[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4454930B2 - Ultrasonic motor and electronic device with ultrasonic motor - Google Patents

Ultrasonic motor and electronic device with ultrasonic motor Download PDF

Info

Publication number
JP4454930B2
JP4454930B2 JP2002347687A JP2002347687A JP4454930B2 JP 4454930 B2 JP4454930 B2 JP 4454930B2 JP 2002347687 A JP2002347687 A JP 2002347687A JP 2002347687 A JP2002347687 A JP 2002347687A JP 4454930 B2 JP4454930 B2 JP 4454930B2
Authority
JP
Japan
Prior art keywords
vibration
vibrating body
ultrasonic motor
piezoelectric element
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002347687A
Other languages
Japanese (ja)
Other versions
JP2004187334A (en
Inventor
朗弘 飯野
聖士 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002347687A priority Critical patent/JP4454930B2/en
Publication of JP2004187334A publication Critical patent/JP2004187334A/en
Application granted granted Critical
Publication of JP4454930B2 publication Critical patent/JP4454930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は振動体の振動により、移動体を摩擦駆動する超音波モータに関し、特に振動体に同一面内方向への伸縮振動と屈曲振動を励振し移動体を駆動する超音波モータに関する。
【0002】
【従来の技術】
弾性体の共振モードを利用した超音波モータは制御性に優れ、精密位置決め用アクチュエータとしても注目されている。特に、各種ステージ用のアクチュエータとしてはリニヤ型の超音波モータが要求される場合が多く、多くのタイプが提案され研究されている。その中でも、矩形板の縦(伸縮)振動と屈曲振動の合成振動を利用した超音波モータは様々なものが研究されている。これらの中でも積層型圧電素子を用いた超音波モータは、▲1▼低電圧駆動 ▲2▼小型・高出力 ▲3▼制御性に優れる ▲4▼構造が簡単 ▲5▼製造工程が少ない 等の特徴を有する(例えば、特許文献1参照。)。
【0003】
以下に、構造並びに駆動原理を説明する。図4において、振動体40は二種類の圧電素子13および8を厚み方向に積層して構成される。図4(a)は振動体40を上方から見た図であり、第一の圧電素子13は圧電素子13の長さおよび幅の中央を結んでできた四つの領域において図中の+、−で示される様に分極方向が変えられ厚み方向に分極処理されている。圧電素子13の一方の面には各分極領域に対応するように電極9b、9c、9d、9eが設けられている。圧電素子13の他方の面にはほぼ全体に渡って電極9fが設けられている。圧電極9b、9c、9d、9eと電極9f間に駆動信号を印加することにより厚みと直交する方向に屈曲振動を励振する。図4(c)は振動体40を下方から見た図であり、第二の圧電素子8は全体に渡って同一方向に分極処理されている。そして圧電素子8の表裏の面のほぼ全面には電極9a、9fが設けられており、電極9aと9fの間に駆動信号を印加することにより厚みと直交する方向に伸縮(縦)振動を励振する。従って電極9fは圧電素子13、8の共通電極となっている。
【0004】
駆動方法としては例えば図4(b)に示した様に、発振回路12の信号を、そのまま増幅回路A10aで増幅した信号を第一の圧電素子13に印加し、発振回路12の信号を、移相回路11により例えば90度位相をずらした信号を、増幅回路B10bで増幅した信号を第二の圧電素子8に印加すれば、時間的に位相の異なる縦振動と屈曲振動を励振でき、振動体40の側面は図4(d)に示した様に楕円運動する。従って、振動体40と接した移動体は動作する。
【0005】
また、この様な構造とすることで伸縮(縦)振動と屈曲振動を独立に制御できる為、変位のなす楕円の形状をコントロールでき、モータ特性(速度、推進力)を広範囲に可変可能であるとともに高精度な位置決めが可能となる。
【0006】
【特許文献1】
特開2000−116162号公報(第5−7頁、第4図及び第5図)
【0007】
【発明が解決しようとする課題】
しかしながら図4に示した様に縦振動励振用圧電素子と屈曲振動励振用圧電素子二枚を単に重ねて積層して振動体を構成した場合、以下に示すような現象が生じやすい。▲1▼厚み方向曲げ振動を始めとし、不要モードが使用共振点付近に励振される。▲2▼厚み方向曲げ振動を始めとし、不要モードと結合したモードが励振される。これらの一例を有限要素法による解析結果を基に示す。解析したモデルは図4に示すものと同じ構成のものであり、長さ20mm、幅5.45mm、厚み2mm(二つの圧電素子は各1mm)の形状をしている。
【0008】
図5は縦振動励振用圧電素子に信号を印加した場合の周波数−アドミッタンスの関係(図中太線で示す)であるが縦振動の共振点(80KHz付近)の近傍(81KHz付近)にも不要振動、すなわち図6に示す厚み方向への屈曲振動が励振されてしまっている。
【0009】
図7は実際の使用状態、即ち縦振動励振用圧電素子と屈曲振動励振用圧電素子に駆動信号を印加した場合の屈曲振動の共振点における振動体の側面を見たものであるが、厚み方向に屈曲変形しており、厚み方向屈曲振動も励振されていることがわかる。
【0010】
図5に示した様に使用する共振点、即ち駆動周波数付近に不要モードが励振されると、振動変位に不要モードの変位が重畳される為、移動体には不必要な変位成分が加わり、駆動効率が低下する。また、この不要モードの影響は僅かな周波数の違いで影響度も大きく変化するため、特性ばらつきの要因ともなる。更には不要モードの影響により自励発振駆動が難しくなる。
【0011】
図7に示した状態でも同様となる。また、不要モードと結合した場合には、振動体の電気−機械結合係数が低下するため移動体の速度、推進力は低下する。そして、振動変位に不要モードの変位の成分も含まれる為、移動体には不必要な変位成分が加わり、駆動効率が低下する。
【0012】
以上不要モードの影響について一例を示したが、振動体の形状によって様々な振動モードの影響を受ける。
【0013】
また、同様の問題は、複数設けた圧電素子のうち、一部の圧電素子に駆動信号を印加して駆動する方式の超音波モータにおいても発生する恐れがある。圧電素子によって発生する応力が振動体全体に均等に掛からないため、厚み方向の屈曲振動を励振する可能性があるためである。
【0014】
【課題を解決するための手段】
そこで、本発明の圧電アクチュエータは、互いに異なる分極領域を有する複数の種類の圧電素子を積層して振動体を構成し、前記積層方向と直交する方向に発生する振動変位により前記振動体と接する稼動体、もしくは振動体自体を駆動する超音波モータにおいて、前記複数の種類の圧電素子は一定の順序で交互に積層されていることを特徴とする。
もしくは弾性体と、前記弾性体を挟む様に配置され前記弾性体の一方の面と他方の面に接合された同一の圧電素子を有する振動体を有する超音波モータであって、前記圧電素子の前記積層方向と直交する方向に発生する振動変位により前記振動体と接する稼動体、もしくは振動体自体を駆動する。
【0015】
もしくは複数の種類の圧電素子を積層もしくは圧電素子と弾性体を積層して振動体を構成し、前記積層方向と直交する方向に発生する振動変位により前記振動体と接する稼動体、もしくは振動体自体を駆動する超音波モータにおいて、前記複数の種類の圧電素子は夫々異なる振動を励振するものであり、前記積層された圧電素子を挟む様に配置され、前記積層された圧電素子の一方の面と他方の面に接合された弾性体からなる振動体を有する超音波モータとする。
【0016】
また別な解決方法として、複数の種類の圧電素子を積層して振動体を構成し、前記積層方向と直交する方向に発生する振動変位により前記振動体と接する稼動体、もしくは振動体自体を駆動する超音波モータにおいて、前記振動は伸縮振動と屈曲振動であり、前記伸縮振動と屈曲振動の固有周波数付近に、前記振動体の厚み方向の屈曲振動の固有周波数が位置しない様に前記振動体の厚みを決定する。
【0017】
【発明の実施の形態】
本発明の実施の形態を従来例との差異を中心に図面を基に説明する。
(実施の形態1)
図1は本発明の超音波モータの振動体を示したものである。振動体10は二種類の圧電素子1および2を厚み方向に積層して構成される。第一の圧電素子1(1a、1b)は圧電素子1の長さおよび幅の中央を結んでできた四つの領域において図中の+、−で示される様に分極方向が変えられ厚み方向に分極処理されている。図示しないが圧電素子1の表裏に設けた電極に駆動信号を印加することにより厚みと直交する方向に屈曲振動を励振する。第二の圧電素子2は全体に渡って同一方向に分極処理されている。図示しないが圧電素子2の表裏に設けた電極に駆動信号を印加することにより厚みと直交する方向に伸縮(縦)振動を励振する。
【0018】
図1(a)に示した様に第二の圧電素子2の表裏を挟む形で第一の圧電素子1a、1bが積層されている。接合方法としては接着の他、シートプロセスを用いて作製した圧電素子のシートを重ねた後で、焼成しても構わない。そして、振動体10の厚みの中心から見て表裏方向に対称に二つの圧電素子1,2が配置されている。このルールさえ守れば圧電素子1,2の枚数及び厚み並びに配置は任意である。また、図示しない電極及び各電極間の短絡方法も任意であり、圧電素子1、2の間に絶縁層を設けても構わない。駆動信号印加時には二つの圧電素子1、2は夫々異なる応力を発生するがこのような配置にすることにより厚み方向への屈曲変位が発生するような応力は発生しない。従って、使用する共振点、即ち縦振動モードと積層方向と直交する方向への屈曲振動モードの共振点付近には不要モードは励振されない。また不要モードと結合することもない。
【0019】
ここでは矩形板の振動体について述べたが、例えば円板や円環状の振動体の面内方向の屈曲振動と面内振動を利用する超音波モータや面内方向の屈曲振動や面内振動を利用する圧電トランス等の圧電デバイスにも応用可能である。
【0020】
また図9に示すように複数の種類の圧電素子1、2を交互に積層して振動体を構成しても夫々の圧電素子で発生する力は均等になるから同様の効果が得られる。
【0021】
(実施の形態2)
図2は本発明の超音波モータの振動体の第二の例を示したものである。振動体20は二種類の圧電素子3、4および二つの弾性体5a、5bを厚み方向に積層して構成される。第一の圧電素子3は圧電素子3の長さおよび幅の中央を結んでできた四つの領域において図中の+、−で示される様に分極方向が変えられ厚み方向に分極処理されている。図示しないが圧電素子3の表裏に設けた電極に駆動信号を印加することにより厚みと直交する方向に屈曲振動を励振する。第二の圧電素子4は全体に渡って同一方向に分極処理されている。図示しないが圧電素子2の表裏に設けた電極に駆動信号を印加することにより厚みと直交する方向に伸縮(縦)振動を励振する。
【0022】
図2(a)に示した様に接合された第一の圧電素子3、第二の圧電素子4の上下の面を挟む形で二つの弾性体5a、5bが接合されている。このように本実施の形態では二種類の圧電素子3,4は積層方向に対して対称に配置していないが、厚み方向への屈曲変位が発生するような応力が働いた際に応力が最大となる上下の面に厚みが同じ弾性体5a、5bを設けることによりその応力による不要モードの発生や、使用モードと不要モードとの結合の影響を最小限にすることが可能となる。
【0023】
弾性体5a、5bはアルミ合金やステンレス等の金属等からなり、圧電素子3,4に対し厚みが厚いことが望ましい。
【0024】
(実施の形態3)
図3は本発明の超音波モータの振動体の別の例を示したものである。振動体30は二つの同一の圧電素子6a、6bが弾性体7の上下の面を挟み込むように接合され構成されている。圧電素子6は圧電素子6の長さおよび幅の中央を結んでできた四つの領域において全て図中の+で示される様に厚み方向に同一方向に分極処理されている。図示しないが圧電素子6の一方の面には四つの分割電極が、他方の面には前面に渡って電極が設けられている。四つの分割領域のうち対角にあたる二つの領域に駆動信号を印加することにより厚みと直交する方向に屈曲振動と伸縮(縦)振動を同時に励振する。
【0025】
この様に圧電素子のみを用いて振動体を構成することも可能であるが、その場合、機械的強度を得るには圧電素子の厚みを厚くしなければならず分極電圧が高くなり製造が難しくなるだけでなく駆動電圧も高くなってしまう。そこで厚みの薄い圧電素子を金属等の弾性体と接合して使用すればよいが、この場合、構造がユニモルフ構造となるため不要振動となる厚み方向への屈曲振動を励振し易くなってしまう。ここで、圧電素子を弾性体の両面に接合すればこの現象は緩和されるが、面内において分極方向が異なる圧電素子を使用した場合や、図3の例の様に一部分のみに駆動信号を印加した場合には屈曲振動を励振する恐れがある。
【0026】
そこで、本実施の形態では弾性体7の厚み方向の曲げ剛性が圧電素子6a、6b全体の曲げ剛性よりも大きくなる様に弾性体7の厚みを設定することで厚み方向の屈曲振動は抑制される。圧電素子は本実施の形態に限るものではなく図4に示した様に異なる振動体を励振する方式についても同様の構成が採れる。また、弾性体の両端に圧電素子を接合し何れか一方を駆動する方式の超音波モータについても同様の構成が採れる。
【0027】
以上により、不要モードの影響を受けないだけでなく、厚みの薄い圧電素子を複数枚設けることによる低電圧駆動、高出力化のメリットも出る。
【0028】
(実施の形態4)
不要モードの結合、励振等の影響を受けない対策として、振動体形状を特定形状にすることでも対応可能である。
【0029】
以下に有限要素法による解析結果を基に例を示す。解析したモデルは図4に示すものと同じ構成のものであり、長さ20mm、幅5.45mmであり、厚み(二つの圧電素子の厚みは等しい)を1mm、2mm、4mmと変えて固有値解析をした場合の結果を図8に示す。
図8(a)は厚みが1mmの場合の、(b)は厚みが2mmの場合の、(c)は厚みが3mmの縦振動のモードを示したものである。(c)以外は厚み方向屈曲変位成分が混在していることがわかる。ちなみに上記の条件では屈曲振動はいずれの場合も不要振動の影響を受けていない正常な形状(純粋な屈曲振動モード)であった。
【0030】
これらは使用する振動モードの共振周波数はほとんど依存しないが、厚みにより共振周波数が変化する様々な厚み方向の屈曲振動モードの共振周波数が使用する振動モードの共振周波数に近づいたため発生したと考えられる。従って、例えば(c)の条件の様に伸縮振動と屈曲振動の固有周波数付近に、振動体の厚み方向の屈曲振動モードの固有周波数が位置しない様に振動体の厚みを決めることで不要モードの影響を受けないようにできる。
【0031】
尚、本実施の形態は圧電素子と弾性体を接合等の手段によって積層し、積層方向と直交する面内方向の振動を利用した超音波モータにも適用可能である。
【0032】
(実施の形態5)
本発明の圧電アクチュエータを用いて電子機器を構成した例を図10を基に説明する。図10は本発明の超音波モータを用いてハードディスクドライブ機構における読み取りヘッドの位置決め駆動を行うものである。ディスク15上の読み取りヘッド16bはアーム16aの先端に取り付けられている。アーム16aの他端は、アーム16aの回転中心となる軸受けが固定されるとともに図示しない軸受けを中心に回転する回転板16cが設けられている。振動体50は振動の節となる中央部で案内部材18a、18bによって、長手方向に移動可能な様に案内されている。回転板16cの外周部には振動体50に接合された突起17がばね14の力を受け接触されている。回転板16cは突起17の力を受け動作する。本超音波モータは駆動信号一周期あたりの送り量が極めて小さくできるため回転板16c、即ちヘッド16bの位置決め精度は極めて高く、ディスク15の記録密度を格段に上げることが可能となる。
【0033】
ここではハードディスクドライブ機構を例に示したが、加工装置における送り機構やマニュピレータ等へも応用が可能である。
【0034】
【発明の効果】
本発明によれば不要モードが使用共振点付近に励振されることはない。また、不要モードとの結合したモードが励振されることもない。従って、自励発振駆動が容易になると共にアクチュエータ個々の特性ばらつきも小さく、そして目的の振動モードの変位のみを移動体に伝えることが可能なため高い駆動効率が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかわる超音波モータの振動体の構成を示す図である。
【図2】本発明の実施の形態2にかかわる超音波モータの振動体の構成を示す図である。
【図3】本発明の実施の形態3にかかわる超音波モータの振動体の構成を示す図である。
【図4】従来の超音波モータの構成を示す図である。
【図5】従来の超音波モータの振動体の周波数応答解析結果の例を示す図である。
【図6】従来の超音波モータの振動体の固有値解析結果の例を示す図である。
【図7】従来の超音波モータの振動体の固有値解析結果の別の例を示す図である。
【図8】従来の超音波モータの振動体の振動解析の結果を示す図である。
【図9】本発明の実施の形態1にかかわる超音波モータの振動体の別の構成を示す図である。
【図10】本発明の超音波モータを用いた電子機器を示す図である。
【符号の説明】
1,2,3,4,6,8,13 圧電素子
5,7 弾性体
9 電極
10,20,30,40,50 振動体
14 ねじ
15 ディスク
16 アーム
17 突起
18 案内部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic motor that frictionally drives a moving body by vibration of the vibrating body, and more particularly to an ultrasonic motor that drives the moving body by exciting expansion and contraction vibration and bending vibration in the same in-plane direction.
[0002]
[Prior art]
An ultrasonic motor using the resonance mode of an elastic body has excellent controllability, and has attracted attention as a precision positioning actuator. In particular, linear actuators are often required as actuators for various stages, and many types have been proposed and studied. Among them, various ultrasonic motors utilizing the combined vibration of the longitudinal (extension / contraction) vibration and bending vibration of a rectangular plate have been studied. Among these, ultrasonic motors using laminated piezoelectric elements are: (1) Low voltage drive, (2) Small size and high output, (3) Excellent controllability, (4) Simple structure, (5) Less manufacturing process, etc. (For example, refer patent document 1).
[0003]
The structure and driving principle will be described below. In FIG. 4, the vibrating body 40 is configured by stacking two types of piezoelectric elements 13 and 8 in the thickness direction. FIG. 4A is a view of the vibrating body 40 as viewed from above, and the first piezoelectric element 13 has four regions formed by connecting the centers of the length and width of the piezoelectric element 13. The polarization direction is changed and the polarization is performed in the thickness direction as shown in FIG. Electrodes 9b, 9c, 9d, and 9e are provided on one surface of the piezoelectric element 13 so as to correspond to each polarization region. On the other surface of the piezoelectric element 13, an electrode 9f is provided almost entirely. By applying a drive signal between the pressure electrodes 9b, 9c, 9d, 9e and the electrode 9f, bending vibration is excited in a direction perpendicular to the thickness. FIG. 4C is a view of the vibrating body 40 as viewed from below, and the second piezoelectric element 8 is polarized in the same direction throughout. Electrodes 9a and 9f are provided on almost the entire front and back surfaces of the piezoelectric element 8. By applying a drive signal between the electrodes 9a and 9f, expansion (longitudinal) vibration is excited in a direction perpendicular to the thickness. To do. Therefore, the electrode 9 f is a common electrode for the piezoelectric elements 13 and 8.
[0004]
As a driving method, for example, as shown in FIG. 4B, a signal obtained by amplifying the signal from the oscillation circuit 12 by the amplification circuit A 10a is applied to the first piezoelectric element 13, and the signal from the oscillation circuit 12 is transferred. For example, when a signal whose phase is shifted by 90 degrees by the phase circuit 11 and a signal amplified by the amplifier circuit B10b are applied to the second piezoelectric element 8, longitudinal vibrations and bending vibrations having different phases can be excited. The side surface of 40 moves elliptically as shown in FIG. Accordingly, the moving body in contact with the vibrating body 40 operates.
[0005]
In addition, with such a structure, expansion / contraction (longitudinal) vibration and bending vibration can be controlled independently, so that the shape of the ellipse formed by the displacement can be controlled, and the motor characteristics (speed, propulsive force) can be varied over a wide range. At the same time, highly accurate positioning is possible.
[0006]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-116162 (page 5-7, FIGS. 4 and 5)
[0007]
[Problems to be solved by the invention]
However, as shown in FIG. 4, when a vibrating body is formed by simply stacking and laminating two longitudinal vibration exciting piezoelectric elements and bending vibration exciting piezoelectric elements, the following phenomenon is likely to occur. (1) Unnecessary modes such as bending vibration in the thickness direction are excited in the vicinity of the use resonance point. (2) A mode coupled with an unnecessary mode is excited, including bending vibration in the thickness direction. An example of these is shown based on the analysis result by the finite element method. The analyzed model has the same configuration as that shown in FIG. 4, and has a length of 20 mm, a width of 5.45 mm, and a thickness of 2 mm (two piezoelectric elements are each 1 mm).
[0008]
FIG. 5 shows the relationship between frequency and admittance when a signal is applied to the piezoelectric element for longitudinal vibration excitation (indicated by a thick line in the figure), but unnecessary vibration is also generated near the resonance point (around 80 KHz) of longitudinal vibration (around 81 KHz). That is, the bending vibration in the thickness direction shown in FIG. 6 has been excited.
[0009]
FIG. 7 shows the side surface of the vibrating body at the resonance point of bending vibration when a drive signal is applied to the actual use state, that is, the longitudinal vibration exciting piezoelectric element and the bending vibration exciting piezoelectric element. It can be seen that the film is bent and deformed, and bending vibration in the thickness direction is also excited.
[0010]
As shown in FIG. 5, when the unnecessary mode is excited near the resonance point to be used, that is, near the driving frequency, the displacement of the unnecessary mode is superimposed on the vibration displacement, so an unnecessary displacement component is added to the moving body, Drive efficiency decreases. Further, the influence of this unnecessary mode also causes a characteristic variation because the degree of influence changes greatly due to a slight difference in frequency. Furthermore, self-excited oscillation driving becomes difficult due to the influence of unnecessary modes.
[0011]
The same applies to the state shown in FIG. In addition, when coupled with the unnecessary mode, the electromechanical coupling coefficient of the vibrating body is lowered, so that the speed and propulsive force of the moving body are lowered. Since the vibration displacement includes a component of an unnecessary mode displacement, an unnecessary displacement component is added to the moving body, and the driving efficiency is lowered.
[0012]
Although an example of the influence of the unnecessary mode has been described above, it is affected by various vibration modes depending on the shape of the vibrator.
[0013]
Similar problems may also occur in ultrasonic motors that drive by applying drive signals to some of the piezoelectric elements provided. This is because the stress generated by the piezoelectric element is not evenly applied to the entire vibrating body, so that bending vibration in the thickness direction may be excited.
[0014]
[Means for Solving the Problems]
Therefore, the piezoelectric actuator of the present invention is configured by laminating a plurality of types of piezoelectric elements having mutually different polarization regions to constitute a vibrating body, and in contact with the vibrating body by vibration displacement generated in a direction perpendicular to the stacking direction. In the ultrasonic motor for driving the body or the vibrator itself, the plurality of types of piezoelectric elements are alternately stacked in a predetermined order.
Alternatively, an ultrasonic motor having an elastic body and a vibrating body that is disposed so as to sandwich the elastic body and has the same piezoelectric element joined to one surface and the other surface of the elastic body, The moving body in contact with the vibrating body or the vibrating body itself is driven by the vibration displacement generated in the direction orthogonal to the stacking direction.
[0015]
Alternatively, a vibrating body is configured by laminating a plurality of types of piezoelectric elements or by laminating piezoelectric elements and an elastic body, and an operating body in contact with the vibrating body by vibration displacement generated in a direction orthogonal to the laminating direction, or the vibrating body itself The plurality of types of piezoelectric elements excite different vibrations, and are arranged so as to sandwich the stacked piezoelectric elements, and one surface of the stacked piezoelectric elements An ultrasonic motor having a vibrating body made of an elastic body joined to the other surface is used.
[0016]
As another solution, a vibrating body is configured by laminating a plurality of types of piezoelectric elements, and the moving body in contact with the vibrating body or the vibrating body itself is driven by vibration displacement generated in a direction perpendicular to the stacking direction. In the ultrasonic motor, the vibration is a stretching vibration and a bending vibration, and the natural frequency of the bending vibration in the thickness direction of the vibrating body is not located near the natural frequency of the stretching vibration and the bending vibration. Determine the thickness.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described based on the drawings with a focus on differences from the conventional example.
(Embodiment 1)
FIG. 1 shows a vibrating body of an ultrasonic motor according to the present invention. The vibrating body 10 is configured by stacking two types of piezoelectric elements 1 and 2 in the thickness direction. In the first piezoelectric element 1 (1a, 1b), the polarization direction is changed in the thickness direction as indicated by + and-in the figure in the four regions formed by connecting the centers of the length and width of the piezoelectric element 1. Polarized. Although not shown, bending vibration is excited in a direction orthogonal to the thickness by applying a drive signal to electrodes provided on the front and back surfaces of the piezoelectric element 1. The second piezoelectric element 2 is polarized in the same direction throughout. Although not shown, expansion and contraction (longitudinal) vibration is excited in a direction orthogonal to the thickness by applying a drive signal to electrodes provided on the front and back surfaces of the piezoelectric element 2.
[0018]
As shown in FIG. 1A, the first piezoelectric elements 1a and 1b are stacked so as to sandwich the front and back of the second piezoelectric element 2. As a bonding method, in addition to bonding, a sheet of piezoelectric elements manufactured using a sheet process may be stacked and then fired. The two piezoelectric elements 1 and 2 are arranged symmetrically in the front and back direction when viewed from the center of the thickness of the vibrating body 10. As long as this rule is observed, the number, thickness, and arrangement of the piezoelectric elements 1 and 2 are arbitrary. Also, an electrode (not shown) and a method for short-circuiting between the electrodes are arbitrary, and an insulating layer may be provided between the piezoelectric elements 1 and 2. When the drive signal is applied, the two piezoelectric elements 1 and 2 generate different stresses, but such an arrangement does not generate stress that causes bending displacement in the thickness direction. Therefore, the unnecessary mode is not excited near the resonance point to be used, that is, in the vicinity of the resonance point of the bending vibration mode in the direction orthogonal to the longitudinal vibration mode and the stacking direction. Moreover, it is not combined with an unnecessary mode.
[0019]
Here, a rectangular plate vibrating body has been described. For example, an ultrasonic motor using an in-plane bending vibration and an in-plane vibration of a disk or an annular vibrating body, an in-plane bending vibration or an in-plane vibration, and the like. It can also be applied to piezoelectric devices such as piezoelectric transformers to be used.
[0020]
Further, as shown in FIG. 9, even if a plurality of types of piezoelectric elements 1 and 2 are alternately laminated to form a vibrating body, the same effect can be obtained because the force generated by each piezoelectric element is equalized.
[0021]
(Embodiment 2)
FIG. 2 shows a second example of the vibrator of the ultrasonic motor of the present invention. The vibrating body 20 is configured by laminating two types of piezoelectric elements 3 and 4 and two elastic bodies 5a and 5b in the thickness direction. The first piezoelectric element 3 is polarized in the thickness direction by changing the polarization direction in four regions formed by connecting the length and width centers of the piezoelectric element 3 as indicated by + and-in the figure. . Although not shown, bending vibration is excited in a direction perpendicular to the thickness by applying a drive signal to electrodes provided on the front and back surfaces of the piezoelectric element 3. The second piezoelectric element 4 is polarized in the same direction throughout. Although not shown, expansion and contraction (longitudinal) vibration is excited in a direction orthogonal to the thickness by applying a drive signal to electrodes provided on the front and back surfaces of the piezoelectric element 2.
[0022]
As shown in FIG. 2A, the two elastic bodies 5a and 5b are joined so as to sandwich the upper and lower surfaces of the first piezoelectric element 3 and the second piezoelectric element 4 that are joined together. As described above, in this embodiment, the two types of piezoelectric elements 3 and 4 are not arranged symmetrically with respect to the stacking direction, but the stress is maximum when a stress that causes bending displacement in the thickness direction is applied. By providing the elastic bodies 5a and 5b having the same thickness on the upper and lower surfaces, it becomes possible to minimize the generation of unnecessary modes due to the stress and the influence of coupling between the use mode and the unnecessary mode.
[0023]
The elastic bodies 5 a and 5 b are made of a metal such as an aluminum alloy or stainless steel, and are preferably thicker than the piezoelectric elements 3 and 4.
[0024]
(Embodiment 3)
FIG. 3 shows another example of the vibrator of the ultrasonic motor of the present invention. The vibrating body 30 is formed by joining two identical piezoelectric elements 6 a and 6 b so as to sandwich the upper and lower surfaces of the elastic body 7. The piezoelectric element 6 is polarized in the same direction in the thickness direction as shown by + in the figure in all four regions formed by connecting the length and width centers of the piezoelectric element 6. Although not shown, four divided electrodes are provided on one surface of the piezoelectric element 6 and electrodes are provided on the other surface over the front surface. By applying a drive signal to two diagonal regions among the four divided regions, bending vibration and expansion / contraction (longitudinal) vibration are simultaneously excited in a direction orthogonal to the thickness.
[0025]
In this way, it is possible to construct a vibrating body using only a piezoelectric element, but in that case, in order to obtain mechanical strength, the thickness of the piezoelectric element has to be increased, and the polarization voltage becomes higher, which makes it difficult to manufacture. In addition to this, the drive voltage also increases. Therefore, a thin piezoelectric element may be used by being bonded to an elastic body such as a metal. However, in this case, since the structure is a unimorph structure, it becomes easy to excite bending vibration in the thickness direction, which is unnecessary vibration. Here, this phenomenon can be mitigated if the piezoelectric element is bonded to both surfaces of the elastic body, but when a piezoelectric element having a different polarization direction in the surface is used, or as shown in the example of FIG. When applied, there is a risk of exciting flexural vibration.
[0026]
Therefore, in this embodiment, the bending vibration in the thickness direction is suppressed by setting the thickness of the elastic body 7 so that the bending rigidity in the thickness direction of the elastic body 7 is larger than the bending rigidity of the entire piezoelectric elements 6a and 6b. The The piezoelectric element is not limited to the present embodiment, and the same configuration can be adopted for a method of exciting different vibrators as shown in FIG. The same configuration can be applied to an ultrasonic motor of a type in which a piezoelectric element is bonded to both ends of an elastic body and one of them is driven.
[0027]
As described above, not only is it not affected by the unnecessary mode, but also there are advantages of low voltage driving and high output by providing a plurality of thin piezoelectric elements.
[0028]
(Embodiment 4)
As a measure that is not affected by coupling of unnecessary modes, excitation, etc., it is also possible to cope with a specific shape of the vibrating body.
[0029]
An example is shown below based on the analysis result by the finite element method. The analyzed model has the same configuration as that shown in FIG. 4, has a length of 20 mm, a width of 5.45 mm, and an eigenvalue analysis by changing the thickness (the thickness of the two piezoelectric elements is equal) to 1 mm, 2 mm, and 4 mm. FIG. 8 shows the result when the above is performed.
FIG. 8A shows the longitudinal vibration mode when the thickness is 1 mm, FIG. 8B shows the case when the thickness is 2 mm, and FIG. 8C shows the longitudinal vibration mode when the thickness is 3 mm. It can be seen that thickness direction bending displacement components are mixed except for (c). Incidentally, under the above conditions, the bending vibration was a normal shape (pure bending vibration mode) that was not affected by unnecessary vibration in any case.
[0030]
These are considered to have occurred because the resonance frequencies of the bending vibration modes in various thickness directions in which the resonance frequency changes depending on the thickness approached the resonance frequencies of the vibration modes to be used, although the resonance frequencies of the vibration modes to be used hardly depend on them. Therefore, for example, the unnecessary mode is determined by determining the thickness of the vibrating body so that the natural frequency of the bending vibration mode in the thickness direction of the vibrating body is not located near the natural frequency of the stretching vibration and bending vibration as in the condition of (c). Can be unaffected.
[0031]
Note that this embodiment can also be applied to an ultrasonic motor in which a piezoelectric element and an elastic body are stacked by means such as bonding, and vibration in an in-plane direction orthogonal to the stacking direction is used.
[0032]
(Embodiment 5)
An example in which an electronic apparatus is configured using the piezoelectric actuator of the present invention will be described with reference to FIG. FIG. 10 shows the positioning drive of the read head in the hard disk drive mechanism using the ultrasonic motor of the present invention. The read head 16b on the disk 15 is attached to the tip of the arm 16a. The other end of the arm 16a is provided with a rotating plate 16c that is fixed to a bearing that serves as a rotation center of the arm 16a and that rotates about a bearing (not shown). The vibrating body 50 is guided so as to be movable in the longitudinal direction by the guide members 18a and 18b at the central portion serving as a vibration node. A protrusion 17 joined to the vibrating body 50 is brought into contact with the outer peripheral portion of the rotating plate 16c under the force of the spring 14. The rotating plate 16 c operates by receiving the force of the protrusion 17. Since this ultrasonic motor can extremely reduce the feed amount per one drive signal cycle, the positioning accuracy of the rotary plate 16c, that is, the head 16b is extremely high, and the recording density of the disk 15 can be remarkably increased.
[0033]
Here, the hard disk drive mechanism is shown as an example, but the present invention can also be applied to a feeding mechanism, a manipulator and the like in a processing apparatus.
[0034]
【The invention's effect】
According to the present invention, the unnecessary mode is not excited near the use resonance point. Further, a mode coupled with an unnecessary mode is not excited. Therefore, self-excited oscillation driving is facilitated, the characteristic variation of each actuator is small, and only the displacement of the target vibration mode can be transmitted to the moving body, so that high driving efficiency can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a vibrating body of an ultrasonic motor according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing a configuration of a vibrating body of an ultrasonic motor according to a second embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a vibrating body of an ultrasonic motor according to a third embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of a conventional ultrasonic motor.
FIG. 5 is a diagram illustrating an example of a frequency response analysis result of a vibration body of a conventional ultrasonic motor.
FIG. 6 is a diagram illustrating an example of an eigenvalue analysis result of a vibrating body of a conventional ultrasonic motor.
FIG. 7 is a diagram illustrating another example of the eigenvalue analysis result of a vibration body of a conventional ultrasonic motor.
FIG. 8 is a diagram illustrating a result of vibration analysis of a vibrating body of a conventional ultrasonic motor.
FIG. 9 is a diagram showing another configuration of the vibrating body of the ultrasonic motor according to the first embodiment of the present invention.
FIG. 10 is a diagram showing an electronic apparatus using the ultrasonic motor of the present invention.
[Explanation of symbols]
1, 2, 3, 4, 6, 8, 13 Piezoelectric elements 5, 7 Elastic body 9 Electrodes 10, 20, 30, 40, 50 Vibrating body 14 Screw 15 Disk 16 Arm 17 Protrusion 18 Guide member

Claims (5)

互いに異なる分極領域を有する複数の種類の圧電素子を厚み方向に積層して振動体を構成し、前記積層方向と直交する方向に発生する二つの異なる振動の合成による振動変位により前記振動体と接する稼動体、もしくは振動体自体を駆動する超音波モータであって、
前記振動体は、前記振動変位を発生する積層された圧電素子の積層方向両端に弾性体が接合されていることを特徴とする超音波モータ。
A plurality of types of piezoelectric elements having different polarization regions are stacked in the thickness direction to form a vibrating body, and come into contact with the vibrating body by vibration displacement by combining two different vibrations generated in a direction perpendicular to the stacking direction. An ultrasonic motor that drives the moving body or the vibrating body itself,
The ultrasonic motor according to claim 1, wherein the vibrating body has an elastic body bonded to both ends in the stacking direction of the stacked piezoelectric elements that generate the vibration displacement .
弾性体と、前記弾性体の厚み方向両端を挟む様に前記弾性体の一方の面と他方の面に接合された圧電素子を有する振動体を有する超音波モータであって、
前記圧電素子は前記厚み方向と直交する方向に二つの異なる振動の合成による振動変位を発生し、
前記弾性体の厚み方向の曲げ剛性は前記圧電素子の厚み方向の曲げ剛性よりも大きいことを特徴とする超音波モータ。
An ultrasonic motor having an elastic body and a vibrating body having a piezoelectric element bonded to one surface and the other surface of the elastic body so as to sandwich both ends in the thickness direction of the elastic body ,
The piezoelectric element generates a vibration displacement by combining two different vibrations in a direction orthogonal to the thickness direction,
2. The ultrasonic motor according to claim 1, wherein a bending stiffness in the thickness direction of the elastic body is greater than a bending stiffness in the thickness direction of the piezoelectric element .
互いに異なる分極領域を有する前記複数の種類の圧電素子は伸縮振動を発生する圧電素子と屈曲振動を発生する圧電素子であることを特徴とする請求項1に記載の超音波モータ。 2. The ultrasonic motor according to claim 1, wherein the plurality of types of piezoelectric elements having different polarization regions are a piezoelectric element that generates stretching vibration and a piezoelectric element that generates bending vibration . 互いに異なる分極領域を有する複数の種類の圧電素子を厚み方向に積層もしくは圧電素子と弾性体を厚み方向に積層して振動体を構成し、前記積層方向と直交する方向に発生する伸縮振動と屈曲振動の合成による振動変位により前記振動体と接する稼動体、もしくは振動体自体を駆動する超音波モータであって、
前記伸縮振動と屈曲振動の固有周波数付近に、前記振動体の厚み方向の屈曲振動の固有周波数が位置しない様な前記振動体の厚みとしたことを特徴とする超音波モータ。
A plurality of types of piezoelectric elements having different polarization regions are stacked in the thickness direction, or a piezoelectric element and an elastic body are stacked in the thickness direction to form a vibrating body, and stretching vibration and bending generated in a direction perpendicular to the stacking direction. An operating body that is in contact with the vibrating body by vibration displacement due to vibration synthesis, or an ultrasonic motor that drives the vibrating body itself,
The ultrasonic motor is characterized in that the thickness of the vibrating body is such that the natural frequency of the bending vibration in the thickness direction of the vibrating body is not located near the natural frequency of the stretching vibration and bending vibration .
請求項1から4のいずれか一項に記載の超音波モ−タを備えた電子機器。An electronic apparatus comprising the ultrasonic motor according to any one of claims 1 to 4.
JP2002347687A 2002-11-29 2002-11-29 Ultrasonic motor and electronic device with ultrasonic motor Expired - Fee Related JP4454930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347687A JP4454930B2 (en) 2002-11-29 2002-11-29 Ultrasonic motor and electronic device with ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347687A JP4454930B2 (en) 2002-11-29 2002-11-29 Ultrasonic motor and electronic device with ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2004187334A JP2004187334A (en) 2004-07-02
JP4454930B2 true JP4454930B2 (en) 2010-04-21

Family

ID=32750805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347687A Expired - Fee Related JP4454930B2 (en) 2002-11-29 2002-11-29 Ultrasonic motor and electronic device with ultrasonic motor

Country Status (1)

Country Link
JP (1) JP4454930B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634174B2 (en) * 2004-02-26 2011-02-16 セイコーインスツル株式会社 Ultrasonic motor and electronic device using the same
CN101213733B (en) 2006-01-23 2011-03-02 松下电器产业株式会社 Piezoelectric element and ultrasonic actuator
JP6766328B2 (en) 2015-07-30 2020-10-14 セイコーエプソン株式会社 Piezoelectric drive, robots, and methods of driving piezoelectric drives
DE102016110124B4 (en) * 2016-06-01 2018-07-19 Physik Instrumente (Pi) Gmbh & Co. Kg ultrasonic motor

Also Published As

Publication number Publication date
JP2004187334A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4794897B2 (en) Ultrasonic motor
JP4072518B2 (en) Vibration wave drive
JP2001218481A (en) Piezoelectric drive, ultrasonic motor, and electronic equipment with ultrasonic motor
JP2006094591A (en) Ultrasonic motor and its operation method
US8304962B2 (en) Ultrasonic motor
JP4454930B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP5669444B2 (en) Vibration type driving device
JP3173902B2 (en) Ultrasonic linear motor and method of manufacturing the same
JPH05175567A (en) Laminated actuator
JPH08182351A (en) Ultrasonic actuator
JP3353998B2 (en) Ultrasonic transducer
JP2008067539A (en) Ultrasonic actuator and method of manufacturing its vibrator
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JPH08242592A (en) Ultrasonic actuator
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP4313610B2 (en) Ultrasonic motor, method for manufacturing the same, and electronic apparatus equipped with ultrasonic motor
JP5080518B2 (en) Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element
JP2001095269A (en) Vibrating actuator
JP5144097B2 (en) Ultrasonic motor device
JP2009055779A (en) Ultrasonic actuator, magnetic recording apparatus
Kim et al. Design and driving characteristics of ultrasonic linear motor
JP2006333682A (en) Method for setting drive signal frequency of ultrasonic motor and driving device for ultrasonic motor
JP2004048984A (en) Piezoelectric actuator and electronic apparatus provided therewith
JP2006304425A (en) Operation method of ultrasonic motor
JP4714405B2 (en) Ultrasonic motor and electronic device with ultrasonic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees