JP2009071898A - 蓄電機構の充電制御システムおよびその制御方法 - Google Patents
蓄電機構の充電制御システムおよびその制御方法 Download PDFInfo
- Publication number
- JP2009071898A JP2009071898A JP2007234413A JP2007234413A JP2009071898A JP 2009071898 A JP2009071898 A JP 2009071898A JP 2007234413 A JP2007234413 A JP 2007234413A JP 2007234413 A JP2007234413 A JP 2007234413A JP 2009071898 A JP2009071898 A JP 2009071898A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power
- charging
- storage mechanism
- external
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/18—Cables specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/14—Preventing excessive discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/50—Structural details of electrical machines
- B60L2220/54—Windings for different functions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/20—Inrush current reduction, i.e. avoiding high currents when connecting the battery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Direct Current Feeding And Distribution (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】外部電源により充電可能な蓄電機構を搭載した車両において、外部電源の出力電圧を測定する電圧センサに誤差が生じても、充電時の効率を低下させることなく、充電開始時における過大電流の発生を防止する。
【解決手段】期間T1では外部電源が遮断された状態で、変換された外部電源電圧が出力される電力線の電圧VHが上限電圧VHmaxまで昇圧される。時刻t1において、外部電源が接続されるが、電圧VHが昇圧されているため、外部電源から流入する過大な突入電流の発生が防止される。期間T2では、電圧VHを徐々に低下させながら電流Iacの方向を監視することにより、変換された外部電源電圧と均衡する電力線の電圧VH*が求められる。期間T4では、電圧VHをVH*以下に低下させた状態で、外部電源からの電力により充電指令に従ってバッテリ(蓄電機構)を充電する。
【選択図】図6
【解決手段】期間T1では外部電源が遮断された状態で、変換された外部電源電圧が出力される電力線の電圧VHが上限電圧VHmaxまで昇圧される。時刻t1において、外部電源が接続されるが、電圧VHが昇圧されているため、外部電源から流入する過大な突入電流の発生が防止される。期間T2では、電圧VHを徐々に低下させながら電流Iacの方向を監視することにより、変換された外部電源電圧と均衡する電力線の電圧VH*が求められる。期間T4では、電圧VHをVH*以下に低下させた状態で、外部電源からの電力により充電指令に従ってバッテリ(蓄電機構)を充電する。
【選択図】図6
Description
この発明は、蓄電機構の充電制御システムおよびその制御方法に関し、より特定的には、車両に搭載された蓄電機構を車両外部の電源からの供給電力によって充電する技術に関する。
従来より、ハイブリッド自動車、電気自動車、燃料電池自動車など、電動モータを駆動源として用いる車両が知られている。このような車両には、電動モータへの供給電力を蓄えるためにバッテリなどの蓄電機構が搭載される。バッテリには、回生制動時に発電された電力や、車両に搭載され発電機が発電した電力が蓄えられる。
近年、上記のような車両において、たとえば家屋の電源などの車両外部の電源(以下、単に外部電源とも称する)によって、蓄電機構を充電する構成が提案されている。具体的には、家屋に設けられたコンセントと、車両に設けられたコネクタとをケーブルで連結することにより、家屋の電源から供給された電力によって、車両の蓄電機構(バッテリ)が充電される。以下、車両の外部電源により、車両に搭載されたバッテリ等の蓄電機構を充電可能な車両を「プラグイン車」とも称することとする。
プラグイン車の規格は、日本においては「電気自動車用コンダクティブ充電システム一般要求事項」(非特許文献1)により制定され、アメリカ合衆国においては「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ」(非特許文献2)により制定される。
このような、プラグイン車における充電システムの一形態として、特開平11−205909号公報(特許文献1)に開示されるように、外部交流電源からの交流電圧を測定可能に電圧センサが配置される構成が提案される。さらに、特許文献1の構成では、外部交流電源のコンセントと電気自動車との間に、漏電を検出するためのホールセンサ、検出回路、漏電リレー、漏電テストリレーおよび漏電抵抗を備えた漏電遮断器を設ける。そして、充電時には、漏電テストリレーを閉状態として強制的に短絡させて、漏電リレーが遮断するかどうかを確認した後に、充電が開始される。
特開平11−205909号公報
「電気自動車用コンダクティブ充電システム一般要求事項」、日本電動車両協会規格(日本電動車両規格)、2001年3月29日
「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ(SAE Electric Vehicle Conductive Charge Coupler)」、(アメリカ合衆国)、エスエーイー規格(SAE Standards)、エスエーイー インターナショナル(SAE International)、2001年11月
特許文献1のように、電圧センサにより外部電源の出力電圧を検知可能な構成とすれば、外部電源による蓄電機構の充電(以下、「外部充電」とも称する)時に、過電流が発生したりしないように、適切な充電制御を行なうことが可能となる。
しかしながら、このような充電制御では、電圧センサに誤差が発生したときに、充電に不具合が発生するおそれがある。特に、充電開始時において、意図しない電圧差の発生により、突入電流等の過大電流が生じてしまう可能性がある。
あるいは、外部電源からの供給電圧を大幅に昇圧しなければ蓄電機構に対して充電できない状態に維持して充電動作を行なえば、外部電源からの大きな突入電流の発生を防止することは可能である。その一方で、外部充電時に常時大幅な昇圧動作が必要な制御構成とすると、電圧変換に係るスイッチング損失の発生等により、充電効率が低下する可能性がある。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、外部電源により充電可能な蓄電機構を搭載した車両において、外部電源の出力電圧を正確に検知できなくても、充電時の効率を低下させずに過大電流の発生を確実に防止可能な充電制御を実現することである。
この発明による蓄電機構の充電制御システムは、電動車両に搭載された蓄電機構の充電制御システムであって、コンバータと、給電線と、電流検出器と、開閉装置と、充電電力変換装置と、制御装置とを備える。コンバータは、蓄電機構と電力線との間で双方向に電力変換可能に構成された、電力線の電圧を目標電圧に制御する。給電線は、電動車両の外部電源によって蓄電機構を充電する外部充電モードにおいて、コネクタを介して外部電源と電気的に接続される。電流検出器は、給電線を流れる電流を検出する。開閉装置は、給電線に介挿接続される。充電電力変換装置は、給電線と電力線の間に設けられ、外部電源からの交流電圧を直流電圧に変換して、電力線に出力する。制御装置は、外部充電モード時における充電制御システムの動作を制御する。そして、制御装置は、充電前昇圧部と、電圧均衡条件決定部と、充電制御部とを備える。充電前昇圧部は、開閉装置を開放した状態で、充電電力変換装置が交流電圧を変換して電力線に出力する最高電圧よりも高い所定電圧に目標電圧を設定する。電圧均衡条件決定部は、充電前昇圧部によって電力線が所定電圧に設定された後、開閉装置を閉成し、さらに、目標電圧を徐々に低下させながら電流検出器による検出電流を監視することによって、充電電力変換装置の出力電圧が電力線上の電圧と同等となるときの目標電圧である均衡電圧を決定する。充電制御部は、均衡電圧以下に目標電圧を設定するとともに、蓄電機構の充電指令に従って充電電力変換装置の動作を制御することによって蓄電機構を充電する。
あるいは、この発明は、電動車両に搭載された蓄電機構の充電制御システムの制御方法であって、充電制御システムは、コンバータと、給電線と、電流検出器と、開閉装置と、充電電力変換装置とを備える。コンバータは、蓄電機構と電力線との間で双方向に電力変換可能に構成された、電力線の電圧を目標電圧に制御する。給電線は、電動車両の外部電源によって蓄電機構を充電する外部充電モードにおいて、コネクタを介して外部電源と電気的に接続される。電流検出器は、給電線を流れる電流を検出する。開閉装置は、給電線に介挿接続される。充電電力変換装置は、給電線と電力線の間に設けられ、外部電源からの交流電圧を直流電圧に変換して、電力線に出力する。そして、制御方法は、外部充電モード時に、開閉装置を開放した状態で、充電電力変換装置が交流電圧を変換して電力線に出力する最高電圧よりも高い所定電圧に目標電圧を設定するステップと、電力線が所定電圧に設定された後、開閉装置を閉成するステップと、開閉装置が閉成された状態で、目標電圧を徐々に低下させながら電流検出器による検出電流を監視することによって、充電電力変換装置の出力電圧が電力線上の電圧と同等となるときの目標電圧である均衡電圧を決定するステップと、均衡電圧以下に目標電圧を設定するとともに、蓄電機構の充電指令に従って充電電力変換装置の動作を制御することによって蓄電機構を充電するステップとを備える。
このように構成すると、予め充電前昇圧動作を行なうことによって、開閉装置の閉成時に外部電源からの突入電流が生じることを確実に防止するとともに、過電流を発生させることなく安定的に充電動作を開始できる。さらに、電力線の電圧を充電前昇圧動作時から徐々に低下させて、外部電源の出力電圧の過大な昇圧が不要となる電圧レベルとした状態で充電動作を実行できる。この結果、外部電源の出力電圧を正確に検知できなくても、充電時の効率を低下させずに過大電流の発生を確実に防止可能な充電制御を実現することが可能となる。
好ましくは、充電制御システムは、給電線上の電圧を検出する電圧検出器をさらに備え、制御装置は、均衡電圧と電圧検出器による検出電圧のピーク値との電圧比に基づいて、検出電圧の修正ゲインを演算するゲイン設定部をさらに含む。あるいは、制御方法は、均衡電圧と電圧検出器による検出電圧のピーク値との電圧比に基づいて、検出電圧の修正ゲインを演算するステップをさらに備える。
さらに好ましくは、充電制御部は、電流検出器による検出電流と、修正ゲインに従って修正された検出電圧とに基づくフィードバック制御に従って、充電電力変換装置の動作を制御する。あるいは、上記充電するステップは、電流検出器による検出電流と、修正ゲインに従って修正された検出電圧とに基づくフィードバック制御に従って、充電電力変換装置の動作を制御する。
また好ましくは、制御装置は、異常検出部をさらに含む。異常検出部は、電圧比が1.0より大きい第1の所定値より高いとき、または、電圧比が1.0より小さい第2の所定値より低いときには、充電制御システムの異常を検知して、外部充電動作を中止する。あるいは、制御方法は、電圧比が1.0より大きい第1の所定値より高いとき、または、電圧比が1.0より小さい第2の所定値より低いときには、充電制御システムの異常を検知して、外部充電動作を中止するステップをさらに備える。
このように構成すると、充電電力変換装置が外部電源からの交流電圧を変換して出力する直流電圧と均衡する、電源線上の電圧レベルに相当する均衡電圧を求める際に、外部電源の出力電圧を測定する電圧検出器の測定精度を評価できる。特に、外部電源電圧のピーク値の検出電圧と、均衡電圧との電圧比に基づいて、電圧検出器の検出値を修正したフィードバック制御を行なうことにより、充電制御の精度を向上できる。あるいは、当該電圧比に基づいて、電圧検出器の誤差が過大であることを検知して、充電動作を中止することによりトラブルを未然に防止することが可能となる。
あるいは好ましくは、充電制御システムは、給電線上の電圧を検出する電圧検出器をさらに備え、電圧均衡条件決定部は、目標電圧を徐々に低下させる際の1回あたりの電圧低下量を、目標電圧と電圧検出器による検出電圧のピーク値との差に応じて可変に設定する。もしくは、上記決定するステップは、目標電圧を徐々に低下させる際の1回あたりの電圧低下量を、目標電圧と電圧検出器による検出電圧のピーク値との差に応じて可変に設定する。
このように構成すると、充電前昇圧動作時によって昇圧された電圧レベルから、電力線の電圧を均衡電圧まで低下させる動作を速やかに終了させることができる。これにより、速やかに充電動作を開始できる。
また好ましくは、充電制御システムは、給電線上の電圧を検出する電圧検出器をさらに備え、充電電力変換装置は、複数の電力用半導体スイッチング素子により構成されたインバータを含む。そして、電圧均衡条件決定部による均衡電圧の探索時または、上記決定するステップによる均衡電圧の探索時には、複数の電力用半導体スイッチング素子を所定のスイッチングパターンに従ってオンオフさせる一方で、充電制御による充電動作時には、電流検出器および電圧検出器による検出値に基づくフィードバック制御に従って複数の電力用半導体スイッチング素子のオンオフを制御する。
このような構成とすることにより、充電前昇圧動作時における、充電電力変換装置の通過電流を抑制して、電流損失の発生を防止できる。
好ましくは、電動車両は、星形結線された第1の多相巻線を固定子巻線として含む第1の交流回転電機と、星形結線された第2の多相巻線を固定子巻線として含む第2の交流回転電機と、第1および第2のインバータと、第1および第2のインバータの電力用半導体スイッチング素子のオンオフを制御するインバータ制御装置とをさらに備える。第1のインバータは、第1の多相巻線に接続され、第1の交流回転電機と電力線との間で電力変換を行なう。第2のインバータは、第2の多相巻線に接続され、第2の交流回転電機と電力線との間で電力変換を行なう。第1および第2の交流回転電機の少なくとも一方は、電動車両の走行駆動力の発生に用いられる。そして、給電線は、外部充電モード時には、コネクタおよび充電ケーブルを介して、第1の多相巻線の第1の中性点および第2の多相巻線の第2の中性点と、外部電源との間を電気的に接続するように配設される。さらに、インバータ制御装置は、外部充電モード時には、第1および第2のインバータならびに第1および第2の多相巻線のインダンタンスが充電電力変換装置として動作させるべく、給電線を経由して第1および第2の中性点へ供給された外部電源からの交流電圧を、直流電圧に変換して電力線に出力するように、第1および第2のインバータの各々を制御する。
このような構成とすることにより、走行駆動力発生に用いられる第1および第2の交流回転電機および第1および第2のインバータを用いて、新たな機器を設けることなく、外部電源からの供給電力を蓄電機構の充電電力に変換することが可能な車両構成において、
外部電源の出力電圧を電圧検出器によって正確に検知できなくても、充電時の効率を低下させることなく過大電流の発生を確実に防止することが可能となる。
外部電源の出力電圧を電圧検出器によって正確に検知できなくても、充電時の効率を低下させることなく過大電流の発生を確実に防止することが可能となる。
この発明による蓄電機構の充電制御システムおよびその制御方法によれば、外部電源により充電可能な蓄電機構を搭載した車両において、外部電源の出力電圧を正確に検知できなくても、充電時の効率を低下させずに過大電流の発生を確実に防止可能な充電制御を実現することができる。
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお以下では、図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。
(全体構成)
図1は、プラグインハイブリッド車を示す概略構成図である。
図1は、プラグインハイブリッド車を示す概略構成図である。
図1を参照して、本実施の形態に係る蓄電機構の充電システムを搭載したプラグインハイブリッド車について説明する。この車両は、エンジン100と、第1MG(Motor Generator)110と、第2MG120と、動力分割機構130と、減速機140と、「蓄電機構」の代表例として示されるバッテリ150とを備える。
この車両は、エンジン100および第2MG120のうちの少なくとも一方からの駆動力により走行する。なお、図1では、プラグインハイブリッド車を例示するが、その他、モータからの駆動力のみで走行する電気自動車もしくは燃料電池車により構成されたプラグイン車に搭載される蓄電機構の充電システムに対しても、本願発明を適用可能である点について確認的に記載する。
エンジン100、第1MG110および第2MG120は、動力分割機構130を介して接続されている。エンジン100が発生する動力は、動力分割機構130により、2経路に分割される。一方は減速機140を介して前輪160を駆動する経路である。もう一方は、第1MG110を駆動させて発電する経路である。
第1MG110は、代表的には三相交流回転電機である。第1MG110は、動力分割機構130により分割されたエンジン100の動力により発電する。第1MG110により発電された電力は、車両の走行状態や、バッテリ150のSOC(State Of Charge)の状態に応じて使い分けられる。たとえば、通常走行時では、第1MG110により発電された電力はそのまま第2MG120を駆動させる電力となる。一方、バッテリ150のSOCが予め定められた値よりも低い場合、第1MG110により発電された電力は、後述するインバータにより交流から直流に変換される。その後、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。
第1MG110が発電機として作用している場合、第1MG110は負のトルクを発生している。ここで、負のトルクとは、エンジン100の負荷となるようなトルクをいう。第1MG110が電力の供給を受けてモータとして作用している場合、第1MG110は正のトルクを発生する。ここで、正のトルクとは、エンジン100の負荷とならないようなトルク、すなわち、エンジン100の回転をアシストするようなトルクをいう。なお、第2MG120についても同様である。
第2MG120は、代表的には三相交流回転電機である。第2MG120は、バッテリ150に蓄えられた電力および第1MG110により発電された電力のうちの少なくとも一方の電力により駆動する。
第2MG120の駆動力は、減速機140を介して前輪160に伝えられる。これにより、第2MG120はエンジン100をアシストしたり、第2MG120からの駆動力により車両を走行させたりする。なお、前輪160の代わりにもしくは加えて後輪を駆動するようにしてもよい。
プラグインハイブリッド車の回生制動時には、減速機140を介して前輪160により第2MG120が駆動され、第2MG120が発電機として作動する。これにより第2MG120は、制動エネルギを電力に変換する回生ブレーキとして作動する。第2MG120により発電された電力は、バッテリ150に蓄えられる。
動力分割機構130は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から構成される。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤが自転可能であるように支持する。サンギヤは第1MG110の回転軸に連結される。キャリアはエンジン100のクランクシャフトに連結される。リングギヤは第2MG120の回転軸および減速機140に連結される。
エンジン100、第1MG110および第2MG120が、遊星歯車からなる動力分割機構130を介して連結されることで、エンジン100、第1MG110および第2MG120の回転数は、図2に示すように、共線図において直線で結ばれる関係になる。
図1に戻って、バッテリ150は、複数の二次電池セルを一体化したバッテリモジュールを、さらに複数直列に接続して構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150には、第1MG110および第2MG120の他、車両の外部電源から供給される電力が充電される。
エンジン100、第1MG110、第2MG120は、ECU(Electronic Control Unit)170により制御される。なお、ECU170は複数のECUに分割するようにしてもよい。
(電気システムの構成)
次に、図3および図4を用いて、本実施の形態に係る蓄電機構の充電システムを含む、プラグインハイブリッド車の電気システムの構成を説明する。
次に、図3および図4を用いて、本実施の形態に係る蓄電機構の充電システムを含む、プラグインハイブリッド車の電気システムの構成を説明する。
図3を参照して、プラグインハイブリッド車には、コンバータ200と、第1インバータ210と、第2インバータ220と、DC/DCコンバータ230と、補機バッテリ240と、SMR(System Main Relay)250と、DFR(Dead Front Relay)260と、コネクタ270と、LCフィルタ280とが設けられる。
コンバータ200は、リアクトルと、電力線190,195間に直列接続された2個の電力用半導体スイッチング素子(以下、単にスイッチング素子とも称する)と、各スイッチング素子に対応して設けられた逆並列ダイオードと、リアクトルとを含む。電力用半導体スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタ、電力用バイポーラトランジスタ等を適宜採用することができる。リアクトルは、バッテリ150の正極側に一端が接続され、2つのスイッチング素子の接続点に他端が接続される。
各スイッチング素子のオンオフは、電力線190,195間の直流電圧(システム電圧とも称する)VHが目標電圧VRに一致するように、ECU170により制御される。すなわち、コンバータ200は、電力線190,195とバッテリ150との間で双方向に電力変換可能に構成されて、電力線190,195間のシステム電圧VHを目標電圧VRに制御する。
バッテリ150から放電された電力を第1MG110もしくは第2MG120に供給する際、電圧がコンバータ200により昇圧されて、電力線190,195間に出力される。逆に、第1MG110もしくは第2MG120により発電された電力をバッテリ150を充電する際、電力線190,195間の電圧がコンバータ200により降圧される。
コンバータ200と、第1インバータ210および第2インバータ220との間を接続する電力線190,195間のシステム電圧VHは、電圧センサ180により検出される。電圧センサ180の検出結果は、ECU170に送信される。
第1インバータ210は、一般的な三相インバータで構成され、電力線190,195間に並列接続された、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは、各々、直列に接続された2個のスイッチング素子(上アーム素子および下アーム素子)を有する。各スイッチング素子には、逆並列ダイオードが接続される。
第1MG110は、星型結線されたU相コイル、V相コイルおよびW相コイルを固定子巻線として有する。各相コイルの一端は、中性点112で互いに接続される。各相コイルの他端は、第1インバータ210の各相アームのスイッチング素子の接続点とそれぞれ接続される。
第1インバータ210は、車両走行時には、車両走行に要求される出力(車両駆動トルク、発電トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第1MG110が動作するように、第1MG110の各相コイルの電流または電圧を制御する。第1インバータ210は、バッテリ150から供給される直流電力を交流電力に変換して第1MG110に供給する電力変換動作と、第1MG110により発電された交流電力を直流電力に変換する電力変換動作との双方向の電力変換を実行可能である。
第2インバータ220は、第1インバータ210と同様に、一般的な三相インバータで構成される。第2MG120は、第1MG110と同様に、星型結線されたU相コイル、V相コイルおよびW相コイルを固定子巻線として有する。各相コイルの一端は、中性点122で互いに接続される。各相コイルの他端は、第2インバータ220の各相アームのスイッチング素子の接続点とそれぞれ接続される。
第2インバータ220は、車両走行時には、車両走行に要求される出力(車両駆動トルク、回生制動トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第2MG120が動作するように、第2MG120の各相コイルの電流または電圧を制御する。第2インバータ220についても、バッテリ150から供給される直流電力を交流電力に変換して第2MG120に供給する電力変換動作と、第2MG120により発電された交流電力を直流電力に変換する電力変換動作との双方向の電力変換を実行可能である。
また、後程詳細に説明するように、第1インバータ210および第2インバータ220は、外部電源によってバッテリ150を充電する外部充電モード時には、中性点112,122間の交流電圧を直流電圧に変換するように制御される。すなわち、第1MG110および第2MG120のリアクトル成分(各相コイル巻線のインダクタンス)と、第1インバータ210および第2インバータ220とによって、外部電源402からの交流電圧を直流電圧に変換して、電力線190,195間へ出力する「充電電力変換装置」が構成される。
この際に、図3および図4に示した電気システム中の充電経路に含まれる各要素およびこれらの動作を制御するECU170によって、本実施の形態による蓄電機構の充電システムが構成される。
なお、各インバータ210,220において、U相コイルとU相アームの組、V相コイルとV相アームの組およびW相コイルとW相アームの組は、それぞれコンバータ200と同様の構成を有する。したがって、第1インバータ210および第2インバータ220によって、中性点112,122の電圧を昇圧して、コンバータ200側へ出力する電圧変換も可能であることが理解される。たとえば、車両外部の電源から供給された電力をバッテリ150に充電する際、第1インバータ210および第2インバータ220は、電圧を昇圧する。たとえば、100VACを昇圧して200V程度の直流電圧に変換することができる。
SMR(System Main Relay)250は、バッテリ150とコンバータ200およびDC/DCコンバータ230との間に設けられる。SMR250は、バッテリ150と電気システムとを接続した状態および遮断した状態を切換えるリレーである。SMR250が開放されると、バッテリ150が電気システムから遮断される。一方、SMR250が閉成されると、バッテリ150が電気システムに接続される。SMR250の状態は、ECU170により制御される。たとえば、プラグインハイブリッド車のシステム起動を指示するパワーオンスイッチ(図示せず)のオン操作に応答して、SMR250が閉成される一方で、パワーオンスイッチのオフ操作に応答して、SMR250は開放される。
DC/DCコンバータ230は、バッテリ150に対して、コンバータ200と並列に接続される。DC/DCコンバータ230は、バッテリ150が出力した直流電圧を降圧する。DC/DCコンバータ230の出力電圧は、補機バッテリ240に充電される。補機バッテリ240に充電された電力は、電動オイルポンプ等の補機242およびECU170に供給される。
次に、外部充電のための構成について説明する。
DFR(Dead Front Relay)260は、第1MG110の中性点112および第2MG120の中性点122と、外部電源(図4)との間を電気的に接続する給電線290,295に介挿接続される。すなわち、DFR260は、プラグインハイブリッド車の電気システムと外部電源との間の接続/遮断を切換えるリレー(開閉装置)である。DFR250が開放されると、プラグインハイブリッド車の電気システムが外部電源から遮断される。一方、DFR250が閉成されると、プラグインハイブリッド車の電気システムが外部電源と接続される。
DFR(Dead Front Relay)260は、第1MG110の中性点112および第2MG120の中性点122と、外部電源(図4)との間を電気的に接続する給電線290,295に介挿接続される。すなわち、DFR260は、プラグインハイブリッド車の電気システムと外部電源との間の接続/遮断を切換えるリレー(開閉装置)である。DFR250が開放されると、プラグインハイブリッド車の電気システムが外部電源から遮断される。一方、DFR250が閉成されると、プラグインハイブリッド車の電気システムが外部電源と接続される。
コネクタ270は、たとえばプラグインハイブリッド車の側部に設けられる。後述するように、コネクタ270には、プラグインハイブリッド車と外部電源とを連結する充電ケーブルのコネクタが接続される。LCフィルタ280は、DFR260とコネクタ270との間に設けられる。
図4を用いて、外部充電のための構成について、さらに詳細に説明する。
図4を参照して、プラグインハイブリッド車と外部電源とを連結する充電ケーブル300は、コネクタ310と、プラグ320と、CCID(Charging Circuit Interrupt Device)330とを含む。充電ケーブル300は、非特許文献1および2に制定された規格におけるEVSE(Electric Vehicle Supply Equipment)に相当する。
図4を参照して、プラグインハイブリッド車と外部電源とを連結する充電ケーブル300は、コネクタ310と、プラグ320と、CCID(Charging Circuit Interrupt Device)330とを含む。充電ケーブル300は、非特許文献1および2に制定された規格におけるEVSE(Electric Vehicle Supply Equipment)に相当する。
充電ケーブル300のコネクタ310は、プラグインハイブリッド車に設けられたコネクタ270に接続される。コネクタ310には、スイッチ312が設けられる。充電ケーブル300のコネクタ310が、プラグインハイブリッド車に設けられたコネクタ270に接続された状態でスイッチ312が閉じると、充電ケーブル300のコネクタ310が、プラグインハイブリッド車に設けられたコネクタ270に接続された状態であることを表わすコネクタ信号CNCTがECU170に入力される。
スイッチ312は、充電ケーブル300のコネクタ310をプラグインハイブリッド車のコネクタ270に係止する係止金具(図示せず)に連動して開閉する。係止金具(図示せず)は、コネクタ310に設けられたボタン(図示せず)を操作者が押すことにより揺動する。
たとえば、充電ケーブル300のコネクタ310がプラグインハイブリッド車に設けられたコネクタ270に接続した状態で、操作者がボタンから指を離した場合、係止金具がプラグインハイブリッド車に設けられたコネクタ270に係合するとともに、スイッチ312が閉じる。操作者がボタンを押すと、係止金具とコネクタ270との係合が解除されるとともに、スイッチ312が開く。なお、スイッチ312を開閉する方法はこれに限らない。
充電ケーブル300のプラグ320は、家屋に設けられたコンセント400に接続される。コンセント400には、プラグインハイブリッド車の外部電源402から交流電力が供給される。
CCID330は、リレー332およびコントロールパイロット回路334を有する。リレー332が開いた状態では、プラグインハイブリッド車の外部電源402からプラグインハイブリッド車へ電力を供給する経路が遮断される。リレー332が閉じた状態では、プラグインハイブリッド車の外部電源402からプラグインハイブリッド車へ電力を供給可能になる。リレー332の状態は、充電ケーブル300のコネクタ310がプラグインハイブリッド車のコネクタ270に接続された状態でECU170により制御される。
コントロールパイロット回路334は、充電ケーブル300のプラグ320がコンセント400、すなわち外部電源402に接続され、かつコネクタ310がプラグインハイブリッド車に設けられたコネクタ270に接続された状態において、コントロールパイロット線にパイロット信号(方形波信号)CPLTを送る。
パイロット信号は、コントロールパイロット回路334内に設けられた発振器から発振される。パイロット信号は、発振器の動作が遅れる分だけ遅れて出力されたり停止されたりする。
コントロールパイロット回路334は、充電ケーブル300のプラグ320がコンセント400に接続されると、コネクタ310がプラグインハイブリッド車に設けられたコネクタ270から外されていても、一定のパイロット信号CPLTを出力し得る。ただし、コネクタ310がプラグインハイブリッド車に設けられたコネクタ270から外された状態で出力されたパイロット信号CPLTを、ECU170は検出できない。
充電ケーブル300のプラグ320がコンセント400に接続され、かつコネクタ310がプラグインハイブリッド車のコネクタ270に接続されると、コントロールパイロット回路334は、予め定められたパルス幅(デューティサイクル)のパイロット信号CPLTを発振する。
パイロット信号CPLTのパルス幅により、供給可能な電流容量がプラグインハイブリッド車に通知される。たとえば、充電ケーブル300の電流容量がプラグインハイブリッド車に通知される。パイロット信号CPLTのパルス幅は、外部電源402の電圧および電流に依存せずに一定である。
一方、用いられる充電ケーブルの種類が異なれば、パイロット信号CPLTのパルス幅は異なり得る。すなわち、パイロット信号CPLTのパルス幅は、充電ケーブルの種類毎に定められ得る。
本実施の形態においては、外部充電モードにおいて、充電ケーブル300によりプラグインハイブリッド車と外部電源402とが連結された状態にて、外部電源402から供給された電力によってバッテリ150に充電される。
充電ケーブル300およびコネクタ270によって外部電源402と電気的に接続される給電線290,295には、外部電源402の出力電圧(交流電圧)を検出するための電圧センサ171が設けられる。なお、電圧センサ171については、バックアップのために複数個並列に配置してもよい。
電圧センサ171により検出された、給電線290および295間の電圧Vacは、ECU170へ送出される。また、給電線290,295の少なくとも一方には、電流センサ173が設けられ、検出された電流Iacは、ECU170へ送出される。
(外部充電モード時の制御)
図5は、本発明の実施の形態による蓄電機構の充電システムの外部充電モード時における動作手順の概要を説明するフローチャートである。
図5は、本発明の実施の形態による蓄電機構の充電システムの外部充電モード時における動作手順の概要を説明するフローチャートである。
図5を参照して、ECU170は、外部充電モード時には、まずステップS100により、システム起動確認を行なう。ステップS100では、パイロット信号CPLT、コネクタ信号CNCTや、パワーオン信号に基づいて、外部電源による充電動作を開始する準備が整っているかどうかが判断される。ステップS100がNO判定の間は、以降の処理は実行されず、充電動作が先に進むことはない。
ECU170は、システム起動が確認されると(S100のYES判定時)、ステップS110により、DFR260を開状態とした上で、SMR250を閉成する。そして、DFR260の開放により、外部電源402からの電力供給を遮断した状態で、ステップS120により充電前昇圧動作を行なう。さらに、ECU170は、充電前昇圧動作が完了すると、ステップS130により、DFR260を閉成する。これにより、外部電源402と、中性点112,122が電気的に接続されて、外部電源402からの供給電力が、プラグインハイブリッド車の電気システム内へ導かれる。
続いて、ECU170は、ステップS140により、電圧均衡条件探索動作を実行し、第1インバータ210および第2インバータ220によって外部電源電圧が変換された直流電圧と均衡する、電力線195上の直流電圧VHを求める。以下、このときの直流電圧VHを均衡電圧VH*とも称する。
ECU170は、均衡電圧VH*が決定されると、ステップS150により、直流電圧VHを均衡電圧VH*よりも低下させた状態として、充電動作を開始し、バッテリ150が所望レベルまで充電されるまでの間、充電動作を実行する。
次に図6を用いて図5の各動作における、電圧電流挙動についてについて説明する。
図6を参照して、時刻t1までの期間T1においては、ステップS120(図5)での充電前昇圧動作が実行される。すなわち、DFR260が開放されているため、電流Iac=0の状態のままで、コンバータ200の目標電圧VRを上昇させることによって、直流電圧VHが上昇される。充電前昇圧動作における直流電圧VHの目標値VHmax(上限電圧)は、外部電源402の出力電圧である外部電源電圧VAC=Va・sinωtとすると、たとえば下記(1)式で示される。
図6を参照して、時刻t1までの期間T1においては、ステップS120(図5)での充電前昇圧動作が実行される。すなわち、DFR260が開放されているため、電流Iac=0の状態のままで、コンバータ200の目標電圧VRを上昇させることによって、直流電圧VHが上昇される。充電前昇圧動作における直流電圧VHの目標値VHmax(上限電圧)は、外部電源402の出力電圧である外部電源電圧VAC=Va・sinωtとすると、たとえば下記(1)式で示される。
VHmax=Va・√2+Vh …(1)
式(1)中で、電圧Vhは電圧センサ180の最大誤差に対応した電圧である。また、電圧Va・√2は、インバータ110,120の逆並列ダイオードによる整流動作によって出力される直流電圧の最高値である。なお、電圧Vaは、各国での商用交流電源の定格電圧の相違等を考慮して、外部電源402の想定され得る最大電圧(実効値)に対応して定めることが好ましい。
式(1)中で、電圧Vhは電圧センサ180の最大誤差に対応した電圧である。また、電圧Va・√2は、インバータ110,120の逆並列ダイオードによる整流動作によって出力される直流電圧の最高値である。なお、電圧Vaは、各国での商用交流電源の定格電圧の相違等を考慮して、外部電源402の想定され得る最大電圧(実効値)に対応して定めることが好ましい。
この結果、VH=VHmaxとすることによって、DFR260の閉成に応答して、外部電源402の出力電圧とシステム電圧VHとの電圧差によって、過大な突入電流が電気システム内部に発生することを確実に防止できる。
VH=VHmaxに設定されると、時刻t1において、ステップS130(図5)に対応してDFR260が閉成されて、ステップS140(図5)に示した電圧均衡条件探索動作が、時刻t1〜t2の期間T2において実行される。
期間T2では、コンバータ200の目標電圧VRが上限電圧VHmaxより徐々に低下されて、システム電圧VHがこれに従って低下する。時刻t1では、システム電圧VH(VH=VHmax)が、インバータ110,120の出力電圧よりも高いため、給電線290上の電流Iacは、外部電源402へ流入する方向に流れる。すなわち、電流Iacのピーク値は、マイナス値である。そして、システム電圧VHが低下するに従って、電流Iacのピーク値が上昇していき、外部電源402へ流入する方向の電流Iacは徐々に減少する。
さらに、時刻t2では、システム電圧VHと、インバータ110,120の出力電圧とが釣り合った状態となる。たとえば、電流Iacのピーク値が、マイナス値から零に変化したときに、上記のような釣り合った状態であることを検知できる。このときのシステム電圧VHを均衡電圧VH*として決定することにより、電圧均衡条件探索動作は終了される。
時刻t2において電圧均衡条件探索動作が終了されると、時刻t2〜t3の期間T3では、充電動作の準備のために、システム電圧VHを均衡電圧VH*からさらに低下させるようにコンバータ200が制御される。そして、時刻t3以降の期間T4では、システム電圧VH<VH*とした状態で、外部電源電圧を直流電圧に変換して電力線190に出力し、かつ電力線190上の直流電圧をコンバータ200によってバッテリ150の充電電圧に変換する電圧変換動作が行なわれて、バッテリ150が充電される。
インバータ110,120のスイッチング素子のデューティは、充電動作が実行される期間T4では、後述のように、指令値に従った電力が外部電源402から供給されるようにフィードバック制御される。
一方、電圧均衡条件探索動作時(期間T2)においては、電流Iacは、電流センサ193によって電流方向の反転を検知可能なレベルであればよい。したがって、上記デューティは、フィードバック制御されることなく、上記のような検知に必要な最低レベルの電流を流すのに必要とされる値に固定される。基本的に、この際には、インバータ210,220での昇圧動作は実行されておらず、このときの均衡電圧VH*は、外部電源電圧の振幅値(ピーク値)Vacpに対応することとなる。
図7は、図5および図6で説明した外部充電モードを実行するための外部充電制御部の制御構成を説明する機能ブロック図である。図7に示す各ブロックの機能は、ECU170のハードウェアあるいはソフトウェア処理によって実現可能である。
図7を参照して、外部充電制御部1000は、充電前昇圧部1010と、リレー制御部1020と、電圧均衡条件探索部1030と、充電制御部1040と、修正ゲイン設定部1050と、異常検出部1060とを含む。
充電前昇圧部1010は、外部充電モードであることを示すモード信号MDに基づいて、図6での期間T1における充電前昇圧動作を実行する。たとえば、モード信号MDは、図5におけるステップS100がYES判定となることに応じてオンされる。
充電前昇圧部1010は、充電前昇圧動作時に、コンバータ200の目標電圧VRを上限電圧VHmaxに設定する。なお、目標電圧VRを上限電圧VHmaxに設定する際には、システム電圧VHの現在値に基づいて、目標電圧VRを徐々に上昇させることとしてもよい。
そして、充電前昇圧部1010は、電圧センサ180によって検出される直流電圧VHが、上限電圧VHmaxに達すると、充電前昇圧動作が完了したことを知らせるためのフラグFL1をオンする。
リレー制御部1020は、モード信号MDがオンされると、DFR260を開放するように制御信号SDFRを生成する。そして、充電前昇圧部1010によって、充電前昇圧動作が完了したことを示すフラグFL1がオンされると、DFR260を閉成するように制御信号SDFRを生成する。そして、充電前昇圧動作の完了に応答して、DFR260が閉状態とされたことを知らせるためのフラグFL2をオンする。
なお、図4に示した構成では、DFR260を閉成する際には、DFR260の自己診断を行なうために、CCIDリレー332を開放した状態でDFR260を閉成し、その後CCIDリレー332を閉成する必要がある。さらに、充電動作の開始に際して過電流の発生を防止するために、外部電源電圧を電圧センサ171によって検出することが必要である場合には、DFR260を閉成する前に、CCIDリレー332を閉成して、給電線290,295および外部電源402の間を電気的に接続する必要がある。すなわち、本実施の形態のように、充電前昇圧動作および電圧均衡条件探索動作の実行によって、電圧センサ171によって外部電源電圧を測定しなくても、安定的に充電動作を開始できる構成とすれば、1回の外部充電モードあたり、CCIDリレー332の開閉回数を1回ずつ削減できるので、その耐久性能を向上できる。
電圧均衡条件探索部1030は、リレー制御部1020によってフラグFL2がオンされると、インバータ210,220のデューティを、図6で説明した固定デューティに設定するように、すなわち各スイッチング素子のオン・オフタイミングが固定されるようなスイッチング制御信号SIV1,SIV2を生成する。さらに、電圧均衡条件探索部1030は、インバータ210,220を固定デューティに制御した状態で、コンバータ200の目標電圧VRを、充電前昇圧動作時のVHmaxから徐々に低下させる。
さらに、電圧均衡条件探索部1030は、目標電圧VRがΔVR低下されるたびに、電流センサ193によって検出される電流Iacに基づいて、給電線290上の電流方向が、電圧均衡条件探索動作の開始時の方向(外部電源402から給電線290,295へ流入する方向)から変化したかどうかを判定する。
そして、システム電圧VHと、インバータ110,120の出力電圧とが釣り合って、電流Iac≒0となったときの直流電圧VHを、均衡電圧VH*として記憶する。均衡電圧VH*は、このときの目標電圧VRとしてもよく、電圧センサ180による検出電圧VHに基づいて決めてもよい。そして、電圧均衡条件探索部1030は、均衡電圧VH*の決定が完了したことを知らせるためのフラグFL3をオンしてもよい。
修正ゲイン設定部1050は、フラグFL3がオンされると、均衡電圧VH*と、そのときの電圧Vacのピーク値(すなわち外部電源電圧のピーク値)との電圧比を求め、この電圧比に基づいて、電圧修正ゲインkvを決定する。上述のように、電圧比Vacp/VH*に基づく修正ゲインkvは、電圧センサ171の測定誤差に対応した値となる。すなわち、電圧修正ゲインkvは、電圧センサ171に誤差がないときには、kv=1.0である。
このため、異常検出部1060は、電圧修正ゲインkvが、kv>>1.0あるいはkv<<1.0であるときには、電圧センサ171に異常が発生していることを検出する。そして、電圧センサ171に異常が検出しているとして、充電動作を禁止するための充電中止フラグSTPをオンする。
充電制御部1040は、電圧均衡条件探索部1030によりフラグFL3がオンされると、外部電源402からの供給電力によってバッテリ150が充電されるように、コンバータ200およびインバータ210,220を制御する。ただし、異常検出部1060によって、充電中止フラグSTPがオンされると、充電制御部1040は、フラグFL3がオンされても、充電動作を開始しないように構成される。
充電制御部1040は、フラグFL3がオンされると、図6の期間T3における動作を実現するために、システム電圧VHを均衡電圧VH*よりも低くするように、コンバータ200の目標電圧VRを低下させる。そして、このようなシステム電圧VHの下で、電圧センサ171により検出される電圧Vacおよび電流センサ173によって検出される電流Iacに基づくフィードバック制御により、バッテリ150が充電指令PWRに従って充電されるように、インバータ210,220のデューティを制御すべく、スイッチング制御信号SIV1,SIV2を生成する。
次に、図8を用いて、図5に示した電圧均衡条件探索を実行するためのステップS140の詳細を説明する。図8に示したフローチャートは、図7に示した電圧均衡条件探索部1030、修正ゲイン設定部1050および異常検出部1060の機能を実現するための処理に対応する。
図8を参照して、ECU170は、ステップS200では、システム電圧VHが上限電圧VHmaxに達しているかどうかを判定する。ステップS120(図5)での充電前昇圧動作が正常に実行されていれば、ステップS200はYES判定とされる。一方、システム電圧VHが上限電圧VHmaxよりも低下している場合には、ECU170は、ステップS205により、システム電圧VHを上限電圧VHmaxへ昇圧させるように目標電圧VRを設定し、その後再びステップS200の判定を実行する。
ECU170は、VH≧VHmaxが確認されると(S200のYES判定時)、ステップS210により、電流センサ173によって検出される電流Iacのピーク値をチェックすることによって、電流センサ173の異常有無を確認する。たとえば、このときのIacのピーク値が所定以上であれば(S210のNG判定時)、ECU170は、電流センサ193に異常が発生していると判断して、ステップS290に処理を進める。電流センサ173の異常時には、充電指令に従った外部充電動作を正常に制御することが困難であるため、ECU170は、ステップS290では、システム異常を検出して、外部充電動作を非常停止させる。
一方、電流Iacが正常である場合(ステップS210のOK判定時)には、ECU170は、ステップS220により、現在のシステム電圧VHと、電圧センサ171による検出電圧Vacのピーク値Vacpとの電圧比(Vacp/VH)に基づいて、電圧修正ゲインkvを算出する。一例として、ここではkv=Vacp/VHとする。
さらに、ECU170は、処理をステップS230に進めて、電流Iacのピーク値が0以上であるかどうかを判定して、給電線290上での電流方向が、電圧均衡条件探索動作の開始時の方向(外部電源402から給電線290,295へ流入する方向)から変化したかどうかを判定する。
電流Iacのピーク値<0のとき(S230のNO判定時)には、ECU170は、システム電圧VHが、インバータ110,120が外部電源電圧(交流)を変換した直流電圧よりも高いため、コンバータ200の目標電圧VRを低下させることによって、システム電圧VHを低下させる(ステップS240)。具体的には、目標電圧VRを、前回値からΔVR低下させて、VR−ΔVRに更新する。
ここで、1回当たりの目標電圧VRの低下量ΔVRについては、図9に示すように、このときの、直流電圧VH(または目標電圧VR)と、検出電圧Vacのピーク値Vacpとの電圧差に基づいて可変に設定することも可能である。
図9に示されるように、電圧差VH−Vacp(またはVR−Vacp)が大きい場合には、システム電圧VHを均衡電圧VH*へ低下させるまでに必要な電圧低下量が大きいため、目標電圧ΔVRを相対的に大きく設定して、システム電圧VHを速やかに均衡電圧VH*に近づけるようにする。一方、上記電圧差が小さい場合には、目標電圧ΔVRを相対的に小さく設定することによって、均衡電圧VH*をより正確に設定することが可能となる。
再び図8を参照して、ECU170は、ステップS240により、目標電圧VRをΔVR低下させた後、ステップS250により、目標電圧VRが下限値に達しているかどうかを判定する。S250での下限値は、たとえば、外部電源402の出力電圧振幅の想定され得る最小電圧に対応して設定される。
一方、ECU170は、システム電圧VHがインバータ110,120の出力電圧と釣り合う状態まで低下されたことにより、電流Iacのピーク値≧0に変化した場合(S230のYES判定時)には、ECU170は、ステップS260へ処理を進める。
これに対して、電流Iacのピーク値が反転するまで(ステップS230のNO判定時)の間は、ステップS220〜S250の処理が繰返し実行されて、電流Iacが反転するまで、すなわち、システム電圧VHがインバータ110,120の出力電圧と釣り合う状態となるまで、システム電圧VHが徐々に低下される。
ECU170は、ステップS260では、目標電圧VRまたは、電圧センサ180による検出電圧(システム電圧VH)を均衡電圧VH*に設定する。さらに、このときの電圧比Vacp/VHに基づいて電圧修正ゲインkvを決定する。
さらに、ECU170は、ステップS270では、ステップS260で決定された電圧修正ゲインkv(本来kv=1.0)が、kv>>1.0またはkv<<1.0となっているか否かを判定する。たとえば、ステップS270では、kv>1.0+α(α:判定値)であるとき(kv>>1.0)または、kv<1.0−β(β:判定値)であるとき(kv<<1.0)には、電圧センサ171が異常であると判定する。ECU170は、ステップS270がYES判定とされると、ステップS290により、システム異常を検出し、外部充電動作を非常停止する。すなわち、図6の期間T4のような充電動作は実行されない。
一方、ECU170は、電圧修正ゲインkv(電圧比)が正常範囲内であるとき(S270のNO判定時)には、ステップS280により、充電動作許可フラグをオンする。この充電動作許可フラグは、図7に示したフラグFL3に相当する。
次に、図10〜図13を用いて、図5のステップS150での充電動作、すなわち図7に示した充電制御部1040による外部充電制御について説明する。
図10を参照して、充電制御部1040は、Vac修正部1080と、充電指令生成部1090と、インバータ制御部1100とを有する。インバータ制御部1100は、外部充電モードにおける、インバータ210,220のスイッチング制御信号SIV1,SIV2を生成する機能ブロックである。
Vac修正部1080は、電圧センサ171によって検出された電圧Vacと、修正ゲイン設定部1050によって設定された電圧修正ゲインkvに基づいて、外部充電モードでの充電制御に用いられる電圧Vac♯を算出する。
図11に示すように、充電制御に用いられる電圧Vac♯は、電圧センサ171による測定値Vacに電圧修正ゲインkvを乗じて算出される。これにより、電圧センサ171に誤差が発生しても、この誤差を修正して外部充電モードにおける充電動作を制御することができる。
再び図10を参照して、充電指令生成部1090は、バッテリ150の充電指令PWRを生成する。充電指令PWRは、たとえば充電電流指令値RCを含む。充電指令PWRは、基本的にはEVSEの定格電流等に基づいて定められる。あるいは、バッテリの充電状態(SOC)や温度を反映して、バッテリ150の状態に合わせて充電指令PWRを可変に設定する構成としてもよい。
インバータ制御部1100は、Vac修正部1080によって求められた電圧Vac♯および電流センサ173によって検出された電流Iacを用いたフィードバック制御により、充電指令PWRに従って、外部電源402からバッテリ150の充電電力が供給されるように、インバータ210,220のスイッチング制御信号SIV1,SIV2を生成する。
次に、図12および図13を用いて、インバータ制御部1100による、インバータ制御の具体例について説明する。
図12は、外部充電モード時のインバータ制御を説明する機能ブロック図である。
図12を参照して、外部充電制御部600は、位相検出部610と、正弦波生成部620と、乗算部630と、減算部640と、電流制御部650とを含む。
図12を参照して、外部充電制御部600は、位相検出部610と、正弦波生成部620と、乗算部630と、減算部640と、電流制御部650とを含む。
位相検出部610は、電圧Vacの零クロス点を検出し、その検出した零クロス点に基づいて電圧Vacの位相を検出する。正弦波生成部620は、位相検出部610によって検出された電圧Vacの位相に基づいて、電圧Vacと同相の正弦波を生成する。正弦波生成部620は、たとえば、正弦波関数のテーブルを用いて、位相検出部610からの位相情報に基づいて電圧Vacと同相の正弦波を生成することができる。
乗算部630は、充電電流指令値RCに正弦波生成部620からの正弦波を乗算し、その演算結果を電流指令値として出力する。減算部640は、乗算部630から出力される電流指令から、電流センサ173により検出された電流Iacを減算し、その演算結果を電流制御部650へ出力する。
電流制御部650は、外部充電モードであることを示すモード信号MDがオンされているとき、乗算部630が出力した電流指令と、電流センサ173により検出された電流Iacとの偏差に基づいて、電流Iacを電流指令に追従させるための零相電圧指令E0を生成する。この零相電圧指令E0は、第1インバータ210および第2インバータ220の少なくとも一方の各相電圧指令に一律に加算される電圧であって、この零相電圧指令E0自体は、第1MG110および第2MG120の回転トルクに寄与しないものである。
図13は、図3に示した第1および第2インバータ210,220および第1および第2MG110,120の零相等価回路を示した図である。第1および第2インバータ210,220の各々は、図3に示したように三相ブリッジ回路から成り、各インバータにおける6個のスイッチング素子のオン/オフの組合わせは8パターン存在する。その8つのスイッチングパターンのうち2つは相間電圧が零となり、そのような電圧状態は零電圧ベクトルと称される。零電圧ベクトルについては、上アームの3つのスイッチング素子は互いに同じスイッチング状態(全てオンまたはオフ)とみなすことができ、また、下アームの3つのスイッチング素子も互いに同じスイッチング状態とみなすことができる。
外部電源402によるバッテリ150の充電時、第1および第2インバータ210,220の少なくとも一方において、外部充電制御部600(図12)によって生成される零相電圧指令E0に基づいて零電圧ベクトルが制御される。したがって、この図13では、第1インバータ210の上アームの3つのスイッチング素子は上アーム210Aとして包括的に記載され、第1インバータ210の下アームの3つのスイッチング素子は下アーム210Bとして包括的に記載される。同様に、第2インバータ220の上アームの3つのスイッチング素子は上アーム220Aとして包括的に記載され、第2インバータ220の下アームの3つのスイッチング素子は下アーム220Bとして包括的に記載される。
そして、図13に示されるように、この零相等価回路は、外部電源402から第1MG110の中性点112および第2MG120の中性点122に与えられる単相交流電力を入力とする単相PWMコンバータとみることができる。そこで、第1および第2インバータ210,220の少なくとも一方において零相電圧指令E0に基づいて零電圧ベクトルを変化させ、第1および第2インバータ210,220を単相PWMコンバータのアームとして動作するようにスイッチング制御することによって、外部電源402から供給される交流電力を、バッテリ150を充電するための直流電圧に変換することができる。
なお、図12および図13に示した外部充電モード時のインバータ制御は一例に過ぎず、本願発明の適用において、外部電源402からの供給電力をバッテリ150(蓄電機構)の充電電力に変換するインバータ制御の態様は特に限定されるものではない点について、確認的に記載する。
以上説明したように、本発明の実施の形態による蓄電機構の充電システムによれば、充電前昇圧動作によってシステム電圧VHを上限電圧VHmaxへ上昇させるので、DFR260の閉成時に外部電源402からの突入電流が生じることを確実に防止するとともに、過電流を発生させることなく安定的に充電動作を開始できる。さらに、システム電圧VHを均衡電圧VH*以下まで低下させて、外部電源電圧の過大な昇圧が不要となる電圧レベルとした状態で充電動作を実行できる。この結果、外部電源電圧の検出に頼ることなく、充電時の効率を低下させずに過大電流の発生を確実に防止することが可能となる。
さらに、電圧均衡条件探索動作によって均衡電圧VH*を求めることによって、電圧センサ171の測定精度を評価できる。特に、電圧比Vacp/VH*に基づいて決定される電圧修正ゲインkvを反映したフィードバック制御を行なうことにより、外部充電モード時における充電制御の精度を向上できる。あるいは、当該電圧比に基づいて、電圧センサ171の誤差が過大であることが検知されたときには、充電動作を中止することによりトラブルを未然に防止することが可能となる。
なお、本実施の形態では、外部電源402を中性点112,122と接続して、第1MG110および第2MG120のリアクトル成分(各相コイル巻線のインダクタンス)と、第1インバータ210および第2インバータ220とによって、外部電源402からの交流電力を、バッテリ150(蓄電機構)の充電電力に変換する構成を例示した。しかしながら、本願発明の適用はこのような構成に限定されるものではなく、給電線290,295(ただし、DFR260よりも車両内部側)および電力線190,195間に、外部電源402からの交流電圧を直流電圧に変化する外部充電専用の電力変換器(図示せず)を別途配置した構成のプラグイン車に対しても、本願発明の適用が可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100 エンジン、110 第1MG、112 中性点(第1MG)、120 第2MG、122 中性点(第2MG)、130 動力分割機構、140 減速機、150 バッテリ(蓄電機構)、160 前輪、170 ECU、171 電圧センサ(Vac)、173 電流センサ、180 電圧センサ(VH)、190,195 電力線、200 コンバータ、210 インバータ(第1MG)、220 インバータ(第2MG)、210A,220A 上アーム、210B、220B 下アーム、230 DC/DCコンバータ、240 補機バッテリ、242 補機、250 SMR、260 DFR(開閉装置)、270 コネクタ(車両)、280 LCフィルタ、290,295 給電線、300 充電ケーブル、310 コネクタ(充電ケーブル)、312 スイッチ、320 プラグ、332 リレー、334 コントロールパイロット回路、400 コンセント、402 外部電源、510 DFR制御部、520 インバータ制御部、530 DFR異常検出部、600 外部充電制御部、610 位相検出部、620 正弦波生成部、630 乗算部、640 減算部、650 電流制御部、1000 外部充電制御部、1010 充電前昇圧部、1020 リレー制御部、1030 電圧均衡条件探索部、1040 充電制御部、1050 修正ゲイン設定部、1060 異常検出部、1080 Vac修正部、1090 充電指令生成部、1100 インバータ制御部、CNCT コネクタ信号、CPLT パイロット信号、E0 零相電圧指令、FL1〜FL3 フラグ、Iac 電流(交流)、kv 電圧修正ゲイン、MD モード信号(外部充電モード)、RC 充電電流指令値、PWR 充電指令、SDFR 制御信号(DFR)、SIV1,SIV2 スイッチング制御信号、STP 充電中止フラグ、T1 期間(充電前昇圧動作)、T2 期間(電圧均衡条件探索動作)、T3 期間(充電準備動作)、T4 期間(充電動作)、VAC 外部電源電圧、Vac 電圧(センサ測定値)、Vac♯ 電圧(制御使用値)、Vacp ピーク値(外部電源電圧)、VH 直流電圧(システム電圧)、VH* 均衡電圧、VHmax 上限電圧、VR 目標電圧、ΔVR 目標電圧低下量。
Claims (14)
- 電動車両に搭載された蓄電機構の充電制御システムであって、
前記蓄電機構と前記電力線との間で双方向に電力変換可能に構成された、前記電力線の電圧を目標電圧に制御するコンバータと、
前記電動車両の外部電源によって前記蓄電機構を充電する外部充電モードにおいて、コネクタを介して前記外部電源と電気的に接続される給電線と、
前記給電線を流れる電流を検出する電流検出器と、
前記給電線に介挿接続された開閉装置と、
前記給電線と前記電力線の間に設けられ、前記外部電源からの交流電圧を直流電圧に変換して、前記電力線に出力するための充電電力変換装置と、
前記外部充電モード時における前記充電制御システムの動作を制御する制御装置とを備え、
前記制御装置は、
前記開閉装置を開放した状態で、前記充電電力変換装置が前記交流電圧を変換して前記電力線に出力する最高電圧よりも高い所定電圧に前記目標電圧を設定する充電前昇圧部と、
前記充電前昇圧部によって前記電力線が前記所定電圧に設定された後、前記開閉装置を閉成し、さらに、前記目標電圧を徐々に低下させながら前記電流検出器による検出電流を監視することによって、前記充電電力変換装置の出力電圧が前記電力線上の電圧と同等となるときの前記目標電圧である均衡電圧を決定する電圧均衡条件決定部と、
前記均衡電圧以下に前記目標電圧を設定するとともに、前記蓄電機構の充電指令に従って前記充電電力変換装置の動作を制御することによって前記蓄電機構を充電する充電制御部とを備える、蓄電機構の充電制御システム。 - 前記給電線上の電圧を検出する電圧検出器をさらに備え、
前記制御装置は、
前記均衡電圧と前記電圧検出器による検出電圧のピーク値との電圧比に基づいて、前記検出電圧の修正ゲインを演算するゲイン設定部をさらに含む、請求項1記載の蓄電機構の充電制御システム。 - 前記充電制御部は、前記電流検出器による検出電流と、前記修正ゲインに従って修正された前記検出電圧とに基づくフィードバック制御に従って、前記充電電力変換装置の動作を制御する、請求項2記載の蓄電機構の充電制御システム。
- 前記制御装置は、
前記電圧比が1.0より大きい第1の所定値より高いとき、または、前記電圧比が1.0より小さい第2の所定値より低いときには、前記充電制御システムの異常を検知して、前記外部充電動作を中止する異常検出部をさらに含む、請求項2記載の蓄電機構の充電制御システム。 - 前記給電線上の電圧を検出する電圧検出器をさらに備え、
前記電圧均衡条件決定部は、前記目標電圧を徐々に低下させる際の1回あたりの電圧低下量を、前記目標電圧と前記電圧検出器による検出電圧のピーク値との差に応じて可変に設定する、請求項1記載の蓄電機構の充電制御システム。 - 前記給電線上の電圧を検出する電圧検出器をさらに備え、
前記充電電力変換装置は、複数の電力用半導体スイッチング素子により構成されたインバータを含み、
前記制御装置は、前記電圧均衡条件決定部による前記均衡電圧の探索時には、前記複数の電力用半導体スイッチング素子を所定のスイッチングパターンに従ってオンオフさせる一方で、前記充電制御による充電動作時には、前記電流検出器および前記電圧検出器による検出値に基づくフィードバック制御に従って前記複数の電力用半導体スイッチング素子のオンオフを制御する、請求項1記載の蓄電機構の充電制御システム。 - 前記電動車両は、
星形結線された第1の多相巻線を固定子巻線として含む第1の交流回転電機と、
星形結線された第2の多相巻線を固定子巻線として含む第2の交流回転電機と、
前記第1の多相巻線に接続され、前記第1の交流回転電機と前記電力線との間で電力変換を行なう第1のインバータと、
前記第2の多相巻線に接続され、前記第2の交流回転電機と前記電力線との間で電力変換を行なう第2のインバータと、
前記第1および第2のインバータの電力用半導体スイッチング素子のオンオフを制御するインバータ制御装置とをさらに備え、
前記第1および第2の交流回転電機の少なくとも一方は、前記電動車両の走行駆動力の発生に用いられ、
前記給電線は、前記外部充電モード時には、前記コネクタおよび前記充電ケーブルを介して、前記第1の多相巻線の第1の中性点および前記第2の多相巻線の第2の中性点と、前記外部電源との間を電気的に接続するように配設され、
前記インバータ制御装置は、前記外部充電モード時には、前記第1および前記第2のインバータならびに前記第1および第2の多相巻線のインダンタンスが前記充電電力変換装置として動作させるべく、前記給電線を経由して前記第1および第2の中性点へ供給された前記外部電源からの交流電圧を、前記直流電圧に変換して前記電力線に出力するように、前記第1および第2のインバータの各々を制御する、請求項1〜6のいずれか1項に記載の蓄電機構の充電制御システム。 - 電動車両に搭載された蓄電機構の充電制御システムの制御方法であって、
前記充電制御システムは、
前記蓄電機構と前記電力線との間で双方向に電力変換可能に構成された、前記電力線の電圧を目標電圧に制御するコンバータと、
前記電動車両の外部電源によって前記蓄電機構を充電する外部充電モードにおいて、コネクタを介して前記外部電源と電気的に接続される給電線と、
前記給電線を流れる電流を検出する電流検出器と、
前記給電線に介挿接続された開閉装置と、
前記給電線と前記電力線の間に設けられ、前記外部電源からの交流電圧を直流電圧に変換して、前記電力線に出力するための充電電力変換装置とを備え、
前記制御方法は、
前記外部充電モード時に、前記開閉装置を開放した状態で、前記充電電力変換装置が前記交流電圧を変換して前記電力線に出力する最高電圧よりも高い所定電圧に前記目標電圧を設定するステップと、
前記電力線が前記所定電圧に設定された後、前記開閉装置を閉成するステップと、
前記開閉装置が閉成された状態で、前記目標電圧を徐々に低下させながら前記電流検出器による検出電流を監視することによって、前記充電電力変換装置の出力電圧が前記電力線上の電圧と同等となるときの前記目標電圧である均衡電圧を決定するステップと、
前記均衡電圧以下に前記目標電圧を設定するとともに、前記蓄電機構の充電指令に従って前記充電電力変換装置の動作を制御することによって前記蓄電機構を充電するステップとを備える、蓄電機構の充電制御システムの制御方法。 - 前記充電制御システムは、
給電線上の電圧を検出する電圧検出器をさらに備え、
前記制御方法は、
前記均衡電圧と前記電圧検出器による検出電圧のピーク値との電圧比に基づいて、前記検出電圧の修正ゲインを演算するステップをさらに備える、請求項8記載の蓄電機構の充電制御システムの制御方法。 - 前記充電するステップは、前記電流検出器による検出電流と、前記修正ゲインに従って修正された前記検出電圧とに基づくフィードバック制御に従って、前記充電電力変換装置の動作を制御する、請求項9記載の蓄電機構の充電制御システムの制御方法。
- 前記電圧比が1.0より大きい第1の所定値より高いとき、または、前記電圧比が1.0より小さい第2の所定値より低いときには、前記充電制御システムの異常を検知して、前記外部充電動作を中止するステップをさらに備える、請求項9記載の蓄電機構の充電制御システムの制御方法。
- 前記充電制御システムは、
前記給電線上の電圧を検出する電圧検出器をさらに備え、
前記決定するステップは、前記目標電圧を徐々に低下させる際の1回あたりの電圧低下量を、前記目標電圧と前記電圧検出器による検出電圧のピーク値との差に応じて可変に設定する、請求項8記載の蓄電機構の充電制御システムの制御方法。 - 前記充電制御システムは、
前記給電線上の電圧を検出する電圧検出器をさらに備え、
前記充電電力変換装置は、複数の電力用半導体スイッチング素子により構成されたインバータを含み、
前記複数の電力用半導体スイッチング素子は、前記決定するステップによる前記均衡電圧の探索時には、所定のスイッチングパターンに従ってオンオフされる一方で、前記充電するステップによる充電動作時には、前記電流検出器および前記電圧検出器による検出値に基づくフィードバック制御に従ってオンオフが制御される、請求項8記載の蓄電機構の充電制御システムの制御方法。 - 前記電動車両は、
星形結線された第1の多相巻線を固定子巻線として含む第1の交流回転電機と、
星形結線された第2の多相巻線を固定子巻線として含む第2の交流回転電機と、
前記第1の多相巻線に接続され、前記第1の交流回転電機と前記電力線との間で電力変換を行なう第1のインバータと、
前記第2の多相巻線に接続され、前記第2の交流回転電機と前記電力線との間で電力変換を行なう第2のインバータと、
前記第1および第2のインバータの電力用半導体スイッチング素子のオンオフを制御するインバータ制御装置とをさらに備え、
前記第1および第2の交流回転電機の少なくとも一方は、前記電動車両の走行駆動力の発生に用いられ、
前記給電線は、前記外部充電モード時には、前記コネクタおよび前記充電ケーブルを介して、前記第1の多相巻線の第1の中性点および前記第2の多相巻線の第2の中性点と、前記外部電源との間を電気的に接続するように配設され、
前記インバータ制御装置は、前記外部充電モード時には、前記第1および前記第2のインバータならびに前記第1および第2の多相巻線のインダンタンスが前記充電電力変換装置として動作させるべく、前記給電線を経由して前記第1および第2の中性点へ供給された前記外部電源からの交流電圧を、前記直流電圧に変換して前記電力線に出力するように、前記第1および第2のインバータの各々を制御する、請求項8〜13のいずれか1項に記載の蓄電機構の充電制御システムの制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007234413A JP2009071898A (ja) | 2007-09-10 | 2007-09-10 | 蓄電機構の充電制御システムおよびその制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007234413A JP2009071898A (ja) | 2007-09-10 | 2007-09-10 | 蓄電機構の充電制御システムおよびその制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009071898A true JP2009071898A (ja) | 2009-04-02 |
Family
ID=40607596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007234413A Withdrawn JP2009071898A (ja) | 2007-09-10 | 2007-09-10 | 蓄電機構の充電制御システムおよびその制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009071898A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011010026A1 (fr) * | 2009-07-24 | 2011-01-27 | Renault Sas | Procédé de diagnostic du fonctionnement d'un dispositif de coupure et de raccordement d'une batterie a un réseau de bord de véhicule automobile |
JP2011050191A (ja) * | 2009-08-27 | 2011-03-10 | Noritz Corp | 発電システム |
WO2018105383A1 (ja) * | 2016-12-08 | 2018-06-14 | 株式会社オートネットワーク技術研究所 | 車載用電源装置 |
CN110249521A (zh) * | 2017-02-06 | 2019-09-17 | 雅马哈发动机动力产品株式会社 | 逆变器发电机及其控制方法 |
CN111756046A (zh) * | 2020-07-29 | 2020-10-09 | 阳光电源股份有限公司 | 一种母线电压控制方法、控制器及光伏储能变换系统 |
-
2007
- 2007-09-10 JP JP2007234413A patent/JP2009071898A/ja not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011010026A1 (fr) * | 2009-07-24 | 2011-01-27 | Renault Sas | Procédé de diagnostic du fonctionnement d'un dispositif de coupure et de raccordement d'une batterie a un réseau de bord de véhicule automobile |
FR2948461A1 (fr) * | 2009-07-24 | 2011-01-28 | Renault Sa | Procede de diagnostic du fonctionnement d'un dispositif de coupure et de raccordement d'une batterie a un reseau de bord de vehicule automobile |
CN102511009A (zh) * | 2009-07-24 | 2012-06-20 | 雷诺股份公司 | 用于对将电池从/到机动车辆的车载电力网切断和连接的设备的操作进行诊断的方法 |
US8688317B2 (en) | 2009-07-24 | 2014-04-01 | Renault S.A.S. | Method for diagnosing the operation of a device for cutting off and connecting a battery from/to the onboard power network of a motor vehicle |
JP2011050191A (ja) * | 2009-08-27 | 2011-03-10 | Noritz Corp | 発電システム |
WO2018105383A1 (ja) * | 2016-12-08 | 2018-06-14 | 株式会社オートネットワーク技術研究所 | 車載用電源装置 |
CN110073568A (zh) * | 2016-12-08 | 2019-07-30 | 株式会社自动网络技术研究所 | 车载用电源装置 |
US11052771B2 (en) | 2016-12-08 | 2021-07-06 | Autonetworks Technologies, Ltd. | Vehicle-mounted power supply device |
CN110249521A (zh) * | 2017-02-06 | 2019-09-17 | 雅马哈发动机动力产品株式会社 | 逆变器发电机及其控制方法 |
CN111756046A (zh) * | 2020-07-29 | 2020-10-09 | 阳光电源股份有限公司 | 一种母线电压控制方法、控制器及光伏储能变换系统 |
CN111756046B (zh) * | 2020-07-29 | 2022-02-18 | 阳光电源股份有限公司 | 一种母线电压控制方法、控制器及光伏储能变换系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4341712B2 (ja) | 蓄電機構の充電制御装置および充電制御方法 | |
US8487636B2 (en) | Malfunction determining apparatus and malfunction determining method for charging system | |
JP4582255B2 (ja) | 車両の制御装置および制御方法 | |
EP2204894B1 (en) | Vehicle charger and method for charging vehicle | |
JP5321752B2 (ja) | 電動車両の電源システムおよびその制御方法ならびに電動車両 | |
US9059652B2 (en) | Motor drive system | |
JP5626468B2 (ja) | 車両および車両の制御方法 | |
WO2012164680A1 (ja) | 車両および車両の制御方法 | |
JP2009071989A (ja) | 車両の充電制御装置および車両 | |
WO2007089037A1 (ja) | 電源装置およびそれを搭載した電動車両ならびに電源装置の制御方法 | |
JP5015858B2 (ja) | 電動車両の電源システムおよびその制御方法 | |
JP2006320073A (ja) | 交流電圧出力装置 | |
JP2009118658A (ja) | 電動車両 | |
JP2009071901A (ja) | 蓄電機構の充電制御システムおよびその異常検出方法 | |
JP2009278706A (ja) | 電動車両の充電装置 | |
JP2009296844A (ja) | 電動車両およびリレー溶着判定方法 | |
JP2009100568A (ja) | 電動車両および電動車両の制御方法 | |
JP2009189153A (ja) | 電動車両および電動車両の異常部位特定方法 | |
JP2009071898A (ja) | 蓄電機構の充電制御システムおよびその制御方法 | |
JP2009130940A (ja) | 電動車両、残留電荷の放電方法、およびその放電方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 | |
JP5696589B2 (ja) | 車両および車両の制御方法 | |
JP2010215106A (ja) | ハイブリッド車両の制御システム | |
JP2012210085A (ja) | 電源制御装置およびそれを備えたモータ駆動システムならびに電動制御装置の制御方法 | |
JP2009291037A (ja) | 電動車両および電動車両の異常検知方法 | |
JP6274169B2 (ja) | モータ駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20101207 |