[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008211202A - Wiring board and semiconductor package - Google Patents

Wiring board and semiconductor package Download PDF

Info

Publication number
JP2008211202A
JP2008211202A JP2008020855A JP2008020855A JP2008211202A JP 2008211202 A JP2008211202 A JP 2008211202A JP 2008020855 A JP2008020855 A JP 2008020855A JP 2008020855 A JP2008020855 A JP 2008020855A JP 2008211202 A JP2008211202 A JP 2008211202A
Authority
JP
Japan
Prior art keywords
component
main surface
inorganic material
core
component mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008020855A
Other languages
Japanese (ja)
Other versions
JP4975655B2 (en
Inventor
Koju Ogawa
幸樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008020855A priority Critical patent/JP4975655B2/en
Publication of JP2008211202A publication Critical patent/JP2008211202A/en
Application granted granted Critical
Publication of JP4975655B2 publication Critical patent/JP4975655B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board capable of obtaining high reliability even if a core substrate is large. <P>SOLUTION: The wiring board 10 is provided with the core substrate 11, a ceramic capacitor 101 and a main surface side wiring laminate 31. The core substrate 11 has the largest length of 50 mm, and a component housing hole 90 opened at a core main surface 12 side and a core rear surface 13 side. The ceramic capacitor 101 is housed in the component housing hole 90 in a state that the core main surface 12 and a capacitor main surface 102 face the same side. A component mounting region 23 capable of mounting an IC chip 21 is set on the surface 39 of the main surface side wiring laminate 31. The ceramic capacitor 101 is disposed immediately below the component mounting region 23, and the outer dimension of the ceramic capacitor 101 is set smaller than the outer dimension of the component mounting region 23. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コア基板の表面に配線積層部を形成した構造であって、内部に板状部品が収容されている配線基板、及び、その配線基板とその上に搭載された板状部品との隙間を樹脂材で封止した構造の半導体パッケージに関するものである。   The present invention has a structure in which a wiring laminated portion is formed on the surface of a core substrate, and includes a wiring substrate in which a plate-like component is accommodated, and the wiring substrate and a plate-like component mounted thereon. The present invention relates to a semiconductor package having a structure in which a gap is sealed with a resin material.

コンピュータのマイクロプロセッサ等として使用される半導体集積回路チップ(ICチップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間ピッチも狭くなる傾向にある。一般的にICチップの底面には多数の端子が密集してアレイ状に配置されており、このような端子群はマザーボード側の端子群に対してフリップチップの形態で接続される。ただし、ICチップ側の端子群とマザーボード側の端子群とでは端子間ピッチに大きな差があることから、ICチップをマザーボード上に直接的に接続することは困難である。そのため、通常はICチップをICチップ搭載用配線基板上に搭載してなる半導体パッケージを作製し、その半導体パッケージをマザーボード上に搭載するという手法が採用される。この種の半導体パッケージにおいては、ICチップのスイッチングノイズの低減や電源電圧の安定化を図るために、コンデンサ(「キャパシタ」とも言う)を設けることが提案されている。その一例として、高分子材料製のコア基板内にコンデンサを内蔵するとともに、そのコア基板の表面及び裏面にビルドアップ層を形成してなる配線基板の上に、ICチップを搭載した半導体パッケージが従来提案されている(例えば、特許文献1参照)。   In recent years, semiconductor integrated circuit chips (IC chips) used as computer microprocessors and the like have become increasingly faster and more functional, with an accompanying increase in the number of terminals and a tendency to narrow the pitch between terminals. . In general, a large number of terminals are densely arranged on the bottom surface of an IC chip, and such a terminal group is connected to a terminal group on the motherboard side in the form of a flip chip. However, it is difficult to connect the IC chip directly on the mother board because there is a large difference in the pitch between the terminals on the IC chip side terminal group and the mother board side terminal group. For this reason, a method is generally employed in which a semiconductor package is prepared by mounting an IC chip on an IC chip mounting wiring board, and the semiconductor package is mounted on a motherboard. In this type of semiconductor package, it has been proposed to provide a capacitor (also referred to as “capacitor”) in order to reduce switching noise of the IC chip and stabilize the power supply voltage. As an example, a semiconductor package in which an IC chip is mounted on a wiring substrate in which a capacitor is built in a core substrate made of a polymer material and a buildup layer is formed on the front surface and the back surface of the core substrate has been conventionally used. It has been proposed (see, for example, Patent Document 1).

ところで最近では、図23に示されるように、コア基板201に内蔵したコンデンサ205の外形寸法を、配線基板202の上に搭載されているICチップ204の外形寸法よりも大きく設定した半導体パッケージ200が提案されている。なお、配線基板202とICチップ204との隙間は、アンダーフィル材206によって封止される。このようにすれば、ICチップ204がコンデンサ205の真上の領域内に位置するため、ICチップ204をコンデンサ205によって安定的に支持することができる。
特開2000−261124(図1など)
Recently, as shown in FIG. 23, there is a semiconductor package 200 in which the external dimension of the capacitor 205 built in the core substrate 201 is set larger than the external dimension of the IC chip 204 mounted on the wiring substrate 202. Proposed. A gap between the wiring board 202 and the IC chip 204 is sealed with an underfill material 206. In this way, since the IC chip 204 is located in the region directly above the capacitor 205, the IC chip 204 can be stably supported by the capacitor 205.
JP 2000-261124 (FIG. 1 etc.)

ところが、ICチップ204接合後の冷却時において、コア基板201の裏面側に位置する裏面側ビルドアップ層207は収縮するが、コア基板201の表面側に位置する表面側ビルドアップ層203は、ICチップ204やアンダーフィル材206があるために殆ど収縮しない。よって、配線基板202は裏面側に反りやすくなる(図24参照)。特に、コア基板201が大きい場合(具体的には、コア基板201の最も大きい辺の長さが40mm以上である場合)、配線基板202の反りは顕著になる。このとき、コア基板201やビルドアップ層203,207よりも可塑性が小さいコンデンサ205は、配線基板202の反りに追従できないため、応力が集中して破壊しやすくなる。また、コンデンサ205とビルドアップ層203,207との接合部にも、応力が集中して破壊しやすくなる。その結果、配線基板202、ひいては半導体パッケージ200の信頼性が低下してしまう。   However, during cooling after bonding the IC chip 204, the back-side buildup layer 207 located on the back side of the core substrate 201 contracts, but the front-side buildup layer 203 located on the front side of the core substrate 201 Since the chip 204 and the underfill material 206 are present, they hardly shrink. Therefore, the wiring board 202 tends to warp to the back side (see FIG. 24). In particular, when the core substrate 201 is large (specifically, when the length of the largest side of the core substrate 201 is 40 mm or more), the warp of the wiring substrate 202 becomes significant. At this time, the capacitor 205 having a plasticity smaller than that of the core substrate 201 and the buildup layers 203 and 207 cannot follow the warp of the wiring substrate 202, so that stress concentrates and is easily broken. In addition, stress is concentrated on the joint between the capacitor 205 and the build-up layers 203 and 207, so that the capacitor 205 is easily broken. As a result, the reliability of the wiring board 202, and hence the semiconductor package 200, is reduced.

本発明は上記の課題に鑑みてなされたものであり、その目的は、コア基板が大きい場合であっても、高い信頼性を得ることができる配線基板を提供することにある。また、本発明の別の目的は、上記の配線基板を有する好適な半導体パッケージを提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a wiring board capable of obtaining high reliability even when the core board is large. Another object of the present invention is to provide a suitable semiconductor package having the above wiring board.

そして上記課題を解決するための手段(手段1)としては、コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、第2の無機材料製板状部品を搭載可能な部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部とを備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする配線基板がある。   And as a means (means 1) for solving the above-mentioned problem, a component housing hole having a core main surface and a core back surface and opening at least on the core main surface side is formed, and the length of the largest side is Made of a first inorganic material having a core substrate of 40 mm or more, a component main surface and a component back surface, and being accommodated in the component accommodation hole in a state where the core main surface and the component main surface are directed to the same side A plate-shaped component, a main surface side interlayer insulating layer, and a main surface side conductor layer are laminated on the core main surface, and a component mounting area on which a second inorganic material plate-shaped component can be mounted is on the surface. The first inorganic material plate, comprising: a set main surface side wiring laminated portion; and a back surface side wiring laminated portion formed by laminating a back surface side interlayer insulating layer and a back surface side conductor layer on the core back surface. A component is disposed immediately below the component mounting area and made of the first inorganic material. There is a wiring board, characterized in that the external dimensions of Jo component is set smaller than the outside dimension of the component mounting region.

従って、手段1の配線基板によると、コア基板の最も大きい辺の長さが40mm以上であることで配線基板の反りが顕著になったとしても、第1の無機材料製板状部品は、反りの影響を受けにくい部品搭載領域の直下に配置されるとともに、部品搭載領域の外形寸法よりも小さい外形寸法に設定されているため、応力が集中しにくくなる。その結果、第1の無機材料製板状部品や、第1の無機材料製板状部品と配線積層部との接合部などが破壊されにくくなるため、配線基板の信頼性が高くなる。   Therefore, according to the wiring board of means 1, even if the warp of the wiring board becomes significant due to the length of the largest side of the core board being 40 mm or more, the first inorganic material plate-like component is warped. Since it is arranged directly under the component mounting area that is not easily affected by the above-mentioned and is set to an outer dimension smaller than the outer dimension of the component mounting area, stress is less likely to concentrate. As a result, the first inorganic material plate-like component, the joint portion between the first inorganic material plate-like component and the wiring laminated portion, and the like are not easily broken, and the reliability of the wiring board is increased.

また、コア主面上に主面側配線積層部が形成されるとともに、コア裏面上に裏面側配線積層部が形成されているため、主面側配線積層部及び裏面側配線積層部の両方に電気回路を形成することができる。よって、配線基板の高機能化を図ることができる。   In addition, since the main surface side wiring laminated portion is formed on the core main surface and the back surface side wiring laminated portion is formed on the core rear surface, both the main surface side wiring laminated portion and the back surface side wiring laminated portion are formed. An electrical circuit can be formed. Therefore, it is possible to improve the functionality of the wiring board.

上記配線基板を構成するコア基板は、コア主面及びその反対側に位置するコア裏面を有する板状に形成されている。コア基板の形状は、複数の辺を有する多角形状であることがよく、例えば、平面視略矩形状、平面視略三角形状、平面視略六角形状などを挙げることができるが、特には、一般的な形状である平面視略矩形状であることが好ましい。ここで、「平面視略矩形状」とは、平面視で完全な矩形状のみをいうのではなく、角部が面取りされた形状や、辺の一部が曲線となっている形状も含むものとする。なお、コア基板は、最も大きい辺の長さが40mm以上であるが、例えば50mm以上100mm以下などであってもよい。   The core substrate constituting the wiring substrate is formed in a plate shape having a core main surface and a core back surface located on the opposite side. The shape of the core substrate is preferably a polygonal shape having a plurality of sides, and examples thereof include a substantially rectangular shape in plan view, a substantially triangular shape in plan view, and a substantially hexagonal shape in plan view. It is preferable that the shape is a generally rectangular shape in plan view. Here, the “substantially rectangular shape in plan view” does not mean only a complete rectangular shape in plan view but also includes a shape with chamfered corners and a shape in which a part of the side is curved. . The core substrate has the largest side length of 40 mm or more, but may be, for example, 50 mm or more and 100 mm or less.

さらに、コア基板は、第1の無機材料製板状部品を収容するための部品収容穴を有している。この部品収容穴は、コア主面のみにて開口する非貫通穴であってもよく、あるいはコア主面及びコア裏面の両方にて開口する貫通穴であってもよい。また、第1の無機材料製板状部品は、完全に埋設された状態で部品収容穴に収容されていてもよいし、一部分が部品収容穴の開口部から突出した状態で部品収容穴に収容されていてもよい。   Further, the core substrate has a component accommodation hole for accommodating the first inorganic material plate-like component. This component accommodation hole may be a non-through hole that opens only in the core main surface, or may be a through hole that opens in both the core main surface and the core back surface. Further, the first inorganic material plate-like component may be accommodated in the component accommodation hole in a completely embedded state, or may be accommodated in the component accommodation hole in a state in which a part protrudes from the opening of the component accommodation hole. May be.

なお、前記部品収容穴の開口部の形状は、前記部品搭載領域の形状と略同じ形状であることが好ましい。また、前記部品収容穴の開口部の外形寸法は、前記部品搭載領域の外形寸法よりも小さく設定されていることが好ましく、具体的には、前記部品搭載領域の外形寸法の0.8倍以上かつ1.0倍未満に設定されることが好ましい。仮に、部品収容穴の開口部の外形寸法が部品搭載領域の外形寸法の1.0倍以上であると、部品収容穴の内面とセラミックコンデンサの側面との隙間が例えば高分子材料製の樹脂充填部によって埋められる場合に、樹脂充填部の充填量が増大してしまう。また、部品収容穴内に第1の無機材料製板状部品を位置決めすることが困難になりやすい。さらに、コア基板内において部品搭載領域の直下となる部分がなくなるため、その部分に電気回路を形成することが不可能になる。一方、部品収容穴の開口部の外形寸法が部品搭載領域の外形寸法の0.8倍未満であると、部品収容穴の内面とセラミックコンデンサの側面との隙間が小さくなるため、部品収容穴に所定の大きさの第1の無機材料製板状部品を収容することが困難になる。   In addition, it is preferable that the shape of the opening part of the said component accommodation hole is a shape substantially the same as the shape of the said component mounting area. In addition, the outer dimension of the opening of the component housing hole is preferably set smaller than the outer dimension of the component mounting area, and specifically, 0.8 times or more the outer dimension of the component mounting area. And it is preferable to set to less than 1.0 times. If the outer dimension of the opening of the component housing hole is 1.0 times or more of the outer dimension of the component mounting area, the gap between the inner surface of the component housing hole and the side surface of the ceramic capacitor is filled with, for example, a resin material made of a polymer material When it is filled with the part, the filling amount of the resin filling part increases. In addition, it is difficult to position the first inorganic material plate-shaped component in the component accommodation hole. Further, since there is no portion directly under the component mounting area in the core substrate, it becomes impossible to form an electric circuit in that portion. On the other hand, if the outer dimension of the opening of the component housing hole is less than 0.8 times the outer dimension of the component mounting area, the gap between the inner surface of the component housing hole and the side surface of the ceramic capacitor is reduced. It becomes difficult to accommodate the first inorganic material plate-like component having a predetermined size.

コア基板を形成する材料は特に限定されないが、好ましいコア基板は高分子材料を主体として形成される。コア基板を形成するための高分子材料の具体例としては、例えば、EP樹脂(エポキシ樹脂)、PI樹脂(ポリイミド樹脂)、BT樹脂(ビスマレイミド・トリアジン樹脂)、PPE樹脂(ポリフェニレンエーテル樹脂)などがある。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料を使用してもよい。   A material for forming the core substrate is not particularly limited, but a preferable core substrate is mainly formed of a polymer material. Specific examples of the polymer material for forming the core substrate include, for example, EP resin (epoxy resin), PI resin (polyimide resin), BT resin (bismaleimide / triazine resin), PPE resin (polyphenylene ether resin), etc. There is. In addition, composite materials of these resins and glass fibers (glass woven fabric or glass nonwoven fabric) or organic fibers such as polyamide fibers may be used.

ここで、上記配線基板が手段1の構成を有する場合、前記第1の無機材料製板状部品の熱膨張係数は、前記コア基板、前記主面側配線積層部及び前記裏面側配線積層部の熱膨張係数よりも小さくてもよい。このようにすれば、第1の無機材料製板状部品と、配線基板における他の部分(コア基板、主面側配線積層部及び裏面側配線積層部)との間に熱膨張係数差が生じるため、第1の無機材料製板状部品付近に大きな力がかかって破壊されるという課題が生じやすくなる。しかし、上記配線基板は手段1の構成を有するため、上記の課題を解消することができる。   Here, when the wiring board has the configuration of the means 1, the thermal expansion coefficient of the first inorganic material plate-like component is that of the core board, the main surface side wiring laminated portion, and the back surface side wiring laminated portion. It may be smaller than the thermal expansion coefficient. In this way, a difference in thermal expansion coefficient occurs between the first inorganic material plate-like component and the other part of the wiring board (core substrate, main surface side wiring laminated portion and back side wiring laminated portion). For this reason, a problem that a large force is applied to the vicinity of the first inorganic material plate-like component is easily generated. However, since the wiring board has the configuration of the means 1, the above problem can be solved.

「熱膨張係数」とは、厚み方向(Z方向)に対して垂直な方向(XY方向)の熱膨張係数のことを意味し、0℃〜100℃の間のTMA(熱機械分析装置)にて測定した値のことをいう(以下、同じ)。「TMA」とは、熱機械的分析をいい、例えばJPCA−BU01に規定されるものをいう。   “Thermal expansion coefficient” means the thermal expansion coefficient in the direction (XY direction) perpendicular to the thickness direction (Z direction). TMA (thermomechanical analyzer) between 0 ° C. and 100 ° C. (Hereinafter the same). “TMA” refers to thermomechanical analysis, such as that defined in JPCA-BU01.

なお、好適な前記第1の無機材料製板状部品としては、セラミック製板状部品、金属製板状部品、ガラス製板状部品などを挙げることができる。セラミック製板状部品を構成するセラミック材料としては、例えばアルミナ、ガラスセラミック、結晶化ガラス等の低温焼成材料、窒化アルミニウム、炭化珪素、窒化珪素などがある。また、金属製板状部品を構成する金属材料としては、鉄、金、銀、銅、銅合金、鉄ニッケル合金、珪素、ガリウム砒素などがある。なお、金属製板状部品としては、半導体集積回路チップ(ICチップ)や、半導体製造プロセスで製造されたMEMS(Micro Electro Mechanical Systems)素子などを挙げることができる。ここで、「半導体集積回路チップ」とは、主としてコンピュータのマイクロプロセッサ等として使用される素子をいう。   Suitable examples of the first inorganic material plate-like component include a ceramic plate-like component, a metal plate-like component, and a glass plate-like component. Examples of the ceramic material constituting the ceramic plate-like component include low-temperature fired materials such as alumina, glass ceramic, and crystallized glass, aluminum nitride, silicon carbide, and silicon nitride. Examples of the metal material constituting the metal plate-like component include iron, gold, silver, copper, copper alloy, iron nickel alloy, silicon, and gallium arsenide. Examples of the metal plate-like component include a semiconductor integrated circuit chip (IC chip) and a MEMS (Micro Electro Mechanical Systems) element manufactured by a semiconductor manufacturing process. Here, “semiconductor integrated circuit chip” refers to an element mainly used as a microprocessor of a computer.

一方、好適なセラミック製板状部品の例としては、チップコンデンサや、複数のコンデンサ内ビア導体を有するビアアレイタイプのセラミックコンデンサなどを挙げることができる。なお、セラミックコンデンサは、前記複数のコンデンサ内ビア導体が全体としてアレイ状に配置されていることが好ましい。このような構造であれば、セラミックコンデンサのインダクタンスの低減化が図られ、ノイズ吸収や電源変動平滑化のための高速電源供給が可能となる。また、セラミックコンデンサ全体の小型化が図りやすくなり、ひいては配線基板全体の小型化も図りやすくなる。しかも、小さい割りに高静電容量が達成しやすく、より安定した電源供給が可能となる。   On the other hand, examples of suitable ceramic plate-like parts include a chip capacitor and a via array type ceramic capacitor having a plurality of via conductors in the capacitor. In the ceramic capacitor, the plurality of via conductors in the capacitor are preferably arranged in an array as a whole. With such a structure, the inductance of the ceramic capacitor can be reduced, and high-speed power supply for noise absorption and power supply fluctuation smoothing can be performed. In addition, the entire ceramic capacitor can be easily reduced in size, and as a result, the entire wiring board can be easily reduced in size. Moreover, a high electrostatic capacity is easily achieved for a small amount, and a more stable power supply can be achieved.

セラミックコンデンサを構成するセラミック誘電体層としては、アルミナ、窒化アルミニウム、窒化ほう素、炭化珪素、窒化珪素などといった高温焼成セラミックの焼結体が好適に使用されるほか、ホウケイ酸系ガラスやホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを添加したガラスセラミックのような低温焼成セラミックの焼結体が好適に使用される。この場合、用途に応じて、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウムなどの誘電体セラミックの焼結体を使用することも好ましい。誘電体セラミックの焼結体を使用した場合、静電容量の大きなセラミックコンデンサを実現しやすくなる。   As the ceramic dielectric layer constituting the ceramic capacitor, a sintered body of high-temperature fired ceramic such as alumina, aluminum nitride, boron nitride, silicon carbide, silicon nitride is preferably used, and borosilicate glass or borosilicate A sintered body of low-temperature fired ceramic such as glass ceramic obtained by adding an inorganic ceramic filler such as alumina to lead glass is preferably used. In this case, it is also preferable to use a sintered body of a dielectric ceramic such as barium titanate, lead titanate, or strontium titanate depending on the application. When a dielectric ceramic sintered body is used, a ceramic capacitor having a large capacitance can be easily realized.

なお、上記配線基板を構成する主面側配線積層部は、その表面に部品搭載領域が設定されており、前記第1の無機材料製板状部品は前記部品搭載領域の直下に配置される。このような部品搭載領域には第2の無機材料製板状部品が搭載可能である。なお、「部品搭載領域」とは、第2の無機材料製板状部品が搭載された場合に、第2の無機材料製板状部品の下面の直下に位置する領域であり、第2の無機材料製板状部品の下面と略同じ外形を有している。また、部品搭載領域の面積は、第2の無機材料製板状部品の下面の面積と同等またはそれよりも小さくなるように設定される。「部品搭載領域」とは、主面側配線積層部の表面に露出した複数の端子が存在する領域をいう。   In addition, a component mounting area is set on the surface of the main surface side wiring laminated portion constituting the wiring board, and the first inorganic material plate-shaped component is disposed immediately below the component mounting area. A plate-like component made of the second inorganic material can be mounted in such a component mounting region. The “component mounting region” is a region located immediately below the lower surface of the second inorganic material plate-shaped component when the second inorganic material plate-shaped component is mounted. It has substantially the same outer shape as the lower surface of the plate-shaped component made of material. Further, the area of the component mounting area is set to be equal to or smaller than the area of the lower surface of the second inorganic material plate-shaped component. The “component mounting area” refers to an area where a plurality of terminals exposed on the surface of the main surface side wiring laminated portion are present.

前記第1の無機材料製板状部品の面積は、前記部品搭載領域の面積と同等またはそれよりも小さくなるように設定されることが好ましく、具体的には、前記部品搭載領域の面積の0.25倍以上かつ1倍未満、特には、前記部品搭載領域の面積の0.4倍以上かつ0.7倍未満に設定されることが好ましい。仮に、第1の無機材料製板状部品の面積が部品搭載領域の面積の0.25倍未満に設定されると、第1の無機材料製板状部品が小さくなりすぎるため、第1の無機材料製板状部品の高機能化を図りにくくなる。一方、第1の無機材料製板状部品の面積が部品搭載領域の面積の1倍以上に設定されると、第1の無機材料製板状部品の外形寸法が部品搭載領域の外形寸法よりも大きくなりやすい。その結果、第1の無機材料製板状部品付近に大きな力がかかって破壊されやすくなり、配線基板の信頼性が低下してしまう。   It is preferable that the area of the first inorganic material plate-like component is set to be equal to or smaller than the area of the component mounting region. Specifically, the area of the component mounting region is 0%. It is preferably set to 25 times or more and less than 1 time, particularly 0.4 times or more and less than 0.7 times the area of the component mounting region. If the area of the first inorganic material plate-like component is set to be less than 0.25 times the area of the component mounting region, the first inorganic material plate-like component becomes too small. It becomes difficult to achieve high functionality of the plate-shaped parts made of material. On the other hand, when the area of the first inorganic material plate-like component is set to be equal to or larger than the area of the component mounting region, the outer dimension of the first inorganic material plate-like component is larger than the outer dimension of the component mounting region. Easy to grow. As a result, a large force is applied to the vicinity of the first inorganic material-made plate-like component and it is easily broken, and the reliability of the wiring board is lowered.

ここで、前記裏面側配線積層部の表面に、シリコン系材料からなる第3の無機材料製板状部品を搭載可能な部品搭載部が設定され、前記部品搭載部が前記配線基板において前記部品搭載領域の裏側に配置されるとともに、前記部品搭載部の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されていてもよい。このような構成であれば、配線基板の反りが顕著になったとしても、第3の無機材料製板状部品が搭載可能な部品搭載部は、反りの影響を受けにくい部品搭載領域の裏側に配置されるとともに、部品搭載領域の外形寸法よりも小さい外形寸法に設定されているため、応力が集中しにくくなる。その結果、第3の無機材料製板状部品や、第3の無機材料製板状部品と裏面側配線積層部との接合部などが破壊されにくくなるため、配線基板の信頼性が高くなる。なお、第3の無機材料製板状部品が、熱膨張係数が3〜6ppm/℃程度のシリコン系材料からなるため、部品搭載部の外形寸法を部品搭載領域の外形寸法よりも小さく設定することによって上記の効果を得ることができる。仮に、第3の無機材料製板状部品が、熱膨張係数が12〜13ppm/℃程度のチタン酸バリウムからなる場合、部品搭載部と部品搭載領域との大小関係を変更しなければ、上記の効果を得ることができなくなる。   Here, a component mounting portion on which a third inorganic material plate-shaped component made of a silicon-based material can be mounted is set on the surface of the back surface side wiring laminated portion, and the component mounting portion is mounted on the wiring board with the component mounting. The external dimensions of the component mounting portion may be set smaller than the external dimensions of the component mounting area. With such a configuration, even if the warping of the wiring board becomes significant, the component mounting portion on which the third inorganic material plate-like component can be mounted is on the back side of the component mounting region that is not easily affected by the warping. In addition to being disposed, the outer dimension is set to be smaller than the outer dimension of the component mounting area, so that stress is less likely to concentrate. As a result, the third inorganic material plate-like component, the joint portion between the third inorganic material plate-like component and the back-side wiring laminated portion, and the like are not easily broken, and the reliability of the wiring board is increased. Since the third inorganic material plate-like component is made of a silicon-based material having a thermal expansion coefficient of about 3 to 6 ppm / ° C., the outer dimensions of the component mounting portion should be set smaller than the outer dimensions of the component mounting area. The above effect can be obtained. If the third inorganic material plate-like component is made of barium titanate having a thermal expansion coefficient of about 12 to 13 ppm / ° C., the size relationship between the component mounting portion and the component mounting region is not changed. The effect cannot be obtained.

シリコン系材料からなる第3の無機材料製板状部品としては、前記半導体集積回路チップ(ICチップ)、前記MEMS素子、DRAM(Dynamic Random Access Memory)素子などを挙げることができる。   Examples of the third inorganic material plate-like component made of a silicon-based material include the semiconductor integrated circuit chip (IC chip), the MEMS element, and a DRAM (Dynamic Random Access Memory) element.

なお、「部品搭載部」とは、第3の無機材料製板状部品が搭載された場合に、第3の無機材料製板状部品の上面の直上に位置する領域であり、第3の無機材料製板状部品の上面とほぼ同じ外形を有している。また、部品搭載部の面積は、第3の無機材料製板状部品の上面の面積と同等またはそれよりも小さくなるように設定される。「部品搭載部」とは、裏面側配線積層部の表面に露出した複数の端子が存在する領域をいう。なお、部品搭載部の形状は、前記部品搭載領域の形状と略同じ形状であることが好ましい。   The “component mounting portion” is an area located immediately above the top surface of the third inorganic material plate-shaped component when the third inorganic material plate-shaped component is mounted. The outer shape is substantially the same as the upper surface of the material plate-like component. Further, the area of the component mounting portion is set to be equal to or smaller than the area of the upper surface of the third inorganic material plate-shaped component. The “component mounting portion” refers to a region where there are a plurality of terminals exposed on the surface of the back surface side wiring laminated portion. The shape of the component mounting portion is preferably substantially the same as the shape of the component mounting area.

さらに、前記裏面側配線積層部の表面において、前記配線基板を前記裏面側配線積層部の表面側から見た場合に前記第1の無機材料製板状部品の外形線上、及び、前記第2の無機材料製板状部品の外形線上に対応する箇所(即ち、応力が集中する箇所)を避けた位置に、表面実装部品が搭載されていることが好ましい。このようにすれば、表面実装部品や、表面実装部品と裏面側配線積層部との接合部などが破壊されにくくなるため、配線基板の信頼性が高くなる。   Furthermore, on the surface of the back surface side wiring laminated portion, when the wiring board is viewed from the front surface side of the back surface side wiring laminated portion, on the outline of the first inorganic material plate-like component, and the second It is preferable that the surface-mounted component is mounted at a position avoiding a corresponding location (that is, a location where stress is concentrated) on the outline of the inorganic material plate-like component. In this way, the surface-mounted component and the joint between the surface-mounted component and the back-side wiring laminated portion are less likely to be destroyed, and the reliability of the wiring board is increased.

また、本発明の課題を解決するための別の手段(手段2)としては、配線基板とその上に搭載された第2の無機材料製板状部品との隙間を樹脂材で封止した構造の半導体パッケージであって、前記配線基板は、コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、前記第2の無機材料製板状部品を搭載するための部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部とを備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする半導体パッケージがある。   Further, as another means (means 2) for solving the problems of the present invention, a structure in which a gap between a wiring board and a second inorganic material plate-like component mounted thereon is sealed with a resin material In this semiconductor package, the wiring board has a core main surface and a core back surface, is formed with a component accommodation hole that opens at least on the core main surface side, and the length of the longest side is 40 mm or more. A first inorganic material plate-like component that has a core substrate, a component main surface, and a component back surface, and is accommodated in the component accommodation hole in a state in which the core main surface and the component main surface are directed to the same side; The main surface side interlayer insulating layer and the main surface side conductor layer are laminated on the core main surface, and a component mounting area for mounting the second inorganic material plate-shaped component is set on the surface thereof. The main surface side wiring laminated portion, the back surface side interlayer insulating layer and the back surface side conductor layer are connected to the core. The first inorganic material plate-like component is disposed immediately below the component mounting region, and the first inorganic material plate-like component is disposed on the surface. There is a semiconductor package characterized in that the outer dimension of the package is set smaller than the outer dimension of the component mounting area.

従って、手段2の半導体パッケージによると、コア基板の最も大きい辺の長さが40mm以上であることで配線基板の反りが顕著になったとしても、第1の無機材料製板状部品は、反りの影響を受けにくい部品搭載領域の直下に配置されるとともに、部品搭載領域の外形寸法よりも小さい外形寸法に設定されているため、応力が集中しにくくなる。その結果、第1の無機材料製板状部品や、第1の無機材料製板状部品と配線積層部との接合部などが破壊されにくくなるため、半導体パッケージの信頼性が高くなる。   Therefore, according to the semiconductor package of the means 2, even if the warp of the wiring substrate becomes remarkable due to the length of the largest side of the core substrate being 40 mm or more, the first inorganic material plate-like component is warped. Since it is arranged directly under the component mounting area that is not easily affected by the above-mentioned and is set to an outer dimension smaller than the outer dimension of the component mounting area, stress is less likely to concentrate. As a result, the first inorganic material plate-like component, the joint portion between the first inorganic material plate-like component and the wiring laminated portion, and the like are not easily broken, and the reliability of the semiconductor package is increased.

ここで、前記第2の無機材料製板状部品としては、前記セラミック製板状部品、前記金属製板状部品、前記ガラス製板状部品などが挙げられるが、例えば、金属製板状部品である前記半導体集積回路チップであることが好ましい。このようにすれば、第1の無機材料製板状部品が部品搭載領域に搭載された半導体集積回路チップの直下に配置されるため、第1の無機材料製板状部品と半導体集積回路チップとをつなぐ配線が短くなり、配線のインダクタンス成分の増加が防止される。従って、第1の無機材料製板状部品がセラミックコンデンサである場合に、セラミックコンデンサによる半導体集積回路チップのスイッチングノイズを確実に低減できるとともに、電源電圧の確実な安定化を図ることができる。   Here, examples of the second inorganic material plate-like component include the ceramic plate-like component, the metal plate-like component, the glass plate-like component, and the like. The semiconductor integrated circuit chip is preferable. In this case, since the first inorganic material plate-like component is disposed immediately below the semiconductor integrated circuit chip mounted in the component mounting region, the first inorganic material plate-like component, the semiconductor integrated circuit chip, The wiring connecting the wires is shortened, and an increase in the inductance component of the wiring is prevented. Therefore, when the first inorganic material plate-like component is a ceramic capacitor, the switching noise of the semiconductor integrated circuit chip due to the ceramic capacitor can be reliably reduced, and the power supply voltage can be reliably stabilized.

なお、上記半導体パッケージが手段2の構成を有する場合、前記第2の無機材料製板状部品の熱膨張係数は、前記コア基板、前記主面側配線積層部及び前記裏面側配線積層部の熱膨張係数よりも小さくてもよい。このようにすれば、配線基板の反りに追従して第2の無機材料製板状部品が変形しにくくなるため、第2の無機材料製板状部品(部品搭載領域)の直下に配置された第1の無機材料製板状部品付近も変形しにくくなる。   When the semiconductor package has the configuration of the means 2, the thermal expansion coefficient of the second inorganic material plate-like component is the heat of the core substrate, the main-surface-side wiring laminated portion, and the back-side-side wiring laminated portion. It may be smaller than the expansion coefficient. If it does in this way, since it will become difficult to deform | transform a 2nd inorganic material plate-shaped component following the curvature of a wiring board, it has been arrange | positioned directly under the 2nd inorganic material plate-shaped component (component mounting area). The vicinity of the first inorganic material plate-like component is also difficult to deform.

以下、本発明の半導体パッケージを具体化した一実施形態を図面に基づき詳細に説明する。   Hereinafter, an embodiment of a semiconductor package according to the present invention will be described in detail with reference to the drawings.

図1,図2に示される半導体パッケージ1は、第2の無機材料製板状部品であるICチップ21(半導体集積回路チップ)を配線基板10上に実装した構造を有している。MPUとしての機能を有するICチップ21は、縦12.0mm×横12.0mm×厚さ0.7mmの矩形平板状であって、熱膨張係数が3〜4ppm/℃程度(具体的には3.5ppm/℃程度)のシリコンからなっている。ICチップ21の下面側表層には、図示しない回路素子が形成されている。また、ICチップ21の下面側には、複数の面接続端子22が約150μmピッチで格子状に設けられている。   The semiconductor package 1 shown in FIGS. 1 and 2 has a structure in which an IC chip 21 (semiconductor integrated circuit chip), which is a second inorganic material plate-like component, is mounted on a wiring substrate 10. The IC chip 21 having a function as an MPU has a rectangular flat plate shape of 12.0 mm long × 12.0 mm wide × 0.7 mm thick, and has a thermal expansion coefficient of about 3 to 4 ppm / ° C. (specifically 3 (About 5 ppm / ° C.). Circuit elements (not shown) are formed on the lower surface layer of the IC chip 21. On the lower surface side of the IC chip 21, a plurality of surface connection terminals 22 are provided in a grid pattern at a pitch of about 150 μm.

さらに、配線基板10とICチップ21との隙間には、樹脂材であるアンダーフィル材20が充填されている。これにより、配線基板10とICチップ21とが、界面が封止された状態で互いに固定されている。本実施形態のアンダーフィル材20は、熱膨張係数が20〜60ppm/℃程度(具体的には20ppm/℃程度)のエポキシ樹脂からなる。なお、配線基板10の厚さ方向から見た場合、ICチップ21を構成する4つの辺からのアンダーフィル材20の突出量A1(図2参照)は、それぞれ2mmとなっている。即ち、アンダーフィル材20は、配線基板10上における縦16.0mm×横16.0mmの平面視略正方形状の領域内に存在している。   Further, a gap between the wiring substrate 10 and the IC chip 21 is filled with an underfill material 20 that is a resin material. As a result, the wiring substrate 10 and the IC chip 21 are fixed to each other with the interface sealed. The underfill material 20 of the present embodiment is made of an epoxy resin having a thermal expansion coefficient of about 20 to 60 ppm / ° C. (specifically, about 20 ppm / ° C.). Note that when viewed from the thickness direction of the wiring substrate 10, the protrusion amounts A <b> 1 (see FIG. 2) of the underfill material 20 from the four sides constituting the IC chip 21 are each 2 mm. That is, the underfill material 20 is present in a substantially square area in plan view of 16.0 mm in length × 16.0 mm in width on the wiring board 10.

図1に示されるように、配線基板10は、ICチップ搭載用の配線基板であって、略矩形板状のコア基板11と、コア基板11のコア主面12(図1では上面)上に形成される主面側ビルドアップ層31(主面側配線積層部)と、コア基板11のコア裏面13(図1では下面)上に形成される裏面側ビルドアップ層32(裏面側配線積層部)とからなる。   As shown in FIG. 1, the wiring board 10 is a wiring board for mounting an IC chip, on a substantially rectangular plate-shaped core board 11 and a core main surface 12 (upper surface in FIG. 1) of the core board 11. Main surface side buildup layer 31 (main surface side wiring laminated portion) to be formed, and back surface side buildup layer 32 (back surface side wiring laminated portion) formed on core back surface 13 (lower surface in FIG. 1) of core substrate 11. ).

コア基板11のコア主面12上に形成された主面側ビルドアップ層31は、エポキシ樹脂からなる主面側層間絶縁層(主面側樹脂絶縁層33,35)と、銅からなる主面側導体層42とを交互に積層した構造を有している。本実施形態において、主面側ビルドアップ層31の熱膨張係数は、10〜60ppm/℃程度(具体的には20ppm/℃程度)となっている。なお、主面側ビルドアップ層31の熱膨張係数は、30℃〜ガラス転移温度(Tg)間の測定値の平均値をいう。また、第2層の主面側樹脂絶縁層35の表面上における複数箇所には、端子パッド44がアレイ状に形成されている。さらに、主面側樹脂絶縁層35の表面は、ソルダーレジスト37によってほぼ全体的に覆われている。ソルダーレジスト37の所定箇所には、端子パッド44を露出させる開口部46が形成されている。端子パッド44の表面上には、複数のはんだバンプ45が配設されている。各はんだバンプ45は、前記ICチップ21の面接続端子22に電気的に接続されている。なお、各端子パッド44及び各はんだバンプ45が位置する領域は、ICチップ21を搭載可能な部品搭載領域23である。部品搭載領域23は、主面側ビルドアップ層31の表面39に設定されており、縦12.0mm×横12.0mmの平面視正方形状の領域である。即ち、部品搭載領域23は、半導体パッケージ1においてICチップ21の下面の直下に配置された領域であって、半導体パッケージ1の厚さ方向から見た場合、ICチップ21の下面と同じ外形及び面積を有している。また、主面側樹脂絶縁層33,35内には、それぞれビア導体43,47が設けられている。これらのビア導体43,47は、主面側導体層42及び端子パッド44を相互に電気的に接続している。   The main surface side buildup layer 31 formed on the core main surface 12 of the core substrate 11 includes a main surface side interlayer insulating layer (main surface side resin insulating layers 33 and 35) made of epoxy resin, and a main surface made of copper. The side conductor layers 42 are alternately stacked. In this embodiment, the thermal expansion coefficient of the main surface side buildup layer 31 is about 10 to 60 ppm / ° C. (specifically, about 20 ppm / ° C.). In addition, the thermal expansion coefficient of the main surface side buildup layer 31 says the average value of the measured value between 30 degreeC-glass transition temperature (Tg). In addition, terminal pads 44 are formed in an array at a plurality of locations on the surface of the second-layer main-surface-side resin insulation layer 35. Further, the surface of the main surface side resin insulation layer 35 is almost entirely covered with a solder resist 37. An opening 46 for exposing the terminal pad 44 is formed at a predetermined position of the solder resist 37. A plurality of solder bumps 45 are provided on the surface of the terminal pad 44. Each solder bump 45 is electrically connected to the surface connection terminal 22 of the IC chip 21. The region where each terminal pad 44 and each solder bump 45 is located is a component mounting region 23 in which the IC chip 21 can be mounted. The component mounting area 23 is set on the surface 39 of the main surface side buildup layer 31 and is a square area in plan view of 12.0 mm in length × 12.0 mm in width. That is, the component mounting area 23 is an area arranged immediately below the lower surface of the IC chip 21 in the semiconductor package 1, and has the same outer shape and area as the lower surface of the IC chip 21 when viewed from the thickness direction of the semiconductor package 1. have. In addition, via conductors 43 and 47 are provided in the main surface side resin insulation layers 33 and 35, respectively. The via conductors 43 and 47 electrically connect the main surface side conductor layer 42 and the terminal pads 44 to each other.

図1に示されるように、コア基板11のコア裏面13上に形成された裏面側ビルドアップ層32は、上述した主面側ビルドアップ層31とほぼ同じ構造を有している。即ち、裏面側ビルドアップ層32は、熱膨張係数が10〜60ppm/℃程度(具体的には20ppm/℃程度)であり、エポキシ樹脂からなる裏面側層間絶縁層(裏面側樹脂絶縁層34,36)と、裏面側導体層41とを交互に積層した構造を有している。第2層の裏面側樹脂絶縁層36の下面上における複数箇所には、ビア導体43を介して裏面側導体層41に電気的に接続されるBGA用パッド48が格子状に形成されている。また、裏面側樹脂絶縁層36の下面は、ソルダーレジスト38によってほぼ全体的に覆われている。ソルダーレジスト38の所定箇所には、BGA用パッド48を露出させる開口部40が形成されている。BGA用パッド48の表面上には、図示しないマザーボードとの電気的な接続を図るための複数のはんだバンプ49が配設されている。そして、各はんだバンプ49により、図1に示される配線基板10は図示しないマザーボード上に実装される。   As shown in FIG. 1, the back surface side buildup layer 32 formed on the core back surface 13 of the core substrate 11 has substantially the same structure as the main surface side buildup layer 31 described above. That is, the back side buildup layer 32 has a thermal expansion coefficient of about 10 to 60 ppm / ° C. (specifically, about 20 ppm / ° C.), and a back side interlayer insulating layer (back side resin insulating layer 34, 36) and backside conductor layers 41 are alternately laminated. BGA pads 48 that are electrically connected to the back-side conductor layer 41 through via conductors 43 are formed in a lattice pattern at a plurality of locations on the lower surface of the second-layer back-side resin insulation layer 36. Further, the lower surface of the back side resin insulation layer 36 is almost entirely covered with a solder resist 38. An opening 40 for exposing the BGA pad 48 is formed at a predetermined portion of the solder resist 38. On the surface of the BGA pad 48, a plurality of solder bumps 49 are provided for electrical connection with a mother board (not shown). The wiring board 10 shown in FIG. 1 is mounted on a mother board (not shown) by each solder bump 49.

図1に示されるように、本実施形態のコア基板11は、縦50mm×横50mm×厚さ0.4mmの平面視略矩形板状である。コア基板11は、平面方向(XY方向)における熱膨張係数が10〜30ppm/℃程度(具体的には18ppm/℃)となっている。なお、コア基板11の熱膨張係数は、0℃〜ガラス転移温度(Tg)間の測定値の平均値をいう。コア基板11は、ガラスエポキシからなる基材161と、基材161の上面及び下面に形成され、シリカフィラーなどの無機フィラーを添加したエポキシ樹脂からなるサブ基材164と、同じく基材161の上面及び下面に形成され、銅からなる導体層163とによって構成されている。また、コア基板11には、複数のスルーホール導体16がコア主面12、コア裏面13及び導体層163を貫通するように形成されている。かかるスルーホール導体16は、コア基板11のコア主面12側とコア裏面13側とを接続導通するとともに、導体層163に電気的に接続している。なお、スルーホール導体16の内部は、例えばエポキシ樹脂などの閉塞体17で埋められている。スルーホール導体16の上端は、主面側樹脂絶縁層33の表面上にある主面側導体層42の一部に電気的に接続されており、スルーホール導体16の下端は、裏面側樹脂絶縁層34の下面上にある裏面側導体層41の一部に電気的に接続されている。   As shown in FIG. 1, the core substrate 11 of the present embodiment has a substantially rectangular plate shape in plan view of 50 mm length × 50 mm width × 0.4 mm thickness. The core substrate 11 has a thermal expansion coefficient in the plane direction (XY direction) of about 10 to 30 ppm / ° C. (specifically, 18 ppm / ° C.). In addition, the thermal expansion coefficient of the core board | substrate 11 says the average value of the measured value between 0 degreeC-glass transition temperature (Tg). The core substrate 11 includes a base material 161 made of glass epoxy, a sub-base material 164 formed on an upper surface and a lower surface of the base material 161 and made of an epoxy resin to which an inorganic filler such as silica filler is added, and an upper surface of the base material 161. And a conductor layer 163 made of copper and formed on the lower surface. In the core substrate 11, a plurality of through-hole conductors 16 are formed so as to penetrate the core main surface 12, the core back surface 13, and the conductor layer 163. The through-hole conductor 16 connects and conducts the core main surface 12 side and the core back surface 13 side of the core substrate 11 and is electrically connected to the conductor layer 163. The inside of the through-hole conductor 16 is filled with a closing body 17 such as an epoxy resin. The upper end of the through-hole conductor 16 is electrically connected to a part of the main-surface-side conductor layer 42 on the surface of the main-surface-side resin insulation layer 33, and the lower-end of the through-hole conductor 16 is the back-surface-side resin insulation. It is electrically connected to a part of the back side conductor layer 41 on the lower surface of the layer 34.

図1,図2に示されるように、コア基板11は、コア主面12の中央部及びコア裏面13の中央部にて開口する平面視で矩形状の部品収容穴90を1つ有している。即ち、部品収容穴90は貫通穴部である。なお、部品収容穴90の開口部の外形寸法は、前記部品搭載領域23の外形寸法よりも小さく設定されている。具体的に言うと、部品収容穴90は、縦11.0mm×横11.0mmで、四隅に半径1.5mmのアールまたはテーパを有する断面略正方形状の孔である。また、部品収容穴90は、半導体パッケージ1において部品搭載領域23(即ち前記ICチップ21)の直下に配置されており、半導体パッケージ1の厚さ方向から見た場合、部品収容穴90の開口部を構成する4つの辺からのICチップ21の突出量A2(図2参照)は、それぞれ0.5mmとなっている。   As shown in FIGS. 1 and 2, the core substrate 11 has one rectangular component housing hole 90 in a plan view that opens at the center portion of the core main surface 12 and the center portion of the core back surface 13. Yes. That is, the component accommodation hole 90 is a through hole portion. The outer dimension of the opening of the component accommodation hole 90 is set smaller than the outer dimension of the component mounting area 23. Specifically, the component housing hole 90 is a hole having a substantially square cross section having a length of 11.0 mm × a width of 11.0 mm and a radius or a taper having a radius of 1.5 mm at four corners. Further, the component accommodation hole 90 is disposed immediately below the component mounting region 23 (that is, the IC chip 21) in the semiconductor package 1, and when viewed from the thickness direction of the semiconductor package 1, the opening portion of the component accommodation hole 90 is provided. The amount of protrusion A2 (see FIG. 2) of the IC chip 21 from the four sides constituting each is 0.5 mm.

そして、部品収容穴90内には、セラミック製板状部品であるセラミックコンデンサ101(第1の無機材料製板状部品)が、埋め込まれた状態で収容されている。なお、セラミックコンデンサ101は、コンデンサ主面102をコア基板11のコア主面12と同じ側に向けた状態で部品収容穴90に収容されている。図1,図2に示されるように、セラミックコンデンサ101は、コア基板11において部品搭載領域23の直下に配置されており、セラミックコンデンサ101の厚さ方向から見た場合、コンデンサ主面102は部品搭載領域23内に位置している。本実施形態のセラミックコンデンサ101は、縦9.0mm×横9.0mm×厚さ0.4mmの平面視略矩形板状であり、セラミックコンデンサ101の外形寸法は部品搭載領域23の外形寸法よりも小さく設定されている。具体的に言うと、セラミックコンデンサ101の縦横の長さは、部品搭載領域23の縦横の長さよりも小さくなっている。従って、セラミックコンデンサ101のコンデンサ主面102の面積は、部品搭載領域23の面積よりも小さく設定される。本実施形態では、コンデンサ主面102の面積が81mmであって部品搭載領域23の面積が144mmであるため、コンデンサ主面102の面積は、部品搭載領域23の面積の0.5625倍となる。また、セラミックコンデンサ101の4つの側面と部品収容穴90の内面との距離は、それぞれ1mmに設定されている。即ち、部品収容穴90の開口部の外形寸法は、セラミックコンデンサ101の外形寸法よりも大きく設定されている。 And in the component accommodation hole 90, the ceramic capacitor 101 (1st inorganic material plate-shaped component) which is a ceramic plate-shaped component is accommodated in the embedded state. The ceramic capacitor 101 is housed in the component housing hole 90 with the capacitor main surface 102 facing the same side as the core main surface 12 of the core substrate 11. As shown in FIGS. 1 and 2, the ceramic capacitor 101 is disposed immediately below the component mounting region 23 in the core substrate 11, and when viewed from the thickness direction of the ceramic capacitor 101, the capacitor main surface 102 is a component. It is located in the mounting area 23. The ceramic capacitor 101 of the present embodiment has a substantially rectangular plate shape in plan view with a length of 9.0 mm, a width of 9.0 mm, and a thickness of 0.4 mm. It is set small. Specifically, the vertical and horizontal lengths of the ceramic capacitor 101 are smaller than the vertical and horizontal lengths of the component mounting region 23. Therefore, the area of the capacitor main surface 102 of the ceramic capacitor 101 is set smaller than the area of the component mounting region 23. In the present embodiment, since the area of the capacitor main surface 102 is 81 mm 2 and the area of the component mounting region 23 is 144 mm 2 , the area of the capacitor main surface 102 is 0.5625 times the area of the component mounting region 23. Become. The distances between the four side surfaces of the ceramic capacitor 101 and the inner surface of the component housing hole 90 are each set to 1 mm. That is, the outer dimension of the opening of the component housing hole 90 is set larger than the outer dimension of the ceramic capacitor 101.

図1等に示されるように、部品収容穴90の内面とセラミックコンデンサ101の側面との隙間は、高分子材料(本実施形態ではエポキシ等の熱硬化性樹脂)からなる樹脂充填部92によって埋められている。この樹脂充填部92は、セラミックコンデンサ101をコア基板11に固定するとともに、セラミックコンデンサ101及びコア基板11の面方向や厚さ方向への変形を自身の弾性変形により吸収する機能を有している。なお図2,図4,図5に示されるように、セラミックコンデンサ101は、平面視略正方形状をなしており、四隅に面取り寸法0.55mm以上(本実施形態では面取り寸法0.6mm)の面取り部を有している。これにより、温度変化に伴う樹脂充填部92の変形時において、セラミックコンデンサ101の角部への応力集中を緩和できるため、樹脂充填部92のクラックの発生を防止できる。   As shown in FIG. 1 and the like, the gap between the inner surface of the component accommodation hole 90 and the side surface of the ceramic capacitor 101 is filled with a resin filling portion 92 made of a polymer material (in this embodiment, a thermosetting resin such as epoxy). It has been. The resin filling portion 92 has a function of fixing the ceramic capacitor 101 to the core substrate 11 and absorbing the deformation of the ceramic capacitor 101 and the core substrate 11 in the surface direction and the thickness direction by its own elastic deformation. . 2, 4, and 5, the ceramic capacitor 101 has a substantially square shape in plan view, and has chamfering dimensions of 0.55 mm or more at the four corners (the chamfering dimension is 0.6 mm in this embodiment). Has a chamfer. Thereby, when the resin filling portion 92 is deformed due to a temperature change, the stress concentration on the corner portion of the ceramic capacitor 101 can be alleviated, so that the occurrence of cracks in the resin filling portion 92 can be prevented.

図1,図3〜図5等に示されるように、本実施形態のセラミックコンデンサ101は、いわゆるビアアレイタイプのコンデンサである。セラミックコンデンサ101を構成するセラミック焼結体104の熱膨張係数は、コア基板11、前記主面側ビルドアップ層31及び前記裏面側ビルドアップ層32の熱膨張係数よりも小さい値となっている。本実施形態において、セラミック焼結体104の熱膨張係数は、15ppm/℃未満、具体的には12〜13ppm/℃程度となっている。なお、セラミック焼結体104の熱膨張係数は、30℃〜250℃間の測定値の平均値をいう。   As shown in FIGS. 1, 3 to 5, etc., the ceramic capacitor 101 of this embodiment is a so-called via array type capacitor. The thermal expansion coefficient of the ceramic sintered body 104 constituting the ceramic capacitor 101 is smaller than the thermal expansion coefficients of the core substrate 11, the main surface side buildup layer 31, and the back surface side buildup layer 32. In this embodiment, the thermal expansion coefficient of the ceramic sintered body 104 is less than 15 ppm / ° C., specifically about 12 to 13 ppm / ° C. The thermal expansion coefficient of the ceramic sintered body 104 refers to an average value of measured values between 30 ° C. and 250 ° C.

また、セラミックコンデンサ101を構成するセラミック焼結体104は、部品主面であるコンデンサ主面102(図1では上面)、及び、部品裏面であるコンデンサ裏面103(図1では下面)を有する板状物である。セラミック焼結体104は、セラミック誘電体層105を介して電源用内部電極層141とグランド用内部電極層142とを交互に積層配置した構造を有している。また、セラミック誘電体層105は、高誘電率セラミックの一種であるチタン酸バリウムの焼結体からなり、電源用内部電極層141及びグランド用内部電極層142間の誘電体として機能する。電源用内部電極層141及びグランド用内部電極層142は、いずれもニッケルを主成分として形成された層であって、セラミック焼結体104の内部において一層おきに配置されている。   The ceramic sintered body 104 constituting the ceramic capacitor 101 has a plate shape having a capacitor main surface 102 (upper surface in FIG. 1) as a component main surface and a capacitor back surface 103 (lower surface in FIG. 1) as a component back surface. It is a thing. The ceramic sintered body 104 has a structure in which a power supply internal electrode layer 141 and a ground internal electrode layer 142 are alternately stacked via a ceramic dielectric layer 105. The ceramic dielectric layer 105 is made of a sintered body of barium titanate, which is a kind of high dielectric constant ceramic, and functions as a dielectric between the power supply internal electrode layer 141 and the ground internal electrode layer 142. Each of the power supply internal electrode layer 141 and the ground internal electrode layer 142 is a layer formed mainly of nickel, and is disposed in every other layer in the ceramic sintered body 104.

図1,図3〜図5に示されるように、セラミック焼結体104には、多数のビアホール130が形成されている。これらのビアホール130は、セラミック焼結体104をその厚さ方向に貫通するとともに、全面にわたってアレイ状(例えば格子状)に配置されている。各ビアホール130内には、セラミック焼結体104のコンデンサ主面102及びコンデンサ裏面103間を連通する複数のコンデンサ内ビア導体131,132が、ニッケルを主材料として形成されている。各電源用コンデンサ内ビア導体131は、各電源用内部電極層141を貫通しており、それら同士を互いに電気的に接続している。各グランド用コンデンサ内ビア導体132は、各グランド用内部電極層142を貫通しており、それら同士を互いに電気的に接続している。各電源用コンデンサ内ビア導体131及び各グランド用コンデンサ内ビア導体132は、全体としてアレイ状に配置されている。本実施形態では、説明の便宜上、コンデンサ内ビア導体131,132を5列×5列で図示したが、実際にはさらに多くの列が存在している。   As shown in FIGS. 1 and 3 to 5, a large number of via holes 130 are formed in the ceramic sintered body 104. These via holes 130 penetrate the ceramic sintered body 104 in the thickness direction and are arranged in an array (for example, a lattice) over the entire surface. In each via hole 130, a plurality of in-capacitor via conductors 131 and 132 that communicate between the capacitor main surface 102 and the capacitor back surface 103 of the ceramic sintered body 104 are formed using nickel as a main material. Each power supply capacitor internal via conductor 131 passes through each power supply internal electrode layer 141 and electrically connects them to each other. Each ground capacitor via conductor 132 passes through each ground internal electrode layer 142 and electrically connects them to each other. Each power source capacitor via conductor 131 and each ground capacitor inner via conductor 132 are arranged in an array as a whole. In the present embodiment, for convenience of explanation, the via conductors 131 and 132 in the capacitor are illustrated in 5 columns × 5 columns, but there are actually more columns.

そして図3等に示されるように、セラミック焼結体104のコンデンサ主面102上には、複数の主面側電源用電極111と複数の主面側グランド用電極112とが突設されている。なお、各主面側グランド用電極112は、コンデンサ主面102上において個別に形成されているが、一体に形成されていてもよい。主面側電源用電極111は、複数の電源用コンデンサ内ビア導体131におけるコンデンサ主面102側の端面に対して直接接続されており、主面側グランド用電極112は、複数のグランド用コンデンサ内ビア導体132におけるコンデンサ主面102側の端面に対して直接接続されている。   As shown in FIG. 3 and the like, a plurality of main surface side power supply electrodes 111 and a plurality of main surface side ground electrodes 112 protrude from the capacitor main surface 102 of the ceramic sintered body 104. . Each main surface side ground electrode 112 is individually formed on the capacitor main surface 102, but may be formed integrally. The main surface side power supply electrode 111 is directly connected to the end surface of the plurality of power supply capacitor internal via conductors 131 on the capacitor main surface 102 side, and the main surface side ground electrode 112 is connected to the plurality of ground capacitor internal electrodes. The via conductor 132 is directly connected to the end surface on the capacitor main surface 102 side.

また、セラミック焼結体104のコンデンサ裏面103上には、複数の裏面側電源用電極121と複数の裏面側グランド用電極122とが突設されている。なお、各裏面側グランド用電極122は、コンデンサ裏面103上において個別に形成されているが、一体に形成されていてもよい。裏面側電源用電極121は、複数の電源用コンデンサ内ビア導体131におけるコンデンサ裏面103側の端面に対して直接接続されており、裏面側グランド用電極122は、複数のグランド用コンデンサ内ビア導体132におけるコンデンサ裏面103側の端面に対して直接接続されている。よって、電源用電極111,121は電源用コンデンサ内ビア導体131及び電源用内部電極層141に導通しており、グランド用電極112,122はグランド用コンデンサ内ビア導体132及びグランド用内部電極層142に導通している。   On the capacitor back surface 103 of the ceramic sintered body 104, a plurality of back surface side power supply electrodes 121 and a plurality of back surface side ground electrodes 122 project. Each back surface side ground electrode 122 is individually formed on the capacitor back surface 103, but may be formed integrally. The back surface side power supply electrode 121 is directly connected to the end surface on the capacitor back surface 103 side of the plurality of power supply capacitor internal via conductors 131, and the back surface side ground electrode 122 is connected to the plurality of ground capacitor internal via conductors 132. Is directly connected to the end surface on the capacitor back surface 103 side. Therefore, the power supply electrodes 111 and 121 are electrically connected to the power supply capacitor internal via conductor 131 and the power supply internal electrode layer 141, and the ground electrodes 112 and 122 are connected to the ground capacitor internal via conductor 132 and the ground internal electrode layer 142. Is conducting.

そして図1に示されるように、コンデンサ主面102側にある電極111,112は、ビア導体47、主面側導体層42、ビア導体43、端子パッド44、はんだバンプ45及びICチップ21の面接続端子22を介して、ICチップ21に電気的に接続される。一方、コンデンサ裏面103側にある電極121,122は、図示しないマザーボードが有する電極(接触子)に対して、ビア導体47、裏面側導体層41、ビア導体43、BGA用パッド48及びはんだバンプ49を介して電気的に接続される。   As shown in FIG. 1, the electrodes 111 and 112 on the capacitor main surface 102 side are the via conductor 47, the main surface side conductor layer 42, the via conductor 43, the terminal pad 44, the solder bump 45, and the surface of the IC chip 21. It is electrically connected to the IC chip 21 via the connection terminal 22. On the other hand, the electrodes 121 and 122 on the capacitor back surface 103 side have via conductors 47, back surface side conductor layers 41, via conductors 43, BGA pads 48, and solder bumps 49 with respect to electrodes (contactors) included in a mother board (not shown). It is electrically connected via.

図3等に示されるように、電極111,112,121,122は、ニッケルを主材料として形成され、表面が図示しない銅めっき層によって被覆されている。これら電極111,112,121,122及びコンデンサ内ビア導体131,132は、ICチップ21の略中心部の直下に配置されている。なお本実施形態では、電極111,112,121,122の直径が約500μmに設定され、ピッチの最小長さが約580μmに設定されている。   As shown in FIG. 3 and the like, the electrodes 111, 112, 121, and 122 are made of nickel as a main material, and the surface is covered with a copper plating layer (not shown). The electrodes 111, 112, 121, 122 and the via conductors 131, 132 in the capacitor are disposed directly below the central portion of the IC chip 21. In the present embodiment, the diameters of the electrodes 111, 112, 121, and 122 are set to about 500 μm, and the minimum pitch length is set to about 580 μm.

例えば、マザーボード側から電極121,122を介して通電を行い、電源用内部電極層141−グランド用内部電極層142間に電圧を加えると、電源用内部電極層141に例えばプラスの電荷が蓄積し、グランド用内部電極層142に例えばマイナスの電荷が蓄積する。その結果、セラミックコンデンサ101がコンデンサとして機能する。また、セラミック焼結体104では、電源用コンデンサ内ビア導体131及びグランド用コンデンサ内ビア導体132がそれぞれ隣接して配置されている。これにより、インダクタンス成分の低減化が図られている。   For example, when energization is performed from the motherboard side via the electrodes 121 and 122 and a voltage is applied between the power supply internal electrode layer 141 and the ground internal electrode layer 142, for example, positive charges are accumulated in the power supply internal electrode layer 141. For example, negative charges accumulate in the ground internal electrode layer 142. As a result, the ceramic capacitor 101 functions as a capacitor. Further, in the ceramic sintered body 104, the power-source capacitor inner via conductor 131 and the ground capacitor inner via conductor 132 are arranged adjacent to each other. Thereby, the inductance component is reduced.

次に、本実施形態の半導体パッケージ1の製造方法について述べる。   Next, a method for manufacturing the semiconductor package 1 of the present embodiment will be described.

準備工程では、コア基板11の中間製品とセラミックコンデンサ101とを、それぞれ従来周知の手法により作製し、あらかじめ準備しておく。   In the preparation step, the intermediate product of the core substrate 11 and the ceramic capacitor 101 are respectively prepared by a conventionally known technique and prepared in advance.

コア基板11の中間製品は以下のように作製される。まず、縦300mm×横300mm×厚み0.2mm(または、縦400mm×横400mm×厚み0.2mm)の基材161の両面に銅箔162が貼付された銅張積層板(図6参照)を準備する。次に、銅張積層板の両面の銅箔162のエッチングを行って導体層163を例えばサブトラクティブ法によってパターニングする(図7参照)。具体的には、無電解銅めっきの後、この無電解銅めっき層を共通電極として電解銅めっきを施す。さらにドライフィルムをラミネートし、同ドライフィルムに対して露光及び現像を行うことにより、ドライフィルムを所定パターンに形成する。この状態で、不要な電解銅めっき層、無電解銅めっき層及び銅箔162をエッチングで除去する。その後、ドライフィルムを剥離する。次に、基材161の上面及び下面と導体層163とを粗化した後、基材161の上面及び下面に、無機フィラーが添加されたエポキシ樹脂フィルム(厚さ80μm)を熱圧着により貼付し、サブ基材164を形成する(図8参照)。なお図示しないが、サブ基材164の形成後、上側のサブ基材164の上面及び下側のサブ基材164の下面に、それぞれ導体層(例えば、厚さ50μm)をパターン形成する。具体的には、上側のサブ基材164の上面及び下側のサブ基材164の下面に対する無電解銅めっきを行った後にエッチングレジストを形成し、次いで電解銅めっきを行う。   The intermediate product of the core substrate 11 is manufactured as follows. First, a copper-clad laminate (see FIG. 6) in which a copper foil 162 is attached to both surfaces of a base material 161 having a length of 300 mm × width of 300 mm × thickness of 0.2 mm (or length of 400 mm × width of 400 mm × thickness of 0.2 mm). prepare. Next, the copper foil 162 on both sides of the copper-clad laminate is etched to pattern the conductor layer 163 by, for example, a subtractive method (see FIG. 7). Specifically, after the electroless copper plating, electrolytic copper plating is performed using the electroless copper plating layer as a common electrode. Further, the dry film is laminated, and the dry film is exposed and developed to form a dry film in a predetermined pattern. In this state, unnecessary electrolytic copper plating layer, electroless copper plating layer and copper foil 162 are removed by etching. Thereafter, the dry film is peeled off. Next, after roughening the upper and lower surfaces of the base material 161 and the conductor layer 163, an epoxy resin film (thickness of 80 μm) to which an inorganic filler has been added is attached to the upper and lower surfaces of the base material 161 by thermocompression bonding. Then, the sub-base material 164 is formed (see FIG. 8). Although not shown, after the sub-base material 164 is formed, a conductor layer (for example, a thickness of 50 μm) is formed on the upper surface of the upper sub-base material 164 and the lower surface of the lower sub-base material 164, respectively. Specifically, after performing electroless copper plating on the upper surface of the upper sub-base material 164 and the lower surface of the lower sub-base material 164, an etching resist is formed, and then electrolytic copper plating is performed.

次に、基材161及びサブ基材164からなる積層体に対してルータを用いて孔あけ加工を行い、部品収容穴90を所定位置に形成し、コア基板11の中間製品を得る(図9参照)。なお、コア基板11の中間製品とは、コア基板11となるべき領域を平面方向に沿って縦横に複数配列した構造の多数個取り用コア基板である。   Next, the laminated body composed of the base material 161 and the sub base material 164 is drilled using a router to form the component accommodation holes 90 at predetermined positions, thereby obtaining an intermediate product of the core substrate 11 (FIG. 9). reference). The intermediate product of the core substrate 11 is a multi-piece core substrate having a structure in which a plurality of regions to be the core substrate 11 are arranged vertically and horizontally along the plane direction.

また、セラミックコンデンサ101は以下のように作製される。即ち、セラミックのグリーンシートを形成し、このグリーンシートに内部電極層用ニッケルペーストをスクリーン印刷して乾燥させる。これにより、後に電源用内部電極層141となる電源用内部電極部と、グランド用内部電極層142となるグランド用内部電極部とが形成される。次に、電源用内部電極部が形成されたグリーンシート、及び、グランド用内部電極部が形成されたグリーンシートを積層し、シート積層方向に押圧力を付与する。これにより、各グリーンシートが一体化されてグリーンシート積層体が形成される。   The ceramic capacitor 101 is manufactured as follows. That is, a ceramic green sheet is formed, and nickel paste for internal electrode layers is screen printed on the green sheet and dried. As a result, a power internal electrode portion that will later become the power internal electrode layer 141 and a ground internal electrode portion that will be the ground internal electrode layer 142 are formed. Next, the green sheet on which the internal electrode portion for power supply is formed and the green sheet on which the internal electrode portion for ground is formed are stacked, and a pressing force is applied in the sheet stacking direction. Thereby, each green sheet is integrated and a green sheet laminated body is formed.

さらに、レーザー加工機を用いてグリーンシート積層体にビアホール130を多数個貫通形成し、図示しないペースト圧入充填装置を用いて、ビア導体用ニッケルペーストを各ビアホール130内に充填する。次に、グリーンシート積層体の上面上にペーストを印刷し、グリーンシート積層体の上面側にて各導体部の上端面を覆うように主面側電源用電極111及び主面側グランド用電極112を形成する。また、グリーンシート積層体の下面上にペーストを印刷し、グリーンシート積層体の下面側にて各導体部の下端面を覆うように裏面側電源用電極121及び裏面側グランド用電極122を形成する。   Further, a number of via holes 130 are formed through the green sheet laminate using a laser processing machine, and a via conductor nickel paste is filled into each via hole 130 using a paste press-fitting and filling device (not shown). Next, a paste is printed on the upper surface of the green sheet laminate, and the main surface side power supply electrode 111 and the main surface side ground electrode 112 so as to cover the upper end surface of each conductor portion on the upper surface side of the green sheet laminate. Form. Further, a paste is printed on the lower surface of the green sheet laminate, and the back-side power supply electrode 121 and the back-side ground electrode 122 are formed so as to cover the lower end surface of each conductor portion on the lower surface side of the green sheet laminate. .

この後、グリーンシート積層体の乾燥を行い、各電極111,112,121,122をある程度固化させる。次に、グリーンシート積層体を脱脂し、さらに所定温度で所定時間焼成を行う。その結果、チタン酸バリウム及びペースト中のニッケルが同時焼結し、セラミック焼結体104となる。   Thereafter, the green sheet laminate is dried to solidify the electrodes 111, 112, 121, and 122 to some extent. Next, the green sheet laminate is degreased and fired at a predetermined temperature for a predetermined time. As a result, barium titanate and nickel in the paste are simultaneously sintered to form a ceramic sintered body 104.

次に、得られたセラミック焼結体104が有する各電極111,112,121,122に対して無電解銅めっき(厚さ10μm程度)を行う。その結果、各電極111,112,121,122の上に銅めっき層が形成され、セラミックコンデンサ101が完成する。   Next, electroless copper plating (thickness of about 10 μm) is performed on each electrode 111, 112, 121, 122 included in the obtained ceramic sintered body 104. As a result, a copper plating layer is formed on each of the electrodes 111, 112, 121, 122, and the ceramic capacitor 101 is completed.

続く固定工程では、マウント装置(ヤマハ発動機株式会社製)を用いて、複数の部品収容穴90内にそれぞれセラミックコンデンサ101を収容する(図10参照)。このとき、各部品収容穴90の裏面側開口は、剥離可能な粘着テープ171でシールされている。この粘着テープ171は、支持台(図示略)によって支持されている。かかる粘着テープ171の粘着面には、セラミックコンデンサ101が貼り付けられて仮固定されている。   In the subsequent fixing step, the ceramic capacitor 101 is accommodated in each of the plurality of component accommodation holes 90 using a mounting device (manufactured by Yamaha Motor Co., Ltd.) (see FIG. 10). At this time, the back side opening of each component accommodation hole 90 is sealed with a peelable adhesive tape 171. The adhesive tape 171 is supported by a support base (not shown). The ceramic capacitor 101 is affixed and temporarily fixed to the adhesive surface of the adhesive tape 171.

その後、樹脂充填部92により、部品収容穴90の内面とセラミックコンデンサ101の側面との隙間を埋める(図11参照)。その後、加熱処理を行うと、樹脂充填部92が硬化して、セラミックコンデンサ101がコア基板11に固定される。そして、この時点で、粘着テープ171を剥離する。   Thereafter, the gap between the inner surface of the component housing hole 90 and the side surface of the ceramic capacitor 101 is filled by the resin filling portion 92 (see FIG. 11). Thereafter, when heat treatment is performed, the resin filling portion 92 is cured and the ceramic capacitor 101 is fixed to the core substrate 11. At this point, the adhesive tape 171 is peeled off.

次に、ビルドアップ層形成工程を実施する。ビルドアップ層形成工程では、従来周知の手法に基づいてコア主面12の上に主面側ビルドアップ層31を形成するとともに、コア裏面13の上に裏面側ビルドアップ層32を形成する。具体的には、コア主面12上及びコア裏面13上に感光性エポキシ樹脂を被着し、露光及び現像を行うことにより、ビア導体47が形成されるべき位置に盲孔181,182を有する樹脂絶縁層33,34を形成する(図12参照)。なお、感光性エポキシ樹脂を被着する代わりに、絶縁樹脂や液晶ポリマー(LCP:Liquid Crystalline Polymer)を被着してもよい。この場合、レーザー加工機などにより、ビア導体47が形成されるべき位置に盲孔181,182が形成される。なお、液晶ポリマーとしては、株式会社クラレ製 液晶ポリマーフィルム(ベクスター)や、東レ株式会社製 液晶ポリマー(LXシリーズ)などを用いることができる。次に、従来公知の手法に従って電解銅めっきを行い、前記盲孔181,182の内部にビア導体47を形成するとともに、樹脂絶縁層33,34上に導体層41,42を形成する(図13参照)。   Next, a buildup layer forming step is performed. In the buildup layer forming step, the main surface side buildup layer 31 is formed on the core main surface 12 and the back surface side buildup layer 32 is formed on the core back surface 13 based on a conventionally known method. Specifically, a photosensitive epoxy resin is deposited on the core main surface 12 and the core back surface 13, and exposure and development are performed, so that blind holes 181 and 182 are formed at positions where the via conductors 47 are to be formed. Resin insulating layers 33 and 34 are formed (see FIG. 12). In place of depositing the photosensitive epoxy resin, an insulating resin or a liquid crystal polymer (LCP) may be deposited. In this case, blind holes 181 and 182 are formed at positions where the via conductors 47 are to be formed by a laser processing machine or the like. In addition, as a liquid crystal polymer, Kuraray Co., Ltd. liquid crystal polymer film (Bexter), Toray Industries, Inc. liquid crystal polymer (LX series), etc. can be used. Next, electrolytic copper plating is performed in accordance with a conventionally known method to form via conductors 47 in the blind holes 181 and 182 and conductor layers 41 and 42 on the resin insulating layers 33 and 34 (FIG. 13). reference).

さらに、樹脂絶縁層33,34上に感光性エポキシ樹脂を被着し、露光及び現像を行うことにより、ビア導体43が形成されるべき位置に盲孔183,184を有する樹脂絶縁層35,36を形成する。なお、感光性エポキシ樹脂を被着する代わりに、絶縁樹脂や液晶ポリマーを被着してもよい。この場合、レーザー加工機などにより、ビア導体43が形成されるべき位置に盲孔183,184が形成される。次に、従来公知の手法に従って電解銅めっきを行い、前記盲孔183,184の内部にビア導体43を形成するとともに、主面側樹脂絶縁層35上に端子パッド44を形成し、裏面側樹脂絶縁層36上にBGA用パッド48を形成する。   Further, a photosensitive epoxy resin is deposited on the resin insulation layers 33 and 34, and exposure and development are performed, whereby the resin insulation layers 35 and 36 having blind holes 183 and 184 at positions where the via conductors 43 are to be formed. Form. Instead of depositing the photosensitive epoxy resin, an insulating resin or a liquid crystal polymer may be deposited. In this case, blind holes 183 and 184 are formed at positions where the via conductors 43 are to be formed by a laser processing machine or the like. Next, electrolytic copper plating is performed according to a conventionally known method to form the via conductors 43 in the blind holes 183 and 184, and the terminal pads 44 are formed on the main surface side resin insulation layer 35, and the back surface side resin is formed. A BGA pad 48 is formed on the insulating layer 36.

次に、樹脂絶縁層35,36上に感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト37,38を形成する。次に、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト37,38に開口部40,46をパターニングする。さらに、端子パッド44上にはんだバンプ45を形成し、かつ、BGA用パッド48上にはんだバンプ49を形成する。なお、この状態のものは、配線基板10となるべき製品領域を平面方向に沿って縦横に複数配列した構造の多数個取り用配線基板であると把握することができる。さらに、多数個取り用配線基板を分割すると、個々の製品である配線基板10が多数個同時に得られる。   Next, solder resists 37 and 38 are formed by applying and curing a photosensitive epoxy resin on the resin insulating layers 35 and 36. Next, exposure and development are performed with a predetermined mask placed, and the openings 40 and 46 are patterned in the solder resists 37 and 38. Further, solder bumps 45 are formed on the terminal pads 44 and solder bumps 49 are formed on the BGA pads 48. It can be understood that the product in this state is a multi-cavity wiring board having a structure in which a plurality of product regions to be the wiring board 10 are arranged vertically and horizontally along the plane direction. Furthermore, when the multi-cavity wiring board is divided, a large number of wiring boards 10 which are individual products can be obtained simultaneously.

次に、配線基板10を構成する主面側ビルドアップ層31の部品搭載領域23にICチップ21を載置する。このとき、ICチップ21側の面接続端子22と、はんだバンプ45とを位置合わせするようにする。そして、220℃〜240℃程度の温度に加熱してはんだバンプ45をリフローすることにより、はんだバンプ45と面接続端子22とを接合し、配線基板10側とICチップ21側とを電気的に接続する。さらに、配線基板10とICチップ21との隙間にアンダーフィル材20を充填して硬化処理を行い、前記隙間を樹脂封止する。なお、主面側ビルドアップ層31は、凹凸の少ないソルダーレジスト37によって覆われているため、アンダーフィル材20はソルダーレジスト37上をスムーズに流れる。その結果、図1に示す所望構造の半導体パッケージ1が完成する。   Next, the IC chip 21 is placed in the component mounting area 23 of the main surface side buildup layer 31 constituting the wiring board 10. At this time, the surface connection terminals 22 on the IC chip 21 side and the solder bumps 45 are aligned. Then, the solder bump 45 is reflowed by heating to a temperature of about 220 ° C. to 240 ° C., thereby joining the solder bump 45 and the surface connection terminal 22 and electrically connecting the wiring substrate 10 side and the IC chip 21 side. Connecting. Further, the gap between the wiring board 10 and the IC chip 21 is filled with the underfill material 20 and subjected to a curing process, and the gap is sealed with resin. In addition, since the main surface side buildup layer 31 is covered with the solder resist 37 with little unevenness, the underfill material 20 flows smoothly on the solder resist 37. As a result, the semiconductor package 1 having a desired structure shown in FIG. 1 is completed.

なお、ICチップ21接合後の冷却時において、コア基板11のコア裏面13側に位置する裏面側ビルドアップ層32は収縮するが、コア基板11のコア主面12側に位置する主面側ビルドアップ層31は、ICチップ21やアンダーフィル材20があるために殆ど収縮しない。よって、半導体パッケージ1は裏面側に反った状態となる(図15参照)。特に本実施形態のようにコア基板11が大きい場合(具体的には、コア基板11の最も大きい辺(縦、横)の長さが50mmである場合)、半導体パッケージ1の反りは顕著になる。   During cooling after bonding the IC chip 21, the back-side buildup layer 32 positioned on the core back surface 13 side of the core substrate 11 contracts, but the main surface-side build positioned on the core main surface 12 side of the core substrate 11. The up layer 31 hardly shrinks due to the presence of the IC chip 21 and the underfill material 20. Therefore, the semiconductor package 1 is warped to the back side (see FIG. 15). In particular, when the core substrate 11 is large as in the present embodiment (specifically, when the length of the largest side (vertical, horizontal) of the core substrate 11 is 50 mm), the warpage of the semiconductor package 1 becomes significant. .

次に、半導体パッケージの信頼性についての評価方法及びその結果を説明する。   Next, an evaluation method for the reliability of the semiconductor package and the result will be described.

まず、測定用サンプルを次のように準備した。図16に示されるように、厚さを1mm、0.8mm、0.6mm、0.4mmとし、縦及び横の長さ(外形寸法)を20mm、30mm、40mm、50mmとしたコア基板(16種類)を準備した。また、縦及び横の長さ(外形寸法)を5mm、9mm、14mm、18mmとした内蔵部品(4種類)を準備した。さらに、縦及び横の長さ(外形寸法)を10mmまたは16mmとしたICチップ(2種類)を準備した。そして、準備したコア基板に内蔵部品を内蔵するとともに、コア基板の表面及び裏面にビルドアップ層を形成してなる配線基板の上に、準備したICチップを搭載した半導体パッケージを複数種類製作し、これらを測定用サンプルとした。なお、内蔵部品は、本実施形態と同様のセラミックコンデンサである。   First, a measurement sample was prepared as follows. As shown in FIG. 16, a core substrate (16) having a thickness of 1 mm, 0.8 mm, 0.6 mm, and 0.4 mm, and vertical and horizontal lengths (external dimensions) of 20 mm, 30 mm, 40 mm, and 50 mm. Prepared). Moreover, the built-in components (4 types) whose vertical and horizontal lengths (external dimensions) were 5 mm, 9 mm, 14 mm, and 18 mm were prepared. Further, IC chips (two types) having a vertical and horizontal length (external dimensions) of 10 mm or 16 mm were prepared. And while incorporating the built-in components in the prepared core substrate, on the wiring substrate formed with build-up layers on the front and back surfaces of the core substrate, a plurality of types of semiconductor packages on which the prepared IC chip is mounted are manufactured, These were used as measurement samples. The built-in component is a ceramic capacitor similar to the present embodiment.

次に、各測定用サンプルに対して熱衝撃試験を行った。具体的に言うと、測定用サンプルを128℃に加熱する工程と、測定用サンプルを−57℃に冷却する工程とを交互に2000回行った。その後、測定用サンプルの状態を観察し、内蔵部品や、内蔵部品とビルドアップ層との接合部に、異常があるかないかを確認した。   Next, a thermal shock test was performed on each measurement sample. Specifically, the step of heating the measurement sample to 128 ° C. and the step of cooling the measurement sample to −57 ° C. were alternately performed 2000 times. Thereafter, the state of the measurement sample was observed, and it was confirmed whether or not there was an abnormality in the built-in component or the joint between the built-in component and the buildup layer.

このように観察した結果、図16に示されるように、内蔵部品の外形寸法がICチップの外形寸法よりも大きい場合であって、コア基板の厚さが0.6mmまたは0.4mmであるときに、内蔵部品や接合部に異常(クラックやデラミネーション)が発生しやすくなった。また、内蔵部品の外形寸法がICチップの外形寸法よりも大きい場合であっても、コア基板の厚さが1mmまたは0.8mmであれば異常は発生しない場合があったが、コア基板の外形寸法が40mmまたは50mmになると、内蔵部品や接合部に異常が発生した。なお、異常が発生する場合、測定用サンプルの反りは顕著になった。   As a result of this observation, as shown in FIG. 16, when the external dimension of the built-in component is larger than the external dimension of the IC chip, and the thickness of the core substrate is 0.6 mm or 0.4 mm In addition, abnormalities (cracks and delamination) are likely to occur in built-in components and joints. Also, even when the external dimensions of the built-in components are larger than the external dimensions of the IC chip, if the thickness of the core substrate is 1 mm or 0.8 mm, no abnormality may occur. When the dimension was 40 mm or 50 mm, an abnormality occurred in the built-in component or the joint. In addition, when abnormality occurred, the measurement sample warped significantly.

従って、コア基板の厚さが0.6mm以下である場合や、コア基板の外形寸法が40mm以上である場合に、内蔵部品の外形寸法をICチップの外形寸法よりも小さくすれば、内蔵部品や接合部での異常の発生を防止できることが分かった。   Therefore, when the thickness of the core substrate is 0.6 mm or less, or when the outer dimension of the core substrate is 40 mm or more, if the outer dimension of the built-in component is smaller than the outer dimension of the IC chip, It was found that the occurrence of abnormalities at the joint could be prevented.

従って、本実施形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施形態の半導体パッケージ1によれば、コア基板11の最も大きい辺(縦、横)の長さが40mm以上であることで配線基板10の反りが顕著になったとしても、セラミックコンデンサ101は、反りの影響を受けにくい部品搭載領域23の直下に配置されるとともに、部品搭載領域23の外形寸法よりも小さい外形寸法に設定されているため、応力が集中しにくくなる。その結果、セラミックコンデンサ101や、セラミックコンデンサ101とビルドアップ層31,32との接合部(電極111,112,121,122付近)などが破壊されにくくなるため、半導体パッケージ1の信頼性が高くなる。ゆえに、セラミックコンデンサ101として、一般的に脆いとされるチタン酸バリウムを用いたセラミックコンデンサを用いたとしても、セラミックコンデンサ101が破壊されにくくなる。   (1) According to the semiconductor package 1 of the present embodiment, even when the warp of the wiring substrate 10 becomes significant due to the length of the largest side (vertical, horizontal) of the core substrate 11 being 40 mm or more, ceramic Since the capacitor 101 is arranged immediately below the component mounting area 23 that is not easily affected by warpage and is set to an outer dimension smaller than the outer dimension of the component mounting area 23, stress is less likely to concentrate. As a result, the ceramic capacitor 101 and the joint portions (near the electrodes 111, 112, 121, and 122) between the ceramic capacitor 101 and the buildup layers 31 and 32 are not easily broken, and the reliability of the semiconductor package 1 is increased. . Therefore, even if a ceramic capacitor using barium titanate, which is generally considered to be brittle, is used as the ceramic capacitor 101, the ceramic capacitor 101 is not easily destroyed.

(2)本実施形態では、セラミックコンデンサ101が部品搭載領域23に搭載されたICチップ21の直下に配置されるため、セラミックコンデンサ101とICチップ21とをつなぐ配線が短くなり、配線のインダクタンス成分の増加が防止される。従って、セラミックコンデンサ101によるICチップ21のスイッチングノイズを確実に低減できるとともに、電源電圧の確実な安定化を図ることができる。また、ICチップ21とセラミックコンデンサ101との間で侵入するノイズを極めて小さく抑えることができるため、誤動作等の不具合を生じることもなく高い信頼性を得ることができる。   (2) In this embodiment, since the ceramic capacitor 101 is disposed immediately below the IC chip 21 mounted in the component mounting region 23, the wiring connecting the ceramic capacitor 101 and the IC chip 21 is shortened, and the inductance component of the wiring Is prevented from increasing. Therefore, the switching noise of the IC chip 21 due to the ceramic capacitor 101 can be reliably reduced, and the power supply voltage can be reliably stabilized. In addition, since noise entering between the IC chip 21 and the ceramic capacitor 101 can be suppressed to a very low level, high reliability can be obtained without causing malfunction such as malfunction.

なお、本発明の実施形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施形態の半導体パッケージ1は、コア基板11内にセラミックコンデンサ101を内蔵するとともに、部品搭載領域23上にシリコン製のICチップ21を搭載し、セラミックコンデンサ101の外形寸法をICチップ21の外形寸法よりも小さく設定することにより構成されていた。しかし、図17〜図19に示されるように、コア基板11内にシリコン製のICチップ191を内蔵するとともに、部品搭載領域23上にセラミックコンデンサ192を搭載し、ICチップ191の外形寸法をセラミックコンデンサ192の外形寸法よりも小さく設定した半導体パッケージ193,198,199としてもよい。即ち、ICチップ191を『第1の無機材料製板状部品』として用いるとともに、セラミックコンデンサ192を『第2の無機材料製板状部品』として用いてもよい。このようにすれば、ICチップ191として、一般的に脆いとされる珪素(Si)を用いたICチップや、ガリウム砒素(GaAs)を用いたとしても、ICチップ191が破壊されにくくなる。   In the semiconductor package 1 of the above embodiment, the ceramic capacitor 101 is built in the core substrate 11, and the silicon IC chip 21 is mounted on the component mounting region 23. It was configured by setting it smaller than the external dimensions. However, as shown in FIGS. 17 to 19, a silicon IC chip 191 is built in the core substrate 11, and a ceramic capacitor 192 is mounted on the component mounting region 23. The semiconductor packages 193, 198, and 199 may be smaller than the external dimensions of the capacitor 192. In other words, the IC chip 191 may be used as the “first inorganic material plate-like component” and the ceramic capacitor 192 may be used as the “second inorganic material plate-like component”. In this way, even if an IC chip using silicon (Si), which is generally considered to be brittle, or gallium arsenide (GaAs) is used as the IC chip 191, the IC chip 191 is not easily destroyed.

・さらに図18,図19に示されるように、裏面側ビルドアップ層32の表面211に搭載領域212を設定し、搭載領域212上にチップコンデンサ213やレジスター(図示略)などの『表面実装部品』を搭載してもよい。例えば、チップコンデンサ213は、誘電体層を介して電源用内部電極層とグランド用内部電極層とが交互に積層配置された構造を有している。そして、チップコンデンサ213において互いに対向する一対の側面には、電源用内部電極層に接続される電源用電極214、及び、グランド用内部電極層に接続されるグランド用電極215がそれぞれ設けられている。   As shown in FIGS. 18 and 19, a mounting area 212 is set on the front surface 211 of the back-side buildup layer 32, and “surface mounted components such as a chip capacitor 213 and a register (not shown) are provided on the mounting area 212. ] May be installed. For example, the chip capacitor 213 has a structure in which power supply internal electrode layers and ground internal electrode layers are alternately stacked via dielectric layers. A power supply electrode 214 connected to the power supply internal electrode layer and a ground electrode 215 connected to the ground internal electrode layer are provided on a pair of side surfaces facing each other in the chip capacitor 213. .

なお図18,図19に示されるように、チップコンデンサ213(及び搭載領域212)は、ICチップ191の上面側から延びる配線210を下方に延ばす場合に都合が良い箇所に配置されることが好ましい。このようにすれば、ICチップ191の面接続端子22とチップコンデンサ213の電源用電極214とを電気的に接続する配線210(図18では、ビア導体43,47、主面側導体層42、スルーホール導体16、裏面側導体層41、パッド216及びはんだバンプ217からなる配線)が短くなり、配線のインダクタンス成分の増加が防止される。さらに、チップコンデンサ213は、配線基板10を裏面側ビルドアップ層32の表面211側から見た場合にICチップ191の外形線L1上、セラミックコンデンサ192の外形線L2上、ICチップ191の収容部内壁面(図示略)の延長線上に対応する箇所を避けた位置に搭載されることが好ましい。即ち、チップコンデンサ213は、裏面側ビルドアップ層32の表面211において応力が集中する箇所を避けた位置に搭載されることが好ましい。このようにすれば、チップコンデンサ213や、チップコンデンサ213と裏面側ビルドアップ層32との接合部などが破壊されにくくなるため、配線基板10の信頼性が高くなる。なお、チップコンデンサ213は、上記の外形線L1,L2及び延長線上に対応する箇所を避けた位置であれば表面211上の任意の位置に搭載可能であるが、特には、外形線L1と外形線L2との間に搭載されることが好ましい。このようにすれば、上記の配線210がより確実に短くなり、配線のインダクタンス成分の増加がより確実に防止される。   As shown in FIGS. 18 and 19, the chip capacitor 213 (and the mounting region 212) is preferably arranged at a convenient location when the wiring 210 extending from the upper surface side of the IC chip 191 is extended downward. . In this way, the wiring 210 (in FIG. 18, via conductors 43 and 47, the main surface side conductor layer 42, the electrical connection between the surface connection terminal 22 of the IC chip 191 and the power supply electrode 214 of the chip capacitor 213) The wiring composed of the through-hole conductor 16, the back-side conductor layer 41, the pad 216, and the solder bump 217) is shortened, and an increase in the inductance component of the wiring is prevented. Further, the chip capacitor 213 is formed on the outline L1 of the IC chip 191, the outline L2 of the ceramic capacitor 192, and in the housing portion of the IC chip 191 when the wiring board 10 is viewed from the front surface 211 side of the backside buildup layer 32. It is preferable to be mounted at a position avoiding a corresponding portion on an extension line of a wall surface (not shown). That is, it is preferable that the chip capacitor 213 is mounted at a position that avoids a location where stress is concentrated on the front surface 211 of the back surface side buildup layer 32. In this way, the chip capacitor 213 and the joint between the chip capacitor 213 and the back-side buildup layer 32 are not easily broken, and the reliability of the wiring board 10 is increased. Note that the chip capacitor 213 can be mounted at any position on the surface 211 as long as it avoids the corresponding positions on the outlines L1 and L2 and the extension lines. It is preferably mounted between the line L2. In this way, the wiring 210 is more reliably shortened, and an increase in the inductance component of the wiring is more reliably prevented.

・また、図18に示される半導体パッケージ198は、ICチップ191から主面側ビルドアップ層31の表面39上に搭載される電子部品(図示略)に対して信号を送るためのシグナル配線218を有していてもよい。なお、シグナル配線218は、主面側導体層42、ビア導体43,47及び端子パッド44からなる配線である。   18 has a signal wiring 218 for sending signals from the IC chip 191 to an electronic component (not shown) mounted on the surface 39 of the main surface side buildup layer 31. You may have. The signal wiring 218 is a wiring including the main surface side conductor layer 42, via conductors 43 and 47, and terminal pads 44.

・図19に示されるように、配線基板10において部品搭載領域23の裏側(具体的には、裏面側ビルドアップ層32の表面211)に配置された部品搭載部219上に、シリコン製のDRAM素子220を搭載した半導体パッケージ199としてもよい。そして、部品搭載部219の外形寸法を、部品搭載領域23の外形寸法よりも小さく設定し、さらにICチップ191の外形寸法よりも小さく設定してもよい。即ち、DRAM素子220を『第3の無機材料製板状部品』として用いてもよい。このような構成であれば、コア基板11の最も大きい辺の長さが50mmであることで配線基板10の反りが顕著になったとしても、部品搭載部219は、部品搭載領域23の外形寸法よりも小さく、さらにICチップ191の外形寸法よりも小さい外形寸法に設定されているため、応力がよりいっそう集中しにくくなる。その結果、DRAM素子220や、DRAM素子220と裏面側ビルドアップ層32との接合部などが破壊されにくくなるため、配線基板10の信頼性が高くなる。   As shown in FIG. 19, a DRAM made of silicon is formed on a component mounting portion 219 disposed on the back side of the component mounting region 23 (specifically, the front surface 211 of the back side buildup layer 32) in the wiring board 10. A semiconductor package 199 on which the element 220 is mounted may be used. Then, the outer dimension of the component mounting portion 219 may be set smaller than the outer dimension of the component mounting area 23 and further set smaller than the outer dimension of the IC chip 191. That is, the DRAM element 220 may be used as a “third inorganic material plate-like component”. With such a configuration, even if the warp of the wiring substrate 10 becomes significant due to the length of the largest side of the core substrate 11 being 50 mm, the component mounting portion 219 has the outer dimensions of the component mounting region 23. Since the outer dimension is set to be smaller than the outer dimension of the IC chip 191, the stress is more difficult to concentrate. As a result, the reliability of the wiring substrate 10 is improved because the DRAM element 220 and the joint between the DRAM element 220 and the back-side buildup layer 32 are not easily destroyed.

なお、部品搭載部219の面積は、ICチップ191の面積の0.25倍以上かつ1.0倍未満に設定されることが好ましい。即ち、配線基板10の厚さ方向から見た場合に、部品搭載部219はICチップ191の搭載領域内に位置していることが好ましい。仮に、部品搭載部219の面積がICチップ191の面積の0.25倍未満に設定されると、部品搭載部219が小さくなりすぎるため、部品搭載部219に搭載されるDRAM素子220の高機能化を図りにくくなる。一方、部品搭載部219の面積がICチップ191の面積の1.0倍以上に設定されると、部品搭載部219の外形寸法がICチップ191の外形寸法よりも大きくなりやすい。その結果、部品搭載部219に搭載されるDRAM素子220付近に大きな力がかかって破壊されやすくなり、配線基板10の信頼性が低下してしまう。   The area of the component mounting portion 219 is preferably set to be 0.25 times or more and less than 1.0 times the area of the IC chip 191. That is, when viewed from the thickness direction of the wiring substrate 10, the component mounting portion 219 is preferably located within the mounting area of the IC chip 191. If the area of the component mounting portion 219 is set to be less than 0.25 times the area of the IC chip 191, the component mounting portion 219 becomes too small, so that the high performance of the DRAM element 220 mounted on the component mounting portion 219 is increased. It becomes difficult to plan. On the other hand, when the area of the component mounting part 219 is set to 1.0 times or more of the area of the IC chip 191, the external dimension of the component mounting part 219 tends to be larger than the external dimension of the IC chip 191. As a result, a large force is applied to the vicinity of the DRAM element 220 mounted on the component mounting portion 219, and the circuit board 10 is likely to be destroyed, and the reliability of the wiring board 10 is lowered.

さらに、部品搭載部219及びICチップ191が平面視正方形状である場合、部品搭載部219の一辺の長さは、ICチップ191の一辺の長さよりもICチップ191の寸法公差とICチップ191の実装位置の位置公差との和の分だけ小さく設定されることがより好ましい。仮に、ICチップ191の寸法公差Aが50μm、ICチップ191の位置公差Bが100μm、ICチップ191の一辺の長さCが20mmである場合、部品搭載部219の一辺の長さDは、(A+B+D)≦20mmの式から求めることができ、D=19.85mm以下となる。この場合、部品搭載部219の面積は、ICチップ191の面積の0.985倍以下となる。また、D=18mmである場合、部品搭載部219の面積は、ICチップ191の面積の0.81倍以下となる。   Further, when the component mounting portion 219 and the IC chip 191 are square in plan view, the length of one side of the component mounting portion 219 is larger than the dimensional tolerance of the IC chip 191 and the length of one side of the IC chip 191. More preferably, it is set smaller by the sum of the position tolerance of the mounting position. If the dimensional tolerance A of the IC chip 191 is 50 μm, the positional tolerance B of the IC chip 191 is 100 μm, and the length C of one side of the IC chip 191 is 20 mm, the length D of one side of the component mounting portion 219 is ( A + B + D) ≦ 20 mm, and D = 19.85 mm or less. In this case, the area of the component mounting part 219 is 0.985 times or less of the area of the IC chip 191. When D = 18 mm, the area of the component mounting portion 219 is 0.81 times or less the area of the IC chip 191.

・上記実施形態の半導体パッケージ1は、コア基板11内にセラミックコンデンサ101を内蔵するとともに、部品搭載領域23上にシリコン製のICチップ21を搭載し、セラミックコンデンサ101の外形寸法をICチップ21の外形寸法よりも小さく設定することにより構成されていた。しかし、図20に示されるように、部品搭載領域23上のICチップ21とは異なるシリコン製のICチップ194をコア基板11内に内蔵し、ICチップ194の外形寸法をICチップ21の外形寸法よりも小さく設定した半導体パッケージ195としてもよい。即ち、ICチップ194を『第1の無機材料製板状部品』として用いてもよい。このようにすれば、ICチップ194として、一般的に脆いとされる材料を用いたICチップを用いたとしても、ICチップ194が破壊されにくくなる。   In the semiconductor package 1 of the above embodiment, the ceramic capacitor 101 is built in the core substrate 11, and the silicon IC chip 21 is mounted on the component mounting region 23. It was configured by setting it smaller than the external dimensions. However, as shown in FIG. 20, a silicon IC chip 194 different from the IC chip 21 on the component mounting area 23 is built in the core substrate 11, and the external dimensions of the IC chip 194 are changed to the external dimensions of the IC chip 21. The semiconductor package 195 may be set smaller than that. In other words, the IC chip 194 may be used as the “first inorganic material plate-like component”. In this way, even if an IC chip using a material that is generally considered brittle is used as the IC chip 194, the IC chip 194 is less likely to be destroyed.

・上記実施形態の半導体パッケージ1は、部品搭載領域23上にICチップ21を搭載し、セラミックコンデンサ101の外形寸法をICチップ21の外形寸法よりも小さく設定することにより構成されていた。しかし、図21に示されるように、部品搭載領域23上にICチップ21が搭載されたセラミック製のインターポーザ196を搭載し、セラミックコンデンサ101の外形寸法をインターポーザ196の外形寸法よりも小さく設定した半導体パッケージ197としてもよい。即ち、インターポーザ196を『第2の無機材料製板状部品』として用いてもよい。   The semiconductor package 1 of the above embodiment is configured by mounting the IC chip 21 on the component mounting region 23 and setting the outer dimension of the ceramic capacitor 101 to be smaller than the outer dimension of the IC chip 21. However, as shown in FIG. 21, a semiconductor in which a ceramic interposer 196 having an IC chip 21 mounted thereon is mounted on a component mounting area 23, and the external dimensions of the ceramic capacitor 101 are set smaller than the external dimensions of the interposer 196. A package 197 may be used. That is, the interposer 196 may be used as a “second inorganic material plate-like component”.

・上記実施形態では、部品収容穴90の内面とセラミックコンデンサ101の側面との隙間が樹脂充填部92によって埋められていたが、図22に示されるように、上記隙間が主面側樹脂絶縁層33の一部によって埋められていてもよい。   In the above embodiment, the gap between the inner surface of the component accommodation hole 90 and the side surface of the ceramic capacitor 101 is filled with the resin filling portion 92. However, as shown in FIG. It may be filled with a part of 33.

次に、前述した実施形態によって把握される技術的思想を以下に列挙する。   Next, the technical ideas grasped by the embodiment described above are listed below.

(1)コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容されたセラミック製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、第2の無機材料製板状部品を搭載可能な部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部とを備え、前記セラミック製板状部品が前記部品搭載領域の直下に配置されるとともに、前記セラミック製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする配線基板。   (1) A core substrate having a core main surface and a core back surface, formed with a component receiving hole that opens at least on the core main surface side, and having a largest side length of 40 mm or more, a component main surface, and a component A ceramic plate-like component housed in the component housing hole with the back surface and the core main surface and the component main surface facing the same side, a main surface side interlayer insulating layer, and a main surface side conductor layer On the main surface of the core, a main surface side wiring laminated portion in which a component mounting area on which a second inorganic material plate-like component can be mounted is set on the surface, and a back surface side interlayer insulating layer And a back surface side wiring laminated portion formed by laminating a back surface side conductor layer on the back surface of the core, and the ceramic plate-like component is disposed immediately below the component mounting region, and the ceramic plate-like component The external dimensions of the product are set smaller than the external dimensions of the component mounting area. Wiring board, characterized in that it is.

(2)配線基板とその上に搭載された第2の無機材料製板状部品との隙間を樹脂材で封止した構造の半導体パッケージであって、前記配線基板は、コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であり、前記コア裏面側に反っているコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、前記第2の無機材料製板状部品を搭載するための部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部とを備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする半導体パッケージ。   (2) A semiconductor package having a structure in which a gap between a wiring board and a second inorganic material plate-like component mounted thereon is sealed with a resin material, the wiring board including a core main surface and a core back surface And a core substrate that has a component receiving hole that opens at least on the core main surface side, has a largest side length of 40 mm or more, and is warped on the core back surface side, a component main surface, and a component A first inorganic material plate-shaped component housed in the component housing hole in a state having a back surface, with the core main surface and the component main surface facing the same side, a main surface side interlayer insulating layer, and a main surface A main-surface-side wiring laminated portion in which a surface-side conductor layer is laminated on the core main surface, and a component-mounting area for mounting the second inorganic material plate-like component is set on the surface thereof; A back side formed by laminating a back side interlayer insulating layer and a back side conductor layer on the core back side The first inorganic material plate-like component is disposed immediately below the component mounting region, and the outer dimension of the first inorganic material plate-like component is the outer shape of the component mounting region. A semiconductor package characterized by being set smaller than a dimension.

(3)配線基板とその上に搭載された第2の無機材料製板状部品との隙間を樹脂材で封止した構造の半導体パッケージであって、前記配線基板は、コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容されたセラミック製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、前記第2の無機材料製板状部品を搭載するための部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部とを備え、前記セラミック製板状部品が前記部品搭載領域の直下に配置されるとともに、前記セラミック製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする半導体パッケージ。   (3) A semiconductor package having a structure in which a gap between a wiring board and a second inorganic material plate-like component mounted thereon is sealed with a resin material, the wiring board including a core main surface and a core back surface A core substrate having a component receiving hole that opens at least on the core main surface side, the length of the largest side being 40 mm or more, a component main surface, and a component back surface, and the core main surface And a ceramic plate-like component housed in the component housing hole with the component main surface facing the same side, a main surface side interlayer insulating layer and a main surface side conductor layer are laminated on the core main surface The main surface side wiring laminated portion in which the component mounting region for mounting the second inorganic material plate-shaped component is set on the surface, the back surface side interlayer insulating layer and the back surface side conductor layer A backside wiring laminate formed on the backside of the core, and the ceramic With manufacturing plate-like part is located directly below the component mounting region, the semiconductor package external dimensions of the ceramic plate-like part which is characterized in that is set smaller than the outside dimension of the component mounting region.

(4)コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、第2の無機材料製板状部品を搭載可能な部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部とを備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されており、前記部品収容穴の開口部の外形寸法が、前記第1の無機材料製板状部品の外形寸法よりも大きく設定されていることを特徴とする配線基板。   (4) A core substrate having a core main surface and a core back surface, formed with a component receiving hole that opens at least on the core main surface side, and having a maximum side length of 40 mm or more, a component main surface, and a component A first inorganic material plate-shaped component housed in the component housing hole in a state having a back surface, with the core main surface and the component main surface facing the same side, a main surface side interlayer insulating layer, and a main surface A main-surface-side wiring laminated portion in which a surface-side conductor layer is laminated on the core main surface, and a component mounting area on which a second inorganic material plate-like component can be mounted is set on the surface; A back side wiring laminated portion formed by laminating a side interlayer insulating layer and a back side conductor layer on the back side of the core, and the first inorganic material plate-like component is disposed immediately below the component mounting region. In addition, the outer dimension of the first inorganic material plate-like component is equal to the outer dimension of the component mounting region. Wiring board is also set to be smaller, the outer dimension of the opening of the component accommodation hole, characterized in that it is set larger than the outside dimension of the first inorganic material-made plate-like component.

(5)コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、第2の無機材料製板状部品を搭載可能な部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなり、シリコン系材料からなる第3の無機材料製板状部品を搭載可能な部品搭載部がその表面に設定されている裏面側配線積層部とを備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置され、前記部品搭載部が前記配線基板において前記部品搭載領域の裏側に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定され、前記部品搭載部の外形寸法が前記部品搭載領域の外形寸法、及び、前記第1の無機材料製板状部品の外形寸法よりも小さく設定されていることを特徴とする配線基板。   (5) A core substrate having a core main surface and a core back surface, formed with a component accommodation hole that opens at least on the core main surface side, and having a maximum side length of 40 mm or more, a component main surface, and a component A first inorganic material plate-shaped component housed in the component housing hole in a state having a back surface, with the core main surface and the component main surface facing the same side, a main surface side interlayer insulating layer, and a main surface A main-surface-side wiring laminated portion in which a surface-side conductor layer is laminated on the core main surface, and a component mounting area on which a second inorganic material plate-like component can be mounted is set on the surface; A side-layer insulating layer and a back-side conductor layer are laminated on the back side of the core, and a component mounting portion on which a third inorganic material plate-like component made of a silicon-based material can be mounted is set on the surface. The first inorganic material plate-like component is the component mounting region. The component mounting portion is disposed immediately below the component mounting area on the wiring board, and the outer dimension of the first inorganic material plate-shaped component is smaller than the outer dimension of the component mounting area. The wiring board is characterized in that the outer dimension of the component mounting portion is set smaller than the outer dimension of the component mounting area and the outer dimension of the first inorganic material plate-shaped component.

(6)コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、第2の無機材料製板状部品を搭載可能な部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなり、シリコン系材料からなる第3の無機材料製板状部品を搭載可能な部品搭載部、及び、表面実装部品を搭載可能な搭載領域がその表面に設定されている裏面側配線積層部とを備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置され、前記部品搭載部が前記配線基板において前記部品搭載領域の裏側に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定され、前記部品搭載部の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定され、前記搭載領域は、前記第1の無機材料製板状部品に対して配線を介して電気的に接続されていることを特徴とする配線基板。   (6) A core substrate having a core main surface and a core back surface, formed with a component receiving hole that opens at least on the core main surface side, and having a largest side length of 40 mm or more, a component main surface, and a component A first inorganic material plate-shaped component housed in the component housing hole in a state having a back surface, with the core main surface and the component main surface facing the same side, a main surface side interlayer insulating layer, and a main surface A main-surface-side wiring laminated portion in which a surface-side conductor layer is laminated on the core main surface, and a component mounting area on which a second inorganic material plate-like component can be mounted is set on the surface; A side-layer insulating layer and a back-side conductor layer are stacked on the back side of the core, and a component mounting portion on which a third inorganic material plate-shaped component made of a silicon-based material can be mounted, and a surface-mounted component mounted A backside wiring laminated portion having a possible mounting area set on the front surface, and The inorganic material plate-shaped component is disposed immediately below the component mounting region, the component mounting portion is disposed on the back side of the component mounting region on the wiring board, and the first inorganic material plate-shaped component An outer dimension is set smaller than an outer dimension of the component mounting area, an outer dimension of the component mounting portion is set smaller than an outer dimension of the component mounting area, and the mounting area is made of the first inorganic material plate. A wiring board characterized in that it is electrically connected to a shaped part via wiring.

(7)コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、第2の無機材料製板状部品を搭載可能な部品搭載領域がその表面に設定されている主面側配線積層部と、裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部とを備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定され、前記裏面側配線積層部の表面において前記第1の無機材料製板状部品の側面の延長線上、及び、前記第2の無機材料製板状部品の側面の延長線上を避けた位置に、表面実装部品が搭載されていることを特徴とする配線基板。   (7) A core substrate having a core main surface and a core back surface, formed with a component receiving hole that opens at least on the core main surface side, and having a maximum side length of 40 mm or more, a component main surface, and a component A first inorganic material plate-shaped component housed in the component housing hole in a state having a back surface, with the core main surface and the component main surface facing the same side, a main surface side interlayer insulating layer, and a main surface A main-surface-side wiring laminated portion in which a surface-side conductor layer is laminated on the core main surface, and a component mounting area on which a second inorganic material plate-like component can be mounted is set on the surface; A back side wiring laminated portion formed by laminating a side interlayer insulating layer and a back side conductor layer on the back side of the core, and the first inorganic material plate-like component is disposed immediately below the component mounting region. In addition, the outer dimension of the first inorganic material plate-like component is equal to the outer dimension of the component mounting region. Is set to be small, and on the surface of the back-side wiring laminated portion, the extension line on the side surface of the first inorganic material plate-like component and the extension line on the side surface of the second inorganic material plate-like component are avoided. A wiring board characterized in that a surface mounting component is mounted at a position.

本発明を具体化した一実施形態の半導体パッケージを示す概略断面図。1 is a schematic cross-sectional view showing a semiconductor package of an embodiment embodying the present invention. 半導体パッケージの上面を示す概略平面図。The schematic plan view which shows the upper surface of a semiconductor package. セラミックコンデンサを示す概略断面図。The schematic sectional drawing which shows a ceramic capacitor. セラミックコンデンサの内層における接続を説明するための概略説明図。Schematic explanatory drawing for demonstrating the connection in the inner layer of a ceramic capacitor. セラミックコンデンサの内層における接続を説明するための概略説明図。Schematic explanatory drawing for demonstrating the connection in the inner layer of a ceramic capacitor. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージの製造方法の説明図。Explanatory drawing of the manufacturing method of a semiconductor package. 半導体パッケージを示す概略断面図。1 is a schematic cross-sectional view showing a semiconductor package. 熱衝撃試験の結果を示す表。The table | surface which shows the result of a thermal shock test. 他の実施形態の半導体パッケージを示す概略断面図。The schematic sectional drawing which shows the semiconductor package of other embodiment. 他の実施形態の半導体パッケージを示す概略断面図。The schematic sectional drawing which shows the semiconductor package of other embodiment. 他の実施形態の半導体パッケージを示す概略断面図。The schematic sectional drawing which shows the semiconductor package of other embodiment. 他の実施形態の半導体パッケージを示す概略断面図。The schematic sectional drawing which shows the semiconductor package of other embodiment. 他の実施形態の半導体パッケージを示す概略断面図。The schematic sectional drawing which shows the semiconductor package of other embodiment. 他の実施形態の半導体パッケージを示す概略断面図。The schematic sectional drawing which shows the semiconductor package of other embodiment. 従来技術における半導体パッケージを示す概略断面図。The schematic sectional drawing which shows the semiconductor package in a prior art. 従来技術の問題点を説明するための概略断面図。The schematic sectional drawing for demonstrating the problem of a prior art.

符号の説明Explanation of symbols

1,193,195,197,198,199…半導体パッケージ
10…配線基板
11…コア基板
12…コア主面
13…コア裏面
20…樹脂材としてのアンダーフィル材
21…第2の無機材料製板状部品及び半導体集積回路チップとしてのICチップ
23…部品搭載領域
31…主面側配線積層部としての主面側ビルドアップ層
32…裏面側配線積層部としての裏面側ビルドアップ層
33,35…主面側層間絶縁層としての主面側樹脂絶縁層
34,36…裏面側層間絶縁層としての裏面側樹脂絶縁層
39…主面側配線積層部の表面
41…裏面側導体層
42…主面側導体層
90…部品収容穴
101…第1の無機材料製板状部品としてのセラミックコンデンサ
102…部品主面としてのコンデンサ主面
103…部品裏面としてのコンデンサ裏面
131…コンデンサ内ビア導体としての電源用コンデンサ内ビア導体
132…コンデンサ内ビア導体としてのグランド用コンデンサ内ビア導体
191,194…第1の無機材料製板状部品としてのICチップ
192…第2の無機材料製板状部品としてのセラミックコンデンサ
196…第2の無機材料製板状部品としてのインターポーザ
211…裏面側配線積層部の表面
213…表面実装部品としてのチップコンデンサ
219…部品搭載部
220…第3の無機材料製板状部品としてのDRAM素子
L1…第1の無機材料製板状部品の外形線
L2…第2の無機材料製板状部品の外形線
DESCRIPTION OF SYMBOLS 1,193,195,197,198,199 ... Semiconductor package 10 ... Wiring board 11 ... Core board 12 ... Core main surface 13 ... Core back surface 20 ... Underfill material 21 as resin material ... 2nd inorganic material plate shape IC chip 23 as component and semiconductor integrated circuit chip ... component mounting region 31 ... main surface side buildup layer 32 as main surface side wiring laminated portion ... back surface side buildup layers 33, 35 as main surface side wiring laminated portion. Main surface side resin insulation layers 34, 36 as surface side interlayer insulation layers ... Back surface side resin insulation layers 39 as back surface side interlayer insulation layers ... Surface 41 of main surface side wiring laminated portion ... Back surface side conductor layer 42 ... Main surface side Conductor layer 90... Component housing hole 101... Ceramic capacitor 102 as a first inorganic material plate-shaped component... Capacitor main surface 103 as component main surface. ... Capacitor via conductor 132 for power supply as via conductor in capacitor ... Capacitor via conductors 191 and 194 for ground as via conductors in capacitor ... IC chip 192 as plate component made of first inorganic material ... Second inorganic Ceramic capacitor 196 as a material-made plate-shaped component ... Interposer 211 as a second inorganic-material-made plate-shaped component ... Surface 213 of the back-side wiring laminated portion ... Chip capacitor 219 as a surface-mounted component ... Component mounting portion 220 ... Third DRAM element L1 as a plate-like component made of inorganic material ... Outline line L2 of plate component made of first inorganic material ... Outline line of plate-like component made of second inorganic material

Claims (15)

コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、
部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、
主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、第2の無機材料製板状部品を搭載可能な部品搭載領域がその表面に設定されている主面側配線積層部と、
裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部と
を備え、前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする配線基板。
A core substrate having a core main surface and a core back surface, formed with a component housing hole that opens at least on the core main surface side, and having a length of the largest side of 40 mm or more;
A first inorganic material plate-like component housed in the component housing hole in a state having a component main surface and a component back surface, with the core main surface and the component main surface facing the same side;
A main surface side interlayer insulating layer and a main surface side conductor layer are laminated on the core main surface, and a component mounting region in which a second inorganic material plate-shaped component can be mounted is set on the surface. A surface-side wiring laminate,
A back side wiring laminated portion formed by laminating a back side interlayer insulating layer and a back side conductor layer on the back side of the core, and the first inorganic material plate-like component is disposed immediately below the component mounting region. In addition, an external dimension of the first inorganic material plate-like component is set smaller than an external dimension of the component mounting region.
前記第1の無機材料製板状部品の面積が、前記部品搭載領域の面積の0.25倍以上かつ1倍未満であることを特徴とする請求項1に記載の配線基板。   2. The wiring board according to claim 1, wherein an area of the first inorganic material plate-like component is 0.25 times or more and less than 1 time of an area of the component mounting region. 前記部品収容穴の開口部の外形寸法が、前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする請求項1または2に記載の配線基板。   The wiring board according to claim 1, wherein an outer dimension of the opening of the component housing hole is set smaller than an outer dimension of the component mounting region. 前記第1の無機材料製板状部品の熱膨張係数が、前記コア基板、前記主面側配線積層部及び前記裏面側配線積層部の熱膨張係数よりも小さいことを特徴とする請求項1乃至3のいずれか1項に記載の配線基板。   2. The thermal expansion coefficient of the first inorganic material plate-like component is smaller than the thermal expansion coefficients of the core substrate, the main surface side wiring laminated portion, and the back surface side wiring laminated portion. 4. The wiring board according to any one of 3 above. 前記第1の無機材料製板状部品が、複数のコンデンサ内ビア導体を有するビアアレイタイプのセラミックコンデンサであることを特徴とする請求項1乃至4のいずれか1項に記載の配線基板。   5. The wiring board according to claim 1, wherein the first inorganic plate-shaped component is a via array type ceramic capacitor having a plurality of via conductors in the capacitor. 前記裏面側配線積層部の表面に、シリコン系材料からなる第3の無機材料製板状部品を搭載可能な部品搭載部が設定され、
前記部品搭載部が前記配線基板において前記部品搭載領域の裏側に配置されるとともに、前記部品搭載部の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されている
ことを特徴とする請求項1乃至5のいずれか1項に記載の配線基板。
On the surface of the back side wiring laminated portion, a component mounting portion capable of mounting a third inorganic material plate-shaped component made of a silicon-based material is set,
The component mounting part is disposed on a back side of the component mounting area on the wiring board, and an outer dimension of the component mounting part is set smaller than an outer dimension of the component mounting area. The wiring board according to any one of 1 to 5.
前記裏面側配線積層部の表面において、前記配線基板を前記裏面側配線積層部の表面側から見た場合に前記第1の無機材料製板状部品の外形線上、及び、前記第2の無機材料製板状部品の外形線上に対応する箇所を避けた位置に、表面実装部品が搭載されていることを特徴とする請求項1乃至6のいずれか1項に記載の配線基板。   When the wiring board is viewed from the front surface side of the back surface side wiring laminated portion on the surface of the back surface side wiring laminated portion, on the outline line of the first inorganic material plate-like component, and the second inorganic material The wiring board according to any one of claims 1 to 6, wherein a surface mounting component is mounted at a position avoiding a corresponding portion on the outline of the plate-like component. 配線基板とその上に搭載された第2の無機材料製板状部品との隙間を樹脂材で封止した構造の半導体パッケージであって、
前記配線基板は、
コア主面及びコア裏面を有し、少なくとも前記コア主面側にて開口する部品収容穴が形成され、最も大きい辺の長さが40mm以上であるコア基板と、
部品主面及び部品裏面を有し、前記コア主面と前記部品主面とを同じ側に向けた状態で前記部品収容穴に収容された第1の無機材料製板状部品と、
主面側層間絶縁層及び主面側導体層を前記コア主面上にて積層してなり、前記第2の無機材料製板状部品を搭載するための部品搭載領域がその表面に設定されている主面側配線積層部と、
裏面側層間絶縁層及び裏面側導体層を前記コア裏面上にて積層してなる裏面側配線積層部と
を備え、
前記第1の無機材料製板状部品が前記部品搭載領域の直下に配置されるとともに、前記第1の無機材料製板状部品の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されている
ことを特徴とする半導体パッケージ。
A semiconductor package having a structure in which a gap between a wiring board and a second inorganic material plate-like component mounted thereon is sealed with a resin material,
The wiring board is
A core substrate having a core main surface and a core back surface, formed with a component housing hole that opens at least on the core main surface side, and having a length of the largest side of 40 mm or more;
A first inorganic material plate-like component housed in the component housing hole in a state having a component main surface and a component back surface, with the core main surface and the component main surface facing the same side;
A main surface side interlayer insulating layer and a main surface side conductor layer are laminated on the core main surface, and a component mounting region for mounting the second inorganic material plate-shaped component is set on the surface thereof. A main-surface-side wiring laminated portion,
A back side wiring laminated portion formed by laminating a back side interlayer insulating layer and a back side conductor layer on the core back side,
The first inorganic material plate-like component is disposed immediately below the component mounting region, and the outer dimension of the first inorganic material plate-like component is set smaller than the outer dimension of the component mounting region. A semiconductor package characterized by comprising:
前記第1の無機材料製板状部品の面積が、前記部品搭載領域の面積の0.25倍以上かつ1倍未満であることを特徴とする請求項8に記載の半導体パッケージ。   9. The semiconductor package according to claim 8, wherein an area of the first inorganic material plate-like component is 0.25 times or more and less than 1 time of an area of the component mounting region. 前記部品収容穴の開口部の外形寸法が、前記部品搭載領域の外形寸法よりも小さく設定されていることを特徴とする請求項8または9に記載の半導体パッケージ。   10. The semiconductor package according to claim 8, wherein an outer dimension of the opening of the component housing hole is set smaller than an outer dimension of the component mounting region. 前記第1の無機材料製板状部品の熱膨張係数が、前記コア基板、前記主面側配線積層部及び前記裏面側配線積層部の熱膨張係数よりも小さいことを特徴とする請求項8乃至10のいずれか1項に記載の半導体パッケージ。   The thermal expansion coefficient of the first inorganic material plate-like component is smaller than the thermal expansion coefficients of the core substrate, the main-surface-side wiring laminated portion, and the back-surface-side wiring laminated portion. The semiconductor package according to any one of 10. 前記第1の無機材料製板状部品が、複数のコンデンサ内ビア導体を有するビアアレイタイプのセラミックコンデンサであることを特徴とする請求項8乃至11のいずれか1項に記載の半導体パッケージ。   12. The semiconductor package according to claim 8, wherein the first inorganic plate-shaped component is a via array type ceramic capacitor having a plurality of via conductors in the capacitor. 前記第2の無機材料製板状部品が、半導体集積回路チップであることを特徴とする請求項8乃至12のいずれか1項に記載の半導体パッケージ。   13. The semiconductor package according to claim 8, wherein the second inorganic material plate-like component is a semiconductor integrated circuit chip. 前記裏面側配線積層部の表面に、シリコン系材料からなる第3の無機材料製板状部品を搭載可能な部品搭載部が設定され、
前記部品搭載部が前記配線基板において前記部品搭載領域の裏側に配置されるとともに、前記部品搭載部の外形寸法が前記部品搭載領域の外形寸法よりも小さく設定されている
ことを特徴とする請求項8乃至13のいずれか1項に記載の半導体パッケージ。
On the surface of the back side wiring laminated portion, a component mounting portion capable of mounting a third inorganic material plate-shaped component made of a silicon-based material is set,
The component mounting part is disposed on a back side of the component mounting area on the wiring board, and an outer dimension of the component mounting part is set smaller than an outer dimension of the component mounting area. 14. The semiconductor package according to any one of 8 to 13.
前記裏面側配線積層部の表面において、前記配線基板を前記裏面側配線積層部の表面側から見た場合に前記第1の無機材料製板状部品の外形線上、及び、前記第2の無機材料製板状部品の外形線上に対応する箇所を避けた位置に、表面実装部品が搭載されていることを特徴とする請求項8乃至14のいずれか1項に記載の半導体パッケージ。   When the wiring board is viewed from the front surface side of the back surface side wiring laminated portion on the surface of the back surface side wiring laminated portion, on the outline line of the first inorganic material plate-like component, and the second inorganic material The semiconductor package according to any one of claims 8 to 14, wherein a surface-mounted component is mounted at a position avoiding a corresponding portion on the outline of the plate-like component.
JP2008020855A 2007-02-01 2008-01-31 Wiring board, semiconductor package Expired - Fee Related JP4975655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020855A JP4975655B2 (en) 2007-02-01 2008-01-31 Wiring board, semiconductor package

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007023391 2007-02-01
JP2007023391 2007-02-01
JP2008020855A JP4975655B2 (en) 2007-02-01 2008-01-31 Wiring board, semiconductor package

Publications (2)

Publication Number Publication Date
JP2008211202A true JP2008211202A (en) 2008-09-11
JP4975655B2 JP4975655B2 (en) 2012-07-11

Family

ID=39787200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020855A Expired - Fee Related JP4975655B2 (en) 2007-02-01 2008-01-31 Wiring board, semiconductor package

Country Status (1)

Country Link
JP (1) JP4975655B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100039818A (en) * 2008-10-08 2010-04-16 니혼도꾸슈도교 가부시키가이샤 Component built-in wiring substrate and manufacturing method thereof
JP2010129991A (en) * 2008-12-01 2010-06-10 Ngk Spark Plug Co Ltd Wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309243A (en) * 2002-04-15 2003-10-31 Ngk Spark Plug Co Ltd Manufacturing method of wiring base board
JP2004072124A (en) * 2003-11-04 2004-03-04 Kyocera Corp Wiring board with built-in electric element
JP2004095851A (en) * 2002-08-30 2004-03-25 Ngk Spark Plug Co Ltd Wiring board
JP2004186362A (en) * 2002-12-03 2004-07-02 Sanyo Electric Co Ltd Circuit device
JP2004296574A (en) * 2003-03-26 2004-10-21 Kyocera Corp Multilayer wiring board with built-in electronic element
JP2006253668A (en) * 2005-02-09 2006-09-21 Ngk Spark Plug Co Ltd Wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309243A (en) * 2002-04-15 2003-10-31 Ngk Spark Plug Co Ltd Manufacturing method of wiring base board
JP2004095851A (en) * 2002-08-30 2004-03-25 Ngk Spark Plug Co Ltd Wiring board
JP2004186362A (en) * 2002-12-03 2004-07-02 Sanyo Electric Co Ltd Circuit device
JP2004296574A (en) * 2003-03-26 2004-10-21 Kyocera Corp Multilayer wiring board with built-in electronic element
JP2004072124A (en) * 2003-11-04 2004-03-04 Kyocera Corp Wiring board with built-in electric element
JP2006253668A (en) * 2005-02-09 2006-09-21 Ngk Spark Plug Co Ltd Wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100039818A (en) * 2008-10-08 2010-04-16 니혼도꾸슈도교 가부시키가이샤 Component built-in wiring substrate and manufacturing method thereof
JP2010114434A (en) * 2008-10-08 2010-05-20 Ngk Spark Plug Co Ltd Component built-in wiring board and method of manufacturing the same
KR101697774B1 (en) * 2008-10-08 2017-01-18 니혼도꾸슈도교 가부시키가이샤 Component built-in wiring substrate
JP2010129991A (en) * 2008-12-01 2010-06-10 Ngk Spark Plug Co Ltd Wiring board

Also Published As

Publication number Publication date
JP4975655B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4838068B2 (en) Wiring board
US7889509B2 (en) Ceramic capacitor
JP4509972B2 (en) Wiring board, embedded ceramic chip
US7932471B2 (en) Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
US7704548B2 (en) Method for manufacturing wiring board
JP5101240B2 (en) Board component built-in wiring board
JP5203451B2 (en) Component built-in wiring board
JP5089880B2 (en) Capacitor for wiring board built-in, wiring board with built-in capacitor and manufacturing method thereof
US7808799B2 (en) Wiring board
JP2007258542A (en) Wiring board
JP4405477B2 (en) WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME
WO2015083345A1 (en) Wiring board with embedded components and manufacturing method thereof
JP5112005B2 (en) Wiring board with built-in plate-shaped component and manufacturing method thereof
JP4907273B2 (en) Wiring board
JP4405478B2 (en) WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME
JP2012151154A (en) Method for manufacturing component built-in wiring substrate
JP4975655B2 (en) Wiring board, semiconductor package
JP5260067B2 (en) Wiring board, semiconductor package
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP2009147177A (en) Capacitor incorporated in wiring board, and wiring board
JP4668822B2 (en) Wiring board manufacturing method
JP2015141953A (en) Component built-in wiring board and method for manufacturing the same
KR100782935B1 (en) Printed circuit board having embedded chip and manufacturing method therefore
JP4705867B2 (en) Wiring board manufacturing method
JP2007305953A (en) Wiring substrate, and capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees