[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009046587A - Fuel oil for fuel cell - Google Patents

Fuel oil for fuel cell Download PDF

Info

Publication number
JP2009046587A
JP2009046587A JP2007213867A JP2007213867A JP2009046587A JP 2009046587 A JP2009046587 A JP 2009046587A JP 2007213867 A JP2007213867 A JP 2007213867A JP 2007213867 A JP2007213867 A JP 2007213867A JP 2009046587 A JP2009046587 A JP 2009046587A
Authority
JP
Japan
Prior art keywords
fuel
oil
fuel oil
sulfur
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007213867A
Other languages
Japanese (ja)
Inventor
Misato Matsubara
美里 松原
Osamu Chiyoda
修 千代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2007213867A priority Critical patent/JP2009046587A/en
Publication of JP2009046587A publication Critical patent/JP2009046587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel oil for fuel cells, which can sufficiently maintain the life of a desulfurizer, when desulfurized in a fuel cell system, while using a petroleum-based hydrocarbon oil as the fuel oil for the fuel cells, and enables the stable continuation in the operation of the fuel cell system for a long period. <P>SOLUTION: This fuel oil for the fuel cells is characterized by having distillation properties comprising an initial boiling point of 135 to 170°C and a 95% distillation temperature of ≤270°C, a peroxide content of ≤160 mass ppm, a sulfur content originated from sulfur compounds having boiling points having mol.wts. of >330°C and <334°C in an amount of ≤1 mass ppm, and a total sulfur content of ≤80 mass ppm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池システムに使用する燃料電池用燃料油に関する。さらに詳しくは、脱硫剤の寿命を十分に維持することによって燃料電池システムで用いる脱硫剤の交換頻度を低くすることができ、長期間安定して燃料電池システムの運転を継続することができる、石油系炭化水素油を用いた燃料電池用燃料油に関する。   The present invention relates to a fuel oil for a fuel cell used in a fuel cell system. More specifically, by sufficiently maintaining the life of the desulfurizing agent, the replacement frequency of the desulfurizing agent used in the fuel cell system can be lowered, and the operation of the fuel cell system can be continued stably for a long period of time. TECHNICAL FIELD The present invention relates to a fuel oil for a fuel cell using a system hydrocarbon oil.

近年、従来のエネルギーよりも環境への負荷を低減することが可能である新エネルギーが注目されおり、その技術の中でも燃料電池は、特に注目されている。燃料電池で使用する水素を発生させる原料として、メタンを主成分とする都市ガス、天然ガス、LPG、ナフサ、灯油、軽油などの石油系炭化水素、メタノール、エタノールおよびジメチルエーテルなどの含酸素化合物があり、その原料の使用方法の研究が進んでいる。   In recent years, attention has been paid to new energy capable of reducing the burden on the environment more than conventional energy, and fuel cells are particularly attracting attention among the technologies. Examples of raw materials that generate hydrogen used in fuel cells include methane-based city gas, natural gas, LPG, naphtha, kerosene, light oil, and other petroleum hydrocarbons, and oxygen-containing compounds such as methanol, ethanol, and dimethyl ether. Research on how to use the raw materials is in progress.

ナフサ、灯油、軽油などの石油系炭化水素には、原油や留分などの種類によって異なるが、メルカプタン類、チオフェン類、ベンゾチオフェン(BT)類、ジベンゾチオフェン(DBT)類、アルキルジベンゾチオフェン(R−DBT)類などの硫黄化合物が微量含まれており、この硫黄分は、燃料電池システムにおける水素製造工程では不利となる。すなわち、かかる硫黄分を含む石油系炭化水素を燃料電池用燃料油として用いると、水素製造工程の改質触媒は、用いた燃料電池用燃料油中の硫黄分によって被毒され、改質触媒の寿命が低下する。   Petroleum hydrocarbons such as naphtha, kerosene, and light oil vary depending on the type of crude oil and fraction, but mercaptans, thiophenes, benzothiophene (BT), dibenzothiophene (DBT), alkyldibenzothiophene (R). -DBT) and other sulfur compounds are contained in a trace amount, and this sulfur content is disadvantageous in the hydrogen production process in the fuel cell system. That is, when a petroleum hydrocarbon containing such sulfur content is used as fuel oil for fuel cells, the reforming catalyst in the hydrogen production process is poisoned by the sulfur content in the fuel oil for fuel cell used, and the reforming catalyst The service life is reduced.

この問題を回避するために、燃料電池システムでは、一般に脱硫剤を用いる脱硫処理によって燃料電池用燃料油中の硫黄分を低減し、しかる後に燃料電池用燃料油を水素製造工程に供する方法が用いられている。
この燃料電池システムにおける脱硫処理では、比較的低コストな吸着脱硫法が一般的である。吸着脱硫剤としては、硫黄分がppbオーダーの高度な脱硫レベルを達成できるとして、無機酸化物担体にニッケルを担持した吸着剤等が提案されている。
In order to avoid this problem, the fuel cell system generally uses a method in which the sulfur content in the fuel oil for the fuel cell is reduced by a desulfurization treatment using a desulfurizing agent, and then the fuel oil for the fuel cell is used in the hydrogen production process. It has been.
In the desulfurization treatment in this fuel cell system, a relatively low cost adsorption desulfurization method is generally used. As the adsorptive desulfurization agent, an adsorbent in which nickel is supported on an inorganic oxide carrier has been proposed because the sulfur content can achieve a high desulfurization level of ppb order.

また、燃料電池システムに供給する燃料電池用燃料油自体の硫黄分の含有量を規制する方法が提案されており、かかる方法として、燃料電池システムに供給する燃料電池用燃料油の全硫黄化合物の含有量を規制する方法(例えば、特許文献1参照)や、該燃料電池用燃料油のアルキルジベンゾチオフェンなどの特定の硫黄化合物の含有量を規制する方法(例えば、特許文献2)などが提案されている。   In addition, a method for regulating the sulfur content of the fuel oil for the fuel cell itself to be supplied to the fuel cell system has been proposed, and as such a method, the total sulfur compounds of the fuel oil for the fuel cell to be supplied to the fuel cell system are proposed. A method for regulating the content (for example, see Patent Document 1), a method for regulating the content of a specific sulfur compound such as alkyldibenzothiophene in the fuel oil for fuel cells (for example, Patent Document 2), and the like have been proposed. ing.

特開2002−83626号公報JP 2002-83626 A 特開2001−294874号公報JP 2001-294874 A

しかし、上記提案されている硫黄分の含有量を規制した燃料電池用燃料油を用いても、燃料電池システムでの脱硫処理の脱硫剤の寿命を十分に維持することが困難であり、燃料電池システムにおける脱硫剤の交換頻度が高い、あるいは多量の脱硫剤を使用する必要があるなどの課題を有している。   However, it is difficult to sufficiently maintain the life of the desulfurization agent for the desulfurization treatment in the fuel cell system even if the fuel oil for fuel cell in which the proposed sulfur content is regulated is used. There is a problem that the replacement frequency of the desulfurizing agent in the system is high or a large amount of desulfurizing agent needs to be used.

本発明は、上記事情に鑑みてなされたものであり、燃料電池用燃料油として石油系炭化水素油を用い、該燃料電池用燃料油を燃料電池システムで脱硫処理するに当たり、脱硫剤の寿命を十分に維持することが可能であり、長時間安定して燃料電池システムの運転を継続することを可能とする燃料電池用燃料油を提供することを目的とする。   The present invention has been made in view of the above circumstances, and uses petroleum-based hydrocarbon oil as a fuel oil for a fuel cell. When desulfurizing the fuel oil for a fuel cell with a fuel cell system, the life of the desulfurizing agent is increased. An object of the present invention is to provide a fuel oil for a fuel cell that can be sufficiently maintained and that can stably operate the fuel cell system for a long time.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、石油系炭化水素原料中の酸化能を有する不純物が脱硫剤の寿命に影響を及ぼすこと、さらには、ある特定の硫黄化合物種が脱硫剤の寿命に影響を及ぼすことを知見し、これらを低減することによって、上記の目的を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明は、次の燃料電池用燃料油を提供する。
(1)初留点が135〜170℃、95%留出温度が270℃以下の蒸留性状を有し、パーオキサイドの含有量が160質量ppm以下、沸点が330℃を超え、334℃未満の範囲にある硫黄化合物由来の硫黄分が1質量ppm以下、かつ、全硫黄分が80質量ppm以下であることを特徴とする燃料電池用燃料油。
(2)ジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分が10質量ppm以下であることを特徴とする上記(1)に記載の燃料電池用燃料油。
As a result of intensive studies to achieve the above object, the present inventors have found that the impurities having an oxidizing ability in the petroleum hydrocarbon feedstock have an influence on the life of the desulfurization agent, and further, certain sulfur It has been found that the compound species affects the life of the desulfurizing agent, and by reducing these, it has been found that the above object can be achieved, and the present invention has been completed.
That is, the present invention provides the following fuel oil for fuel cells.
(1) It has a distillation property with an initial boiling point of 135 to 170 ° C. and a 95% distillation temperature of 270 ° C. or less, a peroxide content of 160 mass ppm or less, a boiling point exceeding 330 ° C. and a temperature of less than 334 ° C. A fuel oil for a fuel cell, characterized in that the sulfur content derived from sulfur compounds in the range is 1 mass ppm or less and the total sulfur content is 80 mass ppm or less.
(2) The fuel oil for a fuel cell as described in (1) above, wherein a sulfur content derived from a lighter sulfur compound than dibenzothiophene is 10 ppm by mass or less.

本発明の燃料電池用燃料油を用いれば、燃料電池システムにおいて、燃料電池用燃料油の脱硫処理における脱硫剤を長期間使用でき、脱硫剤の交換頻度や使用量を低減して、長期間安定して燃料電池システムの運転を継続することができる。   By using the fuel oil for fuel cells of the present invention, in the fuel cell system, the desulfurization agent in the desulfurization treatment of the fuel oil for fuel cells can be used for a long period of time. Thus, the operation of the fuel cell system can be continued.

以下に本発明の内容を更に詳しく説明する。
本発明の燃料電池用燃料油の蒸留性状は、初留点135〜170℃、好ましくは140〜170℃、95%留出温度270℃以下、好ましくは230〜270℃、より好ましくは240〜270℃である。初留点が170℃より低ければ、脱硫剤への負荷を低減できて好ましい。また、初留点が135℃より高ければ、単位容量当たりの水素発生量が増し、また引火点が低すぎず、取扱に際し安全性が増すため好ましい。95%留出温度が270℃より低ければ、改質工程において炭素析出を抑制でき、また脱硫剤への負荷を低減できるため好ましい。また、95%留出温度が230℃より高ければ、単位容量当たりの水素発生量が増すため好ましい。
The contents of the present invention will be described in more detail below.
The distillation properties of the fuel oil for a fuel cell of the present invention have an initial boiling point of 135 to 170 ° C, preferably 140 to 170 ° C, a 95% distillation temperature of 270 ° C or less, preferably 230 to 270 ° C, more preferably 240 to 270. ° C. If the initial boiling point is lower than 170 ° C., the load on the desulfurizing agent can be reduced, which is preferable. Moreover, if the initial boiling point is higher than 135 ° C., the amount of hydrogen generated per unit capacity is increased, the flash point is not too low, and safety is increased during handling. If the 95% distillation temperature is lower than 270 ° C., it is preferable because carbon deposition can be suppressed in the reforming step and the load on the desulfurizing agent can be reduced. Moreover, if the 95% distillation temperature is higher than 230 ° C., the amount of hydrogen generated per unit volume increases, which is preferable.

本発明の燃料電池用燃料油では、パーオキサイドの含有量が160質量ppm以下、好ましくは30質量ppm以下である。一般に、脱硫剤に含まれる金属触媒(例えば、ニッケルなど)は還元状態で使用されるが、燃料電池用燃料油中に酸化能を有する不純物が存在すると、金属が酸化されて脱硫性能が低下し、脱硫剤の寿命が短くなることが懸念される。そこで、本発明のようにパーオキサイドの含有量を160質量ppm以下とすれば、パーオキサイドによる金属触媒の酸化を抑制でき、脱硫性能の低下を防止することができる。   In the fuel oil for fuel cells of the present invention, the peroxide content is 160 mass ppm or less, preferably 30 mass ppm or less. In general, a metal catalyst (such as nickel) contained in a desulfurizing agent is used in a reduced state. However, if impurities having an oxidizing ability are present in fuel oil for fuel cells, the metal is oxidized and the desulfurization performance is lowered. There is a concern that the life of the desulfurizing agent will be shortened. Therefore, when the peroxide content is 160 mass ppm or less as in the present invention, oxidation of the metal catalyst by peroxide can be suppressed, and the desulfurization performance can be prevented from being lowered.

ここで、本発明におけるパーオキサイドとしては、石油系炭化水素原料の酸化劣化反応によって生成した種々のパーオキサイドが対象となり、これらによって触媒金属は酸化し得る。この有機過酸化物としては、2価の−O−O−結合をもつ化合物であればいずれも含まれる。より具体的には、クメンヒドロパーオキサイド、ターシャリーブチルパーオキサイド等が挙げられる。特にヒドロキシ酸は、重合や縮合することによって、油の不溶性のスラッジおよびデポジットとなり、油路を詰める大きな原因となる可能性がある。   Here, as the peroxide in the present invention, various peroxides generated by the oxidative degradation reaction of petroleum hydrocarbon raw materials are targeted, and the catalytic metal can be oxidized by these. The organic peroxide includes any compound having a divalent —O—O— bond. More specifically, cumene hydroperoxide, tertiary butyl peroxide and the like can be mentioned. Hydroxy acids, in particular, can become an insoluble sludge and deposit of oil due to polymerization and condensation, which can be a major cause of filling the oil path.

また、パーオキサイドの含有量の測定は、JPI−5S−46−96に準拠して行うことができる。   Moreover, the measurement of content of a peroxide can be performed based on JPI-5S-46-96.

本発明の燃料電池用燃料油は、沸点が330℃を超え、334℃未満の範囲にある硫黄化合物(以下「対象硫黄化合物」とも言う。)由来の硫黄分の含有量が1質量ppm以下であり、好ましくは0.5質量ppm以下である。沸点が330℃を超え、334℃未満の範囲にある硫黄化合物の由来の硫黄分含有量が1質量ppm以下であれば、脱硫剤の持続性を向上することができる。また、かかる硫黄分含有量は小さいほど好ましく、最も好ましくは0質量ppmである。対象硫黄化合物としては、アルキルベンゾチオフェン類などの芳香族環を有する化合物が考えられる。   The fuel oil for fuel cells of the present invention has a sulfur content of 1 mass ppm or less derived from a sulfur compound having a boiling point exceeding 330 ° C. and less than 334 ° C. (hereinafter also referred to as “target sulfur compound”). Yes, preferably 0.5 ppm by mass or less. If the sulfur content derived from the sulfur compound having a boiling point exceeding 330 ° C and less than 334 ° C is 1 mass ppm or less, the sustainability of the desulfurizing agent can be improved. The sulfur content is preferably as small as possible, and most preferably 0 ppm by mass. As the target sulfur compound, compounds having an aromatic ring such as alkylbenzothiophenes can be considered.

上記対象硫黄化合物由来の硫黄分含有量の測定は、以下の方法により求めることができる。まず、脱硫処理前後の試料油中の全硫黄濃度を、JISK2541微量電量滴定法に準拠して分析する。次に、硫黄化合物の沸点の序列と保持時間が対応する沸点カラムを装着したGC−SCD(化学発光硫黄検出器付きガスクロマトグラフ)分析により得られたクロマトグラムにおいて、沸点が330℃および334℃の硫黄化合物が示すピークを特定し、これらの保持時間の間に検出されるピークの総面積(対象硫黄化合物由来のピーク面積)、並びに全硫黄化合物のピーク面積を求める。これらの測定結果を用い、下記計算式(1)に従って試料油中に含まれる「沸点が330℃を超え、334℃未満の範囲にある硫黄化合物由来の硫黄分量」を算出することができる。なお、沸点が330℃の硫黄化合物と、沸点が334℃の硫黄化合物が示すピークは、それぞれジベンゾチオフェン、4メチルジベンゾチオフェンのGC−SCDピークにより同定することができる。
計算式(1):
沸点が330℃を超え、334℃未満の範囲にある硫黄化合物由来の硫黄分(質量ppm)=試料中の全硫黄濃度×(GC-SCDで求めた沸点が330℃を超え、334℃未満の範囲にある硫黄化合物の面積値/GC-SCDで求めた全硫黄化合物の面積値)
The measurement of the sulfur content derived from the target sulfur compound can be obtained by the following method. First, the total sulfur concentration in the sample oil before and after the desulfurization treatment is analyzed according to JISK2541 microcoulometric titration method. Next, in the chromatogram obtained by GC-SCD (gas chromatograph with chemiluminescence sulfur detector) analysis equipped with a boiling point column corresponding to the order of the boiling points and retention times of the sulfur compounds, the boiling points are 330 ° C. and 334 ° C. The peak which a sulfur compound shows is specified, and the total area (peak area derived from an object sulfur compound) of the peak detected during these holding times, and the peak area of all sulfur compounds are calculated. Using these measurement results, “the amount of sulfur derived from a sulfur compound having a boiling point exceeding 330 ° C. and less than 334 ° C.” contained in the sample oil can be calculated according to the following formula (1). In addition, the peak which the sulfur compound whose boiling point is 330 degreeC, and the sulfur compound whose boiling point is 334 degreeC can identify with the GC-SCD peak of dibenzothiophene and 4 methyldibenzothiophene, respectively.
Formula (1):
Sulfur content derived from sulfur compounds having a boiling point exceeding 330 ° C. and less than 334 ° C. (mass ppm) = total sulfur concentration in the sample × (boiling point obtained by GC-SCD exceeds 330 ° C. and less than 334 ° C. Area value of sulfur compounds in range / area value of all sulfur compounds determined by GC-SCD)

さらに、本発明の燃料電池用燃料油は、全硫黄分が80質量ppm以下であり、10質量ppm以下であることが好ましい。本発明でいう全硫黄分とは、JIS K 2541微量電量滴定法に準拠して測定した値である。また、ここでいう全硫黄分とは、例えば硫化水素、メルカプタン類、硫化アルキル類、環状硫化物、チオフェン類等の燃料電池用燃料油に含有されている全ての硫黄分を意味する。脱硫剤の持続性を向上する上で、全硫黄分は80質量ppm以下とする。   Furthermore, the fuel oil for fuel cells of the present invention has a total sulfur content of 80 ppm by mass or less, and preferably 10 ppm by mass or less. The total sulfur content in the present invention is a value measured according to JIS K2541 microcoulometric titration method. Further, the total sulfur content here means all sulfur content contained in fuel oil for fuel cells such as hydrogen sulfide, mercaptans, alkyl sulfides, cyclic sulfides, thiophenes and the like. In order to improve the sustainability of the desulfurizing agent, the total sulfur content is 80 mass ppm or less.

また、本発明の燃料電池用燃料油は、ジベンゾチオフェン(DBT)より軽質な硫黄化合物由来の硫黄分が10質量ppm以下であることが好ましい。かかる硫黄化合物由来の硫黄分が10質量ppm以下であれば、硫黄分の負荷量を低減できるため、脱硫剤の持続性を向上することができる。ここで、ジベンゾチオフェンより軽質な硫黄化合物とは、GC‐SCD(化学発光硫黄検出器付きガスクロマトグラフィ)分析においてジベンゾチオフェンよりも保持時間の短い硫黄化合物を意味する。具体的にはアルキルメルカプタン類、アルキルチオフェン類等が挙げられる。   Moreover, it is preferable that the fuel oil for fuel cells of this invention is 10 mass ppm or less in sulfur content derived from a sulfur compound lighter than dibenzothiophene (DBT). If the sulfur content derived from such a sulfur compound is 10 mass ppm or less, the load of the sulfur content can be reduced, so that the sustainability of the desulfurizing agent can be improved. Here, the lighter sulfur compound than dibenzothiophene means a sulfur compound having a retention time shorter than that of dibenzothiophene in GC-SCD (gas chromatography with chemiluminescence sulfur detector) analysis. Specific examples include alkyl mercaptans and alkylthiophenes.

ジベンゾチオフェン(DBT)より軽質な硫黄化合物由来の硫黄分量は、以下の方法により求めることができる。まず、計算式(1)と同様に、試料油中の全硫黄濃度を求める。そして、GC-SCD法により、保持時間によって分離される燃料油中の各成分のピーク強度を表したクロマトグラムを得る。次に、得られたクロマトグラムにおいてジベンゾチオフェンを示すピークを同定し、ピーク総面積に対するジベンゾチオフェンより保持時間の短いピークの面積比から算出する。すなわち、下記計算式(2)にしたがって算出することができる。
計算式(2):
ジベンゾチオフェン(DBT)より軽質な硫黄化合物由来の硫黄分(質量ppm)=試料中の全硫黄濃度×(GC−SCDで求めたDBTより軽質な硫黄化合物の面積値/GC-SCDで求めた全硫黄化合物の面積値)
The sulfur content derived from a sulfur compound lighter than dibenzothiophene (DBT) can be determined by the following method. First, similarly to the calculation formula (1), the total sulfur concentration in the sample oil is obtained. Then, a chromatogram representing the peak intensity of each component in the fuel oil separated by the retention time is obtained by the GC-SCD method. Next, a peak indicating dibenzothiophene is identified in the obtained chromatogram, and the peak is calculated from the area ratio of the peak having a shorter retention time than dibenzothiophene relative to the total peak area. That is, it can be calculated according to the following calculation formula (2).
Formula (2):
Sulfur content derived from sulfur compounds lighter than dibenzothiophene (DBT) (mass ppm) = total sulfur concentration in the sample × (area value of sulfur compounds lighter than DBT determined by GC-SCD / total determined by GC-SCD Area value of sulfur compounds)

本発明の燃料電池用燃料油の製造方法は、製造される燃料電池用燃料油が本発明に規定する性状を有する限りにおいて、特に制限されるものではなく、種々の石油系原料を用いて、また種々の方法により本発明の燃料電池用燃料油を製造することができる。例えば、原油を常圧蒸留して得られる灯油留分を脱硫した脱硫灯油を用いることができる。さらに、直接脱硫装置から得られる直接脱硫灯油留分、及び重油や残油の水素化分解や熱分解あるいは接触分解して得られる灯油留分等を脱硫した脱硫灯油が使用可能である。また、市販の溶剤や、特開平6−158058号に代表される特許公開公報に記載されたフィッシャー・トロプシュ合成により製造される灯油留分を混合してもよい。   The fuel cell fuel oil production method of the present invention is not particularly limited as long as the fuel cell fuel oil to be produced has the properties defined in the present invention, using various petroleum-based raw materials, Moreover, the fuel oil for fuel cells of the present invention can be produced by various methods. For example, desulfurized kerosene obtained by desulfurizing kerosene fraction obtained by atmospheric distillation of crude oil can be used. Furthermore, a desulfurized kerosene obtained by desulfurizing a directly desulfurized kerosene fraction obtained from a direct desulfurization apparatus, a kerosene fraction obtained by hydrocracking, thermal cracking or catalytic cracking of heavy oil or residual oil can be used. Moreover, you may mix the commercially available solvent and the kerosene fraction manufactured by the Fischer-Tropsch synthesis described in the patent publication gazette represented by Unexamined-Japanese-Patent No. 6-1558058.

燃料電池用燃料油中のパーオキサイドを低減するには、シリカ等の極性物質に通して、これらを除去するという前処理によって可能となる。また、この方法に、石油系原料にあらかじめ酸化防止剤を添加することも併用可能である。   In order to reduce the peroxide in the fuel oil for the fuel cell, it is possible to pass through a polar substance such as silica to remove them. Further, this method can be used in combination with an antioxidant added to the petroleum-based raw material in advance.

また、上記各種の石油留分の一般的な脱硫方法としては、無機酸化物担体に、ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で含有する触媒を用いて、反応温度200〜400℃、反応圧力2〜20MPa−Gで水素化脱硫を行う方法や、ニッケル、銅、亜鉛などの金属を含有する脱硫剤を用いて、反応温度が常温〜300℃、反応圧力が常圧〜1MPa−Gで吸着脱硫を行う方法、あるいは両者を組み合わせた方法などを用いることができる。
また、燃料電池用燃料油を本発明に規定する性状を有するように調製するには、一般に、原料に用いる石油留分の蒸留性状や硫黄分、特に硫黄分を適宜選択することによって容易に行うことができる。
In addition, as a general desulfurization method for the various petroleum fractions described above, a reaction temperature of 200 to 600 is used by using a catalyst containing a transition metal such as nickel, cobalt, molybdenum, and tungsten in an appropriate ratio in an inorganic oxide carrier. Using a method of hydrodesulfurization at 400 ° C. and a reaction pressure of 2 to 20 MPa-G, or using a desulfurization agent containing a metal such as nickel, copper or zinc, the reaction temperature is from room temperature to 300 ° C., and the reaction pressure is from normal pressure to A method of performing adsorptive desulfurization at 1 MPa-G or a method in which both are combined can be used.
In addition, the fuel oil for a fuel cell is prepared so as to have the properties defined in the present invention, generally by easily selecting the distillation properties and sulfur content of the petroleum fraction used as the raw material, particularly the sulfur content. be able to.

本発明の燃料電池用燃料油には、必要に応じて、各種の添加剤を適宜配合することができる。この添加剤としては、フェノール系、アミン系等の酸化防止剤、チオアミド化合物等の金属不活性剤、有機リン系化合物等の表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミン、ポリイソブチレンアミン等の清浄分散剤、多価アルコール及びそのエーテル等の氷結防止剤、有機酸のアルカリ金属やアルカリ土類金属塩、高級アルコールの硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等の帯電防止剤、アルケニル琥珀酸エステル等の錆止め剤、及びアゾ染料等の着色剤等、公知の燃料添加剤が挙げられる。これらを1種又は数種組み合わせて添加することができる。これら燃料添加剤の添加量は任意であるが、通常、添加剤の合計量が燃料油の0.1質量%以下、好ましくは0.05質量%以下である。   Various additives can be appropriately blended in the fuel oil for a fuel cell of the present invention as necessary. These additives include phenolic and amine antioxidants, metal deactivators such as thioamide compounds, surface ignition inhibitors such as organophosphorus compounds, succinimides, polyalkylamines, polyetheramines, polyamines. Detergents such as isobutyleneamine, anti-icing agents such as polyhydric alcohols and ethers thereof, organic acid alkali metals and alkaline earth metal salts, auxiliary alcohols such as higher alcohol sulfates, anionic surfactants, cationic systems Known fuel additives such as antistatic agents such as surfactants and amphoteric surfactants, rust inhibitors such as alkenyl succinates, and colorants such as azo dyes can be used. These can be added singly or in combination. The addition amount of these fuel additives is arbitrary, but the total amount of the additives is usually 0.1% by mass or less, preferably 0.05% by mass or less of the fuel oil.

燃料電池システムにおいて、本発明の燃料電池用燃料油を脱硫処理するために用いる脱硫剤は、通常の脱硫処理に用いられる脱硫剤を使用できる。この脱硫剤は、担体として無機酸化物を用い、この担体に吸着活性金属成分を担持ないし混合したものが好ましく用いられる。担体の無機酸化物としては、例えばシリカ、アルミナ、マグネシア、シリカーアルミナ、タングステン、ジルコニアなどが挙げられ、これら1種以上の元素の酸化物、もしくは混合物、もしくは2種以上の元素の複合酸化物、その他にゼオライト、MCM−41などの結晶性化合物が挙げられる。特に好ましい無機酸化物として、シリカ、アルミナ、及びシリカ−アルミナを用いることができる。脱硫剤における無機酸化物成分の含有量については、特に制限はなく、使用条件等必要に応じて適宜選定すればよいが、通常は脱硫剤基準で0.5〜50質量%の範囲である。含有量が0.5質量%以上であれば、無機酸化物成分としての効果が十分に発揮され、また50質量%以下であれば、吸着活性金属成分量の低下により脱硫性能が低下することを回避できて好ましい。
上記吸着活性金属成分としては、ニッケル、銅、マンガン、リチウム、クロム、鉄などの金属成分が挙げられる。これらの金属性成分は担持でなく、調製時に担体に混合させても良い。ニッケルなどの金属成分の好ましい含有量としては、脱硫剤基準、元素換算で50〜99.5質量%の範囲である。
In the fuel cell system, the desulfurization agent used for the desulfurization treatment of the fuel oil for fuel cells of the present invention can be a desulfurization agent used in a normal desulfurization treatment. This desulfurizing agent is preferably an inorganic oxide used as a carrier and an adsorbing active metal component supported or mixed on the carrier. Examples of the inorganic oxide of the carrier include silica, alumina, magnesia, silica-alumina, tungsten, zirconia, and the like. An oxide or mixture of these one or more elements, or a composite oxide of two or more elements In addition, crystalline compounds such as zeolite and MCM-41 may be mentioned. As a particularly preferable inorganic oxide, silica, alumina, and silica-alumina can be used. There is no restriction | limiting in particular about content of the inorganic oxide component in a desulfurization agent, What is necessary is just to select suitably as needed, such as use conditions, Usually, it is the range of 0.5-50 mass% on a desulfurization agent basis. If the content is 0.5% by mass or more, the effect as an inorganic oxide component is sufficiently exhibited, and if it is 50% by mass or less, the desulfurization performance is reduced due to a decrease in the amount of adsorbing active metal component. This is preferable because it can be avoided.
As said adsorption active metal component, metal components, such as nickel, copper, manganese, lithium, chromium, iron, are mentioned. These metallic components are not supported and may be mixed with a carrier at the time of preparation. A preferable content of a metal component such as nickel is in the range of 50 to 99.5% by mass in terms of element based on desulfurization agent.

本発明の燃料電池用燃料油を脱硫剤で脱硫処理する方法の一例を以下に示す。上記脱硫剤を充填した充填塔に、水素を供給し、100〜500℃の温度で、まず脱硫剤を活性化させる。その後、燃料油を充填塔に供給し、脱硫処理を行う。充填塔への燃料油の供給は、上昇流でも下降流でもよい。この時の脱硫処理条件は、温度は常温から500℃、圧力は常圧から2MPa、液空間速度(LHSV)は0.05〜10h-1が好ましい。また、脱硫処理中に燃料油とともに水素を供給することもできる。 An example of a method for desulfurizing the fuel oil for a fuel cell of the present invention with a desulfurizing agent is shown below. Hydrogen is supplied to the packed tower filled with the desulfurizing agent, and the desulfurizing agent is first activated at a temperature of 100 to 500 ° C. Thereafter, fuel oil is supplied to the packed tower to perform desulfurization treatment. The supply of fuel oil to the packed tower may be an upward flow or a downward flow. The desulfurization conditions at this time are preferably such that the temperature is from room temperature to 500 ° C., the pressure is from normal pressure to 2 MPa, and the liquid space velocity (LHSV) is from 0.05 to 10 h −1 . Further, hydrogen can be supplied together with the fuel oil during the desulfurization treatment.

次に、実施例、比較例を挙げて、本発明を詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited by these examples.

<燃料電池用燃料油の調製>
実施例1
南方系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ150〜250℃、硫黄分0.006質量%)を原料油とし、該原料油を水素化脱硫触媒としてCo‐Mo系脱硫触媒(KF757、日本ケッチェン(株)製)を用いて、反応温度(WABT)315℃、水素分圧4.5MPa、液空間速度(LHSV)3h−1の条件下で水素化処理を行い、表1の性状を有する水素化脱硫灯油組成物(燃料油A)を得た。
<Preparation of fuel oil for fuel cells>
Example 1
Straight-run kerosene (distillation cut range 150-250 ° C., sulfur content 0.006% by mass) obtained from atmospheric crude oil by atmospheric distillation is used as a raw material oil, and this raw material oil is used as a hydrodesulfurization catalyst for Co-Mo type desulfurization. Using a catalyst (KF757, manufactured by Nippon Ketjen Co., Ltd.), hydrogenation was performed under the conditions of a reaction temperature (WABT) of 315 ° C., a hydrogen partial pressure of 4.5 MPa, and a liquid space velocity (LHSV) of 3 h −1. A hydrodesulfurized kerosene composition (fuel oil A) having a property of 1 was obtained.

実施例2
実施例1で得た水素化脱硫灯油組成物(燃料油A)を、ASTM D 4625に準拠して酸化劣化させ、表1の性状を有する水素化脱硫灯油組成物(燃料油B)を得た。
Example 2
The hydrodesulfurized kerosene composition (fuel oil A) obtained in Example 1 was oxidized and deteriorated according to ASTM D 4625 to obtain a hydrodesulfurized kerosene composition (fuel oil B) having the properties shown in Table 1. .

実施例3
中東系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ150〜250℃、硫黄分0.25質量%)を原料油とし、該原料油を水素化脱硫触媒としてCo‐Mo系脱硫触媒(KF757、日本ケッチェン(株)製)を用いて、反応温度(WABT)305℃、水素分圧4.0MPa、液空間速度(LHSV)4h−1の条件下で水素化処理を行い、これをASTM D 4625に準拠して酸化劣化させて表1の性状を有する水素化脱硫灯油組成物(燃料油C)を得た。
Example 3
Straight-run kerosene (distillation cut range 150-250 ° C., sulfur content 0.25% by mass) obtained from Middle Eastern crude oil by atmospheric distillation is used as a raw material oil, and this raw material oil is used as a hydrodesulfurization catalyst for Co-Mo type desulfurization. Using a catalyst (KF757, manufactured by Nippon Ketjen Co., Ltd.), hydrogenation treatment was performed under the conditions of a reaction temperature (WABT) of 305 ° C., a hydrogen partial pressure of 4.0 MPa, and a liquid space velocity (LHSV) of 4h −1 Was subjected to oxidative degradation in accordance with ASTM D 4625 to obtain a hydrodesulfurized kerosene composition (fuel oil C) having the properties shown in Table 1.

実施例4
実施例3で得た水素化脱硫灯油組成物(燃料油C)60容量%と、フィッシャートロプシュ合成によって得た炭素数30以上のワックス分(硫黄分を含まず)を水素化触媒として市販触媒(触媒化成工業(株)製、0.5質量%Pt/USYゼオライト触媒)を用いて水素分解した後、蒸留によって得た灯油留分(蒸留カットレンジ150〜250℃)40容量%とを混合し、表1の性状を有する水素化脱硫灯油組成物(燃料油D)を得た。
Example 4
Commercially available catalysts (60% by volume of hydrodesulfurized kerosene composition (fuel oil C) obtained in Example 3 and a wax having 30 or more carbon atoms (not including sulfur) obtained by Fischer-Tropsch synthesis as a hydrogenation catalyst ( After hydrocracking using 0.5% by mass Pt / USY zeolite catalyst manufactured by Catalytic Chemical Industry Co., Ltd., the kerosene fraction obtained by distillation (distillation cut range 150-250 ° C) was mixed with 40% by volume. A hydrodesulfurized kerosene composition (fuel oil D) having the properties shown in Table 1 was obtained.

比較例1
中東系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ150〜250℃、硫黄分0.25質量%)を原料油とし、該原料油を水素化脱硫触媒としてCo‐Mo系脱硫触媒(KF757、日本ケッチェン(株)製)を用いて、反応温度(WABT)310℃、水素分圧4.0MPa、液空間速度4h−1の条件下で水素化処理を行い、パーオキサイドとしてクメンヒドロパーオキサイドを添加して、表1の性状を有する水素化脱硫灯油組成物(燃料油a)を得た。
Comparative Example 1
Straight-run kerosene (distillation cut range 150-250 ° C., sulfur content 0.25% by mass) obtained from Middle Eastern crude oil by atmospheric distillation is used as a raw material oil, and this raw material oil is used as a hydrodesulfurization catalyst for Co-Mo type desulfurization. Using a catalyst (KF757, manufactured by Nippon Ketjen Co., Ltd.), hydrogenation was performed under the conditions of a reaction temperature (WABT) of 310 ° C., a hydrogen partial pressure of 4.0 MPa, and a liquid space velocity of 4 h −1 , and cumene as a peroxide. Hydroperoxide was added to obtain a hydrodesulfurized kerosene composition (fuel oil a) having the properties shown in Table 1.

比較例2
中東系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ150〜250℃、硫黄分0.22質量%)を原料油とし、該原料油を水素化脱硫触媒としてCo‐Mo系脱硫触媒(KF757、日本ケッチェン(株)製)を用いて、反応温度 (WABT) 335℃、水素分圧4.5MPa、液空間速度3.5h−1の条件下で水素化処理を行い、これをASTM D 4625に準拠して酸化劣化させて、表1の性状を有する水素化脱硫灯油組成物(燃料油b)を得た。
Comparative Example 2
Straight-run kerosene (distillation cut range 150-250 ° C., sulfur content 0.22 mass%) obtained from Middle Eastern crude oil by atmospheric distillation is used as a feedstock oil, and Co-Mo series desulfurization using the feedstock oil as a hydrodesulfurization catalyst. Using a catalyst (KF757, manufactured by Nippon Ketjen Co., Ltd.), hydrogenation treatment was performed under the conditions of a reaction temperature (WABT) of 335 ° C., a hydrogen partial pressure of 4.5 MPa, and a liquid space velocity of 3.5 h −1. The hydrodesulfurized kerosene composition (fuel oil b) having the properties shown in Table 1 was obtained by oxidative degradation in accordance with ASTM D 4625.

比較例3
中東系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ150〜250℃、硫黄分0.30質量%)を原料油とし、該原料油を水素化脱硫触媒としてCo‐Mo系脱硫触媒(KF757、日本ケッチェン(株)製)を用いて、反応温度(WABT)335℃、水素分圧3.0 MPa、液空間速度5h−1の条件下で水素化処理を行い、これをASTM D 4625に準拠して酸化劣化させた後に、パーオキサイドとしてブチルヒドロパーオキサイドを110質量ppm添加して、表1の性状を有する水素化脱硫灯油組成物(燃料油c)を得た。
Comparative Example 3
Straight-run kerosene (distillation cut range 150-250 ° C., sulfur content 0.30% by mass) obtained from Middle Eastern crude oil by atmospheric distillation is used as a raw oil, and Co-Mo-based desulfurization using the raw oil as a hydrodesulfurization catalyst. Using a catalyst (KF757, manufactured by Nippon Ketjen Co., Ltd.), hydrogenation treatment was performed under the conditions of a reaction temperature (WABT) of 335 ° C., a hydrogen partial pressure of 3.0 MPa, and a liquid space velocity of 5 h −1. After oxidative degradation in accordance with D 4625, 110 mass ppm of butyl hydroperoxide was added as a peroxide to obtain a hydrodesulfurized kerosene composition (fuel oil c) having the properties shown in Table 1.

<パーオキサイドの分析>
実施例、比較例で得た燃料油中のパーオキサイドの含有量は、JPI−5S−46−96に準拠して求めた。
<Analysis of peroxide>
The peroxide content in the fuel oils obtained in Examples and Comparative Examples was determined based on JPI-5S-46-96.

<燃料油中の硫黄分の分析>
なお、上記各燃料油の硫黄分の分析は、次のように行った。沸点が330℃を超え、334℃未満の範囲にある硫黄化合物由来の硫黄分(質量ppm)は、前述の計算式(1)により算出した。ジベンゾチオフェン(DBT)より軽質な硫黄化合物由来の硫黄分(質量ppm)は、前述の計算式(2)により算出した。この分析の際のGC-SCDの分析条件を下記に示す。
<Analysis of sulfur content in fuel oil>
The sulfur content of each fuel oil was analyzed as follows. A sulfur content (mass ppm) derived from a sulfur compound having a boiling point exceeding 330 ° C. and less than 334 ° C. was calculated by the above-described calculation formula (1). The sulfur content (mass ppm) derived from the lighter sulfur compound than dibenzothiophene (DBT) was calculated by the above-described calculation formula (2). The analysis conditions of GC-SCD at the time of this analysis are shown below.

<GC-SCD>
装置:GC:GC-2010(SHIMAZU)
SCD:7090S(ANTEK)
カラム:HP-1MS
カラム温度:40℃−280℃(昇温)
測定時間:30min
Inlet温度:260℃、検出器温度:280℃
キャリアガス:He;90kPa
制御モード:線速度
Total flow:21.7mL/min
Purge flow:3.0mL/min
注入モード:スプリット レス、split ratio 5:1
Sample size:2.0μL
<GC-SCD>
Equipment: GC: GC-2010 (SHIMAZU)
SCD: 7090S (ANTEK)
Column: HP-1MS
Column temperature: 40 ° C.-280 ° C. (temperature increase)
Measurement time: 30 min
Inlet temperature: 260 ° C., detector temperature: 280 ° C.
Carrier gas: He; 90 kPa
Control mode: Linear velocity Total flow: 21.7 mL / min
Charge flow: 3.0 mL / min
Injection mode: splitless, split ratio 5: 1
Sample size: 2.0 μL

<脱硫剤の調製>
上記実施例、比較例で得た燃料油の脱硫試験に用いる脱硫剤を次のようにして作製した。
ベーマイトAP−3(触媒化成工業製)1.24gと1N HNO水溶液40mlとをイオン交換水1リットルに加えて80℃に加温後、Ni(NO)・6HOを149g加えて調製液Aを得た。別途用意したイオン交換水1リットルにコロイダルシリカ スノーテックスXS(日産化学製)を33.9g、炭酸ナトリウムを99.4g、(NHMo24・5HOを3g添加して80℃に加温し、調製液Bを得た。調製液AとBとを80℃に保ちながら、B液をA液に瞬時に加えて、沈殿物を形成させ、1時間攪拌した。その後、イオン交換水5リットルを用いて沈殿物の洗浄・ろ過を行ったのち、空気中、120℃で12時間乾燥し、400℃で1時間焼成して得られた固形状物質を12〜16メッシュに破砕し、脱硫剤を得た。
<Preparation of desulfurizing agent>
The desulfurization agent used for the desulfurization test of the fuel oil obtained by the said Example and the comparative example was produced as follows.
Boehmite AP-3 (manufactured by Catalysts & Chemicals Industries) 1.24 g and 1N HNO 3 solution 40ml and the post-heating in addition to 80 ° C. in deionized water 1 liter by adding 149g of Ni (NO 3) 2 · 6H 2 O Preparation liquid A was obtained. 33.9g separately prepared ion-exchanged water one liter of colloidal silica Snowtex XS (produced by Nissan Chemical), 99.4 g of sodium carbonate, (NH 4) a 6 Mo 7 O 24 · 5H 2 O was added 3 g 80 Heated to ° C. to obtain Preparation B. While maintaining the preparation liquids A and B at 80 ° C., the liquid B was instantaneously added to the liquid A to form a precipitate, followed by stirring for 1 hour. Thereafter, the precipitate was washed and filtered using 5 liters of ion-exchanged water, dried in air at 120 ° C. for 12 hours, and calcined at 400 ° C. for 1 hour. The desulfurization agent was obtained by crushing into a mesh.

<脱硫試験>
上記実施例、比較例で得た燃料油と上記作製した脱硫剤を用いて次のようにして脱硫試験を行った。
脱硫剤15mlを内径16mmの鋼製反応管に充填し、常圧下で水素を下向きに供給しながら温度を150〜200℃まで上昇させ、3時間保持して脱硫剤を活性化させた。次に、反応管に実施例、比較例で得た燃料油をそれぞれ220℃、0.3MPa−G、LHSV=10h-1で反応管に上向きに流通させた。操作方法として、実施例、比較例で得た燃料油をそれぞれ一定時間供給した。反応管から流出した脱硫処理油を採取し、油中の全硫黄分の含有量を測定した。
そして、その全硫黄分が100質量ppbに達するまでの、脱硫処理開始からの通油時間を破過時間とした。
<Desulfurization test>
Using the fuel oils obtained in the above Examples and Comparative Examples and the above prepared desulfurizing agent, a desulfurization test was conducted as follows.
A steel reaction tube having an inner diameter of 16 mm was filled with 15 ml of a desulfurizing agent, and the temperature was increased to 150 to 200 ° C. while supplying hydrogen downward at normal pressure, and the desulfurizing agent was activated by maintaining for 3 hours. Next, the fuel oils obtained in Examples and Comparative Examples were passed through the reaction tubes upward at 220 ° C., 0.3 MPa-G, and LHSV = 10 h −1 , respectively. As an operation method, the fuel oils obtained in Examples and Comparative Examples were respectively supplied for a certain period of time. The desulfurized oil that flowed out of the reaction tube was collected, and the total sulfur content in the oil was measured.
The oil passage time from the start of the desulfurization treatment until the total sulfur content reached 100 mass ppb was defined as the breakthrough time.

Figure 2009046587
Figure 2009046587

表1から明らかなように、本発明に従った実施例1〜4の燃料油は、比較例1〜3の燃料油と比べ、脱硫剤の寿命(脱硫処理済の燃料油の全硫黄分が100質量ppbに達するまでの時間で評価)が格段に長いことが分かる。   As is clear from Table 1, the fuel oils of Examples 1 to 4 according to the present invention have a life of the desulfurizing agent (total sulfur content of the desulfurized fuel oil is less than that of Comparative Examples 1 to 3. It can be seen that (evaluated by the time to reach 100 mass ppb) is much longer.

Claims (2)

初留点が135〜170℃、95%留出温度が270℃以下の蒸留性状を有し、パーオキサイドの含有量が160質量ppm以下、沸点が330℃を超え、334℃未満の範囲にある硫黄化合物由来の硫黄分が1質量ppm以下、かつ、全硫黄分が80質量ppm以下であることを特徴とする燃料電池用燃料油。   It has distillation characteristics with an initial boiling point of 135 to 170 ° C. and a 95% distillation temperature of 270 ° C. or less, a peroxide content of 160 mass ppm or less, a boiling point of more than 330 ° C. and a range of less than 334 ° C. A fuel oil for a fuel cell, characterized in that a sulfur content derived from a sulfur compound is 1 mass ppm or less and a total sulfur content is 80 mass ppm or less. ジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分が10質量ppm以下であることを特徴とする請求項1に記載の燃料電池用燃料油。   The fuel oil for fuel cells according to claim 1, wherein the sulfur content derived from a sulfur compound lighter than dibenzothiophene is 10 mass ppm or less.
JP2007213867A 2007-08-20 2007-08-20 Fuel oil for fuel cell Pending JP2009046587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213867A JP2009046587A (en) 2007-08-20 2007-08-20 Fuel oil for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213867A JP2009046587A (en) 2007-08-20 2007-08-20 Fuel oil for fuel cell

Publications (1)

Publication Number Publication Date
JP2009046587A true JP2009046587A (en) 2009-03-05

Family

ID=40499104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213867A Pending JP2009046587A (en) 2007-08-20 2007-08-20 Fuel oil for fuel cell

Country Status (1)

Country Link
JP (1) JP2009046587A (en)

Similar Documents

Publication Publication Date Title
JP5219247B2 (en) Method for producing low sulfur cracking gasoline base and unleaded gasoline composition
JP2014503016A (en) Method for reducing organic acids in hydrocarbon oil fractions
KR101695502B1 (en) Process for producing low-sulfur gas-oil base, and low-sulfur gas oil
KR101514954B1 (en) Process for producing gasoline base and gasoline
JP2009046587A (en) Fuel oil for fuel cell
JP2009209252A (en) Fuel oil for fuel cell
JP5291940B2 (en) Hydrorefining method for naphtha fraction
JP4213062B2 (en) Environmentally friendly clean gasoline and its manufacturing method
JP2009046588A (en) Fuel oil for fuel cell
JP2009046582A (en) Fuel oil for fuel cell
JP2009067994A (en) Fuel oil for fuel cell
JP2009046585A (en) Fuel oil for fuel cell
JP2008239914A (en) Fuel oil for fuel cell
JP2009046581A (en) Fuel oil for fuel cell
JP2008239916A (en) Fuel oil for fuel cell
JP2009067993A (en) Fuel oil for fuel cell
JP2009046583A (en) Fuel oil for fuel cell
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2009046586A (en) Fuel oil for fuel cell
JP2009067992A (en) Fuel oil for fuel cell
JP2009067991A (en) Fuel oil for fuel cell
CN101987970B (en) Method for removing mercaptan from gasoline
JP2009046584A (en) Fuel oil for fuel cell
JP2008239915A (en) Fuel oil for fuel cell
JP5352057B2 (en) Method for producing fuel oil base material