[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008202707A - Frictional differential planetary-transmission - Google Patents

Frictional differential planetary-transmission Download PDF

Info

Publication number
JP2008202707A
JP2008202707A JP2007040187A JP2007040187A JP2008202707A JP 2008202707 A JP2008202707 A JP 2008202707A JP 2007040187 A JP2007040187 A JP 2007040187A JP 2007040187 A JP2007040187 A JP 2007040187A JP 2008202707 A JP2008202707 A JP 2008202707A
Authority
JP
Japan
Prior art keywords
roller
planetary
cylindrical body
power transmission
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007040187A
Other languages
Japanese (ja)
Other versions
JP4949888B2 (en
Inventor
Isamu Shiozu
勇 塩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007040187A priority Critical patent/JP4949888B2/en
Publication of JP2008202707A publication Critical patent/JP2008202707A/en
Application granted granted Critical
Publication of JP4949888B2 publication Critical patent/JP4949888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frictional differential planetary-transmission having a high durability, a simple structure, and reduced cost wherein an input shaft and an output shaft are coaxial with each other, and despite a reduced number of reduction-stages, a high reduction ratio can be achieved. <P>SOLUTION: The frictional differential planetary-transmission includes a sun roller which is integrated with an input shaft supported rotatably in a housing, a plurality of planet rollers circumscribed around the sun roller, a cage which is provided in the perimeter of the sun roller so as to keep a regular space between each of the planet rollers, a cylindrical outside-roller fixed in the housing, a thin-walled cylinder which is placed between the inside surface of the outside roller and the outside surface of the planet rollers, and has an outside peripheral length shorter than the inside peripheral length of the outside roller, and an output shaft which is freely rotatably supported in the housing and coupled to the thin-walled cylinder. A power is transmitted by frictional force produced by the push between the thin-walled cylinder and the outside roller. A graded part is provided on the outside peripheral surface of the planet rollers, the planet rollers and the input shaft are axially press fit into the inside peripheral-part of the thin-walled cylinder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、入力軸と出力軸とを同一軸線上に置き、減速段数が少なくて大きな減速比を得ることができる小型で低コストの摩擦式差動遊星動力伝達装置に関する。 The present invention relates to a small and low-cost frictional differential planetary power transmission device in which an input shaft and an output shaft are placed on the same axis, and a large reduction ratio can be obtained with a small number of reduction stages.

入力軸と出力軸とを同一軸線上に置き、一段の減速で大きな減速比を得ることができる歯車式減速装置としては、調和式の歯車減速装置(商標:ハーモニックドライブ、以下ハーモニックドライブと言う。)が知られている。このハーモニックドライブは、楕円状の内輪と可撓の外輪を有し、転動体を介して互いに転動する軸受を用い、内輪を入力軸に固定し、外輪の外周に歯を設け、軸受の長径端の2点で外輪の外周側に固設された内歯車と噛合させたものであり、内輪が入力軸とともに1回転すると、外輪の長軸端部は外輪に設けた歯を内歯車の歯に噛合させながら回転して内歯車の元の位置に戻るが、外輪は楕円形をしていて内歯車より周長が短く、外輪の歯数は内歯車の歯数より少ないので、内歯車の元の位置に戻った長軸端部の歯は外輪の元の歯の位置を超えて不足分の歯数だけ先に進んだ歯となる。従って、内輪が1回転すると外輪は不足分の歯数分だけ逆方向に回転することになるので、この回転を出力軸に取出せば減速装置が得られる。このハーモニックドライブは、歯車を用いるので、歯車の特性に基づく種々の設計上の制約によって、減速比が制約されたり、バックラッシが大きくなる等の難点がある。この欠点を避けるために、歯車に代えてローラを用い、摩擦力によって力の伝達を行う摩擦式差動遊星動力伝達装置が提案されている。   A gear-type reduction gear (trademark: Harmonic Drive, hereinafter referred to as harmonic drive) is a gear-type reduction gear that can obtain a large reduction ratio by one-stage reduction by placing the input shaft and the output shaft on the same axis. )It has been known. This harmonic drive has an elliptical inner ring and a flexible outer ring, uses bearings that roll on each other via rolling elements, fixes the inner ring to the input shaft, provides teeth on the outer circumference of the outer ring, When the inner ring rotates once together with the input shaft, the long shaft end of the outer ring causes the teeth provided on the outer ring to move to the teeth of the inner gear. The outer ring is elliptical and has a shorter circumference than the inner gear, and the outer ring has fewer teeth than the inner gear. The tooth at the end of the long axis that has returned to its original position is a tooth that has advanced beyond the original tooth position of the outer ring by the number of missing teeth. Accordingly, when the inner ring rotates once, the outer ring rotates in the reverse direction by the number of missing teeth, and if this rotation is taken out to the output shaft, a reduction gear can be obtained. Since this harmonic drive uses gears, there are problems such as a reduction ratio being restricted and a large backlash due to various design restrictions based on the characteristics of the gears. In order to avoid this drawback, a friction type differential planetary power transmission device has been proposed in which a roller is used instead of a gear and the force is transmitted by a frictional force.

この摩擦式差動遊星動力伝達装置の提案は種々あるが、一例として特許文献1に開陳されたものについて説明する。この動力伝達装置は、中心軸線が所定回転軸線cと一致するように配置される円筒状の外周面を有する太陽部材と、太陽部材の外周面に外接して摩擦により動力伝達する円筒状の外周面を各々有する複数個の遊星駆動部材と、複数個の遊星駆動部材を自転の回転軸線が回転軸線cと平行になるようにそれぞれ自転可能に支持するとともに、一緒に回転軸線c周りに公転可能に支持するキャリアと、中心軸線が回転軸線cと一致するように配置された複数個の遊星駆動部材の外周面に外接して摩擦により動力伝達する円筒状の内周面を有する剛性リングと、中心軸線が回転軸線cと一致するように配置される、剛性リングの内周面の周長よりも僅かに小さい周長の内周面を有し、その内周面が当該可撓性リングの部分的な弾性的拡径変形によって複数個の遊星駆動部材の外周面に外接して摩擦により動力伝達する可撓性リングとを具えているものである。   There are various proposals of this friction type differential planetary power transmission device, but the one disclosed in Patent Document 1 will be described as an example. This power transmission device includes a solar member having a cylindrical outer peripheral surface arranged so that a central axis coincides with a predetermined rotation axis c, and a cylindrical outer periphery that circumscribes the outer peripheral surface of the solar member and transmits power by friction. A plurality of planetary drive members each having a surface, and a plurality of planetary drive members are supported so as to be able to rotate so that the rotation axis of rotation is parallel to the rotation axis c, and can revolve around the rotation axis c together. A rigid ring having a cylindrical inner peripheral surface that circumscribes the outer peripheral surfaces of a plurality of planetary drive members arranged so that the center axis coincides with the rotation axis c and transmits power by friction. An inner circumferential surface having a circumferential length slightly smaller than the circumferential length of the inner circumferential surface of the rigid ring, which is arranged so that the central axis coincides with the rotation axis c, and the inner circumferential surface of the flexible ring Due to partial elastic expansion deformation Those which comprise a flexible ring for power transmission by friction circumscribe the outer peripheral surface of a plurality of planetary drive member.

また、他の例として、特許文献2に開陳された減速装置について説明する。この減速装置は、入力軸と一体に形成されたフランジ状のキャリアの円周上に等間隔に固設された複数個の駆動ピンに回転自由に支持された駆動ローラと、この複数の駆動ローラの外周に内接するコップ状の薄肉円筒体と、この薄肉円筒体の外周に内接する断面がU字形の非回転円筒体で構成されており、このU字形の非回転円筒体はケーシングに固定されていて、ケーシングカバーでU字形の上部を横から押されると、U字形の底辺が曲がって下側に突出し、駆動ローラとの間で薄肉円筒体を挟んで押圧力を発生するようになっていて、減速の作用は前述の例と同様で、出力軸は薄肉円筒体のコップ状の底面に垂設されている。   As another example, a reduction gear disclosed in Patent Document 2 will be described. The speed reducer includes a drive roller rotatably supported by a plurality of drive pins fixed at equal intervals on the circumference of a flange-shaped carrier formed integrally with an input shaft, and the plurality of drive rollers A cup-shaped thin cylindrical body inscribed in the outer periphery of the thin-walled cylinder and a non-rotating cylindrical body having a U-shaped cross section inscribed in the outer periphery of the thin-walled cylindrical body. The U-shaped non-rotating cylindrical body is fixed to the casing. When the U-shaped upper part is pushed from the side by the casing cover, the bottom of the U-shape is bent and protrudes downward, and a pressing force is generated with the thin cylindrical body sandwiched between the driving roller. The speed reduction action is the same as in the previous example, and the output shaft is suspended from the cup-shaped bottom surface of the thin cylindrical body.

特開2002−89641号公報JP 2002-89641 A 実開昭60−150354号公報Japanese Utility Model Publication No. 60-150354

この種の摩擦式差動遊星動力伝達装置では、
(1)外側部材または薄肉円筒体の耐久性を考慮した構造および材質の選定。
(2)入力軸(太陽ローラ)、遊星ローラ(駆動ローラ)、出力軸(薄肉円筒体)相互の与圧方法。
(3)入力軸に遊星ローラの保持器であるキャリアが直結して高速で回転するので、回転に伴う摩擦損失が大きくなり、動力ロスが大きい。
に関する具体的な手段が重要な技術となる。
本発明は、入力軸と出力軸が同軸で、減速段数が少なく、減速比が極めて大きく、耐久
性が高く、構造が簡単で、組立が容易で、コストの低廉な小型の摩擦式差動遊星動力伝達
装置に関する具体的な手段の提供を目的とする。
In this type of frictional differential planetary power transmission device,
(1) Selection of structure and material considering the durability of the outer member or thin cylindrical body.
(2) A method of applying pressure between the input shaft (sun roller), the planetary roller (drive roller), and the output shaft (thin cylindrical body).
(3) Since the carrier, which is a cage for the planetary roller, is directly connected to the input shaft and rotates at a high speed, the friction loss associated with the rotation increases and the power loss increases.
The concrete means about is an important technology.
The present invention is a small friction differential planetary in which the input shaft and the output shaft are coaxial, the number of reduction stages is small, the reduction ratio is extremely large, the durability is high, the structure is simple, the assembly is easy, and the cost is low. It aims at providing the concrete means regarding a power transmission device.

(1)第1の手段の摩擦式差動遊星動力伝達装置は、ハウジング内に回転自在に支持された入力軸と一体の太陽ローラと、該太陽ローラに外接する複数の遊星ローラと、該複数の遊星ローラの互いの間隔を一定に保持するよう前記太陽ローラの外周部に設けられた保持器と、前記ハウジング内に固定された円筒状の外ローラと、該外ローラの内面と前記複数の遊星ローラの外面との間に夾装され、外周長が前記外ローラの内周長より小さい薄肉円筒体と、前記ハウジング内に回転自在に支持され前記薄肉円筒体に連結された出力軸とを備え、前記太陽ローラ、前記複数の遊星ローラ、前記薄肉円筒体および前記外ローラの間に押圧力による摩擦力により力を伝達する摩擦式差動遊星動力伝達装置であって、前記遊星ローラの外周面に勾配部が設けられ、前記遊星ローラと前記入力軸とが前記薄肉円筒体の内周部に軸線に沿って圧入されたことを特徴とする。 (1) A friction type differential planetary power transmission device as a first means includes a sun roller integral with an input shaft rotatably supported in a housing, a plurality of planet rollers circumscribing the sun roller, A retainer provided on the outer periphery of the sun roller so as to maintain a constant spacing between the planetary rollers, a cylindrical outer roller fixed in the housing, an inner surface of the outer roller, and the plurality of the plurality of planetary rollers A thin cylindrical body that is fitted between the outer surface of the planetary roller and has an outer peripheral length smaller than the inner peripheral length of the outer roller, and an output shaft that is rotatably supported in the housing and connected to the thin cylindrical body. A friction type differential planetary power transmission device that transmits a force by a frictional force caused by a pressing force between the sun roller, the plurality of planetary rollers, the thin cylindrical body, and the outer roller, the outer circumference of the planetary roller The slope is on the surface Vignetting, and the planetary roller and the input shaft is equal to or press-fitted along the axis to the inner peripheral portion of the thin cylindrical body.

(2)第2の手段の摩擦式差動遊星動力伝達装置は、ハウジング内に回転自在に支持された入力軸と一体の太陽ローラと、該太陽ローラに外接する複数の遊星ローラと、該複数の遊星ローラの互いの間隔を一定に保持するよう前記太陽ローラの外周部に設けられた保持器と、前記ハウジング内に固定された円筒状の外ローラと、該外ローラの内面と前記複数の遊星ローラの外面との間に夾装され、外周長が前記外ローラの内周長より小さい薄肉円筒体と、前記ハウジング内に回転自在に支持され前記薄肉円筒体に連結された出力軸とを備え、前記太陽ローラ、前記複数の遊星ローラ、前記薄肉円筒体および前記外ローラの間に押圧力による摩擦力により力を伝達する摩擦式差動遊星動力伝達装置であって、前記遊星ローラの外周面に勾配部が設けられ、前記遊星ローラと前記入力軸とが前記薄肉円筒体の内周部に軸線に沿って圧入された入出力子組立を前記外ローラに焼きばめされたことを特徴とする。   (2) The friction type differential planetary power transmission device of the second means includes a sun roller integral with an input shaft rotatably supported in a housing, a plurality of planetary rollers circumscribing the sun roller, and the plurality of planetary rollers A retainer provided on the outer periphery of the sun roller so as to maintain a constant spacing between the planetary rollers, a cylindrical outer roller fixed in the housing, an inner surface of the outer roller, and the plurality of the plurality of planetary rollers A thin cylindrical body that is fitted between the outer surface of the planetary roller and has an outer peripheral length smaller than the inner peripheral length of the outer roller, and an output shaft that is rotatably supported in the housing and connected to the thin cylindrical body. A friction type differential planetary power transmission device that transmits a force by a frictional force caused by a pressing force between the sun roller, the plurality of planetary rollers, the thin cylindrical body, and the outer roller, the outer circumference of the planetary roller The slope is on the surface Vignetting, and the planetary roller and the input shaft, characterized in that the input and Chikarako assembly press-fitted along the axis to the inner peripheral portion of the thin cylindrical body was shrunk to the outer roller.

(3)第3の手段の摩擦式差動遊星動力伝達装置は、上記第1手段の摩擦式差動遊星動力伝達装置において、前記保持器は、押抜き型またはくり抜き型のケージ式保持器であることを特徴とする。 (3) The friction type differential planetary power transmission device of the third means is the friction type differential planetary power transmission device of the first means, wherein the cage is a punch type or hollow type cage type cage. It is characterized by being.

(4)第4の手段の摩擦式差動遊星動力伝達装置は、上記第2手段の摩擦式差動遊星動力伝達装置において、前記保持器は、遊星ローラの軸心を通るピンが設けられたことを特徴とする。 (4) The friction type differential planetary power transmission device of the fourth means is the friction type differential planetary power transmission device of the second means, wherein the cage is provided with a pin passing through the axis of the planetary roller. It is characterized by that.

(5)第5の手段の摩擦式差動遊星動力伝達装置は、上記第1〜4手段のいずれかの摩擦式差動遊星動力伝達装置において、前記薄肉円筒体が前記複数の遊星ローラと前記外ローラとに圧接することを特徴とする。 (5) The friction type differential planetary power transmission device of the fifth means is the friction type differential planetary power transmission device of any one of the first to fourth means, wherein the thin cylindrical body is connected to the plurality of planetary rollers. It is characterized by being in pressure contact with the outer roller.

(6)第6の手段の摩擦式差動遊星動力伝達装置は、上記第1〜5手段のいずれかの摩擦式差動遊星動力伝達装置において、前記薄肉円筒体は、弾性の大きい高力アルミ合金もしくはステンレス鋼で形成され、前記薄肉円筒体の軸心方向中央部に高応力軽減手段が形成されたことを特徴とする。
(7)第7の手段の摩擦式差動遊星動力伝達装置は、上記第6手段の摩擦式差動遊星動力伝達装置において、前記高応力軽減手段は、複数の長孔であることを特徴とする。
(6) The friction type differential planetary power transmission device of the sixth means is the friction type differential planetary power transmission device of any one of the first to fifth means, wherein the thin cylindrical body is a high-strength aluminum having high elasticity. It is made of an alloy or stainless steel, and a high stress reducing means is formed in the central portion of the thin cylindrical body in the axial center direction.
(7) The friction type differential planetary power transmission device of the seventh means is the friction type differential planetary power transmission device of the sixth means, wherein the high stress reducing means is a plurality of elongated holes. To do.

請求項1に係わる発明は、圧入による組立が容易となりコスト低減に寄与できる効果がある。
請求項1から5に係わる発明は、組立時に行う圧入又は焼ばめによってローラ間の押圧力を得るようにしたので簡潔な構造となってコストの低減に寄与できる効果がある。また、入力軸に直結した太陽ローラにより駆動される遊星ローラ機構は、一段階減速した回転速度で回転するので、遊星ローラと保持器の回転速度はそれだけ遅くなり、回転に伴う摩擦損失を少なくできる効果がある。また、薄肉円筒体が複数の遊星ローラと外ローラとに圧接することにより、太陽ローラ、遊星ローラ、薄肉円筒体、外ローラの各間の摩擦力により動力を伝達し、太陽ローラ、遊星ローラ、薄肉円筒体による遊星減速比と、外ローラの内径長さと薄肉円筒体の外径の差と外ローラの内径長さの比による減速比との積を入出力の全減速比とすることができる。
The invention according to claim 1 is advantageous in that the assembly by press-fitting is facilitated and the cost can be reduced.
In the invention according to claims 1 to 5, since the pressing force between the rollers is obtained by press-fitting or shrink-fitting performed at the time of assembly, there is an effect that a simple structure can be achieved and the cost can be reduced. In addition, the planetary roller mechanism driven by the sun roller directly connected to the input shaft rotates at a rotational speed reduced by one step. Therefore, the rotational speed of the planetary roller and the cage is reduced accordingly, and the friction loss due to the rotation can be reduced. effective. In addition, the thin cylindrical body is in pressure contact with the plurality of planetary rollers and the outer roller, so that the power is transmitted by the frictional force between the sun roller, the planetary roller, the thin cylindrical body, and the outer roller, the sun roller, the planetary roller, The product of the planetary reduction ratio by the thin cylindrical body and the reduction ratio by the ratio of the inner diameter length of the outer roller and the outer diameter of the thin cylindrical body and the inner diameter length of the outer roller can be the total reduction ratio of input and output. .

請求項6から7に係わる発明は、薄肉円筒体のみを高力アルミ合金もしくはステンレス鋼で形成され、一体で回転する出力軸と薄肉円筒体は、別体で製作して結合する構造としたので、軸部に対して円筒部の材質を変えることが容易となりコストが低廉となる効果がある。また、薄肉円筒体の変形による高応力発生部に、複数の長孔やスリットや円孔などの高応力軽減手段を設けたので、耐久力が向上する効果がある。 In the invention according to claims 6 to 7, since only the thin-walled cylinder is formed of high-strength aluminum alloy or stainless steel, the output shaft and the thin-walled cylinder that rotate integrally are manufactured and joined separately. The material of the cylindrical portion can be easily changed with respect to the shaft portion, and the cost can be reduced. Further, since high stress reducing means such as a plurality of long holes, slits, and circular holes are provided in the high stress generating portion due to the deformation of the thin cylindrical body, there is an effect of improving durability.

(第1の実施の形態)
本発明の第1の実施の形態を図1〜図8によって説明する。図1は本発明の第1の実施の形態に係わる摩擦式差動遊星動力伝達装置の軸に沿った断面図、図2は図1のA−A断面図、図3は、自由状態にある出力軸側子組立と入力軸側子組立を示す断面図、図4〜図8は、各種の高応力軽減孔を備えた薄肉円筒体の断面図である。
図1において、1は入力軸、2は入力軸1と一体に形成された太陽ローラ、3は太陽ローラ2に外接する複数(図は3個の場合を示す)の円筒状の遊星ローラ、4は複数の遊星ローラ3の円周方向の位置を互いの間隔を一定となるよう保持する保持器で、ドーナツ形の板から遊星ローラが回転自在可能になるように、等角度にローラ形に抉り貫き、内径は太陽ローラ2に遊嵌可能な形状である。図1、図2はもみ抜き型の場合を示す。5は内周面を遊星ローラ3に外接する薄肉円筒体、6は薄肉円筒体5と一体に結合された出力軸、7は内周面を薄肉円筒体5に外接する外ローラ、8および9はそれぞれハウジングおよびハウジングカバーである。薄肉円筒体5は、弾性の大きいAl−Cu系合金またはAl−Mg−Si系合金等の高力アルミ合金若しくはステンレス鋼で形成され、一端はその内周部に遊星ローラが嵌装され、多端、すなわち反遊星ローラ側には厚肉部が設けられ、出力軸6に設けたフランジ6aに結合されている。
入力軸1は両端をハウジングカバー9と出力軸6のフランジ6aに夫々設けられたベアリング31,32を介して回転自在に支持されている。入力軸1と一体に形成された大径のフランジ1aとCリング33を介して位置決めされたワッシャ11を備えていて遊星ローラ3の軸方向の位置を拘束している。出力軸6は一端(図1の右側)にフランジ6aを備えていて、このフランジ6aに薄肉円筒体5の一端が結合されていて、他端(図1の左側)は入力軸1と同軸にハウジング8に2個のベアリング34,35を介して回転自在に支持されている。また、外ローラ7はハウジング8に嵌装され、ハウジングカバー9で横から挟まれて固定されている。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view taken along the axis of the frictional differential planetary power transmission device according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. Sectional views showing the output shaft side assembly and the input shaft side assembly, and FIGS. 4 to 8 are sectional views of a thin cylindrical body having various high stress reducing holes.
In FIG. 1, 1 is an input shaft, 2 is a sun roller formed integrally with the input shaft 1, and 3 is a plurality of planetary rollers (showing the case of three) circumscribed on the sun roller 2, 4 Is a holder that holds the circumferential positions of a plurality of planetary rollers 3 at a constant distance from each other, and is rolled into a roller shape at an equal angle so that the planetary rollers can rotate freely from a donut-shaped plate. The inner diameter is a shape that can be loosely fitted to the sun roller 2. 1 and 2 show the case of a machined die. 5 is a thin cylindrical body whose outer peripheral surface is circumscribed to the planetary roller 3, 6 is an output shaft integrally coupled to the thin cylindrical body 5, 7 is an outer roller whose outer peripheral surface is circumscribed to the thin cylindrical body 5, 8 and 9 Are a housing and a housing cover, respectively. The thin-walled cylindrical body 5 is made of high-strength aluminum alloy such as Al-Cu alloy or Al-Mg-Si alloy having high elasticity or stainless steel, and one end is fitted with a planetary roller on its inner periphery, That is, a thick portion is provided on the side of the anti-planetary roller and is coupled to a flange 6 a provided on the output shaft 6.
The input shaft 1 is rotatably supported at both ends via bearings 31 and 32 provided on the housing cover 9 and the flange 6a of the output shaft 6, respectively. A washer 11 positioned through a large-diameter flange 1a formed integrally with the input shaft 1 and a C-ring 33 is provided to restrain the position of the planetary roller 3 in the axial direction. The output shaft 6 has a flange 6a at one end (the right side in FIG. 1). One end of the thin cylindrical body 5 is coupled to the flange 6a, and the other end (the left side in FIG. 1) is coaxial with the input shaft 1. The housing 8 is rotatably supported via two bearings 34 and 35. The outer roller 7 is fitted into the housing 8 and is fixed by being sandwiched from the side by the housing cover 9.

また、図3において、左側に図1から引出した自由状態にある薄肉円筒体5と出力軸6の結合した出力軸側子組立15と、右側に図1から引出された入力軸1、太陽ローラ2、遊星ローラ3、保持器4よりなる入力軸側子組立16を示しており、外ローラ7は組立て時の位置に参考に示してある。
薄肉円筒体5は組立前の自由状態では、外ローラ7の内周面より小さい直径と、適宜に薄い肉厚を持つ円筒体で、一端側(図の左側、すなわち出力軸側)は内向きで厚肉のフランジ5aとなって出力軸6の右端に設けられた大径のフランジ6aに圧入され、要すればスプリングピン36等で固定されている。このため、薄肉円筒体5は、出力軸6と異なる材料を自由に用いることができる。また、外ローラ7の内径と薄肉円筒体5の自由状態の外径の差は円周長の差を生じ、後述するように摩擦式差動遊星動力伝達装置の速度比iに直接係り、また、速度比iを小さくする(減速比1/iを大きくする)ために通常極めて小さくされる。この円周長の差はまた薄肉円筒体5の耐久性にも関係する。
Further, in FIG. 3, the output shaft side assembly 15 in which the thin cylindrical body 5 and the output shaft 6 in the free state drawn from FIG. 1 are coupled to the left side, and the input shaft 1 and the sun roller drawn from FIG. 2, an input shaft side assembly 16 comprising a planetary roller 3 and a cage 4 is shown, and the outer roller 7 is shown in the position at the time of assembly for reference.
In the free state before assembly, the thin cylindrical body 5 is a cylindrical body having a diameter smaller than the inner peripheral surface of the outer roller 7 and an appropriately thin wall thickness, and one end side (the left side in the figure, that is, the output shaft side) faces inward. The thick flange 5a is press-fitted into a large-diameter flange 6a provided at the right end of the output shaft 6, and is fixed by a spring pin 36 or the like if necessary. For this reason, the thin cylindrical body 5 can freely use a material different from that of the output shaft 6. Further, the difference between the inner diameter of the outer roller 7 and the outer diameter of the thin cylindrical body 5 in the free state results in a difference in circumferential length, which is directly related to the speed ratio i of the frictional differential planetary power transmission device as will be described later. In order to reduce the speed ratio i (increase the reduction ratio 1 / i), it is usually made extremely small. This difference in circumferential length is also related to the durability of the thin cylindrical body 5.

図3に示すとおり、遊星ローラ3の外周部は、勾配部3a、屈曲部3c、円筒面3bを有している。勾配部3aは、円筒面3bから図中左側、すなわち出力軸側に向かって下る緩い傾斜面であり、軸線に平行な円筒面3bとの間の屈曲部3cはなだらかな曲線で繋がれている。入力軸側子組立16において、太陽ローラ2に外接した複数の遊星ローラ3により形成される外接円の直径に、自由状態での薄肉円筒体5の肉厚の2倍を加えた寸法は、外ローラ7の内径より僅かに大きく、また、勾配部3a部の出力軸側先端の外接円の直径は、自由状態の薄肉円筒体5の内径より僅かに小さくなっている。図3に示す状態で、入力軸側子組立16を出力軸側子組立15側にお互いの軸心を合わせながら移動させ、入力軸側子組立16の太陽ローラ2に外接した複数の遊星ローラ3を自由状態の出力軸側子組立15の薄肉円筒体5の内側に圧入させると、薄肉円筒体5が遊星ローラ3の勾配部3a部で押された部分は外周部に移動し、遊星ローラ3が当たらない部分は内周部に移動し図1および図2に示すように、薄肉円筒体5が外ローラの内面と複数の遊星ローラの外面との間に夾装された状態となる。このとき、遊星ローラ3の断面は僅かに楕円状に変形し、この変形による遊星ローラ3の直径方向の反力は、薄肉円筒体5の開口側先端部を三角おむすび状に変形させ、さらに太陽ローラ2、遊星ローラ3、薄肉円筒体5、外ローラ7の間に押圧力を与える。   As shown in FIG. 3, the outer peripheral part of the planetary roller 3 has the gradient part 3a, the bending part 3c, and the cylindrical surface 3b. The gradient portion 3a is a gentle inclined surface that descends from the cylindrical surface 3b toward the left side in the drawing, that is, toward the output shaft side, and the bent portion 3c between the cylindrical surface 3b parallel to the axis is connected by a gentle curve. . In the input shaft side assembly 16, the dimension of the circumscribed circle formed by the plurality of planetary rollers 3 circumscribing the sun roller 2 plus twice the thickness of the thin cylindrical body 5 in the free state is The diameter of the circumscribed circle at the tip of the output shaft side of the gradient portion 3a is slightly smaller than the inner diameter of the thin cylindrical body 5 in the free state. In the state shown in FIG. 3, the input shaft side assembly 16 is moved toward the output shaft side assembly 15 while aligning the axes thereof, and a plurality of planetary rollers 3 circumscribing the sun roller 2 of the input shaft side assembly 16. Is press-fitted inside the thin cylindrical body 5 of the output shaft side assembly 15 in the free state, the portion where the thin cylindrical body 5 is pushed by the gradient portion 3a of the planetary roller 3 moves to the outer peripheral portion, and the planetary roller 3 As shown in FIGS. 1 and 2, the thin cylindrical body 5 is fitted between the inner surface of the outer roller and the outer surfaces of the plurality of planetary rollers. At this time, the cross section of the planetary roller 3 is slightly deformed into an elliptical shape, and the reaction force in the diametrical direction of the planetary roller 3 due to this deformation causes the tip of the opening side of the thin cylindrical body 5 to be deformed into a triangular bellows shape, A pressing force is applied between the roller 2, the planetary roller 3, the thin cylindrical body 5, and the outer roller 7.

また、入力軸側子組立16を自由状態の出力軸側子組立15の薄肉円筒体5の内側に圧入させると、薄肉円筒体5の図中右端開口面(入力軸側)が三角おむすび形に変形し、左側端面(出力軸側)が円形のままの錘状面に変形するが、この錘状面は線織面であって変形は比較的に容易である。さらに遊星ローラ3の挿入が進むと、この錘状面の先端部分は軸線に平行な柱面となり、錘状面との接続部は複曲面となり、変形が困難となってこの部分に高い応力が発生して耐久性が低下するという問題がある。図4〜図8は、摩擦式差動遊星動力伝達装置が稼働中の薄肉円筒体5を取出して示したもので、各図の上側が、薄肉円筒体5が遊星ローラ3と当接して強い変形を生じている状態、下側が、薄肉円筒体5は遊星ローラ3と当接しておらず変形が弱い状態を示しており、薄肉円筒体5の筒壁の各部は稼動中に上側に示す強い変形状態から順次下側に示す弱い変形状態に移行する変化を繰り返す。 When the input shaft side assembly 16 is press-fitted inside the thin cylindrical body 5 of the output shaft side assembly 15 in the free state, the right end opening surface (input shaft side) of the thin cylindrical body 5 in the figure becomes a triangular rice ball shape. The left end surface (output shaft side) is deformed into a conical surface with a circular shape, but this conical surface is a ruled surface and is relatively easy to deform. When the planetary roller 3 is further inserted, the tip portion of the weight-like surface becomes a column surface parallel to the axis, and the connection portion with the weight-like surface becomes a double curved surface, which makes it difficult to deform and causes high stress in this portion. There is a problem that the durability is deteriorated. 4 to 8 show the thin-walled cylindrical body 5 in which the friction type differential planetary power transmission device is in operation, and the upper side of each figure is strong because the thin-walled cylindrical body 5 abuts against the planetary roller 3. The state where deformation occurs, the lower side shows a state in which the thin cylindrical body 5 is not in contact with the planetary roller 3 and the deformation is weak, and each part of the cylindrical wall of the thin cylindrical body 5 is shown on the upper side during operation. The transition from the deformation state to the weak deformation state shown on the lower side is repeated.

図4に示すB、C、およびDは、薄肉円筒体5におけるそれぞれ複曲面部、錘状面部、および柱面部を示しており、前述したように、軸心方向中央部に位置する複曲面部Bには高い応力が繰し発生するので、材料の疲れを生じて耐久性が低下するという問題がある。このため、遊星ローラ3の屈曲部3cに対応する複曲面部B近傍の剛性を下げることにより高応力の発生を緩和する高応力発生の軽減孔を設ける。
図4〜図8はこの高応力発生の軽減孔またスリットの種々の例を示す。
図4は、薄肉円筒体5の複曲面部Bの円周方向に、軸線に沿った多数の長孔5bを設けたものであり、この長孔5bは2点鎖線で示すように、ねじれ角αで軸線に斜交させた長孔5cとしてもよい。
図5は、図4の長孔5cのねじれ角αを大きくし(進み角を小さくし)、数を増やして細いスリット5dとしたものを示す。
図6は、図5のスリット5dのねじれ角αをさらに大きくして数を減らし、スパイラル状の長いスリット5eとしたものを示す。このスリット5eは薄肉円筒体5の肉厚が厚い場合に適用し、数は伝達トルクを下げないように複数とするのがよく、図は2本の場合を示している。図7は長孔やスリットに代えて、多数の円孔5fを例えばジグザグ状に開け、軸心方向にも複数の円孔5fを設けたものを示す。また、図8は上記円孔5fの径を小さくし数を増やして円孔5gとしたものを示す。
B, C, and D shown in FIG. 4 indicate the double curved surface portion, the conical surface portion, and the column surface portion in the thin-walled cylindrical body 5, respectively. As described above, the double curved surface portion that is located at the axial center portion. Since a high stress is repeatedly generated in B, there is a problem that the material is fatigued and durability is lowered. For this reason, a reduction hole for generating high stress is provided to reduce the generation of high stress by lowering the rigidity in the vicinity of the double curved surface portion B corresponding to the bent portion 3c of the planetary roller 3.
4 to 8 show various examples of holes or slits that reduce this high stress.
FIG. 4 shows a structure in which a large number of long holes 5b are provided along the axis in the circumferential direction of the double curved surface portion B of the thin-walled cylindrical body 5. The long holes 5b have a twist angle as shown by a two-dot chain line. It is good also as the long hole 5c slanted to the axis line by (alpha).
FIG. 5 shows the elongated hole 5c in FIG. 4 having a larger twist angle α (decreasing the advance angle) and increasing the number to form a thin slit 5d.
FIG. 6 shows the slit 5d of FIG. 5 that is further increased in the twist angle α to reduce the number thereof, thereby forming a long spiral slit 5e. The slit 5e is applied when the thin cylindrical body 5 is thick, and the number of slits 5e is preferably plural so as not to reduce the transmission torque, and the figure shows the case of two. FIG. 7 shows a structure in which a large number of circular holes 5f are formed in, for example, a zigzag shape in place of the long holes and slits, and a plurality of circular holes 5f are also provided in the axial direction. FIG. 8 shows a circular hole 5g formed by reducing the diameter of the circular hole 5f and increasing the number thereof.

摩擦式差動遊星動力伝達装置では、遊星ローラ3によって薄肉円筒体5の外周面を外ローラ7の内周面に押圧しながら遊星ローラ3を外ローラ7の内周面に沿って1回転して元の位置に戻すと、遊星ローラ3は外ローラ7の元の位置に戻るが、薄肉円筒体5の外周長は外ローラ7の内周長より小さい(短い)ため、薄肉円筒体5に対しては元の位置を短い分(差分長)だけ超えた位置に来る。従って、薄肉円筒体5は外ローラ5の回転方向と逆方向に差分長だけ相対的に移動する。外ローラ7の内径をDf、薄肉円筒体5の自由状態の円筒の外径をDo、遊星ローラ3の中心の公転回転速度をωc、薄肉円筒体5の回転速度をωo、遊星ローラ3の中心の公転回転速度ωcに対する薄肉円筒体5の回転速度ωoの比をi2とすると
i2=ωo/ωc=(Do−Df)/Df
となり、回転方向は逆方向となる。
また、太陽ローラ2の直径および回転速度をそれぞれDsおよびωs、遊星ローラ3の直径および遊星ローラ3の中心の公転回転速度をそれぞれDpおよびωc、太陽ローラ2に対する遊星ローラ3の中心の公転回転速度比をi1とすると、近似的に、
i1=ωc/ωs=Ds/2(Ds+Dp)=1/2(Dp/Ds+1)
となり、回転方向は同方向となる。
従って、この構成の摩擦式差動遊星動力伝達装置の太陽ローラ2(入力軸1)に対する薄肉円筒体5(出力軸6)の総合した速度比iは近似的に、
i=i1xi2=(Do−Df)/(2Df(Dp/Ds+1))
となり、回転方向は逆方向となる。
なお、出力軸として薄肉円筒体5に連結された出力軸6を用いたが、出力軸6を固定して外ローラ7を出力軸とすることもできる。このときの速度比は若干大きくなり、回転方向は同方向となる。
(第2の実施の形態)
In the frictional differential planetary power transmission device, the planetary roller 3 is rotated once along the inner peripheral surface of the outer roller 7 while the outer peripheral surface of the thin cylindrical body 5 is pressed against the inner peripheral surface of the outer roller 7 by the planetary roller 3. Then, the planetary roller 3 returns to the original position of the outer roller 7, but the outer peripheral length of the thin cylindrical body 5 is smaller (shorter) than the inner peripheral length of the outer roller 7. On the other hand, it comes to a position that exceeds the original position by a short amount (difference length). Accordingly, the thin cylindrical body 5 relatively moves by the difference length in the direction opposite to the rotation direction of the outer roller 5. The inner diameter of the outer roller 7 is Df, the outer diameter of the free cylindrical cylinder 5 is Do, the revolution speed of the center of the planetary roller 3 is ωc, the rotational speed of the thin cylinder 5 is ωo, and the center of the planetary roller 3 is I2 = ωo / ωc = (Do−Df) / Df where i2 is the ratio of the rotational speed ωo of the thin cylindrical body 5 to the revolution rotational speed ωc of
Thus, the rotation direction is the reverse direction.
Further, the diameter and rotational speed of the sun roller 2 are Ds and ωs, the diameter of the planetary roller 3 and the revolution speed of the center of the planetary roller 3 are Dp and ωc, respectively, and the revolution speed of the center of the planetary roller 3 with respect to the sun roller 2 If the ratio is i1, approximately,
i1 = ωc / ωs = Ds / 2 (Ds + Dp) = 1/2 (Dp / Ds + 1)
Thus, the rotation direction is the same direction.
Therefore, the total speed ratio i of the thin cylindrical body 5 (output shaft 6) to the sun roller 2 (input shaft 1) of the friction type differential planetary power transmission device of this configuration is approximately,
i = i1xi2 = (Do-Df) / (2Df (Dp / Ds + 1))
Thus, the rotation direction is the reverse direction.
Although the output shaft 6 connected to the thin cylindrical body 5 is used as the output shaft, the output roller 6 can be fixed and the outer roller 7 can be used as the output shaft. The speed ratio at this time becomes slightly larger, and the rotation direction is the same direction.
(Second Embodiment)

第1の実施の形態では、圧入による組立と寸法精度の管理を容易にするために、遊星ローラ3を円筒形として剛性を下げた構造のものを説明したが、本実施の形態は部品精度を十分管理したうえ、一部を圧入して最終的に焼きばめによって組立てを行い、同時に太陽ローラ2、遊星ローラ3、薄肉円筒体5、外ローラ7間に所定の押圧力を得るために、遊星ローラの剛性を高くした構造のものを説明する。
図9は本発明の第2の実施の形態の摩擦式差動遊星動力伝達装置の軸に沿った断面図、図10は図9のE−E断面図で、それぞれ第1の実施の形態の図1および図2に対応する図であり、入力軸側の遊星ローラと保持器の構造が異なっている。
これらの図において、23は遊星ローラ、24は遊星ローラ23の保持器、26は入力軸側子組立である。なお、両図では第1の実施の形態と同じ部材には同じ番号を付してある。
遊星ローラ23の外周部は、勾配部23a、円筒面23bを有しており、勾配部23aと円筒面23bとの間はなだらかな曲線で繋がれている。遊星ローラ23の本体部は剛性を強くするため中実の円柱とするが、保持器の型式によっては肉厚が十分厚い円筒として中心部に保持器用のピン孔を設けてもよい。保持器24は遊星ローラ23の巾より若干広い距離を隔てて対向する2つの環状の円板24aと、この鉛板24に一端を固設され他端をEリングで止められた小径のピン24bとで形成されている。この保持器24(ピン式保持器と呼ぶ)は、遊星ローラ23に用いられる保持器の一例として示したもので、保持器としては遊星ローラ24の中心の孔を廃し、外側を保持する押抜き型や、図1及び図2に示したもみ抜き型の保持器(ケージ型保持器と呼ぶ)を用いてもよいが、逆にピン式保持器24を遊星ローラ3に用いるときはピンの径が大きくなるので不向きである。
In the first embodiment, in order to facilitate the assembly by press-fitting and the management of dimensional accuracy, the planetary roller 3 has a cylindrical shape with reduced rigidity. However, this embodiment has improved component accuracy. In order to obtain a predetermined pressing force between the sun roller 2, the planetary roller 3, the thin cylindrical body 5, and the outer roller 7 at the same time, after partly press-fitting and finally assembling by shrink fitting, The structure of the planetary roller with increased rigidity will be described.
FIG. 9 is a cross-sectional view taken along the axis of the frictional differential planetary power transmission device according to the second embodiment of the present invention, and FIG. 10 is a cross-sectional view taken along the line EE of FIG. It is a figure corresponding to FIG. 1 and FIG. 2, and the structure of the planetary roller by the side of an input shaft and a holder | retainer differs.
In these drawings, 23 is a planetary roller, 24 is a cage for the planetary roller 23, and 26 is an input shaft side assembly. In both figures, the same members as those in the first embodiment are denoted by the same reference numerals.
The outer peripheral portion of the planetary roller 23 has a gradient portion 23a and a cylindrical surface 23b, and the gradient portion 23a and the cylindrical surface 23b are connected by a gentle curve. The main body of the planetary roller 23 is a solid cylinder to increase the rigidity. However, depending on the type of the cage, a pin hole for the cage may be provided in the center as a sufficiently thick cylinder. The cage 24 has two annular disks 24a facing each other at a distance slightly larger than the width of the planetary roller 23, and a small-diameter pin 24b having one end fixed to the lead plate 24 and the other end fixed by an E-ring. And is formed. This retainer 24 (referred to as a pin-type retainer) is shown as an example of a retainer used for the planetary roller 23. As the retainer, the center hole of the planetary roller 24 is abolished and a punching that retains the outside is performed. 1 or 2 may be used. However, when the pin type holder 24 is used for the planetary roller 3, the diameter of the pin may be used. Is unsuitable because becomes large.

この第2の実施の形態の摩擦式差動遊星動力伝達装置は、各ローラ間の押圧力を焼ばめ工法によって得るところに特徴がある。まず、入力軸と一体とされた太陽ローラの外周部に、保持器により互いの間隔を一定に保持するよう複数の遊星ローラを外接し入力軸側子組立26とする。また、薄肉円筒体と出力軸とを連結し出力軸側子組立15とする。入力軸側子組立26の複数の遊星ローラを、出力軸側子組立15の薄肉円筒体5の内周部に圧入して一体の回転部子組立として組立てる。このときは、薄肉円筒体5の外側には外ローラ7がないので、圧入は比較的に容易である。ついで、外ローラ7を加熱して膨張させ、内径が大きくなった外ローラ7にこの回転部子組立を、外ローラの内周部に薄肉円筒体5が挿入されるよう、圧入焼きばめを行う。その後、冷却によって外ローラ7の内径が縮小されると、太陽ローラ2、遊星ローラ3、薄肉円筒体5、外ローラ7が圧接し、各間に押圧力が発生される。
この第2の実施の形態の摩擦式差動遊星動力伝達装置のその他の作用は第1の実施の形態と同様である。
The friction type differential planetary power transmission device according to the second embodiment is characterized in that the pressing force between the rollers is obtained by a shrink fitting method. First, a plurality of planetary rollers are circumscribed on the outer peripheral portion of the sun roller integrated with the input shaft by a cage so as to make the input shaft side assembly 26. Further, the thin cylindrical body and the output shaft are connected to form an output shaft side assembly 15. The plurality of planetary rollers of the input shaft side assembly 26 are press-fitted into the inner peripheral portion of the thin cylindrical body 5 of the output shaft side assembly 15 and assembled as an integral rotating unit assembly. At this time, since there is no outer roller 7 outside the thin cylindrical body 5, press-fitting is relatively easy. Next, the outer roller 7 is heated and expanded, and the rotary member assembly is inserted into the outer roller 7 whose inner diameter is increased, and a press-fit shrink fit is performed so that the thin cylindrical body 5 is inserted into the inner peripheral portion of the outer roller. Do. Thereafter, when the inner diameter of the outer roller 7 is reduced by cooling, the sun roller 2, the planetary roller 3, the thin cylindrical body 5, and the outer roller 7 are pressed against each other, and a pressing force is generated therebetween.
Other operations of the friction type differential planetary power transmission device of the second embodiment are the same as those of the first embodiment.

本発明の第1の実施の形態に係わる摩擦式差動遊星動力伝達装置の軸線に沿った断面図である。It is sectional drawing along the axis line of the friction type differential planetary power transmission device concerning the 1st Embodiment of this invention. 図1のA−A断面図であるIt is AA sectional drawing of FIG. 自由状態にある出力軸側子組立と入力軸側子組立を示す断面図である。It is sectional drawing which shows the output shaft side assembly and input shaft side assembly in a free state. 図4〜図8は各種の高応力軽減手段を備えた薄肉円筒体の断面図であり、図4は軸線に沿った多数の長孔の場合を示す断面図である。4 to 8 are cross-sectional views of a thin cylindrical body provided with various high stress reducing means, and FIG. 4 is a cross-sectional view showing the case of a large number of long holes along the axis. 図4の長孔5cのねじれ角αを大きくし、数を増やして細いスリット5dとした場合を示す断面図である。FIG. 5 is a cross-sectional view showing a case where the twist angle α of the long hole 5c in FIG. 4 is increased and the number thereof is increased to form a thin slit 5d. スリット5dのねじれ角αをさらに大きくして数を減らしたスパイラル状の長いスリット5eとした場合を示す断面図である。It is sectional drawing which shows the case where it is set as the spiral long slit 5e which further increased the twist angle (alpha) of the slit 5d and reduced the number. 多数の円孔5fをジグザグ状に開けた場合を示す断面図である。It is sectional drawing which shows the case where many circular holes 5f were opened in zigzag shape. 円孔5fの径を小さくして数を増やした円孔5gとした場合を示す断面図である。It is sectional drawing which shows the case where it is set as the circular hole 5g which made the diameter of the circular hole 5f small and increased the number. 本発明の第2の実施の形態に係わる摩擦式差動遊星動力伝達装置の軸線に沿った断面図である。It is sectional drawing along the axis line of the friction type differential planetary power transmission device concerning the 2nd Embodiment of this invention. 図9のE−E断面図であるIt is EE sectional drawing of FIG.

符号の説明Explanation of symbols

1 入力軸
2 太陽ローラ
3、23 遊星ローラ
3a、23a 勾配部
4、24 保持器
5 薄肉円筒体
5a フランジ
5b、5c 長孔
5d、5e スリット
5f、5g 円孔
6 出力軸
7 外ローラ
8 ハウジング
15 出力軸側子組立
16、26 入力軸側子組立
B 複曲面部
C 錘状面部
D 柱面部
1/i 減速比
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Sun roller 3, 23 Planetary roller 3a, 23a Gradient part 4, 24 Cage 5 Thin cylindrical body 5a Flange 5b, 5c Long hole 5d, 5e Slit 5f, 5g Circular hole 6 Output shaft 7 Outer roller 8 Housing 15 Output shaft side assembly 16, 26 Input shaft side assembly B Double curved surface portion C Conical surface portion D Column surface portion 1 / i Reduction ratio

Claims (7)

ハウジング内に回転自在に支持された入力軸と一体の太陽ローラと、
該太陽ローラに外接する複数の遊星ローラと、
該複数の遊星ローラの互いの間隔を一定に保持するよう前記太陽ローラの外周部に設けられた保持器と、
前記ハウジング内に固定された円筒状の外ローラと、
該外ローラの内面と前記複数の遊星ローラの外面との間に夾装され、外周長が前記外ローラの内周長より小さい薄肉円筒体と、
前記ハウジング内に回転自在に支持され前記薄肉円筒体に連結された出力軸とを備え、前記太陽ローラ、前記複数の遊星ローラ、前記薄肉円筒体および前記外ローラの間に押圧力による摩擦力により力を伝達する摩擦式差動遊星動力伝達装置であって、
前記遊星ローラの外周面に勾配部が設けられ、
前記遊星ローラと前記入力軸とが前記薄肉円筒体の内周部に軸線に沿って圧入された
ことを特徴とする摩擦式差動遊星動力伝達装置。
A sun roller integral with an input shaft rotatably supported in the housing;
A plurality of planetary rollers circumscribing the sun roller;
A retainer provided on the outer periphery of the sun roller so as to keep the spacing between the plurality of planetary rollers constant;
A cylindrical outer roller fixed in the housing;
A thin cylindrical body that is fitted between the inner surface of the outer roller and the outer surfaces of the plurality of planetary rollers, and has an outer peripheral length smaller than an inner peripheral length of the outer roller;
An output shaft rotatably supported in the housing and connected to the thin cylindrical body, and a frictional force caused by a pressing force between the sun roller, the plurality of planetary rollers, the thin cylindrical body, and the outer roller. A frictional differential planetary power transmission device for transmitting force,
A slope is provided on the outer peripheral surface of the planetary roller,
2. A frictional differential planetary power transmission device according to claim 1, wherein the planetary roller and the input shaft are press-fitted along an axial line into an inner peripheral portion of the thin cylindrical body.
ハウジング内に回転自在に支持された入力軸と一体の太陽ローラと、
該太陽ローラに外接する複数の遊星ローラと、
該複数の遊星ローラの互いの間隔を一定に保持するよう前記太陽ローラの外周部に設けられた保持器と、
前記ハウジング内に固定された円筒状の外ローラと、
該外ローラの内面と前記複数の遊星ローラの外面との間に夾装され、外周長が前記外ローラの内周長より小さい薄肉円筒体と、
前記ハウジング内に回転自在に支持され前記薄肉円筒体に連結された出力軸とを備え、前記太陽ローラ、前記複数の遊星ローラ、前記薄肉円筒体および前記外ローラの間に押圧力による摩擦力により力を伝達する摩擦式差動遊星動力伝達装置であって、
前記遊星ローラの外周面に勾配部が設けられ、
前記遊星ローラと前記入力軸とが前記薄肉円筒体の内周部に軸線に沿って圧入された入出力子組立を前記外ローラに焼きばめされ、押圧力を発生させるようにした
ことを特徴とする摩擦式差動遊星動力伝達装置。
A sun roller integral with an input shaft rotatably supported in the housing;
A plurality of planetary rollers circumscribing the sun roller;
A retainer provided on the outer periphery of the sun roller so as to keep the spacing between the plurality of planetary rollers constant;
A cylindrical outer roller fixed in the housing;
A thin cylindrical body that is fitted between the inner surface of the outer roller and the outer surfaces of the plurality of planetary rollers, and has an outer peripheral length smaller than an inner peripheral length of the outer roller;
An output shaft rotatably supported in the housing and connected to the thin cylindrical body, and a frictional force caused by a pressing force between the sun roller, the plurality of planetary rollers, the thin cylindrical body, and the outer roller. A frictional differential planetary power transmission device for transmitting force,
A slope is provided on the outer peripheral surface of the planetary roller,
An input / output assembly in which the planetary roller and the input shaft are press-fitted along the axis into the inner peripheral portion of the thin cylindrical body is press-fitted to the outer roller to generate a pressing force. Friction type differential planetary power transmission device.
請求項1に記載の摩擦式差動遊星動力伝達装置において、
前記保持器は、押抜き型またはくり抜き型のケージ式保持器である
ことを特徴とする摩擦式差動遊星動力伝達装置。
In the friction type differential planetary power transmission device according to claim 1,
2. The friction type differential planetary power transmission device according to claim 1, wherein the cage is a punch type or hollow type cage type cage.
請求項2に記載の摩擦式差動遊星動力伝達装置において、
前記保持器は、遊星ローラの軸心を通るピンが設けられた
ことを特徴とする摩擦式差動遊星動力伝達装置。
In the friction type differential planetary power transmission device according to claim 2,
2. The frictional differential planetary power transmission device according to claim 1, wherein the retainer is provided with a pin passing through the axis of the planetary roller.
請求項1〜4のいずれかに記載の摩擦式差動遊星動力伝達装置において、
前記薄肉円筒体が前記複数の遊星ローラと前記外ローラとに圧接する
ことを特徴とする摩擦式差動遊星動力伝達装置。
In the friction type differential planetary power transmission device according to any one of claims 1 to 4,
The frictional differential planetary power transmission device, wherein the thin cylindrical body is in pressure contact with the plurality of planetary rollers and the outer roller.
請求項1〜5のいずれかに記載の摩擦式差動遊星動力伝達装置において、
前記薄肉円筒体は、弾性の大きい高力アルミ合金もしくはステンレス鋼で形成され、
前記薄肉円筒体の軸心方向中央部に高応力軽減手段が形成された
ことを特徴とする摩擦式差動遊星動力伝達装置。
In the friction type differential planetary power transmission device according to any one of claims 1 to 5,
The thin cylindrical body is formed of a high-strength high-strength aluminum alloy or stainless steel,
A frictional differential planetary power transmission device, characterized in that a high stress reducing means is formed at the axial center of the thin cylindrical body.
請求項6に記載の摩擦式差動遊星動力伝達装置において、
前記高応力軽減手段は、複数の長孔である
ことを特徴とする摩擦式差動遊星動力伝達装置。
In the friction type differential planetary power transmission device according to claim 6,
The high-stress reducing means includes a plurality of long holes, and a frictional differential planetary power transmission device.
JP2007040187A 2007-02-21 2007-02-21 Friction differential planetary power transmission device Expired - Fee Related JP4949888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040187A JP4949888B2 (en) 2007-02-21 2007-02-21 Friction differential planetary power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040187A JP4949888B2 (en) 2007-02-21 2007-02-21 Friction differential planetary power transmission device

Publications (2)

Publication Number Publication Date
JP2008202707A true JP2008202707A (en) 2008-09-04
JP4949888B2 JP4949888B2 (en) 2012-06-13

Family

ID=39780432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040187A Expired - Fee Related JP4949888B2 (en) 2007-02-21 2007-02-21 Friction differential planetary power transmission device

Country Status (1)

Country Link
JP (1) JP4949888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165395A1 (en) * 2011-06-03 2012-12-06 Ntn株式会社 Friction drive-type wave transmission
CN105084181A (en) * 2014-05-14 2015-11-25 株式会社日立制作所 Planetary roller speed reducer and elevator using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116451A (en) * 1983-11-30 1985-06-22 Canon Inc Liquid jet recording head
JPS60134956A (en) * 1983-12-23 1985-07-18 Nec Corp Information processing system
JPH0579450A (en) * 1991-09-20 1993-03-30 Mitsubishi Heavy Ind Ltd Wind mill
JP2003129805A (en) * 2001-10-22 2003-05-08 Hitachi Unisia Automotive Ltd Valve timing control device for internal combustion engine
JP2003307260A (en) * 2002-04-15 2003-10-31 Toji Takemura Planetary roller reducer
JP2006009936A (en) * 2004-06-25 2006-01-12 Mitsubishi Heavy Ind Ltd Planetary roller type power transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116451A (en) * 1983-11-30 1985-06-22 Canon Inc Liquid jet recording head
JPS60134956A (en) * 1983-12-23 1985-07-18 Nec Corp Information processing system
JPH0579450A (en) * 1991-09-20 1993-03-30 Mitsubishi Heavy Ind Ltd Wind mill
JP2003129805A (en) * 2001-10-22 2003-05-08 Hitachi Unisia Automotive Ltd Valve timing control device for internal combustion engine
JP2003307260A (en) * 2002-04-15 2003-10-31 Toji Takemura Planetary roller reducer
JP2006009936A (en) * 2004-06-25 2006-01-12 Mitsubishi Heavy Ind Ltd Planetary roller type power transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165395A1 (en) * 2011-06-03 2012-12-06 Ntn株式会社 Friction drive-type wave transmission
CN105084181A (en) * 2014-05-14 2015-11-25 株式会社日立制作所 Planetary roller speed reducer and elevator using same

Also Published As

Publication number Publication date
JP4949888B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US8813618B2 (en) Tube cutting apparatus and tube cutting method
JP6282340B2 (en) Wave generator for wave gear device and method for manufacturing wave generator
JP3186812U (en) Variable speed transmission bearing
JP6356514B2 (en) Decelerator
JP4949888B2 (en) Friction differential planetary power transmission device
JP2005180636A (en) Bearing for planetary gear
EP2674642A1 (en) Harmonic drive with stationary gear
JP2005147285A (en) Planetary gearing mechanism
JPH04370445A (en) Harmonic gear device
EP2511572A1 (en) Micro traction drive
JP2009222116A (en) Planetary gear device, actuator incorporating the same, and robot device
JP2005076811A (en) Retainer for needle bearing and needle bearing
JP2005076810A (en) Retainer for needle bearing and needle bearing
CN207975194U (en) Speed changer
JP7367351B2 (en) Multistage planetary roller power transmission device
JP2004293627A (en) Retainer for needle roller bearing, and needle roller bearing
JP2004353809A (en) Manufacturing method of cage for needle bearing, and cage for needle bearing
CN106051085B (en) Planetary roller power transmission
JP2001349402A (en) Traction drive type driving device
JP2018066451A (en) Planetary gear drive and manufacturing method of the same
JP2020051541A (en) Gear speed reducer
JP5966625B2 (en) Toroidal continuously variable transmission
JPH06341501A (en) Planetary roller reduction gear
JP2009228845A (en) Transmission and manufacturing method thereof
JP2018044633A (en) Series of planetary gear devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees