JP2008218801A - High electron mobility ZnO device - Google Patents
High electron mobility ZnO device Download PDFInfo
- Publication number
- JP2008218801A JP2008218801A JP2007055686A JP2007055686A JP2008218801A JP 2008218801 A JP2008218801 A JP 2008218801A JP 2007055686 A JP2007055686 A JP 2007055686A JP 2007055686 A JP2007055686 A JP 2007055686A JP 2008218801 A JP2008218801 A JP 2008218801A
- Authority
- JP
- Japan
- Prior art keywords
- zno
- layer
- plane
- electron mobility
- undoped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005533 two-dimensional electron gas Effects 0.000 claims abstract description 12
- 230000005669 field effect Effects 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 abstract description 17
- 239000000758 substrate Substances 0.000 abstract description 11
- 229910003363 ZnMgO Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Landscapes
- Junction Field-Effect Transistors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
【課題】 本発明は、HEMT構造に適した“大きなバンドギャップの半導体/小さなバンドギャップの半導体/基板”構造で、2次元電子ガス層をチャンネル層として利用する構造の高電子移動度ZnOデバイスを提供することを課題とする。
【解決手段】 Zn極性(0001)面を有するアンドープZnO層及びZn極性(0001)面を有するアンドープZn1−xMgxO(0.15≦x≦0.45)層のヘテロ接合を有し、Zn極性(0001)面を有するアンドープZnO層の2次元電子ガス層をチャンネル層とすることを特徴とする高電子移動度ZnOデバイスである。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a high electron mobility ZnO device having a structure using a two-dimensional electron gas layer as a channel layer in a “large band gap semiconductor / small band gap semiconductor / substrate” structure suitable for a HEMT structure. The issue is to provide.
A heterojunction of an undoped ZnO layer having a Zn polarity (0001) plane and an undoped Zn 1-x Mg x O (0.15 ≦ x ≦ 0.45) layer having a Zn polarity (0001) plane is provided. A high electron mobility ZnO device characterized in that a channel layer is a two-dimensional electron gas layer of an undoped ZnO layer having a Zn polarity (0001) plane.
[Selection] Figure 1
Description
本発明は、高電子移動度ZnOデバイスに関する。 The present invention relates to a high electron mobility ZnO device.
SiやGaAs等に代表される従来の半導体に比べて、禁制帯幅の広いワイドギャップ半導体は高出力・高周波デバイスや短波長の光電子デバイスの材料として有用である。 Compared to conventional semiconductors typified by Si and GaAs, wide gap semiconductors with a wider forbidden band are useful as materials for high-power / high-frequency devices and short-wavelength optoelectronic devices.
高周波用途や高出力用制御用デバイスとしてSiデバイスの物理的限界を超えるデバイス開発の要求がある。そこでSiC、GaN及びダイヤモンド等のワイドギャップ半導体が高耐電圧、高温動作、高速動作可能である特長を生かしたデバイス材料として注目を集めている。ZnOはワイドギャップ半導体の中でも、ヘテロ構造が利用可能、大きなバンドオフセットが利用可能、バルク基板が利用可能、飽和電子速度が他のワイドギャップ半導体に比べ大きい等の電子デバイスとしての大きな利点を有し、広い分野での利用が期待される。 There is a need for device development that exceeds the physical limits of Si devices as high-frequency applications and high-power control devices. Therefore, wide-gap semiconductors such as SiC, GaN, and diamond are attracting attention as device materials that take advantage of the features of high withstand voltage, high-temperature operation, and high-speed operation. ZnO has great advantages as an electronic device such as a heterostructure, a wide band offset, a bulk substrate, and a higher saturation electron velocity than other wide gap semiconductors. It is expected to be used in a wide range of fields.
ワイドギャップ半導体は、高周波・高出力電子デバイスとして移動体通信の基地局増幅器、ミリ波レーダー、家電製品、ハイブリッド・電気自動車等での使用が検討されている。ZnOはその高性能な特性と安価で簡便なデバイスプロセスという特長を生かすことにより、他のワイドギャップ半導体と同様な用途やさらに広い範囲での応用展開が期待できる。 Wide-gap semiconductors are being considered for use in mobile communication base station amplifiers, millimeter wave radars, home appliances, hybrid / electric vehicles, etc., as high-frequency, high-power electronic devices. By taking advantage of its high-performance characteristics and inexpensive and simple device process, ZnO can be expected to be used in the same way as other wide-gap semiconductors and in a wider range of applications.
ZnOはII-VI族半導体として、III-V族半導体のAlGaAs/GaAsやAlGaN/GaNと同様にヘテロ構造を利用したHEMT(高電子移動度トランジスタ)構造の電界効果トランジスタとして期待できる。さらに、ZnOの大きな電気分極効果を利用することにより、チャンネル層の電子の強い閉じ込めが期待される。電気分極効果を積極的に利用するためには、ZnOの(0001)面の利用が必須である。 ZnO can be expected as a field effect transistor having a HEMT (High Electron Mobility Transistor) structure using a heterostructure as a II-VI group semiconductor, like AlGaAs / GaAs and AlGaN / GaN of III-V group semiconductors. Furthermore, strong confinement of electrons in the channel layer is expected by utilizing the large electric polarization effect of ZnO. In order to positively use the electric polarization effect, it is essential to use the (0001) plane of ZnO.
ZnOは図5に示すように、Zn極性面及びO極性面を有する。ZnOのエピタキシャル成長用基板としては、サファイアが広く用いられているが、サファイア基板を用いると通常O極性面のZnOが成長することが知られている。
HEMTは通常、“大きなバンドギャップの半導体/小さなバンドギャップの半導体/基板”により構成されているが、O極性面ZnO(0001)面を用いた場合その構造では2次元電子ガスを形成しない。
なお、HEMT構造には不適な“小さなバンドギャップの半導体/大きなバンドギャップの半導体/基板”による2次元電子ガスの形成が報告されているがHEMTとしては十分なものではない。
The HEMT is usually composed of a “large band gap semiconductor / small band gap semiconductor / substrate”, but when an O-polar plane ZnO (0001) plane is used, the structure does not form a two-dimensional electron gas.
It has been reported that the formation of a two-dimensional electron gas by “small band gap semiconductor / large band gap semiconductor / substrate”, which is unsuitable for the HEMT structure, is not sufficient for the HEMT.
本発明は、HEMT構造に適した「大きなバンドギャップの半導体/小さなバンドギャップの半導体/基板」構造で、2次元電子ガス層をチャンネル層として利用する構造の高電子移動度ZnOデバイスを提供することを課題とする。 The present invention provides a high electron mobility ZnO device having a structure using a two-dimensional electron gas layer as a channel layer in a “large band gap semiconductor / small band gap semiconductor / substrate” structure suitable for a HEMT structure. Is an issue.
Zn極性(0001)面を有するアンドープZnO層及びZn極性(0001)面を有するアンドープZn1−xMgxO(0.15≦x≦0.45)層のヘテロ接合を有し、Zn極性(0001)面を有するアンドープZnO層の2次元電子ガス層をチャンネル層とすることを特徴とする高電子移動度ZnOデバイスである。 A heterojunction of an undoped ZnO layer having a Zn polarity (0001) plane and an undoped Zn 1-x Mg x O (0.15 ≦ x ≦ 0.45) layer having a Zn polarity (0001) plane; A high electron mobility ZnO device characterized in that a two-dimensional electron gas layer of an undoped ZnO layer having a (0001) plane is a channel layer.
また上記高電子移動度ZnOデバイスは、電界効果トランジスタであることを特徴とする高電子移動度ZnOデバイスである。 The high electron mobility ZnO device is a field effect transistor, which is a high electron mobility ZnO device.
本発明によれば、HEMT構造に適した構造を利用しながら、2次元電子ガス層をチャンネル層として利用できる高電子移動度ZnOデバイスが提供される。 ADVANTAGE OF THE INVENTION According to this invention, the high electron mobility ZnO device which can utilize a two-dimensional electron gas layer as a channel layer is provided, utilizing the structure suitable for a HEMT structure.
図1は、Zn極性面のZnMgO/ZnOへテロ構造による2次元電子ガス形成の模式図である。そして、その作製方法は次のとおりである。成長法は酸素ラジカルを用いたMBE法である。基板としてサファイアc面基板を用い、MgOバッファ層(10nm程度)、アンドープZnO層(1μm程度)を順次成長させる。このときアンドープZnOはZn極性(0001)面が成長面となる。
その上にZn極性面のMg組成が5%〜45%の範囲のアンドープZnMgO層(30nm程度)を成長させてZnOデバイスとする。
FIG. 1 is a schematic diagram of two-dimensional electron gas formation by a ZnMgO / ZnO heterostructure with a Zn polar face. And the manufacturing method is as follows. The growth method is an MBE method using oxygen radicals. A sapphire c-plane substrate is used as a substrate, and an MgO buffer layer (about 10 nm) and an undoped ZnO layer (about 1 μm) are sequentially grown. At this time, the unpolarized ZnO has a Zn polar (0001) plane as a growth plane.
On top of this, an undoped ZnMgO layer (about 30 nm) having a Mg composition in the range of 5% to 45% of the Zn polar face is grown to form a ZnO device.
図2は、ZnMgO/ZnOへテロ構造によるMg組成に対する移動度の推移を示す図である。図2から分かるように、ZnMgO/ZnOへテロ構造における、ZnMgO中のMg組成が0〜20%の範囲で移動度が急上昇し、これ以降Mg組成が45%まで高い移動度が得られている。そしてMg組成が15〜45%の範囲では、図3に示すとおりZnMgO/ZnOへテロ構造界面に高濃度の2次元電子ガスが形成されていることが分った。 FIG. 2 is a diagram showing the transition of mobility with respect to Mg composition by the ZnMgO / ZnO heterostructure. As can be seen from FIG. 2, in the MgMgO / ZnO heterostructure, the mobility rapidly increases when the Mg composition in ZnMgO is in the range of 0 to 20%, and thereafter, high mobility is obtained up to 45%. . It was found that when the Mg composition was in the range of 15 to 45%, a high-concentration two-dimensional electron gas was formed at the ZnMgO / ZnO heterostructure interface as shown in FIG.
図4は、図1の高電子移動度ZnOデバイスのアンドープZnMgO層上にゲート、ソース、及びドレイン電極を形成して、ヘテロ接合電界効果トランジスタとしたものである。
図4の高電子移動度ZnOデバイスでは、アンドープZnO層の成長のためサファイアc面基板及びMgOバッファ層を採用したが、Zn極性ZnOバルク基板、GaN基板、SiC基板、Si基板等上に直接Zn極性ZnO層を成長してもよい。
また本発明の要旨を逸脱しない限り、Zn極性(0001)面を有するアンドープZnO層及びZn極性(0001)面を有するアンドープZn1−xMgxO(0.15≦x≦0.45)層の上下に他の半導体層を介在させてもよい。
FIG. 4 shows a heterojunction field effect transistor formed by forming gate, source and drain electrodes on the undoped ZnMgO layer of the high electron mobility ZnO device of FIG.
The high electron mobility ZnO device of FIG. 4 employs a sapphire c-plane substrate and an MgO buffer layer for the growth of an undoped ZnO layer. A polar ZnO layer may be grown.
Further, unless departing from the gist of the present invention, an undoped ZnO layer having a Zn polar (0001) plane and an undoped Zn 1-x Mg x O (0.15 ≦ x ≦ 0.45) layer having a Zn polar (0001) plane Other semiconductor layers may be interposed above and below the substrate.
以上、本発明を実施するための最良の形態を説明したが、本発明はこれらの記載に限定して解釈されない。
本発明におけるZnO及びZn1−xMgxOとしては、ZnO単体及びZn1−xMgxO単体のみならず、ZnO及びZn1−xMgxOのバンド構造を大きく変えない程度に他のII族元素(Be、Cd等)、VI族元素(S、Se等)を含んだZnO及びZn1−xMgxOを主体とするものでもよい。なお本発明において、アンドープZnO層、アンドープZn1−xMgxO層とは、ZnO層、Zn1−xMgxO層に電導型不純物が含まれていないことを意味する。
As mentioned above, although the best form for implementing this invention was demonstrated, this invention is limited to these description and is not interpreted.
As ZnO and Zn 1-x Mg x O in the present invention, not only ZnO simple substance and Zn 1-x Mg x O simple substance, but also other kinds of ZnO and Zn 1-x Mg x O are not greatly changed. It may be mainly composed of ZnO and Zn 1-x Mg x O containing group II elements (Be, Cd, etc.), group VI elements (S, Se, etc.). In the present invention, the undoped ZnO layer and the undoped Zn 1-x Mg x O layer mean that the ZnO layer and the Zn 1-x Mg x O layer do not contain conductive impurities.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007055686A JP2008218801A (en) | 2007-03-06 | 2007-03-06 | High electron mobility ZnO device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007055686A JP2008218801A (en) | 2007-03-06 | 2007-03-06 | High electron mobility ZnO device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008218801A true JP2008218801A (en) | 2008-09-18 |
Family
ID=39838470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007055686A Pending JP2008218801A (en) | 2007-03-06 | 2007-03-06 | High electron mobility ZnO device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008218801A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015041764A (en) * | 2013-08-20 | 2015-03-02 | 正幸 安部 | Semiconductor device |
JP2015041765A (en) * | 2013-08-20 | 2015-03-02 | 正幸 安部 | Semiconductor device |
CN110600539A (en) * | 2019-09-02 | 2019-12-20 | 广东美的制冷设备有限公司 | High electron mobility transistor and application thereof |
CN111354782A (en) * | 2018-12-21 | 2020-06-30 | 广东美的白色家电技术创新中心有限公司 | A kind of high electron mobility transistor based on MgZnO/ZnO and preparation method thereof |
CN112310209A (en) * | 2019-08-01 | 2021-02-02 | 广东美的白色家电技术创新中心有限公司 | Field effect transistor and preparation method thereof |
US11011673B2 (en) | 2018-07-24 | 2021-05-18 | Samsung Electronics Co., Ltd. | Quantum dot device and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046081A (en) * | 2001-07-30 | 2003-02-14 | Sharp Corp | Semiconductor element |
JP2004304166A (en) * | 2003-03-14 | 2004-10-28 | Rohm Co Ltd | ZnO SEMICONDUCTOR DEVICE |
JP2005197410A (en) * | 2004-01-06 | 2005-07-21 | Stanley Electric Co Ltd | Semiconductor device and manufacturing method of semiconductor device |
-
2007
- 2007-03-06 JP JP2007055686A patent/JP2008218801A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046081A (en) * | 2001-07-30 | 2003-02-14 | Sharp Corp | Semiconductor element |
JP2004304166A (en) * | 2003-03-14 | 2004-10-28 | Rohm Co Ltd | ZnO SEMICONDUCTOR DEVICE |
JP2005197410A (en) * | 2004-01-06 | 2005-07-21 | Stanley Electric Co Ltd | Semiconductor device and manufacturing method of semiconductor device |
Non-Patent Citations (1)
Title |
---|
JPN7012002573; S.Sasa et al: 'High -performance ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator-semiconductor st' Applied Physics Letters vol.89, 20060801, art.053502 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015041764A (en) * | 2013-08-20 | 2015-03-02 | 正幸 安部 | Semiconductor device |
JP2015041765A (en) * | 2013-08-20 | 2015-03-02 | 正幸 安部 | Semiconductor device |
US11011673B2 (en) | 2018-07-24 | 2021-05-18 | Samsung Electronics Co., Ltd. | Quantum dot device and display device |
CN111354782A (en) * | 2018-12-21 | 2020-06-30 | 广东美的白色家电技术创新中心有限公司 | A kind of high electron mobility transistor based on MgZnO/ZnO and preparation method thereof |
CN112310209A (en) * | 2019-08-01 | 2021-02-02 | 广东美的白色家电技术创新中心有限公司 | Field effect transistor and preparation method thereof |
CN110600539A (en) * | 2019-09-02 | 2019-12-20 | 广东美的制冷设备有限公司 | High electron mobility transistor and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wong et al. | N-polar GaN epitaxy and high electron mobility transistors | |
CN103077890B (en) | Semiconductor device and manufacture method | |
JP2004260114A (en) | Compound semiconductor element | |
WO2014026018A1 (en) | Iii-nitride enhancement mode transistors with tunable and high gate-source voltage rating | |
WO2015004853A1 (en) | Semiconductor device | |
US9087890B2 (en) | Semiconductor device | |
KR101673965B1 (en) | Monolithic multi channel semiconductor power device and manufacturing method thereof | |
KR101672396B1 (en) | Quaternary nitride semiconductor power device and manufacturing method thereof | |
JP2012169470A (en) | Semiconductor device and manufacturing method of the same | |
WO2014031229A1 (en) | Ingan channel n-polar gan hemt profile | |
CN111863962A (en) | A Novel AlGaN-Based Multi-Channel Field Effect Transistor | |
JP2008218801A (en) | High electron mobility ZnO device | |
CN103123934A (en) | Gallium-nitride-based high electronic mobility transistor structure with barrier layer and manufacture method thereof | |
CN102931230A (en) | Double-heterojunction gallium nitride based HEMT (High Electron Mobility Transistor) taking aluminum-gallium-nitrogen as high-resistance layer and manufacturing method thereof | |
CN105322009A (en) | Gallium nitride based high electronic mobility transistor epitaxial structure and manufacturing method therefor | |
KR20140112272A (en) | High Electron Mobility Transistor and method of manufacturing the same | |
US20240322029A1 (en) | High electron mobility transistor, radio frequency transistor, power amplifier, and preparation method for high electron mobility transistor | |
US8975641B1 (en) | Transistor having an ohmic contact by gradient layer and method of making the same | |
CN111326577B (en) | Preparation method of power device epitaxial structure and power device epitaxial structure | |
US20240079486A1 (en) | Semiconductor structure and method of manufacture | |
CN106601790A (en) | Longitudinal modulated doped gallium-nitride-based field effect transistor structure and manufacturing method thereof | |
CN106449748A (en) | Epitaxial structure of gallium-nitride-based transistors with high electron mobility | |
CN100350577C (en) | Gallium-indium-nitride-arsenide based epitaxial wafer and hetero-field effect transistor using the same, and its manufacturing method | |
WO2004040638A1 (en) | Gallium indium nitride arsenide hetero-field-effect transistor, its manufacturing method, and transmitter/receiver using same | |
JP2015056413A (en) | Nitride semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20090910 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120418 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120710 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121204 |