JP2009074823A - Wiring board for electronic component inspection device, and its manufacturing method - Google Patents
Wiring board for electronic component inspection device, and its manufacturing method Download PDFInfo
- Publication number
- JP2009074823A JP2009074823A JP2007241867A JP2007241867A JP2009074823A JP 2009074823 A JP2009074823 A JP 2009074823A JP 2007241867 A JP2007241867 A JP 2007241867A JP 2007241867 A JP2007241867 A JP 2007241867A JP 2009074823 A JP2009074823 A JP 2009074823A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- wiring board
- electronic component
- wiring
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Measuring Leads Or Probes (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本発明は、例えば、プローブカードなどの電子部品検査装置に用いられる配線基板に関し、特に大径のSiウェハなどに多数形成された電子部品ごとの電気的特性を正確に検査できる電子部品検査装置に用いられる配線基板およびその製造方法に関する。 The present invention relates to, for example, a wiring board used in an electronic component inspection apparatus such as a probe card, and more particularly to an electronic component inspection apparatus capable of accurately inspecting electrical characteristics of each electronic component formed on a large diameter Si wafer or the like. The present invention relates to a wiring board used and a manufacturing method thereof.
電子部品検査装置の一種であるプローブカードは、多数の微細なプローブをその表面に有し、かかるプローブをSiウェハに多数形成された半導体チップなどの電子部品ごとの電極に接触させることで、個々の電子部品の電気的特性を検査することに使用されている。
ところで、Siウェハは、直径が300mmあるいはそれ以上に大径化する傾向にある。これに応じて、Siウェハとプローブカードとの熱膨張率の差に起因して、一部の電子部品において、その電極とプローブとの電気的接続が不十分になるため、かかる電子部品の電気的特性を正確に検査できなくるおそれがある。
A probe card, which is a kind of electronic component inspection device, has a large number of fine probes on its surface, and by bringing such probes into contact with electrodes for each electronic component such as a semiconductor chip formed on a Si wafer. It is used to inspect the electrical characteristics of electronic parts.
By the way, the Si wafer tends to increase in diameter to 300 mm or more. Accordingly, due to the difference in thermal expansion coefficient between the Si wafer and the probe card, the electrical connection between the electrode and the probe becomes insufficient in some electronic components. There is a risk that the physical characteristics cannot be accurately inspected.
このため、例えば、複数の絶縁基板およびこれらの間に配設した配線層を有する測定用配線基板と、その表面に形成した複数のパッドごとの上に設けた複数の測定端子(プローブ)とを備え、上記配線基板の−40〜+400℃における平均熱膨張係数を2×10−5/℃〜5×10−6/℃とし、且つ上記温度範囲において、上記配線基板と半導体ウェハとの伸びの差を0.02%以下としたプローブカードなどが提案されている(例えば、特許文献1参照)。
前記特許文献1のプローブカードに用いられる測定用配線基板は、その絶縁基板に少なくともZnO、CaO、SrO、BaO、およびZrO2の一種を含み、その含有量を15質量%以下とし、且つコーディエライト結晶相を含む焼結体を用いている。
しかし、かかる絶縁基板は、前記材料からなる複数のグリーンシートを積層し、その表面にプローブが取り付けられる複数のパッドを形成した後で焼成されるため、かかる焼成に伴う収縮によって上記パッドの位置がずれてくる。更に、前記測定用配線基板の内部には、その平面方向に沿った複数の配線層、およびこれらの間を接続するビア導体が形成されているため、これらの熱膨張によって、当該測定用配線基板の体積が変化することもある。
上記パッドの位置ずれや配線基板の体積変化の結果により、上記配線基板の表面に形成された複数のプローブの位置がずれ、特に表面の周辺部側に位置するプローブでは、Siウェハ側の電子部品の電極との電気的接続が不安定になったり、接続不良となって、当該電子部品の検査が不可能となり得る、おそれがあった。
The wiring board for measurement used in the probe card of
However, such an insulating substrate is baked after laminating a plurality of green sheets made of the above materials and forming a plurality of pads to which probes are attached on the surface thereof. It will shift. Furthermore, since a plurality of wiring layers along the plane direction and via conductors connecting between the wiring layers are formed inside the measurement wiring board, the measurement wiring board is caused by their thermal expansion. The volume of may change.
The position of the plurality of probes formed on the surface of the wiring board shifts due to the displacement of the pad and the change in volume of the wiring board. Especially, in the probe located on the peripheral side of the surface, the electronic component on the Si wafer side There is a risk that the electrical connection with the electrode may become unstable or the connection may be poor, making it impossible to inspect the electronic component.
本発明は、背景技術において説明した問題点を解決し、プローブカードなどの電子部品検査装置に用いられ、例えば、大径のSiウェハなどに多数形成された電子部品であっても、その電気的特性を正確且つ確実に検査できる電子部品検査装置に用いられる配線基板およびその製造方法を提供する、ことを課題とする。 The present invention solves the problems described in the background art, and is used in an electronic component inspection apparatus such as a probe card. For example, even an electronic component formed on a large diameter Si wafer or the like is electrically It is an object of the present invention to provide a wiring board used in an electronic component inspection apparatus capable of accurately and reliably inspecting characteristics and a method for manufacturing the same.
本発明は、前記課題を解決するため、プローブを取り付ける低熱膨張係数の中継基板と信号処理を成す配線層を含む多層セラミック配線基板とを別体とし、これらを導体を介して接続する、ことに着想して成されたものである。
即ち、本発明の電子部品検査装置用配線基板(請求項1)は、単層で且つ−40〜+150℃における熱膨張係数が3.0〜4.5×10−6/℃のセラミック層、および該セラミック層の表面と裏面との間を貫通する複数の貫通導体を有する中継基板と、かかる中継基板の裏面側に配置され、複数のセラミック層、該セラミック層の間に形成された配線層、および上記複数のセラミック層を貫通して前記配線層の間を導通するビア導体を含む多層セラミック配線基板と、上記中継基板と多層セラミック配線基板との間に配置され、上記中継基板の複数の貫通導体と上記多層セラミック配線基板の配線層とを電気的に導通する複数の接続導体と、を含む、ことを特徴とする。
In order to solve the above problems, the present invention separates a low thermal expansion coefficient relay board to which a probe is attached and a multilayer ceramic wiring board including a wiring layer for signal processing, and connects them via a conductor. Invented.
That is, the wiring board for an electronic component inspection apparatus according to the present invention (Claim 1) is a single layer and a ceramic layer having a thermal expansion coefficient of 3.0 to 4.5 × 10 −6 / ° C. at −40 to + 150 ° C., And a relay substrate having a plurality of through conductors passing between the front surface and the back surface of the ceramic layer, and a plurality of ceramic layers disposed on the back surface side of the relay substrate and formed between the ceramic layers And a multilayer ceramic wiring board including a via conductor that passes through the plurality of ceramic layers and conducts between the wiring layers, and is disposed between the relay board and the multilayer ceramic wiring board. And a plurality of connecting conductors that electrically connect the through conductor and the wiring layer of the multilayer ceramic wiring board.
これによれば、複数の貫通導体を有する前記中継基板を形成する単層の前記セラミック層は、多数の電子部品を含むウェハを形成するSiの−40〜+150℃における熱膨張係数の約3×10−6/℃と近似している。このため、上記温度範囲における熱的変化を受けても、中継基板の表面に取り付けられる複数のプローブと、Siウェハに形成された多数の電子部品ごとの電極との電気的接続を確保することが容易となる。更に、前記中継基板と多層セラミック配線基板とは、複数の接続導体を介して接合されため、両者間の熱膨張係数の差による影響を、かかる接続導体によって確実に吸収することが可能となる。このため、各プローブから検出された信号は、複数の接続導体、および多層セラミック配線基板内の配線層を介して、裏面側パッドから外部に出力可能となっている。従って、直径が300mmあるいはそれ以上の大径であるSiウェハなどに多数形成された電子部品であっても、その電気的特性を正確且つ確実に検査できる。
しかも、前記配線層は、多層セラミック基板にのみ形成され、且つ中継基板にないため、検査すべき電子部品に応じて、中継基板に対し形状変更などの設計変更を行うだけで、多層セラミック基板を共通して用いるか、あるい大きな変更なしで容易に且つ短時間で対応が可能となる。
尚、前記中継基板に形成される貫通導体には、かかる中継基板の表面と裏面との間を貫通する貫通孔の全体がほぼ円柱形にして形成されるビア導体の形態、あるいは、上記貫通孔の内壁に沿って形成された全体がほぼ円筒形を呈し且つ内部に樹脂や金属などを充填するスルーホール導体の形態が含まれる。
According to this, the single-layer ceramic layer forming the relay substrate having a plurality of through conductors has a thermal expansion coefficient of about 3 × at −40 to + 150 ° C. of Si forming a wafer including a large number of electronic components. It is approximated to 10 −6 / ° C. For this reason, even if it receives the thermal change in the said temperature range, it can ensure the electrical connection with the several probe attached to the surface of a relay substrate, and the electrode for many electronic components formed in Si wafer. It becomes easy. Furthermore, since the relay substrate and the multilayer ceramic wiring substrate are joined via a plurality of connecting conductors, it is possible to reliably absorb the influence due to the difference in the thermal expansion coefficient between them. For this reason, the signal detected from each probe can be output to the outside from the back side pad via the plurality of connection conductors and the wiring layer in the multilayer ceramic wiring board. Therefore, even if electronic components are formed in large numbers on a Si wafer having a large diameter of 300 mm or more, the electrical characteristics can be accurately and reliably inspected.
Moreover, since the wiring layer is formed only on the multilayer ceramic substrate and not on the relay substrate, the multilayer ceramic substrate can be formed by simply changing the design of the relay substrate according to the electronic component to be inspected. It can be used in common or can be handled easily and in a short time without major changes.
The through conductor formed in the relay substrate may be a via conductor in which the entire through hole penetrating between the front surface and the back surface of the relay substrate is formed in a substantially cylindrical shape, or the through hole described above. The shape of the through-hole conductor formed in a generally cylindrical shape along the inner wall is filled with resin, metal, or the like.
また、本発明には、前記中継基板のセラミック層は、マシナブルセラミック、AlN、またはムライトの何れかからなる、電子部品検査装置用配線基板(請求項2)も含まれる。
更に、本発明には、前記マシナブルセラミックは、SiO2とAl2O3との混合物、あるいは、AlNとBNとの混合物である、電子部品検査装置用配線基板(請求項3)も含まれる。
これらによれば、中継基板は、前記温度範囲における熱膨張係数が約4.5×10−6/℃のマシナブルセラミック、約4.3×10−6/℃のAlN、または約4.2×10−6/℃のムライトからなるセラミック層によって形成されている。そのため、前記温度範囲における熱膨張係数が約3.0×10−6/℃のSiウェハとも、熱膨張係数がほぼ近似しているので、かかるSiウェハに形成された多数の電子部品の検査を正確且つ確実に行うことが可能となる。
尚、前記マシナブルセラミックとは、機械加工、特に切削加工が容易に施せるセラミックを指し、例えば、セラミック材料に含有される結晶の著しいへき開を利用したマイカセラミック、あるいは、粒界の選択的破壊を利用したチタン酸アルミニウムセラミックなども含まれる。
The present invention also includes a wiring board for an electronic component inspection apparatus (Claim 2), wherein the ceramic layer of the relay board is made of any one of machinable ceramic, AlN, and mullite.
Furthermore, the present invention includes a wiring board for an electronic component inspection apparatus (Claim 3), wherein the machinable ceramic is a mixture of SiO 2 and Al 2 O 3 or a mixture of AlN and BN. .
According to these, the relay substrate is a machinable ceramic having a thermal expansion coefficient in the temperature range of about 4.5 × 10 −6 / ° C., AlN of about 4.3 × 10 −6 / ° C., or about 4.2. It is formed of a ceramic layer made of mullite at × 10 −6 / ° C. For this reason, since the thermal expansion coefficient of the Si wafer having a thermal expansion coefficient in the temperature range of about 3.0 × 10 −6 / ° C. is approximately similar, many electronic components formed on the Si wafer can be inspected. It becomes possible to carry out accurately and reliably.
The machinable ceramic refers to a ceramic that can be easily machined, in particular, machined. For example, mica ceramic that uses significant cleavage of crystals contained in a ceramic material, or selective destruction of grain boundaries. Also used are aluminum titanate ceramics.
また、本発明には、前記中継基板を形成するセラミック層の厚みは、1mm以下である、電子部品検査装置用配線基板(請求項4)も含まれる。
これによれば、1mm以下と薄肉で且つ低熱膨張係数の前記中継基板に対し、複数の接続導体を介して、多層セラミック基板を接合しても、全体の厚みが約5〜6mmと比較的薄い配線基板とすることができ、前記電子部品の検査工程において狭いスペースで済み、且つ取り扱いを容易化することにも寄与し得る。
尚、中継基板を形成する前記セラミック層の平面視における形状は、任意であるが、例えば検査すべき電子部品がSiウェハに形成されている場合には、かかるSiウェハの平面視における円形の全体をカバーし得る真円形のほか、正六角形、正八角形、あるいは正十二角形などの正多角形を呈する形態としても良い。
The present invention also includes an electronic component inspection device wiring board (Claim 4) in which the thickness of the ceramic layer forming the relay board is 1 mm or less.
According to this, even if a multilayer ceramic substrate is bonded to the relay substrate having a thin wall thickness of 1 mm or less and a low thermal expansion coefficient via a plurality of connecting conductors, the overall thickness is relatively thin, about 5 to 6 mm. The wiring board can be used, and a small space is required in the inspection process of the electronic component, and it can contribute to facilitating handling.
The shape of the ceramic layer forming the relay substrate in a plan view is arbitrary. For example, when an electronic component to be inspected is formed on a Si wafer, the entire circular shape of the Si wafer in a plan view is formed. In addition to a perfect circle that can cover, a regular polygon such as a regular hexagon, a regular octagon, or a regular dodecagon may be employed.
更に、本発明には、前記多層セラミック配線基板を形成する複数のセラミック層は、高温焼成セラミックまたは低温焼成セラミックからなる、電子部品検査装置用配線基板(請求項5)も含まれる。
これによれば、複数の接続導体を介して、前記中継基板の貫通導体および表・裏面の各パッドを介して、電子部品の各電極に電気信号を送信したり、逆に各電子部品から検査信号を受信し、内部の配線層で電圧の増幅や信号電流の整流などを施した後、裏面側パッドから外部回路基板などに出力することが可能となる。
尚、上記高温焼成セラミックは、例えばアルミナからなり、内部および表・裏面にWまたはMoからなる配線層、ビア導体、およびパッドが形成され、一方、上記低温焼成セラミックは、例えばガラス−セラミックからなり、内部および表・裏面にCuまたはAgからなる配線層、ビア導体、およびパッドが形成される。
Furthermore, the present invention includes an electronic component inspection device wiring board (Claim 5) in which the plurality of ceramic layers forming the multilayer ceramic wiring board are made of a high-temperature fired ceramic or a low-temperature fired ceramic.
According to this, an electrical signal is transmitted to each electrode of the electronic component via the plurality of connecting conductors, the through conductors of the relay board and the pads on the front and back surfaces, or conversely, inspection is performed from each electronic component. After receiving the signal and performing voltage amplification and signal current rectification in the internal wiring layer, the signal can be output from the back surface side pad to an external circuit board or the like.
The high-temperature fired ceramic is made of alumina, for example, and wiring layers, via conductors, and pads made of W or Mo are formed on the inside, front and back surfaces, while the low-temperature fired ceramic is made of glass-ceramic, for example. A wiring layer made of Cu or Ag, a via conductor, and a pad are formed in the inside and front and back surfaces.
加えて、本発明には、前記接続導体は、前記中継基板の裏面に形成され且つ前記貫通導体と接続する裏面側パッド、前記多層セラミック配線基板の表面に形成され且つ前記配線層と導通する表面側パッド、およびこれら2つのパッドを接続するハンダからなる、電子部品検査装置用配線基板(請求項6)も含まれる。
これによれば、低熱膨張の前記中継基板とこれよりも高低熱膨張の多層セラミック配線基板とを、複数の接続導体を介して接合されため、両者間の熱膨張係数の差による影響を、かかる接続導体によって確実に吸収することが可能となる。従って、中継基板側のプローブと電子部品ごとの電極との電気的接続を確保できると共に、得られた信号を多層セラミック配線基板内の配線層で電気的処理などを行って、外部に確実に出力させることが可能となる。
尚、上記ハンダには、例えば、Sn−Ag−Cu系合金からなるものが用いられる。
In addition, according to the present invention, the connection conductor is formed on the back surface of the relay substrate and is connected to the through conductor, and is formed on the surface of the multilayer ceramic wiring substrate and is electrically connected to the wiring layer. A wiring board for an electronic component inspection apparatus (Claim 6) comprising a side pad and solder for connecting these two pads is also included.
According to this, the low thermal expansion relay board and the higher and lower thermal expansion multilayer ceramic wiring board are joined via the plurality of connecting conductors, and therefore the influence of the difference in thermal expansion coefficient between the two is applied. It is possible to reliably absorb the connecting conductor. Therefore, the electrical connection between the probe on the relay board side and the electrode for each electronic component can be ensured, and the obtained signal can be reliably output to the outside by performing electrical processing on the wiring layer in the multilayer ceramic wiring board. It becomes possible to make it.
For example, a solder made of a Sn—Ag—Cu alloy is used as the solder.
一方、本発明の電子部品検査装置用配線基板の製造方法(請求項7)は、−40〜+150℃における熱膨張係数が3.0〜4.5×10−6/℃のセラミック層となるグリーンシートを焼成して単一のセラミック層を形成し、該セラミック層の表面と裏面との間を貫通する複数の貫通導体を形成し、該貫通導体の両端面が露出する上記セラミック層の表・裏面ごとに複数のパッドを形成した後、複数の上記貫通導体およびパッドを加熱する、ことを含む中継基板を形成する工程と、複数のグリーンシートの表面と裏面との間を貫通する複数のビアホールごとにビア導体を形成し、上記複数のグリーンシートの表面および裏面の少なくとも一方に配線層またはパッドを形成し、かかる複数のグリーンシートを積層および焼成して、多層セラミック配線基板を形成する工程と、かかる多層セラミック配線基板の表面に形成した表面側パッドと、上記中継基板と多層セラミック配線基板との間において、中継基板の裏面に形成した裏面側パッドとを、ハンダを介して接続する工程と、を含む、ことを特徴とする。 On the other hand, the method for manufacturing a wiring board for an electronic component inspection apparatus according to the present invention (Claim 7) provides a ceramic layer having a thermal expansion coefficient of 3.0 to 4.5 × 10 −6 / ° C. at −40 to + 150 ° C. The ceramic sheet is formed by firing a green sheet to form a single ceramic layer, forming a plurality of through conductors penetrating between the front and back surfaces of the ceramic layer, and exposing both end faces of the through conductor. A step of forming a relay substrate including forming a plurality of pads for each back surface and then heating the plurality of through conductors and pads, and a plurality of holes penetrating between the front and back surfaces of the plurality of green sheets. A via conductor is formed for each via hole, a wiring layer or a pad is formed on at least one of the front and back surfaces of the plurality of green sheets, and the plurality of green sheets are laminated and fired to obtain a multilayer ceramic. Forming a wiring board, a surface-side pad formed on the surface of the multilayer ceramic wiring board, and a back-side pad formed on the back surface of the relay board between the relay board and the multilayer ceramic wiring board. And a step of connecting via solder.
これによれば、中継基板を形成する単一のセラミック層は、前記低熱膨張係数のグリーンシートを予め焼成した後、孔明け加工されて、複数の貫通孔を位置精度良く形成され、かかる貫通孔ごとに、ビア導体またはスルーホール導体の形態である貫通導体が形成される。かかる貫通導体と、当該セラミック層の表・裏面ごとに形成した複数のパッドとを加熱(キュア)するので、低熱膨張の中継基板の表面に複数のパッドが高い位置精度で形成される。そのため、かかるバッドごとに取り付けられるプローブと、Siウェハなどに多数形成された電子部品ごとの電極との電気的接続を、温度変化による影響を最少にして確保できる配線基板を確実に製造することが可能となる。しかも、各プローブから検出された信号は、複数の接続導体、および多層セラミック配線基板内の配線層を介して、裏面側パッドから外部に出力可能とした配線基板を提供可能となる。
また、本発明には、前記中継基板の表面に形成された複数の表面側パッド上に、検査すべき電子部品の電極と接触するプローブを取り付ける工程を更に有する、電子部品検査装置用配線基板の製造方法(請求項8)も含まれる。
これによれば、プローブが中継基板の表面側の各パッドごとに取り付けられるため、例えば、Siウェハに形成された多数の電子部品ごとの電極との確実な電気的接続が可能となる。従って、精度の高いプローブなどの検査装置を提供可能となる。
According to this, the single ceramic layer forming the relay substrate is pre-fired and then drilled to form a plurality of through holes with high positional accuracy. Each time, a through conductor in the form of a via conductor or a through-hole conductor is formed. Since the through conductor and the plurality of pads formed on the front and back surfaces of the ceramic layer are heated (cured), the plurality of pads are formed with high positional accuracy on the surface of the low thermal expansion relay substrate. Therefore, it is possible to reliably manufacture a wiring board that can secure the electrical connection between the probe attached to each pad and the electrode for each electronic component formed on a large number of Si wafers, etc., while minimizing the influence of temperature changes. It becomes possible. In addition, it is possible to provide a wiring board in which signals detected from each probe can be output to the outside from the back-side pad via a plurality of connection conductors and a wiring layer in the multilayer ceramic wiring board.
Moreover, the present invention further includes a step of attaching a probe that contacts an electrode of an electronic component to be inspected on a plurality of front surface pads formed on the surface of the relay substrate. A manufacturing method (claim 8) is also included.
According to this, since the probe is attached to each pad on the surface side of the relay substrate, for example, reliable electrical connection with electrodes for each of a large number of electronic components formed on the Si wafer is possible. Therefore, it is possible to provide an inspection apparatus such as a probe with high accuracy.
以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明の電子部品検査装置用配線基板(以下、単に検査装置用配線基板という)1の断面およびその使用状態を示す概略図である。
検査装置用配線基板1は、図1に示すように、単一のセラミック層Sおよびその表面3と裏面4との間を複数のビア導体6が貫通する中継基板2と、かかる中継基板2の裏面4側に配置され、複数のセラミック層s1〜s4およびこれらの間に形成された配線層13〜15を含む多層セラミック基板10と、これらの間を電気的に接続するハンダ18を含む接続導体とを備えており、全体の厚みが約5〜6mmである。
中継基板2を形成するセラミック層Sは、厚みが1mm以下のマシナブルセラミック、AlN、またはムライトの何れかからなり、−40〜+150℃における熱膨張係数(以下、単にCTEとする)が3.0〜4.5×10−6/℃である。
尚、上記温度範囲におけるAlNのCTEは、約4.3×10−6/℃、ムライトのCTEは、約4.2×10−6/℃である。また、上記マシナブルセラミックには、SiO2とAl2O3との混合物、あるいは、AlNとBNとの混合物からなり、これらのCTEは、約4.5×10−6/℃である。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a schematic view showing a cross section of a wiring board for an electronic component inspection apparatus (hereinafter, simply referred to as an inspection apparatus wiring board) 1 according to the present invention and a use state thereof.
As shown in FIG. 1, the inspection
The ceramic layer S forming the
In addition, the CTE of AlN in the above temperature range is about 4.3 × 10 −6 / ° C., and the CTE of mullite is about 4.2 × 10 −6 / ° C. The machinable ceramic is made of a mixture of SiO 2 and Al 2 O 3 or a mixture of AlN and BN, and their CTE is about 4.5 × 10 −6 / ° C.
図1に示すように、中継基板2のセラミック層Sの表面3と裏面4との間には、複数の貫通孔5が穿孔され、これらの内部には、ビア導体と同様の貫通導体6が形成されている。尚、該貫通導体6は、各貫通孔5の内壁面に沿ったほぼ円筒形を呈し内部に金属または樹脂が充填されたスルーホール導体の形態としても良い。
各貫通導体6ごとの表面3および裏面4には、当該貫通導体6と接続された表面側パッド7および裏面側パッド8が形成されている。表面側パッド7ごとの上には、検査すべきSiウェハ20に形成された多数の電子部品(図示せず)ごとの電極19と接触し、これと電気的接続が可能なプローブ9が追って取り付けられる。尚、上記貫通導体6、表面側パッド7、および裏面側パッド8は、例えば、AgまたはCu、あるいはこれらの一方をベースとする合金からなる。
As shown in FIG. 1, a plurality of through
A front surface side pad 7 and a rear
図1に示すように、多層セラミック基板10は、例えば、アルミナ(高温焼成セラミック)またはガラス−セラミック(低温焼成セラミック)からなるセラミック層s1〜s4、これらの間に形成され且つ所要のパターンを有する配線層13〜15、セラミック層s1の表面11に形成された表面側パッド16、セラミック層s4の裏面12に形成された裏面側パッド17、およびこれらの導体間を接続するためセラミック層s1〜s4を貫通する複数のビア導体vを備えている。
更に、中継基板2の裏面側パッド8と多層セラミック基板10の表面側パッド16との間は、例えば、Sn−Ag−Cu系合金からなるハンダ18により接続されている。かかるハンダ18、裏面側パッド8、および表面側パッド16は、本発明の接続導体を形成し、これらを介して、中継基板2の貫通導体6および表面側パッド7と、多層セラミック基板10の配線層13〜15、ビア導体v、および裏面側パッド17とが電気的に導通可能とされている。
As shown in FIG. 1, the multilayer
Furthermore, the back
以上のような検査装置用配線基板1によれば、複数の貫通導体6を有する前記中継基板2を形成する単層の前記セラミック層Sが、多数の電子部品を含むウェハを形成するSiの−40〜+150℃における熱膨張係数の約3×10−6/℃と近似しているので、上記温度範囲における熱的変化を受けても、中継基板2の表面側パッド7に取り付けられる複数のプローブ9と、Siウェハ20に形成された電子部品ごとの電極19との電気的接続を確保することが容易となる。更に、前記中継基板2と多層セラミック基板10とは、ハンダ18を含む複数の接続導体を介して接合されため、両者間の熱膨張係数の差による影響を、かかる接続導体によって確実に吸収することが可能となる。このため、各プローブ9から検出された信号は、複数の接続導体、多層セラミック基板1内の配線層13〜15、およびビア導体vを介して、裏面側パッド17から外部に出力可能となる。従って、直径が300mm以上の大径であるSiウェハ20に形成された電子部品であっても、その電気的特性を正確且つ確実に検査することが可能となる。
しかも、前記配線層13などは、多層セラミック基板10にのみ形成され、且つ中継基板2にはないため、検査すべき電子部品に応じて、中継基板2に対し形状変更などの設計変更を行うだけで、多層セラミック基板10をそのまま用いるか、あるい大きな変更なしで容易に且つ短時間で対応することが可能となる。
According to the inspection
Moreover, since the
前記検査装置用配線基板1は、以下のような方法によって製造した。
予め、マシナブルセラミック(SiO2とAl2O3との混合物、または、AlNとBNとの混合物)、AlN、あるいはムライトの粉末と、樹脂バインダと、溶剤などを所要量ずつ瓶量・混合してセラミックスラリを作成し、かかるセラミックスラリをドクターブレード法によって、厚みが約1mmのグリーンシートを形成した。
次に、かかるグリーンシートを所定の温度で焼成して、図2の断面図で示すように、表面3および裏面4を有し、厚みtが1mm以下で、且つ−40〜+150℃におけるCTEが3.0〜4.5×10−6/℃のセラミック層Sを得た。
The inspection
In advance, the required amount of machinable ceramic (a mixture of SiO 2 and Al 2 O 3 or a mixture of AlN and BN), AlN or mullite, a resin binder, a solvent, etc. is bottled and mixed in the required amounts. A ceramic slurry was prepared, and a green sheet having a thickness of about 1 mm was formed from the ceramic slurry by a doctor blade method.
Next, the green sheet is fired at a predetermined temperature, and as shown in the cross-sectional view of FIG. 2, the green sheet has a
次いで、上記セラミック層Sに対し、ドリルによる孔明け加工を行って、図3に示すように、その表面3と裏面4との間を貫通する複数の貫通孔5を形成した。
更に、上記セラミック層Sの各貫通孔5付近ごとに、無電解Agメッキおよび電解Agメッキ、あるいは無電解Cuメッキおよび電解Cuメッキを施して、図4に示すように、全体がほぼ円筒形のメッキ体6aを複数個形成した。
次に、上記メッキ体6aの中空部にAg粉末またはCu粉末を含む導電性ペーストを穴埋め・充填することで、図5に示すように、両端面がセラミック層Sの表・裏面3,4から僅かに突出する貫通導体6bを形成した。尚、上記メッキ体6aの中空部には、樹脂を充填しても良い。
Next, the ceramic layer S was drilled with a drill to form a plurality of through
Further, electroless Ag plating and electrolytic Ag plating, or electroless Cu plating and electrolytic Cu plating are applied to the vicinity of each through-
Next, the hollow portion of the plated
次いで、かかるセラミック層Sの表面3および裏面4を砥石またはベルトサンダーなどにより研磨して、図6に示すように、両端面が表・裏面3,4と面一の貫通導体6を各貫通孔5ごとに形成した。
尚、前記貫通孔5内に、Ag粉末またはCu粉末を含む導電性ペーストを直に印刷・充填して、貫通導体6を形成した後 、 上記同様の研磨を行っても良い。
更に、図7に示すように、セラミック層Sの表・裏面3,4で各貫通導体6の端面が露出する位置ごとに対し、Ag粉末またはCu粉末を含む導電性ペーストをスクリーン印刷して、表面側パッド7および裏面側パッド8を形成した。
そして、貫通導体6、表面側パッド7、および裏面側パッド8を所定の温度(約150〜250℃)で加熱(キュア)して、それぞれ硬化させた。
その結果、前記図1に示した中継基板2が得られた。
Next, the
In addition, after the conductive paste containing Ag powder or Cu powder is directly printed and filled in the through
Furthermore, as shown in FIG. 7, the conductive paste containing Ag powder or Cu powder is screen-printed for each position where the end face of each through
Then, the through
As a result, the
一方、アルミナ粉末と、樹脂バインダと、溶剤などを所要量ずつ瓶量・混合してセラミックスラリを作成し、かかるセラミックスラリをドクターブレード法によって、図8に示すように、厚みが約100〜500μmのグリーンシートgs1〜gs4を形成した。尚、上記アルミナ粉末に替えて、ガラス成分とアルミナ粉末とが重量比でほぼ4:6〜6:4のガラス−セラミック粉末を用いても良い。
次に、グリーンシートgs1〜gs4における所定の位置に対し、パンチングを施して、図8に示すように、これらを貫通する複数のビアホールhを形成した。
次いで、上記ビアホールhごとの内部に、W粉末またはMo粉末を含む導電性ペーストを印刷・充填して、図9に示すように、ビア導体vを形成した。
On the other hand, a ceramic slurry is prepared by mixing and mixing required amounts of alumina powder, resin binder, solvent, and the like, and the ceramic slurry is about 100 to 500 μm in thickness as shown in FIG. 8 by the doctor blade method. Green sheets gs1 to gs4 were formed. In addition, it may replace with the said alumina powder and you may use the glass-ceramic powder whose glass component and alumina powder are about 4: 6-6: 4 by weight ratio.
Next, the predetermined positions in the green sheets gs1 to gs4 were punched to form a plurality of via holes h penetrating them as shown in FIG.
Next, a conductive paste containing W powder or Mo powder was printed and filled inside each via hole h to form a via conductor v as shown in FIG.
更に、グリーンシートgs1〜gs4の表面および裏面における少なくとも一方に対し、上記同様の導電性ペーストをスクリーン印刷して、図9に示すように、所定パターンの配線層13〜15と、表・裏面側パッド16,17とを形成した。この際、各ビア導体vは、同じグリーンシートgs1〜gs4の配線層13〜15や表・裏面側パッド16,17と接続された。
尚、ガラス−セラミック粉末を含むグリーンシートgs1〜gs4の場合には、Ag粉末またはCu粉末を含む導電性ペーストを用いた。
次に、ビア導体v、配線層13〜15、表・裏面側パッド16,17が形成されたグリーンシートgs1〜gs4を、積層および圧着して、図10に示すように、未焼成の積層体SSを得た。この際、各ビア導体vは、隣接するグリーンシートgs2〜gs4の配線層13〜15と接続された。
Further, the conductive paste similar to the above is screen-printed on at least one of the front and back surfaces of the green sheets gs1 to gs4, and as shown in FIG.
In addition, in the case of the green sheets gs1-gs4 containing glass-ceramic powder, the electrically conductive paste containing Ag powder or Cu powder was used.
Next, the green sheets gs1 to gs4 on which the via conductors v, the wiring layers 13 to 15 and the front and
そして、かかる積層体を所定の温度(約800〜1000℃)で焼成した。
その結果、全体の厚みが約3〜5mmである前記図1に示した多層セラミック基板10が得られた。
次いで、図11に示すように、多層セラミック基板10の表面11側と、中継基板2の裏面4側との間において、前者の表面側パッド16ごとの上に、Sn−Ag−Cu系合金からなるほぼボール形状のハンダ18(図示せず)を載せた後、その融点よりもやや上の温度帯で加熱した。尚、中継基板2の裏面側パッド8ごとの上に上記ハンダ18を載せ、且つそれらの上に多層セラミック基板10の各表面側パッド16を載置させた後、上記同様に加熱しても良い。
And this laminated body was baked at predetermined | prescribed temperature (about 800-1000 degreeC).
As a result, the multilayer
Next, as shown in FIG. 11, between the surface 11 side of the multilayer
その結果、図12に示すように、ハンダ18を介して裏・表面側パッド8,16が接合され、これらからなる複数の接続導体を介して、中継基板2と多層セラミック基板10とが接合された本発明の検査装置用配線基板1を得ることができた。同時に、中継基板2の貫通導体6および表面側パッド7と、多層セラミック基板10の配線層13〜15,ビア導体v,および裏面側パッド17とが電気的に導通可能となった。
そして、中継基板2の各表面側パッド7ごと上に、プローブ9を取り付けることで、電子部品検査装置の要部を形成することができた。尚、多層セラミック基板10の裏面側パッド17に対し、更に外部回路基板(図示せず)を接続することで、プローブカードなどの電子部品検査装置を形成することも可能である。
As a result, as shown in FIG. 12, the back and
And the principal part of the electronic component inspection apparatus was able to be formed by attaching the
以上のような検査装置用配線基板1の製造方法によれば、中継基板2を形成する単一のセラミック層Sは、前記低熱膨張係数のグリーンシートを予め焼成した後、孔明け加工されて、複数の貫通孔hを位置精度良く形成され、かかる貫通孔hごとに、ビア導体またはスルーホール導体の形態である貫通導体6が形成されている。かかる貫通導体6と、当該セラミック層Sの表・裏面3,4ごとに形成した複数のパッド7,8とを加熱(キュア)するので、低熱膨張の中継基板2の表面3に複数のパッド7を高い位置精度にて形成できる。そのため、かかるバッド7ごとに取り付けられるプローブ9と、Siウェハ20に多数形成された電子部品ごとの電極19との電気的接続を、温度変化による影響を最少にして確保できる検査装置用配線基板1を確実に製造することが可能となる。しかも、各プローブ9から検出された信号は、複数の接続導体18、および多層セラミック基板10内の配線層13〜15などを介して、その裏面側パッド17から外部に出力可能とした検査装置用配線基板1を確実に提供することが可能となる。
According to the manufacturing method of the
本発明は、前記形態に限られるでものはない。
例えば、前記中継基板2におけるセラミック層Sの表面3および裏面4には、表面側パッド7,7間、あるいは裏面側パッド8,8間を接続する配線を形成しても良い。
また、前記接続導体のハンダ18は、Sn−Ag系、Sn−Cu系、Sn−Zn系合金からなるものとしても良い。
更に、前記中継基板2と多層セラミック配線基板10との間には、かかる位置に形成した複数の前記接続導体であるハンダ18の周囲を包囲するように、封止用の樹脂またはガラスを充填することも可能である。
また、前記多層セラミック配線基板10のセラミック層s1〜s4は、ムライト、AlNなどの高温焼成セラミックによって形成しても良い。
加えて、前記多層セラミック配線基板10は、その裏面12側に開口するキャビティを形成し、かかるキャビティ内に各種の電子部品を実装することも可能である。
The present invention is not limited to the above embodiment.
For example, the
The connecting
Further, a resin or glass for sealing is filled between the
Further, the ceramic layers s1 to s4 of the multilayer
In addition, the multilayer
1…………………………電子部品検査装置用配線基板
2…………………………中継基板
3,11…………………表面
4…………………………裏面
6…………………………貫通導体
7,16…………………表面側パッド
8…………………………裏面側パッド
9…………………………プローブ
10………………………多層セラミック配線基板
13〜15………………配線層
18………………………ハンダ(接続導体)
19………………………電極
20………………………Siウェハ(電子部品)
v…………………………ビア導体
S,s1〜s4…………セラミック層
gs1〜gs4…………グリーンシート
1 ………………………… Wiring board for electronic
19 ……………………
v ………………………… Via conductor S, s1-s4 ………… Ceramic layer gs1-gs4 ………… Green sheet
Claims (8)
上記中継基板の裏面側に配置され、複数のセラミック層、該セラミック層の間に形成された配線層、および上記複数のセラミック層を貫通して前記配線層の間を導通するビア導体を含む多層セラミック配線基板と、
上記中継基板と多層セラミック配線基板との間に配置され、上記中継基板の複数の貫通導体と上記多層セラミック配線基板の配線層とを電気的に導通する複数の接続導体と、を含む、
ことを特徴とする電子部品検査装置用配線基板。 A ceramic layer having a single layer and a thermal expansion coefficient of 3.0 to 4.5 × 10 −6 / ° C. at −40 to + 150 ° C., and a plurality of through conductors penetrating between the front surface and the back surface of the ceramic layer Having a relay board;
A multilayer including a plurality of ceramic layers, a wiring layer formed between the ceramic layers, and a via conductor that passes through the plurality of ceramic layers and is conducted between the wiring layers, disposed on the back side of the relay substrate. A ceramic wiring board;
A plurality of connecting conductors disposed between the relay board and the multilayer ceramic wiring board and electrically conducting the plurality of through conductors of the relay board and the wiring layer of the multilayer ceramic wiring board;
A wiring board for an electronic component inspection apparatus.
ことを特徴とする請求項1に記載の電子部品検査装置用配線基板。 The ceramic layer of the relay substrate is made of either machinable ceramic, AlN, or mullite.
The wiring board for an electronic component inspection apparatus according to claim 1.
ことを特徴とする請求項2に記載の電子部品検査装置用配線基板。 The machinable ceramic is a mixture of SiO 2 and Al 2 O 3 or a mixture of AlN and BN.
The wiring board for an electronic component inspection apparatus according to claim 2.
ことを特徴とする請求項1乃至3の何れか一項に記載の電子部品検査装置用配線基板。 The thickness of the ceramic layer forming the relay substrate is 1 mm or less.
The wiring board for an electronic component inspection apparatus according to any one of claims 1 to 3.
ことを特徴とする請求項1乃至4の何れか一項に記載の電子部品検査装置用配線基板。 The plurality of ceramic layers forming the multilayer ceramic wiring board are made of a high-temperature fired ceramic or a low-temperature fired ceramic.
The wiring board for an electronic component inspection apparatus according to any one of claims 1 to 4, wherein:
ことを特徴とする請求項1乃至5の何れか一項に記載の電子部品検査装置用配線基板。 The connection conductor is formed on the back surface of the relay substrate and connected to the through conductor, the back surface side pad formed on the surface of the multilayer ceramic wiring substrate and connected to the wiring layer, and these two pads Consisting of solder connecting,
The wiring board for an electronic component inspection apparatus according to any one of claims 1 to 5.
複数のグリーンシートの表面と裏面との間を貫通する複数のビアホールごとにビア導体を形成し、上記複数のグリーンシートの表面および裏面の少なくとも一方に配線層またはパッドを形成し、かかる複数のグリーンシートを積層および焼成して、多層セラミック配線基板を形成する工程と、
上記中継基板と多層セラミック配線基板との間において、上記多層セラミック配線基板の表面に形成した表面側パッドと、中継基板の裏面に形成した裏面側パッドとを、ハンダを介して接続する工程と、を含む
ことを特徴とする電子部品検査装置用配線基板の製造方法。 A green sheet serving as a ceramic layer having a thermal expansion coefficient at −40 to + 150 ° C. of 3.0 to 4.5 × 10 −6 / ° C. is fired to form a single ceramic layer, and the front and back surfaces of the ceramic layer And forming a plurality of pads for each of the front and back surfaces of the ceramic layer where both end faces of the through conductor are exposed, and then heating the plurality of through conductors and pads. A step of forming a relay substrate including:
A via conductor is formed for each of a plurality of via holes penetrating between the front and back surfaces of the plurality of green sheets, and a wiring layer or a pad is formed on at least one of the front and back surfaces of the plurality of green sheets. Laminating and firing the sheets to form a multilayer ceramic wiring board;
Between the relay substrate and the multilayer ceramic wiring substrate, connecting a front surface side pad formed on the surface of the multilayer ceramic wiring substrate and a back surface side pad formed on the back surface of the relay substrate via solder; The manufacturing method of the wiring board for electronic component inspection apparatuses characterized by these.
ことを特徴とする請求項7に記載の電子部品検査装置用配線基板の製造方法。 A step of attaching a probe in contact with an electrode of an electronic component to be inspected on a plurality of surface side pads formed on the surface of the relay substrate;
The method for manufacturing a wiring board for an electronic component inspection apparatus according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241867A JP2009074823A (en) | 2007-09-19 | 2007-09-19 | Wiring board for electronic component inspection device, and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241867A JP2009074823A (en) | 2007-09-19 | 2007-09-19 | Wiring board for electronic component inspection device, and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009074823A true JP2009074823A (en) | 2009-04-09 |
Family
ID=40609960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007241867A Pending JP2009074823A (en) | 2007-09-19 | 2007-09-19 | Wiring board for electronic component inspection device, and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009074823A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010027075A1 (en) * | 2008-09-05 | 2010-03-11 | 日本発條株式会社 | Wiring board and probe card |
KR101018097B1 (en) | 2009-04-29 | 2011-02-25 | 삼성전기주식회사 | Method for Manufacturing of Probe Board |
JP2011159826A (en) * | 2010-02-01 | 2011-08-18 | Nhk Spring Co Ltd | Machinable ceramic circuit board and method for manufacturing the same |
JP2012141275A (en) * | 2010-12-29 | 2012-07-26 | Samsung Electro-Mechanics Co Ltd | Ceramic substrate for probe card and manufacturing method thereof |
JP2012141274A (en) * | 2010-12-29 | 2012-07-26 | Samsung Electro-Mechanics Co Ltd | Ceramic substrate for probe card and manufacturing method thereof |
JP2013024622A (en) * | 2011-07-19 | 2013-02-04 | Ngk Spark Plug Co Ltd | Wiring board for electronic component inspection device and method for manufacturing the same |
US9049786B2 (en) | 2011-04-01 | 2015-06-02 | Ngk Spark Plug Co., Ltd. | Ceramic substrate and method for manufacturing the same |
KR20160064072A (en) | 2013-09-30 | 2016-06-07 | 니폰 덴키 가라스 가부시키가이샤 | Ceramic wiring substrate, ceramic green sheet for ceramic wiring substrate, and glass ceramic powder for ceramic wiring substrate |
KR20200051007A (en) * | 2017-09-07 | 2020-05-12 | 테크노프로브 에스.피.에이. | Interface element for electronic device test apparatus and manufacturing method corresponding thereto |
KR20200051486A (en) | 2018-11-05 | 2020-05-13 | 니혼도꾸슈도교 가부시키가이샤 | Wiring board |
JP2020134396A (en) * | 2019-02-22 | 2020-08-31 | 日本特殊陶業株式会社 | Substrate for electric inspection |
US10834818B2 (en) | 2018-11-05 | 2020-11-10 | Ngk Spark Plug Co., Ltd. | Wiring board |
KR20220044733A (en) | 2019-08-06 | 2022-04-11 | 니폰 덴키 가라스 가부시키가이샤 | Ceramic wiring board, ceramic green sheet for ceramic wiring board and glass ceramic powder for ceramic wiring board |
KR20230133865A (en) | 2021-01-15 | 2023-09-19 | 니폰 덴키 가라스 가부시키가이샤 | Ceramic substrate, green sheet for ceramic substrate and composite powder for ceramic substrate |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127122A (en) * | 1999-10-29 | 2001-05-11 | Mitsui Kozan Material Kk | Component for insulatively fixing probe |
JP2002313854A (en) * | 2002-04-04 | 2002-10-25 | Matsushita Electric Ind Co Ltd | Probe card for full wafer measurement and inspection and its manufacturing method |
JP2003203954A (en) * | 1999-11-18 | 2003-07-18 | Ibiden Co Ltd | Inspection apparatus and probe card |
JP2005119941A (en) * | 2003-09-25 | 2005-05-12 | Sumitomo Metal Ind Ltd | Free-cutting ceramic, its production method, and probe guiding part |
JP2006080199A (en) * | 2004-09-08 | 2006-03-23 | Ibiden Co Ltd | Electric relay plate |
JP2006284541A (en) * | 2005-04-05 | 2006-10-19 | Kyocera Corp | Measuring wiring substrate, probe card, and evaluation device |
JP2007173862A (en) * | 2003-06-24 | 2007-07-05 | Ngk Spark Plug Co Ltd | Structure comprising relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate, and substrate |
-
2007
- 2007-09-19 JP JP2007241867A patent/JP2009074823A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127122A (en) * | 1999-10-29 | 2001-05-11 | Mitsui Kozan Material Kk | Component for insulatively fixing probe |
JP2003203954A (en) * | 1999-11-18 | 2003-07-18 | Ibiden Co Ltd | Inspection apparatus and probe card |
JP2002313854A (en) * | 2002-04-04 | 2002-10-25 | Matsushita Electric Ind Co Ltd | Probe card for full wafer measurement and inspection and its manufacturing method |
JP2007173862A (en) * | 2003-06-24 | 2007-07-05 | Ngk Spark Plug Co Ltd | Structure comprising relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate, and substrate |
JP2005119941A (en) * | 2003-09-25 | 2005-05-12 | Sumitomo Metal Ind Ltd | Free-cutting ceramic, its production method, and probe guiding part |
JP2006080199A (en) * | 2004-09-08 | 2006-03-23 | Ibiden Co Ltd | Electric relay plate |
JP2006284541A (en) * | 2005-04-05 | 2006-10-19 | Kyocera Corp | Measuring wiring substrate, probe card, and evaluation device |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010027075A1 (en) * | 2008-09-05 | 2010-03-11 | 日本発條株式会社 | Wiring board and probe card |
KR101018097B1 (en) | 2009-04-29 | 2011-02-25 | 삼성전기주식회사 | Method for Manufacturing of Probe Board |
JP2011159826A (en) * | 2010-02-01 | 2011-08-18 | Nhk Spring Co Ltd | Machinable ceramic circuit board and method for manufacturing the same |
JP2012141275A (en) * | 2010-12-29 | 2012-07-26 | Samsung Electro-Mechanics Co Ltd | Ceramic substrate for probe card and manufacturing method thereof |
JP2012141274A (en) * | 2010-12-29 | 2012-07-26 | Samsung Electro-Mechanics Co Ltd | Ceramic substrate for probe card and manufacturing method thereof |
US9049786B2 (en) | 2011-04-01 | 2015-06-02 | Ngk Spark Plug Co., Ltd. | Ceramic substrate and method for manufacturing the same |
JP2013024622A (en) * | 2011-07-19 | 2013-02-04 | Ngk Spark Plug Co Ltd | Wiring board for electronic component inspection device and method for manufacturing the same |
KR20160064072A (en) | 2013-09-30 | 2016-06-07 | 니폰 덴키 가라스 가부시키가이샤 | Ceramic wiring substrate, ceramic green sheet for ceramic wiring substrate, and glass ceramic powder for ceramic wiring substrate |
KR20200051007A (en) * | 2017-09-07 | 2020-05-12 | 테크노프로브 에스.피.에이. | Interface element for electronic device test apparatus and manufacturing method corresponding thereto |
KR102608053B1 (en) | 2017-09-07 | 2023-11-29 | 테크노프로브 에스.피.에이. | Interface elements for electronic device test devices and corresponding manufacturing methods |
KR20200051486A (en) | 2018-11-05 | 2020-05-13 | 니혼도꾸슈도교 가부시키가이샤 | Wiring board |
US10834818B2 (en) | 2018-11-05 | 2020-11-10 | Ngk Spark Plug Co., Ltd. | Wiring board |
JP2020134396A (en) * | 2019-02-22 | 2020-08-31 | 日本特殊陶業株式会社 | Substrate for electric inspection |
KR20220044733A (en) | 2019-08-06 | 2022-04-11 | 니폰 덴키 가라스 가부시키가이샤 | Ceramic wiring board, ceramic green sheet for ceramic wiring board and glass ceramic powder for ceramic wiring board |
US12010793B2 (en) | 2019-08-06 | 2024-06-11 | Nippon Electric Glass Co., Ltd. | Ceramic circuit board, ceramic green sheet for ceramic circuit board, and glass ceramic powder for ceramic circuit board |
KR20230133865A (en) | 2021-01-15 | 2023-09-19 | 니폰 덴키 가라스 가부시키가이샤 | Ceramic substrate, green sheet for ceramic substrate and composite powder for ceramic substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009074823A (en) | Wiring board for electronic component inspection device, and its manufacturing method | |
JP5108433B2 (en) | Wiring board for electronic component inspection equipment | |
US20110063066A1 (en) | Space transformer for probe card and method of repairing space transformer | |
JP5445985B2 (en) | Probe card and manufacturing method thereof | |
JP2010271296A (en) | Electrical inspection substrate and method of manufacturing the same | |
US10334740B2 (en) | Electronic-component mount substrate, electronic device, and electronic module | |
KR102060951B1 (en) | Multilayer Wiring Boards for Electronic Component Inspection | |
US10887991B2 (en) | Wiring substrate for inspection apparatus | |
JP5566271B2 (en) | Wiring board and manufacturing method thereof | |
CN109075133A (en) | Electro part carrying substrate, electronic device and electronic module | |
JP4960854B2 (en) | Wiring board for electronic component inspection equipment | |
JP5848901B2 (en) | Wiring board | |
TWI749359B (en) | Wiring board | |
JP5122935B2 (en) | Manufacturing method of multilayer ceramic substrate for electronic component inspection jig | |
JP5334815B2 (en) | Wiring board | |
JP2006275579A (en) | Test substrate and test device | |
JP4889401B2 (en) | Electronic component storage package, multi-component electronic component storage package, and electronic device | |
JP2009092581A (en) | Wiring board for electronic component inspection device | |
JP7237474B2 (en) | Ceramic wiring board and probe board | |
KR100979500B1 (en) | substrate for probe card | |
JP2006237299A (en) | Wiring board | |
JPH07122838A (en) | Manufacture of substrate for mounting electronic device | |
JP6225057B2 (en) | Multilayer ceramic circuit board | |
JPH07202074A (en) | Multilayer ceramic package for semiconductor device | |
JP5334814B2 (en) | Wiring board and electronic component mounting board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120229 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130326 |