limiting resistor 15 and the smoothing capacitor 16 is applied.

このため、漏電検出回路6の電源線bおよび入力線cの部分は、ほぼ電源線aの電位に近い電位におかれる。一方テスト巻線11のテスト接点8Aの接続されていない側の端子の接続された交流電源線dの電位は、直流電源となる整流回路10のグランドラインaの電位を基準にしたとき、図5に示すような半波整流波形に変化する。しかし、テスト巻線11のテスト接点8Aの接続されていない側の端子には、ダイオードDがこの端子側にカソードが向く極性で接続されているので、交流電源線dのグランドラインaの電位より高い電位が阻止されることになる。このため、テスト巻線11と2次巻線5との間には電位差が生ぜず、2次巻線5にはコモンモードのノイズが誘導されなくなる。したがって、漏電検出装置3の漏電監視動作時には動作感度が変動することなく安定する。   For this reason, the power supply line b and the input line c of the leakage detection circuit 6 are placed at a potential that is substantially close to the potential of the power supply line a. On the other hand, when the potential of the AC power supply line d connected to the terminal of the test winding 11 to which the test contact 8A is not connected is based on the potential of the ground line a of the rectifier circuit 10 serving as a DC power supply, FIG. Changes to a half-wave rectified waveform as shown in FIG. However, since the diode D is connected to the terminal of the test winding 11 where the test contact 8A is not connected with the polarity facing the cathode toward the terminal side, the potential of the ground line a of the AC power supply line d is greater than the potential. High potential will be blocked. Therefore, no potential difference is generated between the test winding 11 and the secondary winding 5, and no common mode noise is induced in the secondary winding 5. Therefore, during the leakage monitoring operation of the leakage detection device 3, the operation sensitivity is stabilized without fluctuation.

また、この実施例1の装置によれば、新たにテスト巻線11にダイオードDが挿入される代わりに、直流電源回路のグランドラインaへの接続線が省略されるので、放射電磁波ノイズの誘導も抑えることができるので、漏電検出装置の動作感度を安定させることができる。   Further, according to the apparatus of the first embodiment, instead of newly inserting the diode D in the test winding 11, the connection line to the ground line a of the DC power supply circuit is omitted, so that induction of radiated electromagnetic noise is induced. Therefore, the operation sensitivity of the leakage detecting device can be stabilized.

図2は、この発明を、漏電保護継電器に適用した実施例2を示すものである。   FIG. 2 shows a second embodiment in which the present invention is applied to a leakage protection relay.

この実施例2は、回路構成的には、実施例1の漏電遮断器から、遮断器部分、すなわち、開閉接点2A,過電流検出装置および引き外し機構2Cで構成された遮断部2を除いて、トリップコイル7の代わりに出力リレー9を設けた構成を有する。また、この実施例2の漏電検出装置は、実施例1に示した漏電検出装置と実質的に同じ構成を有するが、整流回路10およびテスト巻線11に対する交流電源として、主電路2以外の交流電源に接続するため電源入力端子X、Yを設けている点が異なる。   In the second embodiment, in terms of circuit configuration, the circuit breaker portion, that is, the circuit breaker 2A, the switching contact 2A, the overcurrent detection device, and the tripping mechanism 2C are excluded from the leakage breaker of the first embodiment. The output relay 9 is provided in place of the trip coil 7. Further, the leakage detection device of the second embodiment has substantially the same configuration as the leakage detection device shown in the first embodiment, but an AC power supply other than the main circuit 2 is used as an AC power supply for the rectifier circuit 10 and the test winding 11. The difference is that power input terminals X and Y are provided for connection to a power source.

この実施例2の装置においては、漏電を監視する主電路2において漏電等による零相電流が発生すると、2次巻線5から零相検出電流が取り出され、その大きさが漏電検出回路6で判定され、基準値を越えていれば、漏電検出信号が発生され、出力力リレー9により、その接点9Aを閉成して、漏電の検出を報知する。   In the apparatus of the second embodiment, when a zero-phase current due to leakage or the like is generated in the main circuit 2 that monitors leakage, a zero-phase detection current is taken out from the secondary winding 5, and the magnitude thereof is detected by the leakage detection circuit 6. If it is determined and the reference value is exceeded, a leakage detection signal is generated, and the contact 9A is closed by the output force relay 9 to notify the detection of leakage.

また、直流電源を形成する整流回路10の交流入力端は、外部の交流電源の接続される電源入力端子X,Yに接続される。零相変流器4のテスト巻線11も、一端がテストスイッチ8の接点8Aを介して電源入力端子Xに接続され、他端がダイオードDおよびテスト抵抗12を介して電源入力端子Yに接続される。ダイオードDは、そのカソードがテスト巻線端側に向けられている。   The AC input terminal of the rectifier circuit 10 forming the DC power supply is connected to power input terminals X and Y to which an external AC power supply is connected. One end of the test winding 11 of the zero-phase current transformer 4 is also connected to the power input terminal X via the contact 8A of the test switch 8, and the other end is connected to the power input terminal Y via the diode D and the test resistor 12. Is done. The cathode of the diode D is directed to the test winding end side.

このため、この実施例2においても、整流回路10の直流出力の負極に接続されたグランドラインaの電位に対して高い電位となるテスト巻線11に加わる電圧は、ダイオードDによって阻止されるので、テスト巻線11と2次巻線5との間に電位差が生じなくなり、2次巻線5へのコモンモードノイズの誘導がなくなる。そして、グランドラインaへの余分な配線の接続もないので、放射電磁波ノイズの誘導も抑制することができる。したがって、この実施例2の漏電検出装置3においても、漏電監視動作中の動作感度を安定させることができる。   For this reason, also in the second embodiment, the voltage applied to the test winding 11 that is higher than the potential of the ground line a connected to the negative electrode of the DC output of the rectifier circuit 10 is blocked by the diode D. Thus, no potential difference is generated between the test winding 11 and the secondary winding 5, and induction of common mode noise to the secondary winding 5 is eliminated. And since there is no connection of the extra wiring to the ground line a, induction of radiated electromagnetic noise can be suppressed. Therefore, also in the leakage detection device 3 of the second embodiment, the operation sensitivity during the leakage monitoring operation can be stabilized.

この発明の実施例1による漏電検出装置を示す回路構成図である。It is a circuit block diagram which shows the leak detection apparatus by Example 1 of this invention. この発明の実施例2による漏電検出装置を示す回路構成図である。It is a circuit block diagram which shows the leak detection apparatus by Example 2 of this invention. 従来の漏電検出装置を示す回路構成図である。It is a circuit block diagram which shows the conventional electric leakage detection apparatus. 従来の異なる漏電検出装置を示す回路構成図である。It is a circuit block diagram which shows the conventional different earth-leakage detection apparatus. 漏電検出装置の動作説明用の装置内の電圧波形図である。It is a voltage waveform diagram in the apparatus for operation | movement description of a leak detection apparatus.

符号の説明Explanation of symbols

1:漏電遮断器
2:遮断部
3:漏電検出装置
4:零相変流器
5:2次検出巻線
6:漏電検出回路
7:トリップコイル
8:テストスイッチ
9:出力リレー
10:整流回路
11:テスト巻線
D:ダイオード
1: Earth leakage breaker 2: Circuit breaker 3: Earth leakage detection device 4: Zero phase current transformer 5: Secondary detection winding 6: Earth leakage detection circuit 7: Trip coil 8: Test switch 9: Output relay 10: Rectifier circuit 11 : Test winding D: Diode

Claims (1)

2次巻線とテスト巻線の設けられた環状鉄心に主電路の導体を貫通させ、この主電路に流れる零相電流を検出して前記2次巻線から取り出す零相変流器と、この零相変流器の2次巻線から取り出された零相検出電流の大きさを判定し、これが予め設定された基準値より大きくなったとき漏電の発生を示す漏電検出信号を出力する漏電検出回路と、交流電源の交流電圧を直流電圧に変換して前記漏電検出回路に供給する整流回路からなる直流電源と、前記零相変流器に設けたテスト巻線に動作テストを行うときだけ閉成してテスト電流を供給するテストスイッチを含むテスト回路とを備えた漏電検出装置において、前記テスト回路における零相変流器のテスト巻線の一方端を、前記テストスイッチを介して前記整流回路の一方の交流入力端に接続し、前記テスト巻線のテストスイッチの接続されない他方の端子を、カソードがテスト巻線端を向く極性にしたダイオードを介して前記整流回路の他方の交流入力端に接続したことを特徴とする漏電検出装置。   A zero-phase current transformer in which a conductor of a main electric circuit is passed through an annular core provided with a secondary winding and a test winding, and a zero-phase current flowing in the main electric circuit is detected and taken out from the secondary winding; Leakage detection that determines the magnitude of the zero-phase detection current taken from the secondary winding of the zero-phase current transformer and outputs a leakage detection signal that indicates the occurrence of a leakage when it exceeds a preset reference value Closed only when performing an operation test on the circuit, a DC power source comprising a rectifier circuit that converts the AC voltage of the AC power source into a DC voltage and supplies it to the leakage detection circuit, and a test winding provided in the zero-phase current transformer And a test circuit including a test switch configured to supply a test current, wherein one end of a test winding of a zero-phase current transformer in the test circuit is connected to the rectifier circuit via the test switch. Connect to one AC input end of And the other terminal to which the test switch of the test winding is not connected is connected to the other AC input terminal of the rectifier circuit via a diode whose cathode faces the end of the test winding. Detection device.
JP2007081786A 2007-03-27 2007-03-27 Earth leakage detector Active JP4935455B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007081786A JP4935455B2 (en) 2007-03-27 2007-03-27 Earth leakage detector
KR1020080013774A KR20080087654A (en) 2007-03-27 2008-02-15 Leak detecting device
FR0800911A FR2914428B1 (en) 2007-03-27 2008-02-20 LEAK DETECTION DEVICE
CN2008100885353A CN101276713B (en) 2007-03-27 2008-03-27 Earth leakage detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081786A JP4935455B2 (en) 2007-03-27 2007-03-27 Earth leakage detector

Publications (2)

Publication Number Publication Date
JP2008243564A JP2008243564A (en) 2008-10-09
JP4935455B2 true JP4935455B2 (en) 2012-05-23

Family

ID=39760636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081786A Active JP4935455B2 (en) 2007-03-27 2007-03-27 Earth leakage detector

Country Status (4)

Country Link
JP (1) JP4935455B2 (en)
KR (1) KR20080087654A (en)
CN (1) CN101276713B (en)
FR (1) FR2914428B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874371B2 (en) * 2009-07-22 2012-02-15 中国電力株式会社 Fault current detection circuit
SG186227A1 (en) * 2010-06-07 2013-01-30 Ampcontrol Pty Ltd Method for detection of leakage or fault currents from equipment in an electrical power system
CN103430036B (en) * 2011-03-23 2016-03-30 松下知识产权经营株式会社 Earth detector
JP5768741B2 (en) * 2012-02-29 2015-08-26 三菱電機株式会社 Earth leakage breaker
CN103647252B (en) * 2013-12-05 2016-03-16 江苏国星电器有限公司 There is the leakage switch of FSK communication function
KR101402046B1 (en) * 2013-12-18 2014-06-02 제닉스윈 주식회사 Digital earth leakage breaker
JP6237533B2 (en) * 2014-08-22 2017-11-29 三菱電機株式会社 Earth leakage breaker
FR3059783B1 (en) * 2016-12-07 2019-01-25 Hager-Electro Sas METHOD FOR MANUFACTURING A MEASUREMENT SENSOR FOR A CIRCUIT BREAKER

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531294B2 (en) * 1990-05-31 1996-09-04 松下電工株式会社 Leakage detector
JP2004015961A (en) * 2002-06-10 2004-01-15 Kawamura Electric Inc Ground fault interrupter with three-phase phase-failure protector
JP4264817B2 (en) * 2003-11-27 2009-05-20 富士電機機器制御株式会社 Earth leakage breaker
JP4395009B2 (en) * 2004-05-28 2010-01-06 三菱電機株式会社 Earth leakage breaker
JP4623560B2 (en) * 2004-09-30 2011-02-02 河村電器産業株式会社 Earth leakage breaker

Also Published As

Publication number Publication date
CN101276713B (en) 2012-04-25
JP2008243564A (en) 2008-10-09
KR20080087654A (en) 2008-10-01
FR2914428A1 (en) 2008-10-03
FR2914428B1 (en) 2012-12-14
CN101276713A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4935455B2 (en) Earth leakage detector
US8570181B2 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
JP2016213179A (en) DC circuit breaker and method of use
JP7096345B2 (en) Earth-leakage circuit breaker and its removable arc detector
US10014679B2 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
EP1793466A2 (en) Circuit-breakers incorporating residual current protection
US8427794B2 (en) Multi-pole arc-fault circuit interrupter
JP4931754B2 (en) Earth leakage breaker
JP2013182680A (en) Electric leakage circuit breaker
JP4742232B2 (en) Earth leakage breaker
JP2005304129A (en) Three-phase open-phase detection circuit and air conditioner employing it
KR200440531Y1 (en) Circuit breaker
CN108281331B (en) Three-phase undervoltage tripping device and molded case circuit breaker with same
JP2004015961A (en) Ground fault interrupter with three-phase phase-failure protector
JP6116499B2 (en) Circuit breaker
JP3960074B2 (en) Test circuit for leakage detector
JP2005010066A (en) Three-phase open-phase detecting circuit, and air-conditioner using the same
US20070109696A1 (en) Ground fault circuit interrupt device
US11562872B2 (en) Circuit interrupter for detecting breaker fault conditions and interrupting an electric current
JP4395009B2 (en) Earth leakage breaker
CN213125575U (en) Electronic relay with selectable ground fault protection function
JP2001314031A (en) Earth leakage breaker
JP4483386B2 (en) Earth leakage breaker
JP2008084596A (en) Earth leakage circuit breaker of three-phase four-wire system
KR200392661Y1 (en) Detecting and Protecting Circuit of Phase Loss for the Circuit Braker

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250