JP2008239916A - Fuel oil for fuel cell - Google Patents
Fuel oil for fuel cell Download PDFInfo
- Publication number
- JP2008239916A JP2008239916A JP2007086422A JP2007086422A JP2008239916A JP 2008239916 A JP2008239916 A JP 2008239916A JP 2007086422 A JP2007086422 A JP 2007086422A JP 2007086422 A JP2007086422 A JP 2007086422A JP 2008239916 A JP2008239916 A JP 2008239916A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel oil
- fuel cell
- sulfur
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池システムに使用する燃料電池用燃料油に関する。さらに詳しくは、脱硫剤による脱硫処理を容易に行うことを可能とし、脱硫剤の寿命を格段に延ばすことができ、燃料電池システムで用いる脱硫剤の交換頻度を低くすることができる、石油系炭化水素油を用いた燃料電池用燃料油に関する。 The present invention relates to a fuel oil for a fuel cell used in a fuel cell system. More specifically, it is possible to easily perform a desulfurization treatment with a desulfurizing agent, to greatly extend the life of the desulfurizing agent, and to reduce the replacement frequency of the desulfurizing agent used in the fuel cell system. The present invention relates to fuel oil for fuel cells using hydrogen oil.
近年、エネルギー源として、従来のエネルギーよりも環境への負荷を低減することが可能である新エネルギー技術が注目されおり、その技術の中でも燃料電池は、特に注目されている。燃料電池とは、水の電気分解の原理の逆反応であり、水素(燃料)と空気中の酸素(酸化剤)との反応で発生する化学エネルギーを間接的、あるいは直接的に電気エネルギーに変換することによって、高い発電効率を得ることができる。
燃料電池には、固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池、固体酸化物型燃料電池などの種類が知られており、定置用、移動用電源として使用されている。定置用としては、携帯電話やノートパソコン向けの携帯用電源、家庭用又は業務用電源又はコージェネレーションシステム、補助電源、災害時用電源、工業用の中・大規模発電など種々のものが提案されており、移動用としては、自動車用や鉄道用などのものが提案されている。
燃料電池で使用する水素を発生させる原料としては、メタンを主成分とする都市ガス、天然ガス、LPG、ナフサ、灯油、軽油などの石油系炭化水素、メタノール、エタノール及びジメチルエーテルなどの含酸素化合物などがあり、それらの原料の使用方法の研究が進んでいる。
In recent years, as an energy source, a new energy technology capable of reducing the burden on the environment more than conventional energy has attracted attention, and a fuel cell has attracted particular attention among the technologies. A fuel cell is a reverse reaction of the principle of electrolysis of water. Chemical energy generated by the reaction of hydrogen (fuel) and oxygen in the air (oxidant) is converted indirectly or directly into electrical energy. By doing so, high power generation efficiency can be obtained.
Known types of fuel cells include solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, and are used as stationary and mobile power sources. Yes. For stationary use, various power sources such as portable power sources for mobile phones and notebook computers, household or commercial power sources or cogeneration systems, auxiliary power sources, disaster power sources, industrial medium and large-scale power generation have been proposed. For transportation purposes, vehicles and railways have been proposed.
Examples of raw materials that generate hydrogen used in fuel cells include methane-based city gas, natural gas, LPG, naphtha, kerosene, light oil and other petroleum hydrocarbons, and oxygen-containing compounds such as methanol, ethanol and dimethyl ether. There are researches on how to use these raw materials.
石油系炭化水素には、原油や留分などの種類によって異なるが、メルカプタン類、チオフェン類、ベンゾチオフェン(BT)類、ジベンゾチオフェン(DBT)類、アルキルジベンゾチオフェン(R−DBT)類などの硫黄化合物が微量含まれており、この硫黄分は、燃料電池システムにおける水素製造工程では不利となる。すなわち、かかる硫黄分を含む石油系炭化水素を燃料電池用燃料油として用いると、水素製造工程の改質触媒は、用いた燃料電池用燃料油中の硫黄分によって被毒され、改質触媒の寿命が低下する。この問題を回避するために、燃料電池システムでは、一般に脱硫剤を用いる脱硫処理によって燃料電池用燃料油中の硫黄分を低減し、しかる後に燃料電池用燃料油を水素製造工程に供する方法が用いられている。 Petroleum hydrocarbons vary depending on the type of crude oil, fractions, etc., but sulfur such as mercaptans, thiophenes, benzothiophenes (BT), dibenzothiophenes (DBT), alkyldibenzothiophenes (R-DBT) A small amount of the compound is contained, and this sulfur content is disadvantageous in the hydrogen production process in the fuel cell system. That is, when a petroleum hydrocarbon containing such sulfur content is used as fuel oil for fuel cells, the reforming catalyst in the hydrogen production process is poisoned by the sulfur content in the fuel oil for fuel cell used. The service life is reduced. In order to avoid this problem, the fuel cell system generally uses a method in which the sulfur content in the fuel oil for the fuel cell is reduced by a desulfurization treatment using a desulfurizing agent, and then the fuel oil for the fuel cell is used in the hydrogen production process. It has been.
また、燃料電池システムに供給する燃料電池用燃料油自体の硫黄分の含有量を規制する方法が提案されており、かかる方法として、燃料電池システムに供給する燃料電池用燃料油の全硫黄化合物の含有量を規制する方法(例えば、特許文献1参照)や、該燃料電池用燃料油のアルキルジベンゾチオフェンなどの特定の硫黄化合物の含有量を規制する方法(例えば、特許文献2)などが提案されている。
しかし、上記従来提案されている硫黄分の含有量を規制した燃料電池用燃料油を用いても、燃料電池システムでの脱硫処理の脱硫剤の寿命を十分延ばすことが困難であり、燃料電池システムにおける脱硫剤の交換頻度が高い、あるいは多量の脱硫剤を使用する必要があるなどの課題を有している。
However, it is difficult to sufficiently extend the life of the desulfurization agent in the desulfurization treatment in the fuel cell system even when the fuel oil for fuel cell with the sulfur content regulated previously proposed is used. Has a problem that the replacement frequency of the desulfurizing agent is high or a large amount of desulfurizing agent needs to be used.
本発明は、上記事情に鑑みてなされたものであり、燃料電池用燃料油として石油系炭化水素油を用い、該燃料電池用燃料油を燃料電池システムで脱硫処理するに当たり、燃料電池システムで用いる脱硫剤の寿命を格段に延ばすことが可能であり、脱硫剤の交換頻度を低減することを可能とする燃料電池用燃料油を提供することを目的とする。 The present invention has been made in view of the above circumstances, and uses petroleum-based hydrocarbon oil as fuel oil for a fuel cell. When the fuel oil for fuel cell is desulfurized by the fuel cell system, the present invention is used in the fuel cell system. An object of the present invention is to provide a fuel oil for a fuel cell that can prolong the life of the desulfurizing agent and can reduce the replacement frequency of the desulfurizing agent.
本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、脱硫剤を用いて燃料油の脱硫処理を行った場合、ある特定の硫黄化合物種が脱硫処理後も燃料油中に残存しており、この硫黄化合物種が脱硫剤の寿命に影響を及ぼすものと考えられた。そして、この特定の硫黄化合物種をあらかじめ低減させておけば、燃料電池システムの脱硫処理における脱硫剤の持続性を大幅に低減することができ、上記の目的を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明に係る燃料電池用燃料油は、初留点が135〜170℃、95%留出温度が270℃以下の蒸留性状を有し、全硫黄分が80質量ppm以下である燃料電池用燃料油であって、GC−SCD(化学発光硫黄検出器付きガスクロマトグラフィ)により測定される、ジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分が、1質量ppm以下であることを特徴とするものである。
As a result of intensive studies to achieve the above object, the present inventors have conducted a desulfurization treatment of fuel oil using a desulfurization agent, and certain sulfur compound species remain in the fuel oil even after the desulfurization treatment. This sulfur compound species was thought to have an effect on the life of the desulfurization agent. Then, if this specific sulfur compound species is reduced in advance, the sustainability of the desulfurization agent in the desulfurization treatment of the fuel cell system can be greatly reduced, and the above object can be achieved, and the present invention is completed. It came to do.
That is, the fuel oil for a fuel cell according to the present invention has a distillation property with an initial boiling point of 135 to 170 ° C., a 95% distillation temperature of 270 ° C. or less, and a total sulfur content of 80 mass ppm or less. 1 mass ppm of sulfur derived from a sulfur compound that is heavier than dibenzothiophene and lighter than 4-methyldibenzothiophene as measured by GC-SCD (gas chromatography with chemiluminescence sulfur detector) It is characterized by the following.
本発明の燃料電池用燃料油を用いれば、燃料電池システムにおいて、燃料電池用燃料油の脱硫処理における脱硫剤を長期間使用でき、脱硫剤の交換頻度や使用量を低減できる。 If the fuel oil for fuel cells of the present invention is used, in the fuel cell system, the desulfurization agent in the desulfurization treatment of the fuel oil for fuel cells can be used for a long period of time, and the replacement frequency and use amount of the desulfurization agent can be reduced.
以下に本発明の内容を更に詳しく説明する。
本発明の燃料電池用燃料油の蒸留性状は、初留点135〜170℃、好ましくは140〜170℃、95%留出温度270℃以下、好ましくは230〜270℃、より好ましくは240〜270℃である。初留点が170℃より低ければ、脱硫剤への負荷を低減できて好ましい。また、初留点が135℃より高ければ、単位容量当たりの水素発生量が増し、また引火点が低すぎず、取扱に際し安全性が増すため好ましい。95%留出温度が270℃より低ければ、改質工程において炭素析出を抑制でき、また脱硫剤への負荷を低減できるため好ましい。また、95%留出温度が230℃より高ければ、単位容量当たりの水素発生量が増すため好ましい。
The contents of the present invention will be described in more detail below.
The distillation properties of the fuel oil for a fuel cell of the present invention have an initial boiling point of 135 to 170 ° C, preferably 140 to 170 ° C, a 95% distillation temperature of 270 ° C or less, preferably 230 to 270 ° C, more preferably 240 to 270. ° C. If the initial boiling point is lower than 170 ° C., the load on the desulfurizing agent can be reduced, which is preferable. Moreover, if the initial boiling point is higher than 135 ° C., the amount of hydrogen generated per unit capacity is increased, the flash point is not too low, and safety is increased during handling. If the 95% distillation temperature is lower than 270 ° C., it is preferable because carbon deposition can be suppressed in the reforming step and the load on the desulfurizing agent can be reduced. Moreover, if the 95% distillation temperature is higher than 230 ° C., the amount of hydrogen generated per unit volume increases, which is preferable.
本発明の燃料電池用燃料油の全硫黄分は、80質量ppm以下であることが好ましく、10質量ppm以下であることが更に好ましい。本発明でいう全硫黄分とは、JIS K 2541微量電量滴定法に準拠して測定した値である。また、ここでいう全硫黄分とは、例えば硫化水素、メルカプタン類、硫化アルキル類、環状硫化物、チオフェン類等の燃料電池用燃料油に含有されている全ての硫黄分を意味する。脱硫剤の持続性を向上する上で、全硫黄分は80質量ppm以下とすることが好ましい。 The total sulfur content of the fuel oil for fuel cells of the present invention is preferably 80 mass ppm or less, more preferably 10 mass ppm or less. The total sulfur content in the present invention is a value measured according to JIS K2541 microcoulometric titration method. Further, the total sulfur content here means all sulfur content contained in fuel oil for fuel cells such as hydrogen sulfide, mercaptans, alkyl sulfides, cyclic sulfides, thiophenes and the like. In order to improve the sustainability of the desulfurizing agent, the total sulfur content is preferably 80 mass ppm or less.
本発明の燃料電池用燃料油は、GC(ガスクロマトグラフィ)によって測定される。検出器には、AED(原子発光検出器)、SCD(化学発光硫黄検出器)等が挙げられ、これらに限定されるものではないが、好ましくはSCDである。本発明の燃料電池用燃料油は、GC−SCD(化学発光硫黄検出器付きガスクロマトグラフィ)により測定される、ジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分が1質量ppm以下である。このジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な範囲の硫黄化合物(以下、「対象硫黄化合物」ともいう)由来の含有量が1質量ppm以下であれば、脱硫剤の持続性を向上することができる。この対象硫黄化合物由来の硫黄分は、好ましくは0.5質量ppm以下である。かかる硫黄分含有量は小さいほど好ましく、最も好ましくは0質量ppmである。
上記対象硫黄化合物は、アルキルベンゾチオフェン類などの芳香族環を有する化合物であると考えられる。嵩高い構造を有するアルキルベンゾチオフェン類などを低減することで、脱硫処理をより効果的に行うことができる。
The fuel oil for fuel cells of the present invention is measured by GC (gas chromatography). Examples of the detector include AED (atomic emission detector), SCD (chemiluminescence sulfur detector), and the like. Although not limited thereto, SCD is preferable. The fuel oil for fuel cells of the present invention has a sulfur content derived from a sulfur compound that is heavier than dibenzothiophene and lighter than 4-methyldibenzothiophene, as measured by GC-SCD (gas chromatography with chemiluminescence sulfur detector). The mass is ppm or less. If the content of sulfur compounds that are heavier than dibenzothiophene and lighter than 4-methyldibenzothiophene (hereinafter also referred to as “target sulfur compounds”) is 1 ppm by mass or less, the durability of the desulfurizing agent is improved. can do. The sulfur content derived from the target sulfur compound is preferably 0.5 mass ppm or less. The sulfur content is preferably as small as possible, and most preferably 0 ppm by mass.
The target sulfur compound is considered to be a compound having an aromatic ring such as alkylbenzothiophenes. By reducing alkyl benzothiophenes having a bulky structure, desulfurization treatment can be performed more effectively.
本発明に係る対象硫黄化合物由来の硫黄分を測定するには、まず燃料油をGC−SCDにより分析し、保持時間によって分離される燃料油中の各成分のピーク強度を表したクロマトグラムを得る。次に、得られたクロマトグラムにおいてジベンゾチオフェンと4−メチルジベンゾチオフェンを示すピークを同定し、ジベンゾチオフェンと4−メチルジベンゾチオフェンの保持時間の間に検出されるピークの総面積(対象硫黄化合物のピーク面積)から、次式により対象硫黄化合物由来の硫黄濃度を求めることができる。
式:
対象硫黄化合物由来の硫黄濃度(質量ppm)=燃料油中の全硫黄濃度×(GC−SCDで検出された対象硫黄化合物のピーク面積/GC−SCDで検出された全硫黄化合物のピーク面積)
In order to measure the sulfur content derived from the target sulfur compound according to the present invention, the fuel oil is first analyzed by GC-SCD, and a chromatogram representing the peak intensity of each component in the fuel oil separated by the retention time is obtained. . Next, in the obtained chromatogram, peaks indicating dibenzothiophene and 4-methyldibenzothiophene are identified, and the total area of peaks detected during the retention time of dibenzothiophene and 4-methyldibenzothiophene (of the target sulfur compound) From the peak area, the sulfur concentration derived from the target sulfur compound can be determined by the following formula.
formula:
Sulfur concentration derived from target sulfur compound (mass ppm) = total sulfur concentration in fuel oil × (peak area of target sulfur compound detected by GC-SCD / peak area of all sulfur compounds detected by GC-SCD)
上記式における燃料油中の全硫黄濃度は、例えばJISK2541微量電量滴定法により求めることができる。ピーク面積を算出する際、ベースラインは、測定開始から最初のピーク検出までの間の平均ピーク強度と、ピーク検出終了後から分析終了後までの間の平均ピーク強度を直線で結ぶことによって設定する。また、ジベンゾチオフェンと4−メチルジベンゾチオフェンのピーク位置については、硫黄分が検出されないHPLC用イソオクタンにジベンゾチオフェンと4−メチルジベンゾチオフェンを溶解したものを予め用意し、これをGC−SCDにより分析したものを標準データとして利用してピーク位置を同定することができる。 The total sulfur concentration in the fuel oil in the above formula can be determined by, for example, JIS K2541 microcoulometric titration method. When calculating the peak area, the baseline is set by connecting the average peak intensity between the start of measurement and the first peak detection and the average peak intensity between the end of peak detection and the end of analysis with a straight line. . In addition, the peak positions of dibenzothiophene and 4-methyldibenzothiophene were prepared in advance by dissolving dibenzothiophene and 4-methyldibenzothiophene in isooctane for HPLC in which no sulfur content was detected, and this was analyzed by GC-SCD. The peak position can be identified using the data as standard data.
本発明の燃料電池用燃料油の製造方法は、製造される燃料電池用燃料油が本発明に規定する性状を有する限りにおいて、特に制限されるものではなく、種々の石油系原料を用いて、また種々の方法により本発明の燃料電池用燃料油を製造することができる。例えば、原油を常圧蒸留して得られる灯油留分を脱硫した脱硫灯油を用いることができる。さらに、直接脱硫装置から得られる直接脱硫灯油留分、及び重油や残油の水素化分解や熱分解あるいは接触分解して得られる灯油留分等を脱硫した脱硫灯油が使用可能である。また、市販の溶剤や、特開平6−158058号に代表される特許公開公報に記載されたフィッシャー・トロプシュ合成により製造される灯油留分を混合してもよい。
また、上記各種の石油留分の一般的な脱硫方法としては、無機酸化物担体に、ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で含有する触媒を用いて、反応温度200〜400℃、反応圧力2〜20MPa−Gで水素化脱硫を行う方法や、ニッケル、銅、亜鉛などの金属を含有する脱硫剤を用いて、反応温度が常温〜300℃、反応圧力が常圧〜1MPa−Gで吸着脱硫を行う方法、あるいは両者を組み合わせた方法などを用いることができる。
また、燃料電池用燃料油を本発明に規定する性状を有するように調製するには、一般に、原料に用いる石油留分の蒸留性状や硫黄分、特に硫黄分を適宜選択することによって容易に行うことができる。
The fuel cell fuel oil production method of the present invention is not particularly limited as long as the fuel cell fuel oil to be produced has the properties defined in the present invention, using various petroleum-based raw materials, Moreover, the fuel oil for fuel cells of the present invention can be produced by various methods. For example, desulfurized kerosene obtained by desulfurizing a kerosene fraction obtained by atmospheric distillation of crude oil can be used. Furthermore, a desulfurized kerosene obtained by desulfurizing a directly desulfurized kerosene fraction obtained from a direct desulfurization apparatus, a kerosene fraction obtained by hydrocracking, thermal cracking or catalytic cracking of heavy oil or residual oil can be used. Moreover, you may mix the commercially available solvent and the kerosene fraction manufactured by the Fischer-Tropsch synthesis described in the patent publication gazette represented by Unexamined-Japanese-Patent No. 6-1558058.
In addition, as a general desulfurization method for the various petroleum fractions described above, a reaction temperature of 200 to 600 is used by using a catalyst containing a transition metal such as nickel, cobalt, molybdenum, and tungsten in an appropriate ratio in an inorganic oxide carrier. Using a method of hydrodesulfurization at 400 ° C. and a reaction pressure of 2 to 20 MPa-G, or using a desulfurization agent containing a metal such as nickel, copper or zinc, the reaction temperature is from room temperature to 300 ° C., and the reaction pressure is from normal pressure to A method of performing adsorptive desulfurization at 1 MPa-G or a method in which both are combined can be used.
In addition, the fuel oil for a fuel cell is prepared so as to have the properties defined in the present invention, generally by easily selecting the distillation properties and sulfur content of the petroleum fraction used as the raw material, particularly the sulfur content. be able to.
本発明の燃料電池用燃料油には、必要に応じて、各種の添加剤を適宜配合することができる。この添加剤としては、フェノール系、アミン系等の酸化防止剤、チオアミド化合物等の金属不活性剤、有機リン系化合物等の表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミン、ポリイソブチレンアミン等の清浄分散剤、多価アルコール及びそのエーテル等の氷結防止剤、有機酸のアルカリ金属やアルカリ土類金属塩、高級アルコールの硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等の帯電防止剤、アルケニル琥珀酸エステル等の錆止め剤、及びアゾ染料等の着色剤等、公知の燃料添加剤が挙げられる。これらを1種又は数種組み合わせて添加することができる。これら燃料添加剤の添加量は任意であるが、通常、添加剤の合計量が燃料油の0.1質量%以下、好ましくは0.05質量%以下である。 Various additives can be appropriately blended in the fuel oil for a fuel cell of the present invention as necessary. These additives include phenolic and amine antioxidants, metal deactivators such as thioamide compounds, surface ignition inhibitors such as organophosphorus compounds, succinimides, polyalkylamines, polyetheramines, polyamines. Detergents such as isobutylene amine, anti-freezing agents such as polyhydric alcohols and ethers thereof, organic acid alkali metal or alkaline earth metal salts, auxiliary alcohols such as higher alcohol sulfates, anionic surfactants, cationic systems Known fuel additives such as antistatic agents such as surfactants and amphoteric surfactants, rust inhibitors such as alkenyl succinates, and colorants such as azo dyes can be used. These can be added singly or in combination. The addition amount of these fuel additives is arbitrary, but the total amount of the additives is usually 0.1% by mass or less, preferably 0.05% by mass or less of the fuel oil.
燃料電池システムにおいて、本発明の燃料電池用燃料油を脱硫処理するために用いる脱硫剤は、通常の脱硫処理に用いられる脱硫剤を使用できる。この脱硫剤は、担体として無機酸化物を用い、この担体に吸着活性金属成分を担持ないし混合したものが好ましく用いられる。担体の無機酸化物としては、例えばシリカ、アルミナ、マグネシア、シリカーアルミナ、タングステン、ジルコニアなどが挙げられ、これら1種以上の元素の酸化物、もしくは混合物、もしくは2種以上の元素の複合酸化物、その他にゼオライト、MCM−41などの結晶性化合物が挙げられる。特に好ましい無機酸化物として、シリカ、アルミナ、及びシリカ−アルミナを用いることができる。脱硫剤における無機酸化物成分の含有量については、特に制限はなく、使用条件等必要に応じて適宜選定すればよいが、通常は脱硫剤基準で0.5〜50質量%の範囲である。含有量が0.5質量%以上であれば、無機酸化物成分としての効果が十分に発揮され、また50質量%以下であれば、吸着活性金属成分量の低下により脱硫性能が低下することを回避できて好ましい。
上記吸着活性金属成分としては、ニッケル、銅、マンガン、リチウム、クロム、鉄などの金属成分が挙げられる。これらの金属性成分は担持でなく、調製時に担体に混合させても良い。ニッケルなどの金属成分の好ましい含有量としては、脱硫剤基準、元素換算で50〜99.5質量%の範囲である。
In the fuel cell system, the desulfurization agent used for the desulfurization treatment of the fuel oil for fuel cells of the present invention can be a desulfurization agent used in a normal desulfurization treatment. This desulfurizing agent is preferably an inorganic oxide used as a carrier and an adsorbing active metal component supported or mixed on the carrier. Examples of the inorganic oxide of the carrier include silica, alumina, magnesia, silica-alumina, tungsten, zirconia, and the like. An oxide or mixture of these one or more elements, or a composite oxide of two or more elements In addition, crystalline compounds such as zeolite and MCM-41 may be mentioned. As a particularly preferable inorganic oxide, silica, alumina, and silica-alumina can be used. There is no restriction | limiting in particular about content of the inorganic oxide component in a desulfurization agent, What is necessary is just to select suitably as needed, such as use conditions, Usually, it is the range of 0.5-50 mass% on a desulfurization agent basis. If the content is 0.5% by mass or more, the effect as an inorganic oxide component is sufficiently exerted, and if it is 50% by mass or less, the desulfurization performance is reduced due to a decrease in the amount of adsorbing active metal component. This is preferable because it can be avoided.
As said adsorption active metal component, metal components, such as nickel, copper, manganese, lithium, chromium, iron, are mentioned. These metallic components are not supported and may be mixed with a carrier at the time of preparation. A preferable content of a metal component such as nickel is in the range of 50 to 99.5% by mass in terms of element based on desulfurization agent.
本発明の燃料電池用燃料油を脱硫剤で脱硫処理する方法の一例を以下に示す。上記脱硫剤を充填した充填塔に、水素を供給し、100〜500℃の温度で、まず脱硫剤を活性化させる。その後、燃料油を充填塔に供給し、脱硫処理を行う。充填塔への燃料油の供給は、上昇流でも下降流でもよい。この時の脱硫処理条件は、温度は常温から500℃、圧力は常圧から2MPa、液空間速度(LHSV)は0.05〜10h-1が好ましい。また、脱硫処理中に燃料油とともに水素を供給することもできる。 An example of a method for desulfurizing the fuel oil for a fuel cell of the present invention with a desulfurizing agent is shown below. Hydrogen is supplied to the packed tower filled with the desulfurizing agent, and the desulfurizing agent is first activated at a temperature of 100 to 500 ° C. Thereafter, fuel oil is supplied to the packed tower to perform desulfurization treatment. The supply of fuel oil to the packed tower may be an upward flow or a downward flow. The desulfurization treatment conditions at this time are preferably a temperature from room temperature to 500 ° C., a pressure from normal pressure to 2 MPa, and a liquid space velocity (LHSV) of 0.05 to 10 h −1 . Further, hydrogen can be supplied together with the fuel oil during the desulfurization treatment.
次に、実施例、比較例を挙げて本発明を詳細に説明するが、本発明はこれらの例によって限定されるものではない。 EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited by these examples.
<燃料電池用燃料油の調製>
比較例1
中東系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ150〜270℃、硫黄分0.24質量%)を原料油とし、該原料油を水素化脱硫触媒として市販触媒(Co−Mo系)(日本ケッチェン(株)製、商品名:KF−757)を用いて、WABT301℃、水素分圧4.5MPa、液空間速度6h−1の条件下で水素化処理を行い、表1に示す性状を有する水素化脱硫灯油組成物(燃料油a、沸点範囲149.0〜290.0℃、GC−SCDにより測定されるジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分1.34質量ppm)を得た。脱硫試験結果についても表1に示す。
<Preparation of fuel oil for fuel cells>
Comparative Example 1
A straight-run kerosene (distillation cut range 150-270 ° C., sulfur content 0.24% by mass) obtained from Middle Eastern crude oil by atmospheric distillation is used as a raw material oil, and this raw material oil is used as a hydrodesulfurization catalyst as a commercial catalyst (Co- Mo type) (trade name: KF-757, manufactured by Nippon Ketjen Co., Ltd.) was used for hydrogenation under conditions of WABT 301 ° C., hydrogen partial pressure 4.5 MPa, liquid space velocity 6 h −1. Hydrosulfurized kerosene composition (fuel oil a, boiling range 149.0-290.0 ° C., sulfur compound heavier than dibenzothiophene measured by GC-SCD and lighter than 4-methyldibenzothiophene) Derived sulfur content 1.34 mass ppm). The results of the desulfurization test are also shown in Table 1.
比較例2
中東系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ145〜270℃、硫黄分0.24質量%)を原料油とし、該原料油を比較例1と同様の触媒を使用して、WABT315℃、水素分圧4.5MPa、液空間速度6h−1の条件下で水素化処理を行い、表1に示す性状を有する水素化脱硫灯油組成物(燃料油b、沸点範囲146.0〜277.0℃、GC−SCDにより測定されるジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分1.10質量ppm)を得た。脱硫試験結果についても表1に示す。
Comparative Example 2
Using straight-run kerosene (distillation cut range 145 to 270 ° C., sulfur content 0.24 mass%) obtained from Middle Eastern crude oil by atmospheric distillation, the same catalyst as in Comparative Example 1 is used. The hydrodesulfurized kerosene composition having the properties shown in Table 1 (fuel oil b, boiling point range 146. boiling point 146.) was subjected to hydrotreatment under conditions of WABT 315 ° C., hydrogen partial pressure 4.5 MPa, and liquid space velocity 6 h −1 . 0 to 277.0 ° C., and a sulfur content derived from a sulfur compound heavier than dibenzothiophene and lighter than 4-methyldibenzothiophene as measured by GC-SCD was obtained. The results of the desulfurization test are also shown in Table 1.
実施例1
比較例2で得た水素化脱硫組成物を還流比15:1で精密蒸留し、重質分を除去した灯油組成物を得た。灯油組成物の抜き出しは、蒸留塔の塔頂部の温度見合いとし、塔頂部の温度270℃を目安として、蒸留留出分が95%となるように蒸留を行った。この重質分を除去して得た灯油組成物に、ジベンゾチオフェンを1質量ppm、4−メチルジベンゾチオフェンを2質量ppm、4,6−ジメチルジベンゾチオフェンを1質量ppm添加して、全硫黄分を6質量ppmに調整した水素化脱硫灯油組成物(燃料油A、沸点範囲145.0〜265.0℃、GC−SCDにより測定されるジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分0.00質量ppm)を得た。この水素化脱硫灯油組成物の性状及び脱硫試験結果を表1に示す。
Example 1
The hydrodesulfurized composition obtained in Comparative Example 2 was precisely distilled at a reflux ratio of 15: 1 to obtain a kerosene composition from which heavy components were removed. The kerosene composition was withdrawn by adjusting the temperature at the top of the distillation tower to a temperature of 270 ° C. at the top of the tower so that the distillation distillate would be 95%. To the kerosene composition obtained by removing this heavy component, 1 mass ppm of dibenzothiophene, 2 mass ppm of 4-methyldibenzothiophene, and 1 mass ppm of 4,6-dimethyldibenzothiophene are added to obtain a total sulfur content. Hydrodesulfurized kerosene composition adjusted to 6 ppm by mass (fuel oil A, boiling range 145.0-265.0 ° C., heavier than dibenzothiophene as measured by GC-SCD and lighter than 4-methyldibenzothiophene Sulfur compound-derived sulfur content 0.00 mass ppm) was obtained. Table 1 shows the properties and desulfurization test results of this hydrodesulfurized kerosene composition.
実施例2
中東系の原油から常圧蒸留により得た直留灯油(蒸留カットレンジ150〜270℃、硫黄分0.21質量%)を原料油とし、該原料油を比較例1と同様の触媒を使用して、WABT315℃、水素分圧4.5MPa、液空間速度3h−1の条件下で水素化処理を行い、表1に示す性状を有する水素化脱硫灯油組成物(燃料油B、沸点範囲149.0〜247.5℃、GC−SCDにより測定されるジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分0.03質量ppm)を得た。脱硫試験結果についても表1に示す。
Example 2
Using straight-run kerosene (distillation cut range 150 to 270 ° C., sulfur content 0.21 mass%) obtained from Middle Eastern crude oil by atmospheric distillation, the same catalyst as in Comparative Example 1 is used. The hydrodesulfurization kerosene composition having the properties shown in Table 1 (fuel oil B, boiling point range 149. boiling point 149.) was performed under conditions of WABT 315 ° C., hydrogen partial pressure 4.5 MPa, and liquid space velocity 3 h −1 . 0 to 247.5 ° C., 0.03 mass ppm of sulfur content derived from a sulfur compound heavier than dibenzothiophene and lighter than 4-methyldibenzothiophene as measured by GC-SCD. The results of the desulfurization test are also shown in Table 1.
実施例3
比較例1で得た水素化脱硫灯油組成物50容量%と、フィッシャー・トロプシュ合成により得た炭素数30以上のワックス分(硫黄分を含まず)を、水素化分解触媒として市販触媒(触媒化成工業(株)製、0.5質量%Pt/USYゼオライト触媒)を用いて水素化分解した後、蒸留により得た灯油留分(蒸留カットレンジ150〜250℃)を50容量%混合して表1に示す性状を有する水素化脱硫灯油組成物(燃料油C、沸点範囲149.0〜289.0℃、GC−SCDにより測定されるジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分0.67質量ppm)を得た。
Example 3
50% by volume of the hydrodesulfurized kerosene composition obtained in Comparative Example 1 and a wax content (not including sulfur content) of 30 or more carbon atoms obtained by Fischer-Tropsch synthesis were used as commercially available catalysts (catalyst conversion). After hydrocracking using 0.5% by mass Pt / USY zeolite catalyst manufactured by Kogyo Co., Ltd., a kerosene fraction (distillation cut range 150 to 250 ° C.) obtained by distillation was mixed 50% by volume. Hydrodesulfurized kerosene composition (fuel oil C, boiling point range 149.0-289.0 ° C., heavier than dibenzothiophene as measured by GC-SCD and lighter than 4-methyldibenzothiophene) Compound-derived sulfur content 0.67 mass ppm) was obtained.
<燃料油中の硫黄分の分析>
実施例、比較例で得た燃料油中の全硫黄分は、JIS K 2541微量電量滴定法に準拠して求めた。対象硫黄化合物由来の硫黄分(ジベンゾチオフェンより重質で4−メチルジベンゾチオフェンより軽質な硫黄化合物由来の硫黄分)については、燃料油をGC−SCDにより分析し、前述の式を用いて求めた。GC−SCDの分析条件は下記の通りである。
装置: GC;GC−2010(株式会社島津製作所)
SCD;7080S(ANTEK社)
カラム:HP−1MS
カラム温度:40℃−280℃
測定時間:30分
Inlet温度:260℃、検出器温度:280℃
キャリアガス:He 90kPa
制御モード:線速度
Total flow:21.7mL/分、Purge flow:3.0mL/分
注入モード:スプリットレス、Sprit ratio 5:1
サンプルサイズ:2.0μL
<Analysis of sulfur content in fuel oil>
The total sulfur content in the fuel oils obtained in Examples and Comparative Examples was determined according to JIS K2541 microcoulometric titration method. For the sulfur content derived from the target sulfur compound (the sulfur content derived from a sulfur compound heavier than dibenzothiophene and lighter than 4-methyldibenzothiophene), the fuel oil was analyzed by GC-SCD and determined using the above formula. . The analysis conditions of GC-SCD are as follows.
Equipment: GC; GC-2010 (Shimadzu Corporation)
SCD; 7080S (ANTEK)
Column: HP-1MS
Column temperature: 40 ° C.-280 ° C.
Measurement time: 30 minutes Inlet temperature: 260 ° C., detector temperature: 280 ° C.
Carrier gas: He 90kPa
Control mode: Linear velocity Total flow: 21.7 mL / min, Charge flow: 3.0 mL / min Injection mode: Splitless, Split ratio 5: 1
Sample size: 2.0 μL
<脱硫剤の調製>
実施例、比較例で得た燃料油の脱硫試験に用いる脱硫剤を次のようにして作製した。
ベーマイトAP−3(触媒化成工業製)1.24gと1N HNO3水溶液40mlとをイオン交換水1リットルに加えて80℃に加温後、Ni(NO3)2・6H2Oを149g加えて調製液Aを得た。別途用意したイオン交換水1リットルにコロイダルシリカ スノーテックスXS(日産化学製)を33.9g、炭酸ナトリウムを99.4g、(NH4)6Mo7O24.5H2Oを3g添加して80℃に加温し、調製液Bを得た。調製液AとBとを80℃に保ちながら、B液をA液に瞬時に加えて、沈殿物を形成させ、1時間攪拌した。その後、イオン交換水5リットルを用いて沈殿物の洗浄・ろ過を行ったのち、空気中、120℃で12時間乾燥し、400℃で1時間焼成して得られた固形状物質を12〜16メッシュに破砕し、脱硫剤を得た。
<Preparation of desulfurizing agent>
The desulfurization agent used for the desulfurization test of the fuel oil obtained by the Example and the comparative example was produced as follows.
Add 1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo Co., Ltd.) and 40 ml of 1N HNO 3 aqueous solution to 1 liter of ion-exchanged water, warm to 80 ° C., and then add 149 g of Ni (NO 3 ) 2 .6H 2 O. Preparation liquid A was obtained. 33.9g separately prepared ion-exchanged water one liter of colloidal silica Snowtex XS (produced by Nissan Chemical), 99.4 g of sodium carbonate, 80 to 3g added (NH 4) 6 Mo 7 O 24 .5H 2 O Heated to ° C. to obtain Preparation B. While maintaining the preparation liquids A and B at 80 ° C., the liquid B was instantaneously added to the liquid A to form a precipitate, followed by stirring for 1 hour. Thereafter, the precipitate was washed and filtered using 5 liters of ion-exchanged water, dried in air at 120 ° C. for 12 hours, and calcined at 400 ° C. for 1 hour. The desulfurization agent was obtained by crushing into a mesh.
<脱硫試験>
上記実施例、比較例で得た燃料油と上記作製した脱硫剤を用いて次のようにして脱硫試験を行った。
脱硫剤12mlを内径16mmの鋼製反応管に充填し、常圧下で水素を下向きに供給しながら温度を150〜200℃まで上昇させ、3時間保持して脱硫剤を活性化させた。次に、反応管に実施例、比較例で得た燃料油をそれぞれ220℃、0.3MPa−G、LHSV=10h-1で反応管に上向きに流通させ、反応管から流出した脱硫処理油を採取し、その全硫黄分の含有量を測定した。そして、反応管から流出した脱硫処理油の全硫黄分が100質量ppbに達するまでの、脱硫処理開始からの通油時間を破過時間とした。この破過時間を表1に示した。
<Desulfurization test>
Using the fuel oils obtained in the above Examples and Comparative Examples and the above prepared desulfurizing agent, a desulfurization test was conducted as follows.
A steel reaction tube having an inner diameter of 16 mm was filled with 12 ml of a desulfurizing agent, and the temperature was increased to 150 to 200 ° C. while supplying hydrogen downward at normal pressure, and the desulfurizing agent was activated by maintaining for 3 hours. Next, the fuel oils obtained in Examples and Comparative Examples were passed through the reaction tubes upward at 220 ° C., 0.3 MPa-G, and LHSV = 10 h −1 , respectively. The sample was collected and the total sulfur content was measured. The oil passage time from the start of the desulfurization treatment until the total sulfur content of the desulfurization treated oil flowing out of the reaction tube reached 100 mass ppb was defined as the breakthrough time. This breakthrough time is shown in Table 1.
表1から明らかなように、本発明に従った実施例1〜3の燃料油は、比較例1、2の燃料油と比べ、脱硫剤の寿命(脱硫処理済の燃料油の全硫黄分が100質量ppbに達するまでの時間(破過時間)で評価)は、格段に長いことが分かる。 As is clear from Table 1, the fuel oils of Examples 1 to 3 according to the present invention have a longer life of the desulfurization agent (total sulfur content of the desulfurized fuel oil than the fuel oils of Comparative Examples 1 and 2). It can be seen that the time to reach 100 mass ppb (evaluated by breakthrough time) is much longer.
また、図1及び図2に、実施例2及び比較例1により得られた燃料電池用燃料油のGC−SCDデータをそれぞれ示す。各図中、上段は、ジベンゾチオフェン(A)、4−メチルジベンゾチオフェン(B)、ベンゾチオフェン(C1)、4,6−ジメチルジベンゾチオフェン(C2)、及び2,8−ジメチルジベンゾチオフェン(C3)をHPLC用イソオクタンに溶解したもののGC−SCDデータ(標準データ)であり、下段は燃料電池用燃料油のGC−SCDデータである。図1及び図2からわかるように、実施例2で得られた燃料電池用燃料油には対象硫黄化合物(AとBの間に検出される硫黄化合物)がほとんど見られず、比較例1で得られた燃料電池用燃料油には対象硫黄化合物が一定量検出されていることがわかる。 1 and 2 show GC-SCD data of fuel oils for fuel cells obtained in Example 2 and Comparative Example 1, respectively. In each figure, the upper row shows dibenzothiophene (A), 4-methyldibenzothiophene (B), benzothiophene (C1), 4,6-dimethyldibenzothiophene (C2), and 2,8-dimethyldibenzothiophene (C3). Is the GC-SCD data (standard data) of the sample dissolved in isooctane for HPLC, and the lower row is the GC-SCD data for fuel oil for fuel cells. As can be seen from FIGS. 1 and 2, the fuel oil for fuel cell obtained in Example 2 hardly shows any target sulfur compound (a sulfur compound detected between A and B). It can be seen that a certain amount of the target sulfur compound is detected in the obtained fuel oil for fuel cells.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007086422A JP2008239916A (en) | 2007-03-29 | 2007-03-29 | Fuel oil for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007086422A JP2008239916A (en) | 2007-03-29 | 2007-03-29 | Fuel oil for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008239916A true JP2008239916A (en) | 2008-10-09 |
Family
ID=39911634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007086422A Pending JP2008239916A (en) | 2007-03-29 | 2007-03-29 | Fuel oil for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008239916A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279261A (en) * | 2000-03-31 | 2001-10-10 | Idemitsu Kosan Co Ltd | Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery |
JP2001279257A (en) * | 2000-03-31 | 2001-10-10 | Idemitsu Kosan Co Ltd | Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery |
JP2001294874A (en) * | 2000-04-13 | 2001-10-23 | Idemitsu Kosan Co Ltd | Fuel oil for kerosene-based fuel cell |
JP2002083626A (en) * | 2000-06-28 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP2004319400A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system and fuel cell system |
JP2004319401A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system, its manufacturing method, and fuel cell system |
WO2005073348A1 (en) * | 2004-02-02 | 2005-08-11 | Japan Energy Corporation | Method of desulfurizing hydrocarbon oil |
JP2006205163A (en) * | 2005-01-24 | 2006-08-10 | Samsung Sdi Co Ltd | Desulfurization zeolite adsorbent and manufacturing method of the same, desulfurization method, desulfurization equipment, and fuel cell system |
WO2007020800A1 (en) * | 2005-08-12 | 2007-02-22 | Japan Energy Corporation | Desulfurizing agent for hydrocarbon oil and method of desulfurization |
-
2007
- 2007-03-29 JP JP2007086422A patent/JP2008239916A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279261A (en) * | 2000-03-31 | 2001-10-10 | Idemitsu Kosan Co Ltd | Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery |
JP2001279257A (en) * | 2000-03-31 | 2001-10-10 | Idemitsu Kosan Co Ltd | Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery |
JP2001294874A (en) * | 2000-04-13 | 2001-10-23 | Idemitsu Kosan Co Ltd | Fuel oil for kerosene-based fuel cell |
JP2002083626A (en) * | 2000-06-28 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP2004319400A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system and fuel cell system |
JP2004319401A (en) * | 2003-04-18 | 2004-11-11 | Nippon Oil Corp | Fuel for fuel cell system, its manufacturing method, and fuel cell system |
WO2005073348A1 (en) * | 2004-02-02 | 2005-08-11 | Japan Energy Corporation | Method of desulfurizing hydrocarbon oil |
JP2006205163A (en) * | 2005-01-24 | 2006-08-10 | Samsung Sdi Co Ltd | Desulfurization zeolite adsorbent and manufacturing method of the same, desulfurization method, desulfurization equipment, and fuel cell system |
WO2007020800A1 (en) * | 2005-08-12 | 2007-02-22 | Japan Energy Corporation | Desulfurizing agent for hydrocarbon oil and method of desulfurization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
da Silva Pinto et al. | An overview on the production of synthetic fuels from biogas | |
JP5219247B2 (en) | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition | |
JP2014503016A (en) | Method for reducing organic acids in hydrocarbon oil fractions | |
KR101514954B1 (en) | Process for producing gasoline base and gasoline | |
JP2008291146A (en) | Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same | |
JP5291940B2 (en) | Hydrorefining method for naphtha fraction | |
JP4213062B2 (en) | Environmentally friendly clean gasoline and its manufacturing method | |
JP2009209252A (en) | Fuel oil for fuel cell | |
JP2005239890A (en) | Light oil responding to environment and method for producing the same | |
JP2008239916A (en) | Fuel oil for fuel cell | |
JP2008239914A (en) | Fuel oil for fuel cell | |
JP2008239915A (en) | Fuel oil for fuel cell | |
JP2001279271A (en) | Method for producing fuel oil for fuel cell and hydrogen for fuel cell | |
JP2009046582A (en) | Fuel oil for fuel cell | |
JP2009046585A (en) | Fuel oil for fuel cell | |
JP2009067993A (en) | Fuel oil for fuel cell | |
JP2009067994A (en) | Fuel oil for fuel cell | |
JP2009067992A (en) | Fuel oil for fuel cell | |
JP2009046587A (en) | Fuel oil for fuel cell | |
JP2009046583A (en) | Fuel oil for fuel cell | |
JP2009046581A (en) | Fuel oil for fuel cell | |
JP2009046586A (en) | Fuel oil for fuel cell | |
JP2009046584A (en) | Fuel oil for fuel cell | |
JP2009046588A (en) | Fuel oil for fuel cell | |
JP2009067991A (en) | Fuel oil for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120321 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120717 |