JP2009071831A - 画像処理装置、画像処理方法及び画像形成装置 - Google Patents
画像処理装置、画像処理方法及び画像形成装置 Download PDFInfo
- Publication number
- JP2009071831A JP2009071831A JP2008235305A JP2008235305A JP2009071831A JP 2009071831 A JP2009071831 A JP 2009071831A JP 2008235305 A JP2008235305 A JP 2008235305A JP 2008235305 A JP2008235305 A JP 2008235305A JP 2009071831 A JP2009071831 A JP 2009071831A
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- signal
- bit
- unit
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/16—Image preprocessing
- G06V30/168—Smoothing or thinning of the pattern; Skeletonisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/18—Extraction of features or characteristics of the image
- G06V30/1801—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes or intersections
- G06V30/18076—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes or intersections by analysing connectivity, e.g. edge linking, connected component analysis or slices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Color, Gradation (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
【課題】 1画素を多値の階調で処理した画像に対して従来の細線化技術を適用することができ、また装置コストの上昇を抑制することのできる画像処理装置、画像処理方法及び画像形成装置を提供する。
【解決手段】 各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出する輪郭画素抽出部(110)と、前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出する連結性検出部(151,152)と、輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減するフィルタ部(132)とを備える画像処理装置である。
【選択図】 図4
【解決手段】 各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出する輪郭画素抽出部(110)と、前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出する連結性検出部(151,152)と、輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減するフィルタ部(132)とを備える画像処理装置である。
【選択図】 図4
Description
本発明は、ハーフトーン化画像を処理する画像処理装置、画像処理方法及び画像形成装置に関する。
最近ではデジタル化された画像データに基づいてレーザを駆動し階調を再現するレーザプリンタ等の電子写真プロセス方式を使用したMFP等の画像形成装置が広く実用化されている。更に、3色あるいは4色分、上記プロセスを、繰り返して処理する、あるいはタンデム方式で処理することによってカラーの画像を再現するカラープリンタ等の画像形成装置も普及している。
このような画像形成装置では、画像の輪郭部を整形し細らせることで、トナーの記録領域を小さくし、インク部材の消費量を削減することができる。このため、トナーセーブを目的として、パターン置き換えや輪郭画素を標本点とし補間により輪郭を内側に整形するなどの細線化手法が開発された。
しかしながら、これらの手法は、主に文字原稿に対して適用されるものであった。そのため、これらの手法を、文字写真混在画像に対して適用すると、階調再現が劣化するなどの問題があった。これは、写真領域はディザなどの階調処理手段によりn値化されており、写真を表現する網点の輪郭を削ると擬似輪郭などが発生するためである。
そこで、文字領域と写真領域を分離して、または細い線や孤立点と太い線やソリッド部を分離して、太い線やソリッド部に対してのみ細線化処理を行う手法が開発されている。
一方、これら画像形成装置においては高解像度化が進められており、例えば1200dpiといった高い解像度を有する画像形成装置が実現している。または、多値のPWM(Pulse Width Modulation)技術を用いて、高画質高精細化のため、1画素を多値の階調で処理して画像を再現する画像形成装置も増えてきている。
また、フォントやグラフィック情報を実際の出力画像の位置と相関のあるラスタデータに変換するRIP処理において、解像度を高く設定することにより、高画質高精細化を実現することができる。例えば600dpiより1200dpiの方が画像を形成する輪郭部は滑らかになる。またサンプリング定理上も詳細部分の画像再現品質は向上する。さらに生成されたフォントやグラフィック情報が滑らかであると、細線化のような処理に対しては、出力装置側の解像度が高い方が2次元的にきめ細かな制御が可能となり、より高品質な出力結果が得られる(例えば、特許文献1)。
米国特許第5,666,213号明細書
しかしながら、従来の細線化処理は、基本的に2値の画像に対して行っていたため、高精細、高画質化のため多値の階調処理を行った画像に対して細線化処理を適用することはできなかった。細線化処理を行うと多値のハーフトーン処理された画像との対応が取れなくなるためである。
一方、画像形成装置が高解像度化した場合、例えば同じビーム本数で同じ印字スピードを実現する場合、画像クロックは非常に高速となり装置のコストが嵩む。これにより画像形成装置自体が非常に高価なものになってしまうといった課題が指摘されている。この課題に対しては、例えば、光学系にレーザアレーなどを用いることによって画像クロックを低周波数化するといった手段も考えられるが、これによると別に光学デバイスあるいはレーザ制御用ハードコストが嵩むこととなる。
本発明は、係る事情に鑑みてなされたものであって、1画素を多値の階調で処理した画像に対して従来の細線化技術を適用することができ、また装置コストの上昇を抑制することのできる画像処理装置、画像処理方法及び画像形成装置を提供することを目的とする。
上記課題を解決するための本発明は、各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出する輪郭画素抽出部と、前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出する連結性検出部と、輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減するフィルタ部とを備える画像処理装置である。
また本発明は、各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出し、前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出し、抽出した輪郭画素と検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減する画像処理方法である。
また本発明は、各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出する輪郭画素抽出部と、前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出する連結性検出部と、輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減するフィルタ部と、前記注目画素の複数ビットの入力画像信号の値に応じて、前記複数ビットの入力画像信号と、前記フィルタ部の出力信号とのいずれの信号を選択するかを判断して、選択した信号を出力する選択出力部とを備えた画像形成装置である。
本発明の画像処理装置、画像処理方法及び画像形成装置によれば、1画素を多値の階調で処理した画像に対して従来の細線化技術を適用することができ、また装置コストの上昇を抑制することができる。
以下、実施の形態を、図面を参照して説明する。なおこの実施形態は電子写真プリンタを用いたデジタル複合機(MFP:Multi Function Peripheral)に適用したものについて述べる。エンジン解像度は、1200dpiとして説明する。
図1は、画像処理装置に係るMFP12を用いたシステム構成を示す図である。
図1に示すシステムでは、最近急速に普及しているネットワーク10上に接続された任意のコンピュータ端末(PC)11はMFP12内部の一部機能であるプリンタ120に対して、画像データの構造を示すPDLデータを転送する。すなわち、PC11はプリンタ120とのインターフェース特性に合わせて、プリンタドライバ21からプリンタコントローラ121にPDLコードあるいはラスタのデータを転送する。
プリンタ120では、プリンタコントローラ121が、プリンタエンジン122を駆動制御する。プリンタコントローラ121は、PC11から送られてきたコード化された画像データであるPDL(Page Description Language)等のページ記述言語をビットマップに展開して各画像処理を行った後、内蔵しているデータ記憶部に格納する。プリンタエンジン122は、プリンタコントローラ121からのビットマップの画像データを駆動信号に変換し、用紙の搬送やレーザの駆動制御等を行って印字動作を行う。
なお、プリンタコントローラ121におけるRIP機能の高性能化は目覚しい。プリンタコントローラ121は、各オブジェクトの属性を解析してそれぞれに最適な画像処理を施し、合成して出力することができる。
なお、PC11とプリンタ120との関係は必ずしもネットワーク化されている必要はなく、USB接続等で使用しても良く、1対1の関係であっても良い。また、プリンタコントローラ121とプリンタエンジン122とのインターフェースは、基本的にプリンタのアーキテクチャに依存するものであり、特に規定化されていない。
図2は、MFP12内のプリンタトコントローラ121の一構成例を示すブロック図である。プリンタコントローラ121は、イメージ属性分析部22、ラスタ演算部23、CD/TF部24、ハーフトーン化部25、データ符号化部26、データ記憶部27、データ復号化部28及び細線化部29を備えている。
PC11のアプリケーションプログラム20での印刷命令によってプリンタドライバ21から転送されたPDLデータは、プリンタコントローラ121に転送される。プリンタコントローラ121では、イメージ属性分析部22が、受け取ったPDLコードから画像の属性を分析し、種類を分類する。基本的に画像データは大きく分けて、テキスト、グラフィック、イメージビットマップのいずれかの属性となる。分類されたデータの属性はタグとしてそれぞれのタイプの属性を割り当てられ後段の処理に渡される。例えば上記3種類の属性を持つ場合には2bitのタグデータが必要となる。
次にこのPDLコードデータは、ラスタ演算部23によりコードデータをビットマップデータに変換する。例えば、モノクロプリントの場合は、コードデータは、単色8bitのビットマップデータに変換される。カラープリントの場合は、コードデータは、各色8bitのビットマップデータに変換される。このとき各ビットマップデータにはその位置に対応するタグデータも割り当てられている。
次に、CD/TF部24は、ビットマップ変換された画像に対し、プリンタエンジン122の特性に合わせた画像濃度のキャリブレーションや好みの階調特性を得るためのγ変換を行う。CD/TF24部は、各オブジェクトごとの画像の特性を考慮した上で、タグデータにより最適なγ変換処理が行うことができるように、CD/TF処理を切り替えることが可能である。
ハーフトーン化部25は、例えば閾値マトリクスを用いたハーフトーン化処理により、1画素のデータをプリンタ120の印字能力に合わせたbit数の階調数の画像データに変換する。本実施例では2bitを用いた4値(以下、2bit4値という)でハーフトーン化処理が行われる。このハーフトーン化部25は、各オブジェクト間の画像の特性を考慮した上で、タグデータにより最適なハーフトーン化処理が行うことができるようにハーフトーン化処理を切り替えることが可能である。
ハーフトーン化された画像データは、データ符号化部26に送られ、データの圧縮が行われる。この圧縮された画像データは次に、メモリやHDD等のデータ記憶部27に一時記憶される。この圧縮によりデータ記憶部27に記憶するデータの容量を抑えることができ、システム全体のパフォーマンスを上げることができる。またデータ記憶部27に一旦蓄えることで、電子ソートなどの機能を有効に利用できる。
データ復号化部28は、データ記憶部27からデータを読み出し、この符号化されたデータを復号化する。細線化部29は、多値の階調処理を行ってハーフトーン化された画像に対してトナーセーブを目的とした(あるいは電子写真のメカニカルドットゲインによる線、ソリッド画像の太りを調整する)細線化処理を適用する。プリンタエンジン122は、最終的に生成された画像データを、レーザを駆動するためのPWM(Pulse Width Modulation)信号に変換し、画像を形成する。
図3は、1画素に対するPWM制御の制御動作を示す図である。多値のPWM制御においては、入力された画像データを基に、パルス幅のみでなく、基準位置制御信号を同時に生成する。図3に示すように中間階調の画素を印字するときは、その階調値幅とスタート位置(左基準、右基準、中央基準)を制御する。一般に位置制御信号としては、左基準信号、右基準信号があれば画像を形成することは可能であり、より高精度で位置を制御したい場合に中央基準信号も使用する。
ハーフトーン化部25は、閾値マトリクスを用いたハーフトーン化処理により、2bit4値でハーフトーン化処理を実行する。従って、ハーフトーン化処理された2つのビットプレーンが生成される。
細線化処理として、まず2つのビットプレーンの内、任意の1つのビットプレーンを選択し、この1つのビットプレーンから構成される仮想2値の画像信号に対して細線化を行う方法について説明する。そして、細線化処理の後段における、ハーフトーン化された画像信号と細線化処理された画像信号を選択する方法と、その結果を1200dpiから600dpiに解像度変換する方法については後述する。
図4は、細線化部29の概略構成を示す図である。
細線化部29は、画像処理窓Wa、輪郭画素抽出部110、黒矩形領域連結性判定部151、黒矩形領域連結性判定部152、シェービング量計算部131、シェービングフィルタパラメータ発生部132、フィルタ選択信号発生部133、パルス基準位置発生部134、パルス幅発生部140、中間選択信号発生部155及び処理選択部145を備えている。
画像処理窓Waは、最大13x13の参照窓を形成する。輪郭画素抽出部110は、輪郭画素を抽出する。2つの黒矩形領域連結性判定部151,152は、黒矩形領域の連結性と境界に接しているか否かを判定する。フィルタ選択信号発生部133とシェービングフィルタパラメータ発生部132は、フィルタ選択信号を発生するLUTで構成される。シェービング量計算部131は、実際にシェービング量を計算する線形フィルタで構成される。パルス幅発生部140は、電子写真等の画像形成装置の出力データ形式にデータを変換する。
画像処理窓Waから出力される信号は、輪郭画素抽出部110、黒矩形領域連結性判定部151、黒矩形領域連結性判定部152に出力される。輪郭画素抽出部110から出力される信号はシェービング量計算部131に出力される。画像処理窓Waの中心の画素の信号と、シェービング量計算部131から出力される信号は、パルス幅発生部140に出力される。
黒輪郭画素抽出部110、矩形領域連結性判定部151、黒矩形領域連結性判定部152から出力される信号は、中間選択信号発生部155に出力される。中間選択信号発生部155から出力される信号は、フィルタ選択信号発生部133、パルス基準位置発生部134に出力される。フィルタ選択信号発生部133から出力される信号は、シェービングフィルタパラメータ発生部132を介してシェービング量計算部131に出力される。
シェービング量計算部131から出力される信号はパルス幅発生部140に入力する。パルス幅発生部140から出力される信号は処理選択部に入力する。パルス基準位置発生部134、パルス幅発生部140から出力される信号は、処理選択部145に入力する。また、処理選択部145には、2つの注目画素のうち画像処理窓の中心画素である注目画素の値D[0]と、走査方向に隣接するもう一方の注目画素の値D[1]が入力される。
[細線化方法]
先ず、画像処理窓Waについて説明する。画像処理窓Waには、通常二次元の画像信号が外部から入力される。但し、二次元信号を操作した一次元信号として入力される場合は、画像の主走査幅以上の長さの複数本のラインメモリにより一次元信号をラッチさせ、対象画素を含む二次元の画像信号として参照する。すなわち、画像処理窓Waは対象画素を含む二次元の画像信号として参照する領域である。
先ず、画像処理窓Waについて説明する。画像処理窓Waには、通常二次元の画像信号が外部から入力される。但し、二次元信号を操作した一次元信号として入力される場合は、画像の主走査幅以上の長さの複数本のラインメモリにより一次元信号をラッチさせ、対象画素を含む二次元の画像信号として参照する。すなわち、画像処理窓Waは対象画素を含む二次元の画像信号として参照する領域である。
以降実施例においては、一次元信号の場合はラインメモリにより画像処理窓Waが形成されるものとし、2値入力画像信号の形式によらず画像処理窓Wa内の入力画像を参照できるものとする。また、2値入力画像信号の黒画像を表す信号レベルを“1”、白画像を表す信号レベルを“0”とする。
図5は画像処理窓Wa(ia,ja)の概念図である。この画像処理窓Wa(ia,ja)において、出力画像信号に対応した入力画像信号を画像処理窓中心画素Wa(ia0,ja0)と称する。画像処理窓Waや画像処理窓中心画素は、例えば、図6に示すように、画像処理窓Wa(ia,ja)を13×13画素、座標表示はia=0〜12(主走査方向),ja=0〜12(副走査方向)とし、画像処理窓中心画素Wa(ia0,ja0)を、Wa(ia0,ja0)=(6,6)と設定する。
次に輪郭画素抽出部110について説明する。輪郭画素抽出部110は、画像処理窓中心画素Wa(ia0,ja0)が輪郭画素であるかを判定し抽出する処理を行なう。この輪郭画素抽出部110は、図7に示すように、輪郭画素を判定するための新たな処理窓Wo(io,jo)と複数の輪郭点判定部とにより構成される。
ここでは、画像処理窓中心画素Wa(6,6)を含む8隣接画素、すなわち、画像処理窓Wa(5〜7,5〜7)が輪郭画素であるかを判定する場合で説明する。従って、上述のように設定された画像処理窓Wa(io,jo)と新たな処理窓Wo(ia,ja)とは、図6及び図8Aに示すように、以下(1)式、(2)式の対応関係を有している。
io=0〜4,jo=0〜4 Wa(io,jo)=Wo(io+4,jo+4) … (1)
io=4〜8,jo=4〜8 Wa(ia,ja)=Wo(ia-4,ja-4) … (2)
前記複数の輪郭判定部は新たな処理窓Wo(1〜3,1〜3)の9画素が輪郭画素であるかを判定するために輪郭点判定部Wo(1,1)111から輪郭点判定部Wo(3,3)119までの9ユニット設けられている。輪郭点判定部Wo(1,1)111から輪郭点判定部Wo(3,3)119のそれぞれの輪郭点判定部が輪郭判定を行い、輪郭点であれば“1”を、輪郭点でないならば“0”を判定結果Ro(if,jf) if=0〜2 jf=0〜2として出力する。従って、新たな処理窓Wo(io,jo)と判定結果Ro(if,jf)との座標系には以下の(3)式で表される対応関係がある。
io=4〜8,jo=4〜8 Wa(ia,ja)=Wo(ia-4,ja-4) … (2)
前記複数の輪郭判定部は新たな処理窓Wo(1〜3,1〜3)の9画素が輪郭画素であるかを判定するために輪郭点判定部Wo(1,1)111から輪郭点判定部Wo(3,3)119までの9ユニット設けられている。輪郭点判定部Wo(1,1)111から輪郭点判定部Wo(3,3)119のそれぞれの輪郭点判定部が輪郭判定を行い、輪郭点であれば“1”を、輪郭点でないならば“0”を判定結果Ro(if,jf) if=0〜2 jf=0〜2として出力する。従って、新たな処理窓Wo(io,jo)と判定結果Ro(if,jf)との座標系には以下の(3)式で表される対応関係がある。
(if,jf)=(io-1,jo-1) … (3)
例えば、図7に示すように、輪郭点判定部Wo(1,1)111は判定結果Ro(0,0)を出力し、輪郭点判定部Wo(3,3)119は判定結果Ro(2,2)を出力する。つまり、図8A乃至図8Dに示すように、輪郭画素抽出部110は、全体としては、新たな処理窓Wo(io,jo)io=0〜4,jo=0〜4に1bit 5×5画素が入力され、Ro(if,jf)if=1〜3,jf=1〜3の1bit 3×3画素を出力する。
例えば、図7に示すように、輪郭点判定部Wo(1,1)111は判定結果Ro(0,0)を出力し、輪郭点判定部Wo(3,3)119は判定結果Ro(2,2)を出力する。つまり、図8A乃至図8Dに示すように、輪郭画素抽出部110は、全体としては、新たな処理窓Wo(io,jo)io=0〜4,jo=0〜4に1bit 5×5画素が入力され、Ro(if,jf)if=1〜3,jf=1〜3の1bit 3×3画素を出力する。
図9は輪郭点判定部Wo(ia,ja)の概略構成を示す図である。輪郭点判定部Wo(io,jo)(io=1〜3,jo=1〜3)にはその判定を行なう対象画素とその8隣接画素が入力される。この入力された8隣接画素値をb7(上位)〜b0(下位)の8bitアドレスPTNADに変換する。これをインデックスとした上で生成した輪郭画素判定テーブルOLP[0〜255]を参照し、判定を行なう対象画素と論理積を取ることにより、すなわち、
Ro(io-1,jo-1)=Wo(io,jo) AND OLP[PTNAD] … (4)
の(4)式により輪郭点の判定結果Ro(io-1,jo-1)を得る。
Ro(io-1,jo-1)=Wo(io,jo) AND OLP[PTNAD] … (4)
の(4)式により輪郭点の判定結果Ro(io-1,jo-1)を得る。
前記輪郭画素判定テーブルOLPに格納される輪郭画素に対応するデータは、図10Aに示すように、前述対象画素を中心に周囲8画素に配置される合計9つの画素のデータである。対象画素の左上を前記アドレスPTNADのb0に対応させ、対象画素を中心に右回りに前記アドレスPTNADのb1からb7を対応させて配置してある。図10Bに示すように、判定結果が1の場合には黒で判定結果が0のときは白で示されるように各データが形成されている。図10Cに示すように、前記輪郭画素に対応するデータ、すなわち、輪郭パターンは例えば図10Cに示される輪郭パターンが番号に対応づけられて格納されている。
例えば、アドレスPTNAD=1101 0110b=D6H=214のときは図10Cの5番の輪郭パターンに対応するため、輪郭画素判定テーブルOLPは、OLP[214]=1である。白地のような輪郭に対応しないアドレスPTNAD=0000 0000b=00H=0に対しては、対応する輪郭パターンがないためOLP[0]=0となる。
以上の動作により、輪郭画素抽出部110は、画像処理窓中心画素Wa(ia0,ja0)とその8隣接画素が輪郭画素であるか否かを示すRo(if,jf) if=0〜2,if=0〜2をシェービング量計算部131に出力する。
次に、黒矩形領域連結性判定部151、黒矩形領域連結性判定部152について説明する。これら2つの基本的な動作は同じであるため、以下では矩形領域連結性判定部15としてまとめて説明する。
この矩形領域連結性判定部15は、連結性の判定を矩形上で切り出した処理窓Wc(ic,jc)の上辺、左辺、下辺、右辺に対して行なうものである。
前記矩形領域連結性判定部15の概略構成は、図11に示すように、処理窓Wc(ic,jc)、上辺連結性判定部15a、左辺連結性判定部15b、下辺連結性判定部15c、右辺連結性判定部15dから構成される。
この実施例において処理窓Wc(ic,jc)は、画像処理窓Wa(ia,ja)の一部を切り出した矩形の窓とし、そのサイズは横cxs画素、縦cys画素とする。また、処理窓Wc(ic,jc)の中心座標を(cxp0,cyp0)とし、これが画像処理窓中心画素Wa(ia0,ja0)と一致するように切り出す。すなわち、処理窓Wc(ic,jc)=画像処理窓Wa(ic+ia0-cxp,jc+ja0-cy0)ic=0〜cxs-1,jc=0〜cys-1の関係を有する。図12は、画像処理窓Wa(ia,ja)が13×13の画素サイズでその中心(ia0,ja0)=(6,6)のとき、処理窓Wc(ic,jc)を7×7の画素サイズでその中心を(cxp0,cyp0)=(3,3)としたときの対応を表す概念図を示している。
前記上辺連結性判定部15aでは、処理窓Wc(ic,jc)の上辺の外側に黒画素領域が広がっていたと仮定し(これを仮想黒画素領域と称し、その領域を図中斜線で示している。)、処理窓Wc(ic,jc)内の全ての黒画素領域が、中心(cxp0,cyp0)を含み、その上辺外側の仮想黒画素領域と垂直方向に連結しているかを判定する。
図13A,図13Bに、処理窓Wc(ic,jc)が7×7の画素サイズで、黒画素がその上辺に連結な場合と非連結な場合との具体例を示す。処理窓Wc(ic,jc)の黒画素の分布が図13Aで示す分布をしている場合には、処理窓Wc(ic,jc)内の全ての黒画素は、その上辺の外側にある仮想黒画素領域と垂直方向に図中矢印のように連結される。したがって、上辺連結性判定部15aは上辺連結と判定する。一方、処理窓Wc(ic,jc)の黒画素の分布が図13Bで示す分布をしている場合には、処理窓Wc(ic,jc)の上辺周辺にある黒画素は図中矢印のように連結されるが、下辺周辺にある黒画素は上辺と垂直方向に連結とならない。したがって上辺連結性判定部15aは上辺非連結と判定する。
図14はcxs個のカウンタと論理和演算を用いた上辺連結性判定部15aの黒画素領域の連結を判定する具体的な処理の一例を示すフローチャートである。
先ず、アクトST201において、上辺連結性判定部15aは、処理窓Wc(ic,jc)の中心(cxp0,cyp0)が“1”であるか否かを判定する。前記判定部151は、“1”でない、つまり、“0(白画像)”と判定した場合は、細線化処理に関して考慮しなくて良い要素であるため、すぐさま、上辺非連結と判定して処理を終了する。
続いて、アクトST202からアクトST205において、前記判定部15aは、列(ic)毎に対応するカウンタcntb0[ic]に関するループ処理を行なう。カウンタcntb0[ic]は図15Aの模式図の列毎に分解された短冊に対応している。図15Bに示すように、前記判定部15aは、各短冊において、仮想黒画素を含め隣接する2画素の排他的論理和(EXOR)をとり、その結果をカウンタcntb0[ic]でカウントアップする。すなわち、各列毎に隣接する2画素の一方が“1”他方が“0”のように2画素の値が異なるときに対応するカウンタcntb0[ic]に“1”をカウントアップする。
アクトST206において、前記判定部15aは、処理窓Wc(ic,jc)の上辺が連結であるか非連結であるかを判定する。この判定は上辺連結であれば各列において前記排他的論理和が1となるのは1回以下、すなわち、カウンタcntb0[ic]がすべて1以下であるため、これをチェックすることにより行なう。
このようにして上辺連結性判定部15aで黒画素領域が連結であるか非連結であるかの判定処理が行なわれる。そして、上辺連結性判定部15aは上辺連結と判定すると“1”、上辺非連結と判定すると“0”の1bitの判定結果を出力する。
同様に、左辺連結性判定部15bでは、処理窓Wc(ic,jc)の左辺の外側に黒画素が広がっていると仮定する。そして、処理窓Wc(ic,jc)内の黒画素領域が中心(cxp0,cyp0)を含み、全ての黒画素領域が左辺外側の仮想黒画素領域と垂直方向に連結しているかを判定する。具体的な処理に関しては、前記上辺連結性判定部15aで行なった処理を図中反時計回りに90度回転対象にして行なうものとする。そして、左辺連結性判定部15bは左辺連結と判定すると“1”、左辺非連結と判定すると“0”の1bitの判定結果を出力する。
同様に、下辺連結性判定部15cでは、処理窓Wc(ic,jc)の下辺の外側に黒画素が広がっていると仮定する。そして、処理窓Wc(ic,jc)の黒画素領域が中心(cxp0,cyp0)を含み、全ての黒画素領域が下辺外側の仮想黒画素領域と垂直方向に連結しているかを判定する。具体的な処理に関しては、前記上辺連結性判定部15aで行なった処理を上下線対象にして行なったものとする。そして、下辺連結性判定部15cは下辺連結と判定すると“1”、下辺非連結と判定すると“0”の1bitの判定結果を出力する。
同様に、右辺連結性判定部15dでは、処理窓Wc(ic,jc)の右辺の外側に黒画素が広がっていると仮定する。そして、処理窓Wc(ic,jc)の黒画素領域が中心(cxp0,cyp0)を含み、全ての黒画素領域が右辺外側の仮想黒画素領域と垂直方向に連結しているかを判定する。具体的な処理に関しては、前記上辺連結性判定部15aで行なった処理を図中時計回りに90度に回転対象にして行なったものとする。そして、右辺連結性判定部15dは右辺連結と判定すると“1”、右辺非連結と判定すると“0”の1bitの判定結果を出力する。
このようにして矩形の四辺に対応する上辺連結性判定部15a、左辺連結性判定部15b、下辺連結性判定部15c及び右辺連結性判定部15dから各1bitの判定結果が図11に示すように、4bitの判定結果flagcとして矩形領域連結性判定部15から出力される。上辺連結性判定部15aからの出力は判定結果flagcの0bit目(b0)である。左辺連結性判定部15bからの出力は判定結果flagcの2bit目(b1)である。下辺連結性判定部15cからの出力は判定結果flagcの3bit目(b2)である。右辺連結性判定部15dからの出力は判定結果flagcの4bit目(b3)である。
また、黒矩形領域連結性判定部151と黒矩形領域連結性判定部152はそれぞれ異なった矩形の処理窓Wc(ic,jc)が設定されている。例えば、黒矩形領域連結性判定部151には7×7画素の処理窓Wc1(ic,jc)、黒矩形領域連結性判定部152には13×13画素の処理窓Wc2(ic,jc)が設定されている。そして、前記判定部151は連結性を判定する判定結果flagc1を、前記判定部152は連結性を判定する判定結果flagc2を中間選択信号発生部155に出力する。
中間選択信号発生部155は、注目画素に対応する1ビットであるR0(1,1)と判定結果flagc1と判定結果flagc0とを連結して9ビットの信号MIDADを発生する。
フィルタ選択信号発生部133は、9ビットの信号MIDADを3ビットのフィルタ選択信号FILSELに変換し、シェービングフィルタパラメータ発生部132を介してシェービング量計算部131に出力する。3ビットのフィルタ選択信号FILSELは例えば、フィルタをかけないことを示す0から、最も強いフィルタセットを示す8までの9通りのフィルタセットの強さに対応する。
パルス基準位置発生部134は、9ビットの信号MIDADを2ビットのパルス基準位置信号SHPに変換し、処理選択部145に出力する。2ビットのパルス基準位置信号SHPは、図3の「基準位置(2−bit)」に相当し、例えば2bitが表す0,1,3が左基準、中央基準、右基準に対応する。
次に、シェービングフィルタパラメータ発生部132について説明する。シェービングフィルタパラメータ発生部132は、フィルタ選択信号発生部133からのフィルタ選択信号FILSELに基づいて、線形フィルタ演算を行なう場合にパラメータであるフィルタ係数を選択してシェービング量計算部131に出力する。
シェービング量計算部131は、輪郭画素抽出部110から出力される画像処理窓中心画素Wa(ia0,ja0)の8隣接画素が輪郭画素であるか否かの判定結果Ro(if,jf) if=0〜2,jf=0〜2にフィルタ処理を行なう毎に細線化量を決定する。
例えば、線形フィルタ演算を行なう場合にパラメータであるフィルタ係数をfc(if,jf)とすると任意の(if,jf)による総和である細線化量SFILOUTは、
SFILOUT=Σfc(if,jf)*Ro(if,jf) … (7)
(7)式で決定される。前記係数fcは、例えば、
SFILOUT=Σfc(if,jf)*Ro(if,jf) … (7)
(7)式で決定される。前記係数fcは、例えば、
(8)式、(9)式、(10)式で示される。
この他にも最小値フィルタ(MIN)、最大値フィルタ(MAX)、中間値フィルタ(MED)を用いることもある。この場合、細線化量SFILOUTは、
任意のRo(if,jf)に対する最小値は、SFILOUT=-MIN(Ro(if,jf))…(11)
任意のRo(if,jf)に対する最大値は、SFILOUT=-MAX(Ro(if,jf))…(12)
任意のRo(if,jf)に対する中間値は、SFILOUT=-MED(Ro(if,jf))…(13)
(11)式、(12)式、(13)式からそれぞれ求められる。
任意のRo(if,jf)に対する最小値は、SFILOUT=-MIN(Ro(if,jf))…(11)
任意のRo(if,jf)に対する最大値は、SFILOUT=-MAX(Ro(if,jf))…(12)
任意のRo(if,jf)に対する中間値は、SFILOUT=-MED(Ro(if,jf))…(13)
(11)式、(12)式、(13)式からそれぞれ求められる。
このように、細線化量の計算に輪郭画素への線形フィルタ演算処理を用いることで、スプライン補間などの複雑な従来の手法に比べ簡単な2値画像入力信号の多値化を実現できる。
シェービング量計算部131は、このようにして求めた細線化量SFILOUTをパルス幅発生部140に出力する。
次にパルス幅発生部140について説明する。パルス幅発生部140は、シェービング量計算部131から出力される細線化量SFILOUTを対象画素である画像処理窓中心画素Wa(6,6)の値に加算することで、2値入力画像が網点である場合を除き細線化を行なうことができる。続いて、乗算器を用いて、この加算結果を出力信号レンジに規格化するために、DTY(規格化を行なうための乗数)を乗じ、細線化処理後画像信号SHW1として出力する。すなわち、SHW1を
SHW1=(SELOUT+Wa(ia0,ja0))*DTY …(14)
(14)式から求める。
SHW1=(SELOUT+Wa(ia0,ja0))*DTY …(14)
(14)式から求める。
例えば出力信号レンジが0〜255の整数値であれば、上記演算は、
SHW1=(SELOUT+Wa(ia0,ja0))*255 …(15)
(15)式から得られ、乗算結果を小数点第一位以下で四捨五入する。
SHW1=(SELOUT+Wa(ia0,ja0))*255 …(15)
(15)式から得られ、乗算結果を小数点第一位以下で四捨五入する。
このように、対象画素を含む有限領域内で領域内黒画素が連結であるかを判定する際に黒矩形領域連結性判定部151と黒矩形領域連結性判定部152の処理窓Wc(ic,jc)のサイズを網点のサイズや線幅を考慮して適切に定める。そして、中間選択信号発生部155の信号MIDADを変換してフィルタ選択信号FILSELを生成する。次にこのフィルタ選択信号FILSELに基づいて選択されたフィルタパラメータを用いて細線化量SFILOUTを算出して対象画素である画像処理窓中心画素Waに対する細線化処理を実行する。
なお、黒矩形領域連結性判定部151,152は、参照窓サイズが異なる構成で実現され、仮に本実施例では、黒矩形領域連結性判定部151の方が黒矩形領域連結性判定部152よりも参照窓サイズが大きいものとする。また、1200dpi程度の解像度においては、網点周波数(百数十線〜二百数十線)や線幅判定の指定線幅値等にもよるが、黒矩形領域連結性判定部152の参照窓サイズは5x5〜9x9の奇数、黒矩形領域連結性判定部151の参照窓サイズは9x9〜13x13程度のサイズにすると良好な結果が得られる。
また、本処理は、連結性判定部の判定方法がEXOR等の論理演算で判定を行う処理となっているため、処理窓が大きくなってもメモリ等を使用したLUT方式のように回路規模の肥大化を防ぐことができることが大きな特徴となっている。
[解像度変換方法]
次に細線化処理の最終段において、ハーフトーン化された画像信号と細線化処理された画像信号を選択する方法と、主走査方向に対する解像度を変換する方法について説明する。
次に細線化処理の最終段において、ハーフトーン化された画像信号と細線化処理された画像信号を選択する方法と、主走査方向に対する解像度を変換する方法について説明する。
ここで、多値化された画像に対して細線化処理を行った場合に画像選択処理と解像度変換処理が必要となる理由について説明する。
従来のように多値化されていない、1bit2値でハーフトーン化した場合に生成されるビットプレーンは1つである。従って、このビットプレーンに対して細線化処理を行った場合には、ハーフトーン化された画像情報全てを使って細線化を行うことになる。このため、細線化処理後の画像信号をそのまま出力することができる。
また出力装置の能力から、主1200×副1200dpiで処理された画像を、主600×副1200dpiに解像度を変更して出力する場合には、細線化処理後の画像信号に対して主走査方向に1/2に解像度変換を行えば良い。解像度変換の基本的な操作として、主走査のピクセル数を半分にするためには、主走査方向2画素分の情報を1画素の情報に変換する。その方法は具体的にはPWM制御方法によって変わってくる。
本実施の形態では図3及び図4で説明した動作に従って解像度情報を維持するパルス幅信号とパルス基準位置信号を出力する。これによって、細線化された画素であるか否かにかかわらず、基本的な解像度情報を保ったまま細線化を行うことができる。つまりパルス基準位置信号の左右基準スタート位置を解像度情報とみなすことで幾何学上解像度情報を保つことが可能となる。
一方、本実施の形態のように多値化した場合、例えば、2bit4値でハーフトーン化した場合に生成されるビットプレーンは2つである。そして、多値化された画像に対して細線化処理を行う場合、この2つのビットプレーンから任意の1つのビットプレーンを選択し、この1つのビットプレーンから構成される仮想2値の画像信号を用いて細線化を行う。そのため、細線化処理の結果をそのまま出力すると、多値化された他のビットプレーンの情報を失ってしまう。これにより階調再現上重要な階調情報が損失してしまう。
そこで本実施の形態では、ハーフトーン化された画像信号と細線化処理された画像信号を選択することで、階調の再現を実現する。階調再現手法には様々な方式があり、モニタやプリンタ等では輝度変調や面積変調といった手法の異なる方式が採用されている。さらに面積変調で階調再現を行うプリンタでも、分散系か集中系といった細かな方式の違いがある。
電子写真等の出力装置では、集中型タイプのハーフトーン処理が採用される。これは画素つまりトナーを集中させて印字しないと安定した階調再現ができないためであり、電子写真等に特有な階調再現手法である。
図16は集中型タイプのハーフトーン処理の一例を示す図である。図16(1)はハーフトーン化した画像を示す。2つの十字状の画像が表されている。この内一つの十字状の画像に注目すると、中央の四角形が階調が高く(黒)、その周囲に4個の階調が中位(灰色)の小さい四角形が配されている。そして背景の階調は低い(白)。
図16(2)は、十字状の画像を2bit4値で表したテーブルである。中央の四角形の部分が値=3であり、その周囲の小さい四角形の部分が値=1又は2である。そして、背景の部分が値=0である。
図17は集中型タイプのハーフトーン処理の一例を示す図である。図17(1)は十字状の画像について、ハーフトーン化した値と画像の部分とを対応したマトリクスを表している。そして、2bit4値のうち、下位ビットをDp[0]とし、上位ビットをDp[1]とする。そうすると、下位ビットをDp[0]で構成されるビットプレーンと、上位ビットをDp[1]で構成されるビットプレーンが生成される。
図17(2)は、十字状の画像を2bit4値で表したテーブルである。図17(3)は、2つのビットプレーンの内容を示している。この2つのビットプレーンを比較すると、ビットの配置が類似していることがわかる。即ち、集中型タイプのハーフトーン処理では、異なるプレーンであっても、プレーン間の類似度が非常に高い。つまり異なるプレーン間の違いの部分は階調処理で再現される網点や万線画像の最外郭部分のみであり、ベタの部分や網点や万線の内部構造に関する部分の値は同じである。
本実施の形態では、この特性を利用して、ハーフトーン化された画像信号と細線化処理された画像信号を選択する方法と、主走査方向に対する解像度変換方法とを説明する。図18は、選択及び解像度変換処理のフローを示すブロック図である。
先ず、画像データの2つの注目画素について、それぞれの2ビットデータ(値0〜3)をD[0],D[1]に取得する。ここで、2つの注目画素とは、主走査方向に互いに隣接する2つの画素のことである。
ブロックB01では、2つの注目画素値に基づいて細線化の判定を行うか否かを、外部から与えられるデータ(bit_fignum)で判断する。即ち、このデータの値が1であれば、ブロックB02において、上述の細線化された結果に基づいて解像度変換処理を実行して出力する。
このデータの値が2であれば、ブロックB03以降に示す2つの注目画素値を用いた判断処理を実行する。ブロックB03において、2つの注目画素の2ビットデータ(値0〜3)をD[0],D[1]に取得する。ブロックB04にいて、取得したデータの画素値を判定し、D[0],D[1]の値が、(0,0),(0,3),(3,0),(3,3)であるとき(true)は、ブロックB02において、上述の細線化された結果に基づいて解像度変換処理を実行して出力する。ブロックB04の判定において、それ以外のとき(false)は、ブロックB05において、ハーフトーン化された結果に基づいて解像度変換処理を実行して出力する。
なお、2つの画素のデータを比較する判定論理は、ハーフトーンの再現手法による出力特性に依存するため、上述の実施の形態に限られず、ハーフトーンの再現手法による出力特性に合わせて切り替えても良い。
図19は、解像度変換処理の一構成例を示す図である。図19(1)の下図は、解像度が1200×1200dpiの画素の配列を示している。ここで、主走査方向の2つの画素を1つの画素にまとめて、図19(2)の下図に示す解像度が600×1200dpiの画素の配列に変換する。
このとき、図19(1)の上図に示す、奇数画素と偶数画素との2つの画素の画素値に対応して、図19(2)の上図に示す、PWM制御用のパルス幅(8ビット)と基準位置POS(2ビット)が決定される。
続いて、上述の考え方に従って設けられた、図4の処理選択部145の構成と動作について説明する。この処理選択部145は、1200×1200dpiで処理された画像を600×1200dpiの画像に解像度を変換する。
1200×1200dpiで処理された画像は、そのままレーザ駆動部に出力しても良いが、そうすると、レーザ駆動部の駆動周波数が高周波数化して、回路の高性能化が要求され高コスト化するという問題が発生する。また、PWM系の出力を8ビットなどの多ビットで出力すると、データ量が増えて回路が高コスト化するという問題が発生する。
そこで、この処理選択部145は、1200×1200dpiで処理された画像を600×1200dpiとして駆動周波数の低周波数化を実現するとともに、PWM系の出力を3ビットとして、データ量の低減を図っている。
図20は、処理選択部145の構成を示すブロック図である。処理選択部145には、細線化データ処理部146、階調データ処理部147及び処理セレクタ148が設けられている。細線化データ処理部146は、細線処理されたデータについて解像度を変換処理する。階調データ処理部147は、細線処理がされていないデータについて解像度を変換処理する。
まず、細線化データ処理部146の構成と動作を説明する。細線化データ処理部146は、出力信号分別処理部161、パルス幅合成処理部162、パルス位置合成処理部163及び下位3ビット出力変換部164を備えている。
細線化データ処理部146には、図4のパルス幅発生部140からパルス幅出力SHW(8ビット)と、パルス基準位置発生部134からパルス位置出力SHP(2ビット)が入力する。出力信号分別処理部161は、シリアルに入力されてくる1200dpiのデータを2つの注目画素(2画素)単位で抽出する。そして、出力信号分別処理部161は、2つのパルス幅PW1(8ビット),PW2(8ビット)をパルス幅合成処理部162に出力する。また、出力信号分別処理部161は、2つのパルス位置PS1(2ビット),PS2(2ビット)をパルス位置合成処理部163に出力する。
パルス幅合成処理部162は、1画素変換後のパルス幅PW3(8ビット)を式(16)によって求める。
PW3 =(PW1+PW2)/2 ・・・(16)
パルス位置合成処理部163は、図21に示す手順に従って、1画素変換後のパルス位置PS3(2ビット)を求める。
PW3 =(PW1+PW2)/2 ・・・(16)
パルス位置合成処理部163は、図21に示す手順に従って、1画素変換後のパルス位置PS3(2ビット)を求める。
そして、下位3ビット出力変換部164は、パルス幅PW3(8ビット)をパルス幅PW3(3ビット)に変換する。図19(2)の上図では、パルス幅PW3(8ビット)の値が表示されている。この表示によれば、パルス幅PW3は、8種類に分類することができる。従って、パルス幅PW3を種類によって特定すれば、3ビット(0〜7)で表すことができる。
以上の処理によって、解像度を600×1200dpiに変換し、さらにPWM系の出力ビットを減少することができる。
次に、階調データ処理部147の構成と動作を説明する。階調データ処理部147は、階調変換処理部166及び下位3ビット出力変換部167を備えている。
階調データ処理部147には、主走査方向に隣接する2つの画素の画素値D[0]、D[1]が入力される。階調変換処理部166は、この2つの画素値から解像度を600×1200dpiとするパルス幅信号PWLUT(8ビット)とパルス基準位置信号PSLUT(2ビット)を出力する。更に、下位3ビット出力変換部167は、パルス幅PWLUT(8ビット)をパルス幅PWLUT(3ビット)に変換する。
この変換の方法は、図19(1)、(2)の上図において説明した通りであるが、その内容の詳細を図22に示す。図22(1)には、入力される2つの画素の画素値D[0]、D[1]を画像イメージとともに表している。図22(2)には、変換結果のパルス幅信号PWLUTとパルス基準位置信号PSLUTを入力画素値D[0]、D[1]に対応して表している。
ここで、パルス幅信号PWLUTは、枠内に記載した数字と枠外に記載した数字の2つの数字を表している。枠外に記載した数字は、階調変換処理部166の出力値であるパルス幅信号PWLUT(8ビット)を表している。枠内に記載した数字は、下位3ビット出力変換部167が変換したパルス幅信号PWLUT(3ビット)を表している。
図22(3)には、レーザプリンタによる出力イメージを表している。
次に処理セレクタ148の動作について説明する。処理セレクタ148には、主走査方向に互いに隣接する2つの画素に対応する、画素値D[0]、D[1]、細線化データ処理部からのパルス幅PW3、パルス位置PS3、階調データ処理部147からのパルス幅信号PWLUT、パルス基準位置信号PSLUTが入力される。
処理セレクタ148は、画素値D[0]、D[1]に応じて、細線化データ処理部からのパルス幅PW3とパルス位置PS3との組か、階調データ処理部147からのパルス幅信号PWLUTとパルス基準位置信号PSLUTとの組のいずれかを選択して、それをレーザプリンタに対するパルス幅PWとパルス位置PSとして出力する。
この判断論理は、図18に記載したとおりであるが、これは、次のように言い換えることができる。即ち、主走査方向に隣接する2つの画素の画素値D[0]、D[1]について、画素値D[0]の上位ビットと下位ビットが同じ値であり、かつ、画素値D[1]の上位ビットと下位ビットが同じ値である場合は、細線化データ処理部146からのパルス幅PW3とパルス位置PS3との組をパルス幅PWとパルス位置PSの組として出力する。また、主走査方向に隣接する2つの画素の画素値D[0]、D[1]について、画素値D[0]の上位ビットと下位ビットが同じ値でない、あるいは、画素値D[1]の上位ビットと下位ビットが同じ値でない場合は、階調データ処理部147からのパルス幅信号PWLUTとパルス基準位置信号PSLUTとの組をパルス幅PWとパルス位置PSの組として出力する。
このように判断する理由は、図16の例で示したように、画素値の上位ビットと下位ビットが同じ値の画素は、ハーフトーン化処理においてベタの部分や網点や万線の内部構造に関する部分に相当するため、1つのビットプレーンであっても他のビットプレーンと相関があり、階調再現上重要な階調情報が保存されているからである。
なお、図20は変換の一実施例を示したものにすぎず、あらかじめ主走査方向の解像度変換を行うことが決まっている時には、細線化と解像度変換を同時に一括で変換する構成も可能である。
また、本実施の形態では、主走査解像度を1/2にする方法について述べたが、これに限られるものではなく、例えば、1/3(1800dpi→600dpi)、1/4(2400dpi→600dpi)といった変換も可能である。なお、レーザプリンタが高解像度に対応している場合は、主走査解像度を変更せずに、そのまま出力するように構成することは当然のバリエーションである。
また、純粋な解像度情報をより正確に維持するためにはPWM制御方法に注意が必要であり、例えば、パルス幅信号とパルス基準位置信号による制御の組み合わせから、スタート−エンド制御方法等の制御手段に変更したほうが良い場合もある。
なお、ある程度解像度情報を犠牲にすることが可能であるならば、即ち、実出力画像として基本的に画質に影響が発生しない場合は、1/Mの変換全てに対し、本実施例と同様にパルス幅信号とパルス基準位置信号による制御でも可能である。
また本実施例ではハーフトーン化により2bitの画像信号の時について説明したがこれに限られるものではなく、3bit、4bitといった多値のハーフトーン化による出力に対して細線化処理を行う場合でも同じ論理を適用することで高品質の細線化を実現できる。
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
10…ネットワーク、11…PC、12…MFP、15…矩形領域連結性判定部、15a…上辺連結性判定部、15b…左辺連結性判定部、15c…下辺連結性判定部、15d…右辺連結性判定部、21…プリンタドライバ、22…イメージ属性分析部、23…ラスタ演算部、24…TF部、25…ハーフトーン化部、26…データ符号化部、27…データ記憶部、28…データ復号化部、29…細線化部、110…輪郭画素抽出部、120…プリンタ、121…プリンタコントローラ、122…プリンタエンジン、131…シェービング量計算部、132…シェービングフィルタパラメータ発生部、133…フィルタ選択信号発生部、134…パルス基準位置発生部、140…パルス幅発生部、145…処理選択部、146…細線化データ処理部、147…階調データ処理部、148…処理セレクタ、151…黒矩形領域連結性判定部、152…黒矩形領域連結性判定部、155…中間選択信号発生部、161…出力信号分別処理部、162…パルス幅合成処理部、163…パルス位置合成処理部、164…ビット出力変換部、166…階調変換処理部、167…ビット出力変換部。
Claims (20)
- 各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出する輪郭画素抽出部と、
前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出する連結性検出部と、
輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減するフィルタ部と
を備えることを特徴とする画像処理装置。 - 輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに基づいて、前記フィルタ部のフィルタ係数を決めるフィルタ係数決定部をさらに備え、
前記フィルタ部は、前記フィルタ係数で前記注目画素の強度を低減すること
を特徴とする請求項1記載の画像処理装置。 - 輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに対応する、前記フィルタ部のフィルタ係数を記憶するフィルタ係数テーブルをさらに備え、
前記フィルタ部は、前記フィルタ係数テーブルに記憶したフィルタ係数で前記注目画素の強度を低減すること
を特徴とする請求項2記載の画像処理装置。 - 前記注目画素の複数ビットの入力画像信号の値に応じて、前記複数ビットの入力画像信号と、前記フィルタ部の信号とのいずれの信号を選択するかを判断して、選択した信号を出力する選択出力部を更に備えたことを特徴とする請求項1記載の画像処理装置。
- 前記選択出力部は、選択された前記信号をパルス幅信号とパルス基準位置信号を用いたPWM変換によって主走査方向の解像度を1/M(M>1の正数)にして出力することを特徴とする請求項4記載の画像処理装置。
- 前記選択出力部は、前記パルス幅信号の信号値を、当該信号値と対応付けられたビット数のすくない数に変換して出力することを特徴とする請求項5記載の画像処理装置。
- 前記選択出力部は、前記注目画素と当該注目画素に隣接する画素との画素値を比較して、前記複数ビットの入力画像信号と、前記フィルタ部の出力信号とのいずれの信号を選択するかを判断して、選択した信号を出力することを特徴とする請求項4記載の画像処理装置。
- 前記選択出力部は、前記注目画素の上位ビットと下位ビットとが同じ値であり、かつ、当該注目画素に隣接する画素の上位ビットと下位ビットとが同じ値である場合は、前記フィルタ部の出力信号を選択して出力することを特徴とする請求項7記載の画像処理装置。
- 各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出し、
前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出し、
抽出した輪郭画素と検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減すること
を特徴とする画像処理方法。 - 抽出した輪郭画素と検出した隣接している同一値のビットとに基づいて、フィルタ係数を決め、
前記注目画素の強度を低減することは、前記フィルタ係数で前記注目画素の強度を低減すること
を特徴とする請求項9記載の画像処理方法。 - 抽出した輪郭画素と隣接している同一値のビットとに対応する、前記フィルタ係数を記憶するフィルタ係数テーブルをさらに備え、
前記注目画素の強度を低減することは、前記フィルタ係数テーブルに記憶している前記フィルタ係数で前記注目画素の強度を低減すること
を特徴とする請求項10記載の画像処理方法。 - 前記注目画素の複数ビットの入力画像信号の値に応じて、前記複数ビットの入力画像信号と、強度が低減された前記注目画素を表わす信号とのいずれの信号を選択するかを判断して、選択した信号を出力することを特徴とする請求項9記載の画像処理方法。
- 前記信号を選択して出力することは、選択された前記信号をパルス幅信号とパルス基準位置信号を用いたPWM変換によって主走査方向の解像度を1/M(M>1の正数)にして出力することを特徴とする請求項12記載の画像処理方法。
- 前記信号を選択して出力することは、前記パルス幅信号の信号値を、当該信号値と対応付けられたビット数のすくない数に変換して出力することを特徴とする請求項13記載の画像処理方法。
- 前記信号を選択して出力することは、前記注目画素と当該注目画素に隣接する画素との画素値を比較して、前記複数ビットの入力画像信号と、強度が低減された前記注目画素を表わす信号とのいずれの信号を選択するかを判断して、選択した信号を出力することを特徴とする請求項12記載の画像処理装置。
- 前記信号を選択して出力することは、前記注目画素の上位ビットと下位ビットとが同じ値であり、かつ、当該注目画素に隣接する画素の上位ビットと下位ビットとが同じ値である場合は、強度が低減された前記注目画素を表わす信号を選択して出力することを特徴とする請求項15記載の画像処理方法。
- 各画素の強度を表す複数ビットのうちの1ビットを複数画素分集めたものであるビットプレーン上の輪郭画素を抽出する輪郭画素抽出部と、
前記ビットプレーン上で注目画素に対応するビットを含む窓のうちで、隣接している同一値のビットを検出する連結性検出部と、
輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに応じて決められた低減量で、前記注目画素の強度を低減するフィルタ部と、
前記注目画素の複数ビットの入力画像信号の値に応じて、前記複数ビットの入力画像信号と、前記フィルタ部の出力信号とのいずれの信号を選択するかを判断して、選択した信号を出力する選択出力部と
を備えたことを特徴とする画像形成装置。 - 輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに基づいて、前記フィルタ部のフィルタ係数を決めるフィルタ係数決定部をさらに備え、
前記フィルタ部は、前記フィルタ係数で前記注目画素の強度を低減することを特徴とする請求項17記載の画像形成装置。 - 輪郭画素抽出部が抽出した輪郭画素と連結性検出部が検出した隣接している同一値のビットとに対応する、前記フィルタ部のフィルタ係数を記憶するフィルタ係数テーブルをさらに備え、
前記フィルタ部は、前記フィルタ係数テーブルに記憶されたフィルタ係数で前記注目画素の強度を低減することを特徴とする請求項18記載の画像形成装置。 - 前記選択出力部は、選択された前記信号をパルス幅信号とパルス基準位置信号を用いたPWM変換によって主走査方向の解像度を1/M(M>1の正数)にして出力することを特徴とする請求項17記載の画像形成装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US97247007P | 2007-09-14 | 2007-09-14 | |
US12/207,760 US8014030B2 (en) | 2007-09-14 | 2008-09-10 | Image processing and formation with line thininng by reducing intensity of target pixel based on extracted contour pixel and area connectedness information |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009071831A true JP2009071831A (ja) | 2009-04-02 |
Family
ID=40454105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008235305A Withdrawn JP2009071831A (ja) | 2007-09-14 | 2008-09-12 | 画像処理装置、画像処理方法及び画像形成装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8014030B2 (ja) |
JP (1) | JP2009071831A (ja) |
CN (1) | CN101388949B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016092526A (ja) * | 2014-10-31 | 2016-05-23 | 株式会社リコー | 画像形成装置及び画像形成方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2011007173A (es) * | 2009-01-02 | 2011-07-19 | Intermed Asia Ltd | Portador de dispositivo usb y soporte de medio impreso que contiene el mismo. |
JP5761994B2 (ja) | 2010-12-14 | 2015-08-12 | キヤノン株式会社 | 画像処理装置及び画像処理方法 |
EP3482349B1 (en) * | 2016-07-07 | 2020-12-30 | Esko Software BVBA | Method for producing center scan image output using an over scan rip |
CN109300432B (zh) * | 2017-07-24 | 2022-11-08 | 晶门科技(中国)有限公司 | 在单色显示面板中进行灰度图像显示信号驱动的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0500375B1 (en) | 1991-02-22 | 1998-07-08 | Canon Kabushiki Kaisha | Image modification system |
US5666213A (en) | 1992-11-24 | 1997-09-09 | Ricoh Company, Ltd. | Image data processing system and method realizing fine image with simple construction/procedure |
US6181437B1 (en) * | 1996-07-17 | 2001-01-30 | Minolta Co., Ltd. | Image processing apparatus capable of producing images without jaggies at edges |
JPH1115119A (ja) | 1997-06-19 | 1999-01-22 | Chiyuugai Shashin Yakuhin Kk | ハロゲン化銀カラー写真感光材料用発色現像液 |
CN1839633A (zh) * | 2004-05-31 | 2006-09-27 | 松下电器产业株式会社 | 运动对象检测装置和运动对象检测方法 |
US8150151B2 (en) * | 2005-05-12 | 2012-04-03 | Bracco Imaging S.P.A. | Method for coding pixels or voxels of a digital image and a method for processing digital images |
CN100562065C (zh) * | 2005-08-15 | 2009-11-18 | 索尼株式会社 | 摄像装置、降噪装置、降噪方法 |
TWI323606B (en) * | 2006-02-22 | 2010-04-11 | Huper Lab Co Ltd | Image noise reduction method based on local correlation |
-
2008
- 2008-09-10 US US12/207,760 patent/US8014030B2/en active Active
- 2008-09-11 CN CN2008101496367A patent/CN101388949B/zh active Active
- 2008-09-12 JP JP2008235305A patent/JP2009071831A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016092526A (ja) * | 2014-10-31 | 2016-05-23 | 株式会社リコー | 画像形成装置及び画像形成方法 |
Also Published As
Publication number | Publication date |
---|---|
US20090073468A1 (en) | 2009-03-19 |
US8014030B2 (en) | 2011-09-06 |
CN101388949B (zh) | 2012-04-18 |
CN101388949A (zh) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6757431B2 (en) | Resolution conversion for anti-aliased images using loose gray scale template matching | |
US6549657B2 (en) | Image processing apparatus and method | |
JP5132517B2 (ja) | 画像処理装置および画像処理方法 | |
JPH10108022A (ja) | ハーフトーン・イメージ・データ獲得方法と装置およびハーフトーン印刷方法と装置 | |
US6091511A (en) | Images with spatially varying spatial and gray level resolution | |
US6725779B2 (en) | Multi-level printing process reducing aliasing in graphics | |
JPH11154226A (ja) | 解像度改善方法及び装置 | |
US5862305A (en) | Logic filters for resolution conversion of digital images | |
JP4743596B2 (ja) | 画像処理装置、方法、プログラムおよび記録媒体 | |
JP2009071831A (ja) | 画像処理装置、画像処理方法及び画像形成装置 | |
US5758034A (en) | Video path architecture including logic filters for resolution conversion of digital images | |
US5539866A (en) | Method and apparatus for accurately rendering half-bitted image pixels | |
JP3514050B2 (ja) | 画像処理装置 | |
JPH05276382A (ja) | 画像処理方法及びその装置 | |
JP2001177731A (ja) | 画像処理方法、装置および記憶媒体 | |
JP2006129476A (ja) | デュアルハーフトーンを用いるレーザプリント装置 | |
JP4501791B2 (ja) | 画像処理方法及び画像処理プログラム | |
JP3812131B2 (ja) | 画像処理装置および画像処理方法 | |
JP2006262436A (ja) | 画像処理装置 | |
JPH03259193A (ja) | グレースケール文字表示装置 | |
JP4131205B2 (ja) | 画像処理装置及び画像処理をコンピュータに実行させる画像処理プログラム | |
JP4514168B2 (ja) | 画像処理システム及び画像処理方法 | |
JP2015149719A (ja) | 選択的な向上のあるデジタル画像ハーフトーン変換 | |
JP3455078B2 (ja) | 画像処理装置及び画像処理方法 | |
JPH11305752A (ja) | 多値画像のスムージング装置及び画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111206 |