[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008236980A - Ultrasonic motor element - Google Patents

Ultrasonic motor element Download PDF

Info

Publication number
JP2008236980A
JP2008236980A JP2007076667A JP2007076667A JP2008236980A JP 2008236980 A JP2008236980 A JP 2008236980A JP 2007076667 A JP2007076667 A JP 2007076667A JP 2007076667 A JP2007076667 A JP 2007076667A JP 2008236980 A JP2008236980 A JP 2008236980A
Authority
JP
Japan
Prior art keywords
electrode
ultrasonic motor
piezoelectric body
electrodes
motor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007076667A
Other languages
Japanese (ja)
Other versions
JP5144097B2 (en
Inventor
Takeshi Fujimura
健 藤村
Kazumasa Asumi
一将 阿隅
Ryoichi Fukunaga
了一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007076667A priority Critical patent/JP5144097B2/en
Publication of JP2008236980A publication Critical patent/JP2008236980A/en
Application granted granted Critical
Publication of JP5144097B2 publication Critical patent/JP5144097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic motor element that executes positioning by highly accurately moving a drive target, and an ultrasonic motor device. <P>SOLUTION: The ultrasonic motor element 10 has first/second electrodes 13a, 13b, which are provided by being divided into two in a length direction on one main face of a rectangular-flat-plate-like piezoelectric body 11, and third/fourth electrodes 13c, 13d provided by being divided into two in a width direction on the other main face. A phase of a voltage applied to the first/second electrodes 13a, 13b is shifted by 180 degrees. A phase of a voltage applied to the third/fourth electrodes 13c, 13d is shifted by 180 degrees. A phase of a voltage applied to the first/second electrodes 13a, 13b and a phase of a voltage applied to the third/fourth electrodes 13c, 13d are respectively shifted by 90 degrees. Consequently, it generates expanding/contracting secondary resonant vibration in a length direction and bending primary resonant vibration in a width direction in the piezoelectric body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リニアモータやX−Yステージ等に好適な、圧電素子を利用した超音波モータ素子および超音波モータ装置に関する。   The present invention relates to an ultrasonic motor element and an ultrasonic motor apparatus using a piezoelectric element suitable for a linear motor, an XY stage, and the like.

圧電素子をL1B2モードで駆動する超音波モータ素子が知られており、近時、X−Yステージやリニアモータ、回転ステージ、カメラのオートフォーカス機構等の駆動機構へ応用されている(例えば、特許文献1、2参照)。   An ultrasonic motor element that drives a piezoelectric element in the L1B2 mode is known, and has recently been applied to a drive mechanism such as an XY stage, a linear motor, a rotary stage, and an autofocus mechanism of a camera (for example, a patent) References 1 and 2).

図8に圧電素子90でのL1B2モードの説明図を示す。L1B2モードは、図8上側に示す長さ方向での伸縮1次共振(L1)モードと、図8下側に示す幅方向での曲げ2次共振(B2)モードの重ね合わせ(縮退)によって、振動の腹の部分が楕円運動を行う振動をいう。   FIG. 8 shows an explanatory diagram of the L1B2 mode in the piezoelectric element 90. The L1B2 mode is formed by superposition (degeneration) of the stretchable primary resonance (L1) mode in the length direction shown in the upper part of FIG. 8 and the bending secondary resonance (B2) mode in the width direction shown in the lower part of FIG. This is a vibration in which the antinode part of the vibration makes an elliptical motion.

このL1B2モードで駆動する超音波モータ素子は、矩形圧電体の一方の主面に2行2列の電極部を形成して対角に位置する2個の電極部どうしをリード線で接続し、他方の主面にグランド(アース)電極を設け、圧電体の側面に駆動対称物に当接する摺動部材を設けた構造となっており、2組の電極部に位相を90度ずらした電圧を印加して駆動する。   In the ultrasonic motor element driven in the L1B2 mode, two rows and two columns of electrode portions are formed on one main surface of a rectangular piezoelectric body, and two electrode portions positioned diagonally are connected by lead wires, A ground (earth) electrode is provided on the other main surface, and a sliding member is provided on the side surface of the piezoelectric body so as to come into contact with the drive symmetrical object. A voltage whose phase is shifted by 90 degrees is applied to the two sets of electrode portions. Apply and drive.

このような超音波モータ素子では、摺動部材と駆動対象物との間に作用する摩擦力を利用して駆動対象物を移動させるために、超音波モータ素子を保持して摺動部材を駆動対象物に一定の力で押し付ける与圧機構が必要となる。   In such an ultrasonic motor element, the ultrasonic motor element is held and the sliding member is driven in order to move the driving object using a frictional force acting between the sliding member and the driving object. A pressurizing mechanism that presses the object with a certain force is required.

しかし、L1B2モードを用いた超音波モータ素子の場合、L1モードでは超音波モータ素子の長さ方向中央の1点しか振動の節がないために、超音波モータ素子の保持が難しく、例えば、特許文献1では、超音波モータ素子の幅方向側面をバネで保持した上で、摺動部材を駆動対象物に押し付けている。   However, in the case of an ultrasonic motor element using the L1B2 mode, since there is only a vibration node in the center in the length direction of the ultrasonic motor element in the L1 mode, it is difficult to hold the ultrasonic motor element. In Document 1, the sliding member is pressed against the driving object after the widthwise side surface of the ultrasonic motor element is held by a spring.

ところが、超音波モータ素子の幅方向側面をバネを用いて保持するということは、超音波モータ素子がその幅方向に多少なりとも動くことを意味しており、超音波モータ素子の幅方向とは駆動対象物を動かす力が作用する方向でもあることから、超音波モータがその幅方向で動くと摺動部材と駆動対象物との接点がずれてしまい、駆動対象物の高精度な移動、位置決めができなくなる。
特開平7−184382号公報(図1、段落[0029]〜[0031]等) 特開2006−187112号公報(図3、[0028]〜[0034]等)
However, holding the side surface of the ultrasonic motor element in the width direction using a spring means that the ultrasonic motor element moves somewhat in the width direction. What is the width direction of the ultrasonic motor element? Since it is also the direction in which the force that moves the drive object acts, when the ultrasonic motor moves in the width direction, the contact point between the sliding member and the drive object is shifted, and the drive object is moved and positioned with high accuracy. Can not be.
JP-A-7-184382 (FIG. 1, paragraphs [0029] to [0031], etc.) Japanese Patent Laying-Open No. 2006-187112 (FIG. 3, [0028] to [0034], etc.)

本発明は、かかる事情に鑑みてなされたものであり、駆動対象物を高い精度で移動させ,位置決めすることができる超音波モータ素子および超音波モータ装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultrasonic motor element and an ultrasonic motor device that can move and position a driving object with high accuracy.

本発明に係る超音波モータ素子は、矩形形状を有し、その長さ方向の伸縮2次共振振動とその幅方向の曲げ1次共振振動を生じる圧電素子を有することを特徴とする。ここで、圧電素子は、その長さ方向での伸縮振動の固有2次共振周波数とその幅方向での曲げ振動の固有1次共振周波数とが一致する形状であることが好ましい。   An ultrasonic motor element according to the present invention has a rectangular shape, and includes a piezoelectric element that generates an elastic secondary resonance vibration in a length direction and a bending primary resonance vibration in a width direction. Here, it is preferable that the piezoelectric element has a shape in which the natural secondary resonance frequency of the stretching vibration in the length direction coincides with the natural primary resonance frequency of the bending vibration in the width direction.

本発明に係る第1の超音波モータ装置は、矩形形状を有する圧電体と、前記圧電体の側面中央に設けられた摺動部材と、前記圧電体の一方の主面に長さ方向において2分割して設けられた第1電極および第2電極と、前記圧電体の他方の主面に幅方向において2分割して設けられた第3電極および第4電極と、前記第1,第2電極と前記第3,第4電極にそれぞれ位相が90度ずれた駆動電圧を印加する電源部とを具備し、前記電源部が前記第1,第2電極にそれぞれ印加する駆動電圧は位相が180度ずれており、かつ、前記第3,第4電極にそれぞれ印加する駆動電圧は位相が180度ずれていることによって、前記圧電体にその長さ方向の伸縮2次共振振動とその幅方向での曲げ1次共振振動を生じさせることを特徴とする。   A first ultrasonic motor device according to the present invention includes a piezoelectric body having a rectangular shape, a sliding member provided at the center of a side surface of the piezoelectric body, and two main surfaces of the piezoelectric body in the length direction. The first electrode and the second electrode provided separately, the third electrode and the fourth electrode provided in the width direction on the other main surface of the piezoelectric body, and the first and second electrodes And a power supply unit that applies a driving voltage that is 90 degrees out of phase to each of the third and fourth electrodes, and the driving voltage that the power supply unit applies to the first and second electrodes is 180 degrees in phase. The drive voltages applied to the third and fourth electrodes are shifted in phase by 180 degrees, so that the piezoelectric body has expansion / contraction secondary resonance vibration in the length direction and the width direction in the piezoelectric body. Bending primary resonance vibration is generated.

本発明に係る第2の超音波モータ装置は、矩形形状を有し、その長さ方向で2分割された第1電極および第2電極,第1圧電体,共通電極,第2圧電体,幅方向で2分割された第3電極および第4電極がこの順序で積層されてなる圧電素子部と、前記圧電素子部の側面中央に設けられた摺動部材と、前記第1,第2電極と前記第3,第4電極にそれぞれ位相が90度ずれた駆動電圧を印加する電源部とを具備し、前記電源部が前記第1,第2電極にそれぞれ印加する駆動電圧は位相が180度ずれており、かつ、前記第3,第4電極にそれぞれ印加する駆動電圧は位相が180度ずれていることによって、前記圧電素子部にその長さ方向の伸縮2次共振振動とその幅方向での曲げ1次共振振動を生じさせることを特徴とする。   The second ultrasonic motor device according to the present invention has a rectangular shape, and is divided into two in the length direction, the first electrode and the second electrode, the first piezoelectric body, the common electrode, the second piezoelectric body, and the width. A piezoelectric element portion formed by laminating a third electrode and a fourth electrode divided in two in this direction, a sliding member provided at the center of the side surface of the piezoelectric element portion, the first and second electrodes, A power supply unit that applies a driving voltage that is 90 degrees out of phase to each of the third and fourth electrodes, and the driving voltage that the power supply unit applies to the first and second electrodes is 180 degrees out of phase. In addition, the drive voltages applied to the third and fourth electrodes are 180 degrees out of phase, so that the piezoelectric element portion has expansion / contraction secondary resonance vibration in its length direction and its width direction. Bending primary resonance vibration is generated.

本発明に係る第3の超音波モータ装置は、矩形形状を有する圧電体と、前記圧電体の側面中央に設けられた摺動部材と、前記圧電体の一方の主面に2行2列に設けられた4つの駆動電極と、前記圧電体の他方の主面全体に設けられた共通電極と、前記駆動電極と前記共通電極との間に駆動電圧を印加する電源部とを具備し、前記4つの駆動領域は対角に位置する2つの駆動領域から構成される2組の駆動部に分けられており、前記電源部が前記2組の駆動部の一方に属する2つの駆動電極にそれぞれ位相が180度ずれた伸縮振動を生じさせる電圧を印加し、他方に属する2つの駆動領域には電圧を印加しないことにより、前記圧電体にその長さ方向の伸縮2次共振振動とその幅方向での曲げ1次共振振動を生じさせることを特徴とする。   A third ultrasonic motor device according to the present invention includes a piezoelectric body having a rectangular shape, a sliding member provided at the center of a side surface of the piezoelectric body, and two rows and two columns on one main surface of the piezoelectric body. Comprising four drive electrodes provided, a common electrode provided on the entire other main surface of the piezoelectric body, and a power supply unit for applying a drive voltage between the drive electrode and the common electrode, The four drive regions are divided into two sets of drive units composed of two drive regions located diagonally, and the power supply unit has a phase applied to each of two drive electrodes belonging to one of the two sets of drive units. By applying a voltage that generates a stretching vibration that is shifted by 180 degrees and not applying a voltage to the two drive regions belonging to the other, the piezoelectric body has a stretching secondary resonance vibration in the length direction and a width direction in the piezoelectric body. This is characterized in that a bending primary resonance vibration of is generated.

本発明の超音波モータ素子および超音波モータ装置によれば、超音波モータ素子の制御に悪影響を与える位置変動、すなわち超音波モータ素子を駆動することによって超音波モータ素子自体に生じる位置変動、を超音波モータ素子を強固に保持することによって抑制することができるので、駆動対象物を高い精度で移動させ、位置決めすることができる。   According to the ultrasonic motor element and the ultrasonic motor device of the present invention, the positional fluctuation that adversely affects the control of the ultrasonic motor element, that is, the positional fluctuation that occurs in the ultrasonic motor element itself by driving the ultrasonic motor element. Since it can suppress by hold | maintaining an ultrasonic motor element firmly, a drive target can be moved and positioned with high precision.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に超音波モータ装置の構成を示す。この超音波モータ装置は、超音波モータ素子10の駆動によりスライダ60をX方向で移動させるものであり、X方向に延在するガイド62と、このガイド62にX方向でスライド自在に取り付けられたスライダ60と、超音波モータ素子10からの押圧に対してスライダ60を支持するベアリング64と、超音波モータ素子10と、超音波モータ素子10に取り付けられ、スライダ60に摺接するヘッド12と、超音波モータ素子10を保持する保持部材14と、ヘッド12をスライダ60に押し付けるように保持部材14に力を加える押圧機構16と、を備えている。   FIG. 1 shows the configuration of an ultrasonic motor device. This ultrasonic motor device moves the slider 60 in the X direction by driving the ultrasonic motor element 10, and is attached to the guide 62 so as to be slidable in the X direction. A slider 60, a bearing 64 that supports the slider 60 against the pressure from the ultrasonic motor element 10, the ultrasonic motor element 10, a head 12 that is attached to the ultrasonic motor element 10 and is in sliding contact with the slider 60, A holding member 14 that holds the sonic motor element 10 and a pressing mechanism 16 that applies a force to the holding member 14 so as to press the head 12 against the slider 60 are provided.

なお、図1に示されるように、超音波モータ素子10の長さ方向をX方向、幅方向をY方向、厚さ方向をZ方向とした三次元直交座標を定めることとする。   As shown in FIG. 1, three-dimensional orthogonal coordinates are defined with the length direction of the ultrasonic motor element 10 as the X direction, the width direction as the Y direction, and the thickness direction as the Z direction.

ヘッド12としては耐摩耗性材料(例えば、ステンレス等の合金材料、炭化珪素等のセラミックス材料)が好適に用いられ、エポキシ樹脂等により超音波モータ素子10の側面に取り付けられている。保持部材14は超音波モータ素子10の長さ方向端面を保持しており、押圧機構16は保持部材14がX方向で実質的に揺動させることなく、保持部材14をスライダ60側に押圧している。   A wear-resistant material (for example, an alloy material such as stainless steel or a ceramic material such as silicon carbide) is preferably used as the head 12 and is attached to the side surface of the ultrasonic motor element 10 with an epoxy resin or the like. The holding member 14 holds the end surface of the ultrasonic motor element 10 in the length direction, and the pressing mechanism 16 presses the holding member 14 toward the slider 60 without causing the holding member 14 to substantially swing in the X direction. ing.

超音波モータ素子10を、−Y方向側から見た構造を図2A(側面図)に、−X側から見た構造を図2B(第1端面図)に、+X側から見た構造を図2C(第2端面図)にそれぞれ示す。図2B,2Cではヘッド12の図示を略している。   The structure of the ultrasonic motor element 10 viewed from the −Y direction side is shown in FIG. 2A (side view), the structure seen from the −X side is shown in FIG. 2B (first end view), and the structure seen from the + X side is shown. 2C (second end view) is shown respectively. 2B and 2C, the head 12 is not shown.

超音波モータ素子10は、圧電材料からなる矩形平板状の圧電体と導電性材料からなる薄膜状の電極とが交互に積層された構造を有している。圧電材料には、チタン酸ジルコン酸鉛等の圧電セラミックスが好適に用いられる。導電性材料は、超音波モータの製造方法に応じて適宜選択されるが、例えば、圧電セラミックスからなる圧電体と電極とを同時焼成により形成する場合には、銀/パラジウム電極等が好適に用いられる。   The ultrasonic motor element 10 has a structure in which rectangular plate-shaped piezoelectric bodies made of a piezoelectric material and thin-film electrodes made of a conductive material are alternately stacked. For the piezoelectric material, piezoelectric ceramics such as lead zirconate titanate are preferably used. The conductive material is appropriately selected according to the manufacturing method of the ultrasonic motor. For example, when a piezoelectric body made of piezoelectric ceramics and an electrode are formed by simultaneous firing, a silver / palladium electrode is preferably used. It is done.

超音波モータ素子10の電極構造を図2Dに示す。ここでは、超音波モータ素子10を各層に分解し、圧電体11とその上に位置する電極とを重ね合わせて示しており、これらを明確に分けるために、電極部分にはドットにより塗りつぶしている(以下、図6,図7Bも同様とする)。   The electrode structure of the ultrasonic motor element 10 is shown in FIG. 2D. Here, the ultrasonic motor element 10 is disassembled into each layer, and the piezoelectric body 11 and the electrodes located thereon are shown superimposed, and the electrode portions are filled with dots to clearly separate them. (Hereafter, the same applies to FIGS. 6 and 7B).

超音波モータ素子10は、圧電体11が、第1内部電極13aと第2内部電極13bを有する第1電極層と、第3内部電極13cと第4内部電極13dを有する第2電極層とによって挟まれた構成が、積層方向で反復形成された構造を有している。   In the ultrasonic motor element 10, the piezoelectric body 11 includes a first electrode layer having a first internal electrode 13a and a second internal electrode 13b, and a second electrode layer having a third internal electrode 13c and a fourth internal electrode 13d. The sandwiched structure has a structure that is repeatedly formed in the stacking direction.

第1電極層を構成する第1内部電極13aと第2内部電極13bは、圧電体11の長さ方向において2分割形成されており、第1内部電極13aと第2内部電極13bはそれぞれその一部が超音波モータ素子10の側面(ヘッド12が設けられている側面の対向面)に露出する形状を有している。そして、第1内部電極13aの露出部分を接続するための第1外部電極15aと、第2内部電極13bの露出部分を接続するための第2外部電極15bがそれぞれ、超音波モータ素子10の側面に設けられている。   The first internal electrode 13a and the second internal electrode 13b constituting the first electrode layer are divided into two in the length direction of the piezoelectric body 11, and each of the first internal electrode 13a and the second internal electrode 13b is one of them. The portion is exposed to the side surface of the ultrasonic motor element 10 (the side surface opposite to the side surface on which the head 12 is provided). The first external electrode 15a for connecting the exposed portion of the first internal electrode 13a and the second external electrode 15b for connecting the exposed portion of the second internal electrode 13b are respectively provided on the side surfaces of the ultrasonic motor element 10. Is provided.

第2電極層を構成する第3内部電極13cと第4内部電極13dは、圧電体11の幅方向において2分割形成されており、第3内部電極13cと第4内部電極13dはそれぞれその一部が超音波モータ素子10の端面に露出する形状を有している。そして、第3内部電極13cの露出部分を接続するための第3外部電極15cが超音波モータ素子10の一方の端面に、第4内部電極13dの露出部分を接続するための第4外部電極15dが超音波モータ素子10の他方の端面に、それぞれ設けられている。   The third internal electrode 13c and the fourth internal electrode 13d constituting the second electrode layer are divided into two in the width direction of the piezoelectric body 11, and each of the third internal electrode 13c and the fourth internal electrode 13d is a part thereof. Has a shape exposed on the end face of the ultrasonic motor element 10. Then, the third external electrode 15c for connecting the exposed portion of the third internal electrode 13c is connected to one end face of the ultrasonic motor element 10 and the fourth external electrode 15d for connecting the exposed portion of the fourth internal electrode 13d. Are provided on the other end face of the ultrasonic motor element 10, respectively.

第1,第2外部電極15a,15bは第1電源18aに接続されており、第3,第4外部電極15c,15dは第2電源18bに接続されている。後述するように、第1電源18aは位相が180度ずれた駆動電圧をそれぞれ第1,第2外部電極15a,15bを通して第1,第2内部電極13a,13bに印加し、第2電源18bは位相が180度ずれた駆動電圧をそれぞれ第3,第4外部電極15c,15dを通して第3,第4内部電極13c,13dに印加し、第1電源18aから出力される電圧と第2電源18bから出力される電圧とは、位相が90度ずれている。   The first and second external electrodes 15a and 15b are connected to the first power source 18a, and the third and fourth external electrodes 15c and 15d are connected to the second power source 18b. As will be described later, the first power supply 18a applies a drive voltage whose phase is shifted by 180 degrees to the first and second internal electrodes 13a and 13b through the first and second external electrodes 15a and 15b, respectively. Driving voltages whose phases are shifted by 180 degrees are applied to the third and fourth internal electrodes 13c and 13d through the third and fourth external electrodes 15c and 15d, respectively, and the voltage output from the first power supply 18a and the second power supply 18b are applied. The output voltage is 90 degrees out of phase.

圧電体11は、第1,第2内部電極13a,13bを高電位とし、第3,第4内部電極13c,13dをグランド電極として、分極処理されている。   The piezoelectric body 11 is polarized using the first and second internal electrodes 13a and 13b as a high potential and the third and fourth internal electrodes 13c and 13d as ground electrodes.

なお、第1,第2外部電極15a,15bは、第3,第4内部電極13c,13dを示した圧電体11での図示を省略し、第3,第4外部電極15c,15dは、第1,第2内部電極13a,13bを示した圧電体11での図示を省略している。また、第3外部電極15cと第4外部電極15dを異なる端面に設けた構成としたが、これらが同じ端面に形成されるように第3内部電極13cと第4内部電極13dの形状を設定してもよい。さらに、超音波モータ素子10において、その積層方向(Z方向)の最上層と最下層のそれぞれの圧電体11は、後述する駆動形態から明らかなように、圧電不活性な層であって電極保護や保持部材14への装着を容易ならしめるためのものであり、必ずしも必要なものではない。   The first and second external electrodes 15a and 15b are not shown in the piezoelectric body 11 showing the third and fourth internal electrodes 13c and 13d, and the third and fourth external electrodes 15c and 15d are The illustration of the piezoelectric body 11 showing the first and second internal electrodes 13a and 13b is omitted. Also, the third external electrode 15c and the fourth external electrode 15d are provided on different end faces, but the shapes of the third internal electrode 13c and the fourth internal electrode 13d are set so that they are formed on the same end face. May be. Further, in the ultrasonic motor element 10, each of the piezoelectric bodies 11 in the uppermost layer and the lowermost layer in the stacking direction (Z direction) is a piezoelectrically inactive layer and is electrode-protecting as will be apparent from the drive mode described later. It is for facilitating the mounting to the holding member 14 and is not necessarily required.

続いて、超音波モータ素子10の駆動方法と駆動形態について説明する。図3は超音波モータ素子10の駆動領域を示す模式図である。超音波モータ素子10の駆動領域は、Z方向から見える超音波モータ素子10の主面をその長さ方向と幅方向で2行2列となるように、領域α,β,γ,δの4つに分けられる。   Subsequently, a driving method and a driving form of the ultrasonic motor element 10 will be described. FIG. 3 is a schematic diagram showing a drive region of the ultrasonic motor element 10. The drive area of the ultrasonic motor element 10 has four areas α, β, γ, and δ so that the main surface of the ultrasonic motor element 10 that can be seen from the Z direction has two rows and two columns in the length direction and the width direction. Divided into two.

領域αは第1内部電極13aと第3内部電極13cとがZ方向で重なる領域であり、領域βは第2内部電極13bと第3内部電極13cとがZ方向で重なる領域であり、領域γは第2内部電極13bと第4内部電極13dとがZ方向で重なる領域であり、領域δは第1内部電極13aと第4内部電極13dとがZ方向で重なる領域である。   The region α is a region where the first internal electrode 13a and the third internal electrode 13c overlap in the Z direction, the region β is a region where the second internal electrode 13b and the third internal electrode 13c overlap in the Z direction, and the region γ Is a region where the second internal electrode 13b and the fourth internal electrode 13d overlap in the Z direction, and a region δ is a region where the first internal electrode 13a and the fourth internal electrode 13d overlap in the Z direction.

図4Aに第1〜第4外部電極15a〜15dに印加する電圧波形、すなわち、第1〜第4内部電極13a〜13dに印加する電圧波形を示す。この電圧には、sin波(cos波)が、通常、用いられ、その周期をTとしている。   FIG. 4A shows voltage waveforms applied to the first to fourth external electrodes 15a to 15d, that is, voltage waveforms applied to the first to fourth internal electrodes 13a to 13d. A sin wave (cos wave) is usually used for this voltage, and the period is T.

第1内部電極13aに印加する電圧V13aと第2内部電極13bに印加する電圧V13bは位相が180度ずれている。第3内部電極13cに印加する電圧V13cと第4内部電極13dに印加する電圧V13dは位相が180度ずれている。そして、第1内部電極13aに印加する電圧V13aは第3内部電極13cに印加する電圧V13cと位相が90度ずれており、第2内部電極13bに印加する電圧V13bは第4内部電極13dに印加する電圧V13dと位相が90度ずれている。 The voltage V 13a applied to the first internal electrode 13a and the voltage V 13b applied to the second internal electrode 13b are out of phase by 180 degrees. Voltage V 13d applied to the voltage V 13c and the fourth internal electrode 13d applied to the third internal electrode 13c are 180 degrees out of phase. The voltage V 13a applied to the first internal electrode 13a is 90 degrees out of phase with the voltage V 13c applied to the third internal electrode 13c, and the voltage V 13b applied to the second internal electrode 13b is the fourth internal electrode. The voltage V 13d applied to 13d is 90 degrees out of phase.

なお、結局、第1内部電極13aに印加する電圧V13aは第4内部電極13dに印加する電圧V13dとも位相が90度ずれており、第2内部電極13bに印加する電圧V13bは第3内部電極13cに印加する電圧V13cとも位相が90度ずれている。 After all, the voltage V 13a applied to the first internal electrode 13a is 90 degrees out of phase with the voltage V 13d applied to the fourth internal electrode 13d, and the voltage V 13b applied to the second internal electrode 13b is the third voltage V 13b . The voltage V 13c applied to the internal electrode 13c is also 90 degrees out of phase.

このような電圧の印加によって、圧電体11においてそれぞれ領域α,β,γ,δに属する部分にかかる電圧波形を図4Bに示す。前述したように、領域αは第1内部電極13aと第3内部電極13cとがZ方向で重なる領域であるのでその差、“V13a−V13c”が実際の印加電圧となる。同様にして、領域βでの印加電圧は“V13b−V13c”となり、領域γでは“V13b−V13d”となり、領域δでは“V13a−V13d”となる。なお、図4A,4Bの縦軸(電圧軸)は同じ縮尺ではない。 FIG. 4B shows voltage waveforms applied to the portions belonging to the regions α, β, γ, and δ in the piezoelectric body 11 by applying such a voltage. As described above, since the region α is a region where the first internal electrode 13a and the third internal electrode 13c overlap in the Z direction, the difference, “V 13a −V 13c ”, is the actual applied voltage. Similarly, the applied voltage in the region β is “V 13b -V 13c ”, in the region γ is “V 13b -V 13d ”, and in the region δ is “V 13a -V 13d ”. Note that the vertical axes (voltage axes) in FIGS. 4A and 4B are not the same scale.

図5は図4Bに示した印加電圧による超音波モータ素子10の変形(振動)形態を模式的に示したものであり、ヘッド12の取り付け位置を黒点Pで示している。   FIG. 5 schematically shows a deformation (vibration) form of the ultrasonic motor element 10 by the applied voltage shown in FIG. 4B, and the mounting position of the head 12 is indicated by a black dot P.

時間T/4の時点では、圧電体11において領域α,δに属する部分には順電圧が掛かるので領域α,δは伸張するが、逆に、圧電体11において領域β,γに属する部分には逆電圧が掛かるので領域β,γは収縮する。そのためヘッド12の位置Pは、超音波モータ素子10の長さ方向中央から+X側にずれている。このように、超音波モータ素子10には、長さは殆ど変化しないが、その中心がずれるような長さ方向での伸縮変位が生じる。   At time T / 4, the forward voltage is applied to the portions belonging to the regions α and δ in the piezoelectric body 11 so that the regions α and δ expand, but conversely, the portions belonging to the regions β and γ in the piezoelectric body 11 are expanded. Since a reverse voltage is applied, the regions β and γ contract. Therefore, the position P of the head 12 is shifted to the + X side from the center in the length direction of the ultrasonic motor element 10. Thus, although the length hardly changes in the ultrasonic motor element 10, expansion / contraction displacement occurs in the length direction so that the center is shifted.

時間T/2の時点では、圧電体11において領域γ,δに属する部分には順電圧が掛かるので領域γ,δは伸張するが、逆に圧電体11において領域α,βに属する部分には逆電圧が掛かるので領域α,βは収縮する。そのため超音波モータ素子10には幅方向の曲げ変位が生じるために、ヘッド12の位置Pは、長さ方向中央部において+Y側にずれた位置へと動く。   At time T / 2, forward voltage is applied to the portions belonging to the regions γ and δ in the piezoelectric body 11 so that the regions γ and δ expand, but conversely, the portions belonging to the regions α and β in the piezoelectric body 11 Since reverse voltage is applied, the regions α and β contract. Therefore, since the bending displacement in the width direction is generated in the ultrasonic motor element 10, the position P of the head 12 moves to a position shifted to the + Y side in the central portion in the length direction.

時間3T/4の時点では、圧電体11において領域β,γに属する部分には順電圧が掛かるので領域β,γは伸張するが、逆に圧電体11において領域α,δに属する部分には逆電圧が掛かるので領域α,δは収縮する。そのため超音波モータ素子10には、長さは殆ど変化しないが、その中心がずれるような長さ方向での伸縮変位が生じるので、ヘッド12の位置Pは、Y方向での変位が実質的にゼロとなり、超音波モータ素子10の長さ方向中央から−X側にずれた位置へと動く。   At the time 3T / 4, the forward voltage is applied to the portions belonging to the regions β and γ in the piezoelectric body 11 so that the regions β and γ expand, but conversely, the portions belonging to the regions α and δ in the piezoelectric body 11 Since reverse voltage is applied, the regions α and δ contract. Therefore, although the length of the ultrasonic motor element 10 hardly changes, an expansion / contraction displacement occurs in the length direction so that the center of the ultrasonic motor element 10 deviates. Therefore, the position P of the head 12 is substantially displaced in the Y direction. It becomes zero, and moves to a position shifted from the center in the length direction of the ultrasonic motor element 10 to the −X side.

時間Tの時点では、圧電体11において領域α,βに属する部分には順電圧が掛かるので領域α,βは伸張するが、逆に圧電体11において領域γ,δに属する部分には逆電圧が掛かるので領域γ,δは収縮する。そのため超音波モータ素子10には、そのため超音波モータ素子10には幅方向の曲げ変位がT/2時とは反対向きに生じるために、ヘッド12の位置Pは、長さ方向中央部において−Y側にずれた位置へと動く。そして時間5T/4では再びT/4の状態に戻る。   At time T, the forward voltage is applied to the portions belonging to the regions α and β in the piezoelectric body 11 and the regions α and β expand. On the other hand, the reverse voltage is applied to the portions belonging to the regions γ and δ in the piezoelectric body 11. Therefore, the regions γ and δ contract. Therefore, the ultrasonic motor element 10 has a bending displacement in the width direction in the ultrasonic motor element 10 in the direction opposite to that at T / 2. Therefore, the position P of the head 12 is − at the center in the length direction. Move to the position shifted to the Y side. At time 5T / 4, the state returns to the state of T / 4 again.

このように超音波モータ素子10に、長さ方向の伸縮2次共振振動(L2モード)と幅方向の曲げ1次共振振動(B1モード)とを生じさせることによって、ヘッド12は反時計回りの楕円軌跡を描き、これによりヘッド12とスライダ60との間に作用する摩擦力を利用して、スライダを−X側へ移動させることができる。また、例えば、第1,第2内部電極13a,13bに印加する電圧は変更することなく、第3,第4内部電極13c,13dに印加する電圧の位相を反転させると、スライダ60を+X側へと移動させることができる。   In this way, the ultrasonic motor element 10 generates the expansion / contraction secondary resonance vibration (L2 mode) in the length direction and the bending primary resonance vibration (B1 mode) in the width direction, whereby the head 12 rotates counterclockwise. By drawing an elliptical trajectory, the slider can be moved to the −X side by using a frictional force acting between the head 12 and the slider 60. For example, if the phase of the voltage applied to the third and fourth internal electrodes 13c and 13d is reversed without changing the voltage applied to the first and second internal electrodes 13a and 13b, the slider 60 is moved to the + X side. Can be moved to.

図5から明らかなように、超音波モータ素子10がL2モードで振動している状態では実質的に長さは変化せず、また、B1モードで振動している状態において端面(長さ方向端)を固定しても、超音波モータ素子10の中央部の動きに支障はないために、超音波モータ素子10の端面を保持部材14により固定して保持しても、超音波モータ素子10は、L2B1モードで振動することができる。こうして、超音波モータ素子10がX方向でぶれることなく保持されるので、スライダ60に対する摺動位置が一定となるため、スライダ60の移動速度制御、位置決め制御を高く維持することができる。   As apparent from FIG. 5, the length does not substantially change when the ultrasonic motor element 10 vibrates in the L2 mode, and the end face (end in the length direction) remains vibrated in the B1 mode. ) Is fixed, there is no hindrance to the movement of the central portion of the ultrasonic motor element 10. Even if the end surface of the ultrasonic motor element 10 is fixed and held by the holding member 14, the ultrasonic motor element 10 And can vibrate in the L2B1 mode. Thus, since the ultrasonic motor element 10 is held without being shaken in the X direction, the sliding position with respect to the slider 60 becomes constant, so that the moving speed control and positioning control of the slider 60 can be kept high.

ところで、上記説明から明らかなように、超音波モータ素子10では、第1内部電極13aと第2内部電極13bを有する第1電極層/圧電体11/第3内部電極13cと第4内部電極13dを有する第2電極層、からなるユニットがL2B1モードの振動を生じさせる最小単位である。つまり、このような単板構造であっても、L2B1モードの振動を生じさせることができ、超音波モータ素子は積層構造であることが必須とされる訳ではない。   As is apparent from the above description, in the ultrasonic motor element 10, the first electrode layer / piezoelectric body 11 / third internal electrode 13c and the fourth internal electrode 13d having the first internal electrode 13a and the second internal electrode 13b. A unit composed of the second electrode layer having the L2B1 mode vibration is a minimum unit. That is, even with such a single plate structure, vibration in the L2B1 mode can be generated, and the ultrasonic motor element does not necessarily have a laminated structure.

超音波モータ素子10は、このようなL2モードの振動の固有2次共振周波数と、B1モードの振動の固有1次共振周波数とが一致する形状とすることが好ましい。例えば、長さ30mm×幅22mm×厚み3mm、とされる。   The ultrasonic motor element 10 preferably has a shape in which the natural secondary resonance frequency of the L2 mode vibration and the natural primary resonance frequency of the B1 mode vibration coincide with each other. For example, the length is 30 mm × width 22 mm × thickness 3 mm.

次に、上述した超音波モータ素子10の変形例について、図6を参照しながら説明する。この図6は先に示した図2Dと同様の形態で描かれている。すなわち、図6に示した構成要素による構築される超音波モータ素子では、第1内部電極13aと第2内部電極13bを有する第1電極層/第1圧電体11a/共通電極13e/第2圧電体11b/第3内部電極13cと第4内部電極13dを有する第2電極層、がL2B1モードの共振振動を生じさせるユニットとなる。図6では1ユニットのみを描いているが、複数ユニットが積層された構造であってもよい。   Next, a modification of the above-described ultrasonic motor element 10 will be described with reference to FIG. FIG. 6 is drawn in the same form as FIG. 2D described above. That is, in the ultrasonic motor element constructed by the components shown in FIG. 6, the first electrode layer / first piezoelectric body 11a / common electrode 13e / second piezoelectric element having the first internal electrode 13a and the second internal electrode 13b. The body 11b / the second electrode layer having the third internal electrode 13c and the fourth internal electrode 13d serves as a unit that generates the resonance vibration of the L2B1 mode. Although only one unit is illustrated in FIG. 6, a structure in which a plurality of units are stacked may be used.

超音波モータ素子10では電極層が介在する位置に、第1電極層と第2電極層とが交互に配置されていたが、ここでは、全面電極であってアース接続される共通電極13eが第1電極層と第2電極層との間に位置するようにして、積層構造が形成されている。   In the ultrasonic motor element 10, the first electrode layer and the second electrode layer are alternately arranged at the position where the electrode layer is interposed. Here, however, the common electrode 13e which is a full surface electrode and connected to the ground is the first electrode layer. A laminated structure is formed so as to be positioned between the first electrode layer and the second electrode layer.

そのため、第1電極層と共通電極13eに挟まれている第1圧電体11aがL2モードでの共振振動を生じる部分となり、第2電極層と共通電極13eに挟まれている第2圧電体11bがB1モードでの共振振動を生じる部分となる。このように、L2モード振動部とB1モード振動部とが分かれている点が、先に説明した超音波モータ素子10とは異なる。なお、第1圧電体11aと第2圧電体11bは説明の便宜上の区別であり、共に、圧電材料からなる部分であることに変わりはない。   Therefore, the first piezoelectric body 11a sandwiched between the first electrode layer and the common electrode 13e becomes a portion that generates resonance vibration in the L2 mode, and the second piezoelectric body 11b sandwiched between the second electrode layer and the common electrode 13e. Is a portion that generates resonance vibration in the B1 mode. As described above, the ultrasonic motor element 10 described above is different in that the L2 mode vibration unit and the B1 mode vibration unit are separated. The first piezoelectric body 11a and the second piezoelectric body 11b are distinguished for convenience of explanation, and both are the parts made of the piezoelectric material.

図7Aにさらに別の超音波モータ素子20の概略側面図を、図7Bに超音波モータ素子20の電極構造を図2Dと同様にして示し、図7Cに超音波モータ素子20の駆動電圧波形を示す。   7A shows a schematic side view of another ultrasonic motor element 20, FIG. 7B shows the electrode structure of the ultrasonic motor element 20 in the same manner as FIG. 2D, and FIG. 7C shows the drive voltage waveform of the ultrasonic motor element 20. Show.

超音波モータ素子20は、圧電体層21(圧電体11と同じ)が、長さ方向と幅方向に2行2列に分けて設けられた4つの内部電極23a〜23dと、全面電極たるグランド電極23eとで挟まれて構成されるユニットが、L2B1モードの振動を生じさせる最小単位となる。   The ultrasonic motor element 20 includes a piezoelectric layer 21 (same as the piezoelectric body 11) divided into two rows and two columns in the length direction and the width direction, and four internal electrodes 23a to 23d, and a ground serving as an entire surface electrode. A unit that is sandwiched between the electrodes 23e is the minimum unit that generates vibration in the L2B1 mode.

内部電極23aは側面に露出する形状を有しており、内部電極23aどうしが外部電極24aにより接続される。内部電極23bも側面に露出する形状を有しており、内部電極23bどうしが外部電極24bにより接続される。内部電極23cは端面に露出する形状としており、内部電極23cどうしが外部電極24cにより接続される。内部電極23dも端面に露出する形状となっており、内部電極23dどうしが外部電極24dにより接続される。グランド電極23eは側面に露出する形状を有しており、グランド電極23eどうしが外部電極24eにより接続される。   The internal electrode 23a has a shape exposed on the side surface, and the internal electrodes 23a are connected to each other by the external electrode 24a. The internal electrode 23b also has a shape exposed on the side surface, and the internal electrodes 23b are connected to each other by the external electrode 24b. The internal electrode 23c has a shape exposed at the end face, and the internal electrodes 23c are connected to each other by the external electrode 24c. The internal electrode 23d is also exposed at the end face, and the internal electrodes 23d are connected to each other by the external electrode 24d. The ground electrode 23e has a shape exposed on the side surface, and the ground electrodes 23e are connected to each other by the external electrode 24e.

図7Aに示した状態においては、グランド電極23eをグランド(アース)接続しており、電源26からスイッチ28により外部電極24b,24dを介して、内部電極23b,23dに駆動電圧が印加される。駆動電圧はそのまま、圧電体層21において内部電極23b,23dと全面電極たるグランド電極23eとの部分に印加される電圧となる。超音波モータ素子20では、対角に位置する駆動電極23b,23dが1組の駆動部となり、駆動電極23a,23cが他の1組の駆動部となる。   In the state shown in FIG. 7A, the ground electrode 23e is connected to the ground (earth), and a drive voltage is applied from the power source 26 to the internal electrodes 23b and 23d via the external electrodes 24b and 24d by the switch 28. The drive voltage is the voltage applied to the portions of the internal electrodes 23b, 23d and the ground electrode 23e as the entire surface electrode in the piezoelectric layer 21 as it is. In the ultrasonic motor element 20, the drive electrodes 23 b and 23 d positioned diagonally serve as one set of drive units, and the drive electrodes 23 a and 23 c serve as another set of drive units.

超音波モータ素子20の駆動においては、図7Cに示されるように、駆動電圧の位相を180度ずらす。図7Cと図4Bとを対比すると明らかなように、図4Bに示される領域βと領域δに印加される電圧とは位相が180度ずれており、この電圧パターンは図7Cに示される駆動電圧パターンと一致する。そのため、内部電極23a,23cに電圧を印加していなくとも、対角に位置する2つの領域に振動が生じることにおって、超音波モータ素子20全体の共振振動として、L2B1モードの振動が励起される。   In driving the ultrasonic motor element 20, as shown in FIG. 7C, the phase of the drive voltage is shifted by 180 degrees. As is apparent from the comparison between FIG. 7C and FIG. 4B, the voltage applied to the region β and the region δ shown in FIG. 4B is 180 degrees out of phase, and this voltage pattern is the drive voltage shown in FIG. 7C. Match the pattern. For this reason, even if no voltage is applied to the internal electrodes 23a and 23c, the vibration in the two regions located diagonally occurs, so that the vibration of the L2B1 mode is excited as the resonance vibration of the entire ultrasonic motor element 20. Is done.

スイッチ28を切り替えると、図7Cに示されるように、外部電極24a,24cを介して、内部電極23a,23cに駆動電圧が印加される。スイッチ28は、スライダ60の進行方向を逆転させる際に操作する。   When the switch 28 is switched, as shown in FIG. 7C, the drive voltage is applied to the internal electrodes 23a and 23c via the external electrodes 24a and 24c. The switch 28 is operated when the traveling direction of the slider 60 is reversed.

さらに、内部電極23a〜23dにそれぞれ、図4Bに示される領域α〜δに掛かる電圧パターンと同じ駆動電圧を印加すれば、さらに大きなL2B1モードの振動を励起することができる。   Furthermore, if the same drive voltage as the voltage pattern applied to the regions α to δ shown in FIG. 4B is applied to the internal electrodes 23a to 23d, a larger L2B1 mode vibration can be excited.

以上、本発明の実施の形態について説明したが、本発明はこのような形態に限定されるものではないことはいうまでもない。例えば、内部電極構造として数種の形態について説明したが、これらの限られるものではなく、L2B1モードの振動を生じさせることができる限り、その電極構造および電源による駆動電圧の出力形態に制限はない。   As mentioned above, although embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to such a form. For example, although several types of forms have been described as the internal electrode structure, they are not limited to these, and as long as vibration in the L2B1 mode can be generated, there is no restriction on the output structure of the drive voltage by the electrode structure and the power source. .

例えば、直線的な動きを行うスライダ60を取り上げた形態について説明したが、駆動対象物はこれに限られるものではなく、例えば、超音波モータ素子10等をそのヘッド12を回転自在に保持された円板の外周面等に押し当てて駆動することにより、この円板を回転させることができる。   For example, the form in which the slider 60 that moves linearly is described has been described. However, the object to be driven is not limited to this, and for example, the ultrasonic motor element 10 and the like are rotatably held by the head 12. The disk can be rotated by driving against the outer peripheral surface of the disk.

なお、本発明に係る超音波モータ素子は、従来公知の圧電素子の製造方法を用いて製造することができる。例えば、圧電セラミックスの単板から構成される超音波モータ素子は、所定形状の圧電セラミックス(焼結体)に、銀ペースト等を用いて電極を印刷し、焼き付けし、分極し、必要に応じてリード線等を取り付けることにより作製することができる。また積層構造のものは、好ましくは、セラミックス粉末をシート成形してなるグリーンシートを作製し、これに電極パターンを印刷し、積層、熱圧着、脱脂、焼成する一体焼結法を用いて積層体を作製した後、外部電極を銀ペーストの塗布、焼成により形成し、分極することにより、製造することができる。   The ultrasonic motor element according to the present invention can be manufactured using a conventionally known method for manufacturing a piezoelectric element. For example, an ultrasonic motor element composed of a single plate of piezoelectric ceramics is printed on a predetermined shape of piezoelectric ceramics (sintered body) using silver paste or the like, baked, polarized, and if necessary It can be manufactured by attaching a lead wire or the like. The laminated structure is preferably a laminate using an integrated sintering method in which a green sheet is formed by forming a ceramic powder into a sheet, an electrode pattern is printed on the sheet, and lamination, thermocompression bonding, degreasing, and firing are performed. Then, the external electrode can be formed by applying and baking a silver paste and polarizing it.

超音波モータ装置の概略構成を示す平面図。The top view which shows schematic structure of an ultrasonic motor apparatus. 超音波モータ素子の側面図。The side view of an ultrasonic motor element. 超音波モータ素子の第1端面図。The 1st end elevation of an ultrasonic motor element. 超音波モータ素子の第2端面図。The 2nd end elevation of an ultrasonic motor element. 超音波モータ素子の電極構造を示す図。The figure which shows the electrode structure of an ultrasonic motor element. 超音波モータ素子の駆動領域を示す模式図。The schematic diagram which shows the drive area | region of an ultrasonic motor element. 超音波モータ素子の駆動電圧波形を示す図。The figure which shows the drive voltage waveform of an ultrasonic motor element. 超音波モータ素子の各駆動領域に印加される電圧波形を示す図。The figure which shows the voltage waveform applied to each drive area | region of an ultrasonic motor element. 超音波モータ素子に生ずるL1B2モードの振動変位を示す図。The figure which shows the vibration displacement of the L1B2 mode which arises in an ultrasonic motor element. 別の超音波モータ素子の構成要素を示す図。The figure which shows the component of another ultrasonic motor element. さらに別の超音波モータ素子の構造を示す側面図。The side view which shows the structure of another ultrasonic motor element. 図7Aの超音波モータ素子の電極構造を示す図。The figure which shows the electrode structure of the ultrasonic motor element of FIG. 7A. 図7Aの超音波モータ素子の駆動電圧波形を示す図。The figure which shows the drive voltage waveform of the ultrasonic motor element of FIG. 7A. L1B2共振モードの説明図。Explanatory drawing of L1B2 resonance mode.

符号の説明Explanation of symbols

10…超音波モータ素子、11・11a・11b…圧電体層、12…ヘッド、13a…第1内部電極、13b…第2内部電極、13c…第3内部電極、13d…第4内部電極、13e…共通電極、14…保持部材、15a…第1外部電極、15b…第2外部電極、15c…第3外部電極、15d…第4外部電極、16…押圧機構、18a…第1電源、18b…第2電源、23a〜23d…内部電極、23e…グランド電極、24a〜24e…外部電極、26…電源、28…スイッチ、60…スライダ、62…ガイド、64…ベアリング、90…圧電素子。   DESCRIPTION OF SYMBOLS 10 ... Ultrasonic motor element, 11 * 11a * 11b ... Piezoelectric layer, 12 ... Head, 13a ... 1st internal electrode, 13b ... 2nd internal electrode, 13c ... 3rd internal electrode, 13d ... 4th internal electrode, 13e ... Common electrode, 14 ... Holding member, 15a ... First external electrode, 15b ... Second external electrode, 15c ... Third external electrode, 15d ... Fourth external electrode, 16 ... Pressing mechanism, 18a ... First power supply, 18b ... 2nd power supply, 23a-23d ... internal electrode, 23e ... ground electrode, 24a-24e ... external electrode, 26 ... power supply, 28 ... switch, 60 ... slider, 62 ... guide, 64 ... bearing, 90 ... piezoelectric element.

Claims (8)

矩形形状を有し、その長さ方向の伸縮2次共振振動とその幅方向の曲げ1次共振振動を生じる圧電素子を有することを特徴とする超音波モータ素子。   An ultrasonic motor element having a rectangular shape and having a piezoelectric element that generates a stretching secondary resonance vibration in its length direction and a bending primary resonance vibration in its width direction. 前記圧電素子は、その長さ方向での伸縮振動の固有2次共振周波数とその幅方向での曲げ振動の固有1次共振周波数とが一致する形状を有することを特徴とする請求項1に記載の超音波モータ素子。   The piezoelectric element has a shape in which a natural secondary resonance frequency of stretching vibration in a length direction thereof matches a natural primary resonance frequency of bending vibration in a width direction thereof. Ultrasonic motor element. 前記圧電素子は、その一方の主面に長さ方向で2分割して設けられた第1電極および第2電極と、他方の主面に幅方向で2分割して設けられた第3電極および第4電極を有することを特徴とする請求項1または請求項2に記載の超音波モータ素子。   The piezoelectric element includes a first electrode and a second electrode that are divided into two in the length direction on one main surface, and a third electrode that is divided into two in the width direction on the other main surface, and The ultrasonic motor element according to claim 1, further comprising a fourth electrode. 前記圧電素子は、長さ方向で2分割された第1電極および第2電極,第1圧電体,共通電極,第2圧電体,幅方向で2分割された第3電極および第4電極の順で積層された構造を有することを特徴とする請求項1または請求項2に記載の超音波モータ素子。   The piezoelectric element includes a first electrode and a second electrode divided into two in the length direction, a first piezoelectric body, a common electrode, a second piezoelectric body, and a third electrode and a fourth electrode divided into two in the width direction. The ultrasonic motor element according to claim 1, wherein the ultrasonic motor element has a laminated structure. 前記圧電素子は、その一方の主面に長さ方向と幅方向とで2行2列に設けられた4つの駆動電極と、他方の主面に設けられた全面電極とを有していることを特徴とする請求項1または請求項2に記載の超音波モータ素子。   The piezoelectric element has four drive electrodes provided in two rows and two columns on one main surface in the length direction and the width direction, and a full-surface electrode provided on the other main surface. The ultrasonic motor element according to claim 1, wherein: 矩形形状を有する圧電体と、前記圧電体の側面中央に設けられた摺動部材と、前記圧電体の一方の主面に長さ方向において2分割して設けられた第1電極および第2電極と、前記圧電体の他方の主面に幅方向において2分割して設けられた第3電極および第4電極と、前記第1,第2電極と前記第3,第4電極にそれぞれ位相が90度ずれた駆動電圧を印加する電源部とを具備し、
前記電源部が前記第1,第2電極にそれぞれ印加する駆動電圧は位相が180度ずれており、かつ、前記第3,第4電極にそれぞれ印加する駆動電圧は位相が180度ずれていることによって、前記圧電体にその長さ方向の伸縮2次共振振動とその幅方向での曲げ1次共振振動を生じさせることを特徴とする超音波モータ装置。
A piezoelectric body having a rectangular shape, a sliding member provided at the center of the side surface of the piezoelectric body, and a first electrode and a second electrode provided on one main surface of the piezoelectric body by being divided into two in the length direction And the third and fourth electrodes provided on the other main surface of the piezoelectric body in the width direction, and the first, second, and third and fourth electrodes have a phase of 90 respectively. A power supply unit that applies a drive voltage that is shifted in degree,
The driving voltages applied to the first and second electrodes by the power supply unit are 180 degrees out of phase, and the driving voltages applied to the third and fourth electrodes are 180 degrees out of phase. The ultrasonic motor apparatus according to claim 1, wherein the piezoelectric body generates elastic secondary resonance vibration in the length direction and bending primary resonance vibration in the width direction.
矩形形状を有し、その長さ方向で2分割された第1電極および第2電極,第1圧電体,共通電極,第2圧電体,幅方向で2分割された第3電極および第4電極がこの順序で積層されてなる圧電素子部と、前記圧電素子部の側面中央に設けられた摺動部材と、前記第1,第2電極と前記第3,第4電極にそれぞれ位相が90度ずれた駆動電圧を印加する電源部とを具備し、
前記電源部が前記第1,第2電極にそれぞれ印加する駆動電圧は位相が180度ずれており、かつ、前記第3,第4電極にそれぞれ印加する駆動電圧は位相が180度ずれていることによって、前記圧電素子部にその長さ方向の伸縮2次共振振動とその幅方向での曲げ1次共振振動を生じさせることを特徴とする超音波モータ装置。
A first electrode and a second electrode having a rectangular shape divided into two in the length direction, a first piezoelectric body, a common electrode, a second piezoelectric body, and a third electrode and a fourth electrode divided into two in the width direction Are laminated in this order, a sliding member provided at the center of the side surface of the piezoelectric element portion, and the phases of the first, second electrode, and third and fourth electrodes are 90 degrees. A power supply unit that applies a shifted drive voltage;
The driving voltages applied to the first and second electrodes by the power supply unit are 180 degrees out of phase, and the driving voltages applied to the third and fourth electrodes are 180 degrees out of phase. The ultrasonic motor device according to claim 1, wherein the piezoelectric element portion generates expansion / contraction secondary resonance vibration in the length direction and bending primary resonance vibration in the width direction.
矩形形状を有する圧電体と、前記圧電体の側面中央に設けられた摺動部材と、前記圧電体の一方の主面に2行2列に設けられた4つの駆動電極と、前記圧電体の他方の主面全体に設けられた共通電極と、前記駆動電極と前記共通電極との間に駆動電圧を印加する電源部とを具備し、
前記4つの駆動領域は対角に位置する2つの駆動領域から構成される2組の駆動部に分けられており、
前記電源部が前記2組の駆動部の一方に属する2つの駆動電極にそれぞれ位相が180度ずれた伸縮振動を生じさせる電圧を印加し、他方に属する2つの駆動領域には電圧を印加しないことにより、前記圧電体にその長さ方向の伸縮2次共振振動とその幅方向での曲げ1次共振振動を生じさせることを特徴とする超音波モータ装置。
A piezoelectric body having a rectangular shape, a sliding member provided in the center of the side surface of the piezoelectric body, four drive electrodes provided in two rows and two columns on one main surface of the piezoelectric body, and the piezoelectric body A common electrode provided over the other main surface, and a power supply unit that applies a drive voltage between the drive electrode and the common electrode,
The four drive regions are divided into two sets of drive units composed of two drive regions located diagonally,
The power supply unit applies a voltage that causes stretching vibrations that are 180 degrees out of phase to the two drive electrodes belonging to one of the two sets of drive units, and does not apply a voltage to the two drive regions belonging to the other. The ultrasonic motor apparatus according to claim 1, wherein the piezoelectric body generates elastic secondary resonance vibration in the length direction and bending primary resonance vibration in the width direction.
JP2007076667A 2007-03-23 2007-03-23 Ultrasonic motor device Expired - Fee Related JP5144097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076667A JP5144097B2 (en) 2007-03-23 2007-03-23 Ultrasonic motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076667A JP5144097B2 (en) 2007-03-23 2007-03-23 Ultrasonic motor device

Publications (2)

Publication Number Publication Date
JP2008236980A true JP2008236980A (en) 2008-10-02
JP5144097B2 JP5144097B2 (en) 2013-02-13

Family

ID=39909088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076667A Expired - Fee Related JP5144097B2 (en) 2007-03-23 2007-03-23 Ultrasonic motor device

Country Status (1)

Country Link
JP (1) JP5144097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203836B4 (en) 2013-03-06 2018-07-26 Physik Instrumente (Pi) Gmbh & Co. Kg Piezoelectric ultrasonic vibration element and its use

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117672A (en) * 1987-10-30 1989-05-10 Nec Corp Driving method for ultrasonic motor
JPH03265477A (en) * 1990-02-27 1991-11-26 Nisca Corp Ultrasonic wave oscillator, oscillating method, driver and driving method employing the same
JPH05146171A (en) * 1991-11-19 1993-06-11 Olympus Optical Co Ltd Ultrasonic oscillator
JPH06276765A (en) * 1993-03-19 1994-09-30 Canon Inc Ultrasonic motor
JPH07184382A (en) * 1993-07-09 1995-07-21 Nanomotion Ltd Body-moving micromotor
JP2000324862A (en) * 1999-05-14 2000-11-24 Canon Inc Oscillatory type actuator and oscillatory type drive device
JP2003501988A (en) * 1999-05-31 2003-01-14 ナノモーション リミテッド Multi-layer piezoelectric motor
JP2006187112A (en) * 2004-12-27 2006-07-13 Tdk Corp Stacked piezoelectric element
JP2006187093A (en) * 2004-12-27 2006-07-13 Pentax Corp Vibrator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117672A (en) * 1987-10-30 1989-05-10 Nec Corp Driving method for ultrasonic motor
JPH03265477A (en) * 1990-02-27 1991-11-26 Nisca Corp Ultrasonic wave oscillator, oscillating method, driver and driving method employing the same
JPH05146171A (en) * 1991-11-19 1993-06-11 Olympus Optical Co Ltd Ultrasonic oscillator
JPH06276765A (en) * 1993-03-19 1994-09-30 Canon Inc Ultrasonic motor
JPH07184382A (en) * 1993-07-09 1995-07-21 Nanomotion Ltd Body-moving micromotor
JP2000324862A (en) * 1999-05-14 2000-11-24 Canon Inc Oscillatory type actuator and oscillatory type drive device
JP2003501988A (en) * 1999-05-31 2003-01-14 ナノモーション リミテッド Multi-layer piezoelectric motor
JP2006187112A (en) * 2004-12-27 2006-07-13 Tdk Corp Stacked piezoelectric element
JP2006187093A (en) * 2004-12-27 2006-07-13 Pentax Corp Vibrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203836B4 (en) 2013-03-06 2018-07-26 Physik Instrumente (Pi) Gmbh & Co. Kg Piezoelectric ultrasonic vibration element and its use

Also Published As

Publication number Publication date
JP5144097B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP4794897B2 (en) Ultrasonic motor
JP4795158B2 (en) Ultrasonic motor
JP4697929B2 (en) Multilayer piezoelectric element and vibration wave drive device
JP2008160913A (en) Ultrasonic motor
JP4245096B2 (en) Multilayer piezoelectric element, piezoelectric actuator using the same, and ultrasonic motor
JP5144097B2 (en) Ultrasonic motor device
JP4563490B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP2003164174A (en) Piezoelectric actuator
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JPH05175567A (en) Laminated actuator
JP4818853B2 (en) Ultrasonic motor element
JP2005295656A (en) Ultrasonic motor and electronic equipment fitted with ultrasonic motor
JP4454930B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4818858B2 (en) Ultrasonic motor element
JP2000022231A (en) Piezoelectric device
JP2008061344A (en) Ultrasonic motor element
JP2008182866A (en) Manufacturing method for vibrating body in ultrasonic actuator
JP5080518B2 (en) Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element
JP4477915B2 (en) Ultrasonic motor
JP2946870B2 (en) Method and apparatus for evaluating piezoelectric material
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP5605980B2 (en) Ultrasonic motor and electronic device using the same
JP5491718B2 (en) Ultrasonic motor
JP2004048984A (en) Piezoelectric actuator and electronic apparatus provided therewith
JP2003052183A (en) Piezoelectric actuator and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees