[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008120892A - Grouting material and method for grouting construction using the same - Google Patents

Grouting material and method for grouting construction using the same Download PDF

Info

Publication number
JP2008120892A
JP2008120892A JP2006304915A JP2006304915A JP2008120892A JP 2008120892 A JP2008120892 A JP 2008120892A JP 2006304915 A JP2006304915 A JP 2006304915A JP 2006304915 A JP2006304915 A JP 2006304915A JP 2008120892 A JP2008120892 A JP 2008120892A
Authority
JP
Japan
Prior art keywords
parts
mass
ground injection
fine particle
injection material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006304915A
Other languages
Japanese (ja)
Other versions
JP5189274B2 (en
Inventor
Takashi Sasaki
崇 佐々木
Katsuaki Iriuchijima
克明 入内島
Isamu Hirano
勇 平野
Ryoetsu Yoshino
亮悦 吉野
Tsumoru Ishida
積 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006304915A priority Critical patent/JP5189274B2/en
Publication of JP2008120892A publication Critical patent/JP2008120892A/en
Application granted granted Critical
Publication of JP5189274B2 publication Critical patent/JP5189274B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0006Alkali metal or inorganic ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grouting material capable of suppressing the thickening of a silica slurry when using an alkaline hardener and carrying out permeation more than that of a conventional suspension type grouting material and to provide a method for grouting construction using the grouting material. <P>SOLUTION: The grouting material comprises amorphous particulate silica, an alkaline hardener, water and a thickening inhibitor which is a polymer composed of a carboxylic acid or a salt thereof as a main constituent monomer unit and having ≤80,000 weight-average molecular weight. The grouting material is characterized in that the amount of the hardener is ≤40 pts.mass in 100 pts.mass of the total amount of the amorphous particulate silica and the hardener and the solid content of the thickening inhibitor is further 0.1-20 pts.mass based on 100 pts.mass of the total amount of the amorphous particulate silica and the hardener. The method for grouting construction is characterized by using the grouting material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種土木工事における地盤改良工事や止水工事で用いられる地盤注入材に関する。   The present invention relates to a ground injection material used in ground improvement work and water stop work in various civil engineering works.

従来、微粉砕セメントやスラグを水に分散させた懸濁液型注入材で地盤の補強や止水を行なう注入工法が用いられている。
しかしながら、地盤が細砂、粘度質、あるいは岩盤に生じている極めて小さな亀裂部では浸透性が小さく、注入が不可能となる場合があった。
Conventionally, an injection method has been used in which ground is reinforced and water is stopped with a suspension-type injection material in which finely pulverized cement or slag is dispersed in water.
However, in very small cracks where the ground is fine sand, viscous, or rock, the permeability is small and injection may not be possible.

これらの地盤では、高い浸透性能が要求されるため、懸濁液型注入材のように材料の粒子が水に溶けず分散しているものは、その構成粒子の粒子径の大きさにより施工結果が左右される。   Since these soils require high penetration performance, materials that are dispersed without dissolving in water, such as suspension-type injections, are subject to construction results depending on the size of their constituent particles. Is affected.

また、注入材の粘度が高いほど、浸透性は悪くなるが一方で、施工時間の短縮、透水性の改良効果を得る面ではなるべく強度を高めることが好ましいため、粒子径が小さく高濃度のスラリーでも低粘性な材料が求められている。   In addition, the higher the viscosity of the injection material, the worse the permeability, but on the other hand, it is preferable to increase the strength as much as possible in terms of shortening the construction time and improving the water permeability. However, a low-viscosity material is required.

このような背景において、粒子径が極めて小さい非晶質微粒子シリカの使用が考えられる。そこで、微粒子シリカをスラリー化し分散剤、減水剤を混和して安定的な低粘度を得る方法が提案されている(特許文献1〜4参照)。
特公平05−8136号公報 特許第3451407号公報 特許第2661893号公報 特公平01−35789号公報
In such a background, it is conceivable to use amorphous fine particle silica having a very small particle diameter. Therefore, a method has been proposed in which fine particle silica is slurried and a dispersant and a water reducing agent are mixed to obtain a stable low viscosity (see Patent Documents 1 to 4).
Japanese Patent Publication No. 05-8136 Japanese Patent No. 3451407 Japanese Patent No. 2661893 Japanese Patent Publication No. 01-35789

これらの特許文献には、微粒子シリカにカルボン酸又はその塩を主要構成単量体単位とする増粘抑制剤を含有してなる材料も示されているが、いずれもセメント混和材として使用するものであり、微粒子シリカの含有割合は、セメントよりも少なく(特許文献1の第4欄第5行〜第6行、特許文献2の段落[0020]、特許文献3の段落[0012])、微粒子シリカが主体の地盤注入材に適用することは示されていない。   These patent documents also show a material containing a thickening inhibitor containing carboxylic acid or a salt thereof as a main constituent monomer unit in fine particle silica, both of which are used as cement admixtures. The content ratio of fine particle silica is less than that of cement (Patent Document 1, Column 4, lines 5 to 6, Patent Document 2, paragraph [0020], Patent Document 3, paragraph [0012]), and fine particles. It has not been shown to be applied to ground-injection materials mainly composed of silica.

また、超微粒子セメント又は微粒子消石灰とシリカフュームを混合し注入材として使用する方法も提案されている(特許文献5及び6参照)。
特許第3129745号公報 特公平05−81632号公報
In addition, a method of mixing ultrafine cement or fine slaked lime and silica fume and using it as an injection material has been proposed (see Patent Documents 5 and 6).
Japanese Patent No. 3129745 Japanese Patent Publication No. 05-81632

しかしながら、特許文献5及び6に示されているように、シリカ微粉末をアルカリ性を呈する硬化材と混合してスラリー化した場合、スラリーのpHが高くなり、瞬時に増粘するため浸透性能を発揮できないなどの課題がある。   However, as shown in Patent Documents 5 and 6, when a silica fine powder is mixed with a curing material exhibiting alkalinity to make a slurry, the pH of the slurry becomes high, and the viscosity increases instantly so that the penetration performance is exhibited. There are issues such as being unable to do so.

本発明は、上記のような課題を解決しようとするものであり、アルカリ性の硬化材を使用したときのシリカスラリーの増粘を抑制し、従来の懸濁液型注入材以上の浸透が可能である地盤注入材及びそれを用いた地盤注入工法を提供することを課題とする。   The present invention is intended to solve the above-described problems, suppresses the thickening of the silica slurry when an alkaline curing material is used, and can penetrate more than a conventional suspension-type injection material. It is an object to provide a ground injection material and a ground injection method using the same.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)非晶質微粒子シリカ、アルカリ性の硬化材、水、及びカルボン酸又はその塩を主要構成単量体単位とする重量平均分子量が80,000以下の重合体である増粘抑制剤を含有してなる地盤注入材において、前記硬化材が、非晶質微粒子シリカと硬化材の合計量100質量部中、40質量部以下であり、さらに、前記増粘抑制剤の固形分が、非晶質微粒子シリカと硬化材の合計量100質量部に対して、0.1〜20質量部であることを特徴とする地盤注入材である。
(2)前記増粘抑制剤のカルボン酸又はその塩が、アクリル酸又はメタクリル酸の塩であることを特徴とする前記(1)の注入材である。
(3)前記増粘抑制剤が、アクリル酸とスルホン酸の共重合体又はそのナトリウム塩であることを特徴とする前記(1)又は(2)の注入材である。
(4)前記硬化材が、カルシウムを含有し、さらにpHが9以上のアルカリ性を呈する無機質粉末であることを特徴とする前記(1)〜(3)のいずれか一項の注入材である。
(5)さらに、硬化促進剤としてアルカリ金属炭酸塩を含有してなることを特徴とする前記(1)〜(4)のいずれか一項の注入材である。
(6)前記(1)〜(5)のいずれか一項の地盤注入材を用いたことを特徴とする地盤注入工法である。
The present invention employs the following means in order to solve the above problems.
(1) Contains a thickening inhibitor which is a polymer having a weight average molecular weight of 80,000 or less having amorphous fine particle silica, an alkaline curing material, water, and carboxylic acid or a salt thereof as main constituent monomer units. In the ground injection material obtained, the curing material is 40 parts by mass or less in a total amount of 100 parts by mass of the amorphous fine particle silica and the curing material, and the solid content of the thickening inhibitor is amorphous. The ground injecting material is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the fine particulate silica and the curing material.
(2) The injection material according to (1), wherein the carboxylic acid of the thickening inhibitor or a salt thereof is a salt of acrylic acid or methacrylic acid.
(3) The injection material according to (1) or (2), wherein the thickening inhibitor is a copolymer of acrylic acid and sulfonic acid or a sodium salt thereof.
(4) The injecting material according to any one of (1) to (3), wherein the curing material is an inorganic powder containing calcium and exhibiting alkalinity having a pH of 9 or more.
(5) The injection material according to any one of (1) to (4), further comprising an alkali metal carbonate as a curing accelerator.
(6) A ground injection method using the ground injection material according to any one of (1) to (5).

アルカリ性の硬化材を使用したときのシリカスラリーの増粘を抑制し、高濃度での注入ができ、さらに従来の懸濁液型注入材より浸透性が向上する効果が得られる。   The thickening of the silica slurry is suppressed when an alkaline curing material is used, injection at a high concentration can be performed, and further, the effect of improving the permeability compared to the conventional suspension type injection material can be obtained.

以下、本発明を詳細に説明する。
なお、本発明における部や%は特に規定しない限り質量基準である。
Hereinafter, the present invention will be described in detail.
In the present invention, “part” and “%” are based on mass unless otherwise specified.

本発明で使用する非晶質微粒子シリカは、金属シリコン、フェロシリコン、又はジルコニアを製造する過程で電気炉から発生するフューム(シリカフューム)を捕集する方法、例えば、金属シリコン粉末を分散させたスラリーを高温場に噴射し燃焼、酸化させる方法、並びに、例えば、四塩化ケイ素等のハロゲン化物のように、ガス化したケイ素化合物を火炎中に送り製造する方法等の、いわゆる、乾式法で製造されるもの、又は、例えば、ケイ酸塩水溶液からのゾルゲル法により沈降生成させ製造する湿式法のいずれの製法で製造されたシリカ粉末を使用することができ、特に限定されるものでない。その中でも特に乾式法で製造された微粒子シリカが凝集(ストラクチャー)が少なく好ましい。
非晶質微粒子シリカのSiO成分は、85%以上が好ましく、90%以上がより好ましい。更に使用する非晶質微粒子シリカの粒子径は、一次粒子の最大粒径が10μm以下が好ましい。
The amorphous fine particle silica used in the present invention is a method for collecting fumes (silica fume) generated from an electric furnace in the process of producing metallic silicon, ferrosilicon, or zirconia, for example, slurry in which metallic silicon powder is dispersed. Produced by a so-called dry method, such as a method of injecting a gas into a high temperature field to burn and oxidize, and a method of sending a gasified silicon compound into a flame such as a halide such as silicon tetrachloride. For example, silica powder produced by any of the wet methods of producing by precipitation from a silicate aqueous solution by a sol-gel method can be used, and is not particularly limited. Among these, fine particle silica produced by a dry method is particularly preferable because of less aggregation (structure).
The SiO 2 component of the amorphous fine particle silica is preferably 85% or more, more preferably 90% or more. Further, the amorphous fine particle silica used preferably has a maximum primary particle size of 10 μm or less.

本発明で使用するアルカリ性の硬化材は、カルシウムを含有し、さらにpHが9以上のアルカリ性を呈する無機質粉末であることが好ましい。消石灰などのアルカリ性無機質カルシウム塩、また普通ポルトランドセメントなどの各種ポルトランドセメント、注入用に開発されたスラグとセメントを混合した微粒子セメントおよび微粒子セメントや普通セメントを分級した分級セメントなどの特殊セメントなどがあり、いずれも使用可能であり、特に限定されるものではない。
硬化材の粒子径は非晶質微粒子シリカの粒子とのバランスでより微粉のものが好ましく平均粒子径が20μm以下がより好ましい。
硬化材の使用量は、非晶質微粒子シリカと硬化材の合計量100部中、40部以下が好ましく、2〜20部がより好ましい。40部を超えると浸透性が悪くなる場合がある。
The alkaline curing material used in the present invention is preferably an inorganic powder containing calcium and exhibiting alkalinity having a pH of 9 or more. There are alkaline mineral calcium salts such as slaked lime, various Portland cements such as ordinary Portland cement, fine cements mixed with slag and cement developed for injection, and special cements such as fine cements and classified cements classified from ordinary cements. Any of these can be used and is not particularly limited.
The particle size of the curing material is preferably finer in balance with the particles of amorphous fine particle silica, and the average particle size is more preferably 20 μm or less.
The amount of the curing material used is preferably 40 parts or less, more preferably 2 to 20 parts, in 100 parts of the total amount of the amorphous fine particle silica and the curing material. If it exceeds 40 parts, the permeability may deteriorate.

本発明で使用する増粘抑制剤は、カルボン酸又はその塩を主要構成単量体単位とするものであり、単量体である不飽和カルボン酸(塩)の具体例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸及びケイヒ酸、並びにこれらの塩などが挙げられる。これらの不飽和カルボン酸(塩)は、一種を単独で用いてもよいし、二種以上を併用してもよい。本発明においては、アクリル酸(塩)又はメタクリル酸(塩)を用いることが好ましく、アクリル酸とスルホン酸の共重合体又はそのナトリウム塩を用いることが特に好ましい。   The thickening inhibitor used in the present invention has carboxylic acid or a salt thereof as a main constituent monomer unit. Specific examples of the unsaturated carboxylic acid (salt) as a monomer include acrylic acid, Examples include methacrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid and cinnamic acid, and salts thereof. These unsaturated carboxylic acids (salts) may be used alone or in combination of two or more. In the present invention, it is preferable to use acrylic acid (salt) or methacrylic acid (salt), and it is particularly preferable to use a copolymer of acrylic acid and sulfonic acid or a sodium salt thereof.

本発明で増粘抑制剤として用いられる重合体は、ポリカルボン酸(塩)を主要構成とするものであり、不飽和カルボン酸(塩)のみからなるものが主体であるが、現地地盤で求められる流動性等に応じて、他の重合性単量体、例えば不飽和スルホン酸又はその塩(以下、「不飽和スルホン酸(塩)」という。)、アクリルアミド、酢酸ビニル、スチレン、アクリル酸アルキルエステル、アクリル酸ヒドロキシアルキルエステル、アクリル酸(ポリ)アルキレングリコールエステル、メタクリル酸(ポリ)アルキレングリコールエステル、メタクリル酸アルキルエステル等が、構成単量体成分として使用される。   The polymer used as a thickening inhibitor in the present invention is mainly composed of a polycarboxylic acid (salt), and is mainly composed of an unsaturated carboxylic acid (salt). Depending on the fluidity, etc., other polymerizable monomers such as unsaturated sulfonic acid or its salt (hereinafter referred to as “unsaturated sulfonic acid (salt)”), acrylamide, vinyl acetate, styrene, alkyl acrylate Esters, acrylic acid hydroxyalkyl esters, acrylic acid (poly) alkylene glycol esters, methacrylic acid (poly) alkylene glycol esters, methacrylic acid alkyl esters, and the like are used as constituent monomer components.

本発明で用いられる重合体は、分散剤、コンクリート用混和剤、洗剤ビルダーあるいはキレート剤として用いられている重合体であり、より具体的には重量平均分子量80,000程度以下のものであり、50,000以下のものが好ましい。重量平均分子量の下限は特に限定されないが、通常は250以上であり、1,000以上であることがより好ましい。ポリカルボン酸の重量平均分子量が上記範囲を外れると、増粘抑制効果が認められない恐れがあり、分散性も発揮されない恐れがある。なお、本発明における重量平均分子量は、標準物質としてポリアクリル酸ナトリウムを使用して、ゲルパーミエーションクロマトグラフィーにより得られた分子量をいう。
増粘抑制剤の使用量は、非晶質微粒子シリカと硬化材の合計量100部に対し、増粘抑制剤の固形分が0.1〜20部が好ましく、0.5〜10部がより好ましい。0.1部未満ではほとんど効果がない場合が多く、20部を超えると、使用材料の粒子が凝集し浸透性に悪影響を与えることと、凝結遅延が強くなり硬化しない場合がある。
The polymer used in the present invention is a polymer used as a dispersant, an admixture for concrete, a detergent builder or a chelating agent, more specifically a polymer having a weight average molecular weight of about 80,000 or less, 50,000 or less is preferable. Although the minimum of a weight average molecular weight is not specifically limited, Usually, it is 250 or more, and it is more preferable that it is 1,000 or more. If the weight average molecular weight of the polycarboxylic acid is out of the above range, the thickening suppressing effect may not be recognized, and the dispersibility may not be exhibited. The weight average molecular weight in the present invention refers to a molecular weight obtained by gel permeation chromatography using sodium polyacrylate as a standard substance.
The amount of the thickening inhibitor used is preferably 0.1 to 20 parts, more preferably 0.5 to 10 parts, based on 100 parts of the total amount of the amorphous fine particle silica and the curing material. preferable. When the amount is less than 0.1 part, there are many cases where there is almost no effect. When the amount exceeds 20 parts, the particles of the material used aggregate to adversely affect the permeability, and the setting delay may become strong and may not be cured.

本発明で使用する硬化促進剤は、アルカリ金属炭酸塩、アルミナ化合物、アルカリ金属(土類)塩化物、アルカリ金属硫酸塩、水酸化アルカリなど一般的なセメント促進剤であれば特に限定されるものではないが、難溶性カルシウム塩を生成させるアルカリ金属炭酸塩が好ましい。また、この中では溶解性が高い炭酸カリウムの使用が特に好ましい。
硬化促進剤の使用量は、非晶質微粒子シリカと硬化材の合計重量100部に対して、0.5〜5部が好ましく、1〜3部がより好ましい。0.5部未満では硬化促進しない場合があり、5部を超えると浸透性に悪影響を与える場合がある。
The curing accelerator used in the present invention is not particularly limited as long as it is a general cement accelerator such as alkali metal carbonate, alumina compound, alkali metal (earth) chloride, alkali metal sulfate, alkali hydroxide, etc. However, alkali metal carbonates that produce sparingly soluble calcium salts are preferred. Of these, use of potassium carbonate having high solubility is particularly preferred.
The amount of the curing accelerator used is preferably 0.5 to 5 parts, more preferably 1 to 3 parts with respect to 100 parts of the total weight of the amorphous fine particle silica and the curing material. If it is less than 0.5 part, curing may not be accelerated, and if it exceeds 5 part, the permeability may be adversely affected.

注入材を懸濁液とする場合の水量はポンプで圧送できれば特に限定されるものではないが、非晶質微粒子シリカと硬化材の合計重量100部に対して、50〜1000部が好ましく、80〜500部がより好ましい。
50部未満では、懸濁液の増粘が速くなり浸透性が悪くなる場合があり、1000部を超えると硬化しない場合がある。
The amount of water in the case of using the injection material as a suspension is not particularly limited as long as it can be pumped by a pump, but it is preferably 50 to 1000 parts with respect to 100 parts by weight of the total weight of the amorphous fine particle silica and the hardening material. -500 parts is more preferable.
If it is less than 50 parts, the viscosity of the suspension may increase quickly and the permeability may deteriorate, and if it exceeds 1000 parts, it may not be cured.

本発明の地盤注入工法において、注入材の練り混ぜ方法や注入方法は、特に限定されるものではなく、単管ロット工法、単管ストレーナー工法、二重管単相工法、二重管複相工法、及び二重管ダブルパッカー工法等、現在使用されている工法に適用可能である。   In the ground injection method of the present invention, the mixing method and the injection method of the injection material are not particularly limited, and the single tube lot method, the single tube strainer method, the double tube single phase method, the double tube double phase method It can be applied to currently used construction methods such as double pipe double packer construction method.

以下、実施例により本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

非晶質微粒子シリカ80部と硬化材20部の合計重量100部に対して、増粘抑制剤0.7部、水130部を混合し懸濁液を作製し注入材とした。注入材作製直後の粘度を測定した結果を表1に示す。
<使用材料>
非晶質微粒子シリカ:市販品、微粒子シリカ(平均粒子径0.5μm)
硬化材 :市販品、微粒子消石灰(平均粒子径16μm、pH12.3)
増粘抑制剤A :クエン酸
増粘抑制剤B :グルコン酸
増粘抑制剤C :酒石酸
増粘抑制剤D :ナフタレンスルフォン酸系
増粘抑制剤E :アクリル酸、スルホン酸の共重合体ナトリウム塩、重量平均分子量 3,000
増粘抑制剤F :アクリル酸、スルホン酸の共重合体ナトリウム塩、重量平均分子量 30,000
増粘抑制剤G :アクリル酸、スルホン酸の共重合体ナトリウム塩、重量平均分子量 100,000
増粘抑制剤H :ポリアクリル酸ナトリウム、重量平均分子量5,000
水 :水道水
A suspension was prepared by mixing 0.7 part of a thickening inhibitor and 130 parts of water with respect to a total weight of 100 parts of 80 parts of amorphous fine-particle silica and 20 parts of a hardening material to prepare an injection material. Table 1 shows the results of measuring the viscosity immediately after the injection material was prepared.
<Materials used>
Amorphous fine particle silica: Commercial product, fine particle silica (average particle size 0.5 μm)
Curing material: Commercial product, fine particle slaked lime (average particle size 16 μm, pH 12.3)
Thickening inhibitor A: Citric acid thickening inhibitor B: Gluconic acid thickening inhibitor C: Tartaric acid thickening inhibitor D: Naphthalene sulfonic acid-based thickening inhibitor E: A copolymer sodium salt of acrylic acid and sulfonic acid , Weight average molecular weight 3,000
Thickening inhibitor F: acrylic acid, sulfonic acid copolymer sodium salt, weight average molecular weight 30,000
Thickening inhibitor G: acrylic acid, sulfonic acid copolymer sodium salt, weight average molecular weight 100,000
Thickening inhibitor H: Sodium polyacrylate, weight average molecular weight 5,000
Water: Tap water

<測定方法>
作製した懸濁液をB型回転粘度計、音叉型振動式粘度計を用いて測定
<Measurement method>
Measure the prepared suspension using a B-type rotational viscometer and a tuning-fork type vibration viscometer

Figure 2008120892
Figure 2008120892

表1に示されるように、本発明の組成範囲にある増粘抑制剤E、F及びHを用いた実験No.1-6、No.1-7及びNo.1-9の実施例の注入材は、粘度が低く、増粘が抑制されていることが確認された。
これに対して、増粘抑制剤が、カルボン酸又はその塩を主要構成単量体単位とする重合体でない場合には、増粘抑制剤を用いない場合と比較して、増粘の抑制は十分ではなく(実験No.1-1〜No.1-5)、該重合体であっても、重量平均分子量80,000を超えると、増粘抑制効果が認められない(実験No.1-8)。
As shown in Table 1, Examples No. 1-6, No. 1-7 and No. 1-9 injections using thickening inhibitors E, F and H in the composition range of the present invention It was confirmed that the material had a low viscosity and suppressed thickening.
On the other hand, when the thickening inhibitor is not a polymer having a carboxylic acid or a salt thereof as a main constituent monomer unit, the suppression of thickening is less than when the thickening inhibitor is not used. Insufficient (Experiment No. 1-1 to No. 1-5), even with the polymer, when the weight average molecular weight exceeds 80,000, no thickening inhibiting effect is observed (Experiment No. 1- 8).

非晶質微粒子シリカと硬化材の合計量100部に対して、表2に示す配合量で懸濁液を作製し、粘度、固化状態の測定を行なった。結果を表2に示す。   A suspension was prepared with the blending amounts shown in Table 2 with respect to 100 parts of the total amount of the amorphous fine particle silica and the curing material, and the viscosity and the solidified state were measured. The results are shown in Table 2.

<使用材料>
非晶質微粒子シリカ:市販品、微粒子シリカ(平均粒子径0.5μm)
硬化材 :市販品、微粒子消石灰(平均粒子径16μm、pH12.3)
増粘抑制剤E :アクリル酸、スルホン酸の共重合体ナトリウム塩、重量平均分子量 3,000
水 :水道水
硬化促進剤 :米山化学社製、炭酸カリウム
<Materials used>
Amorphous fine particle silica: Commercial product, fine particle silica (average particle size 0.5 μm)
Curing material: Commercial product, fine particle slaked lime (average particle size 16 μm, pH 12.3)
Thickening inhibitor E: acrylic acid, sulfonic acid copolymer sodium salt, weight average molecular weight 3,000
Water: Tap water curing accelerator: Yoneyama Chemical Co., potassium carbonate

<測定方法>
粘度の測定 :作製直後の懸濁液をB型回転粘度計、音叉型振動式粘度計で測定。
固化状態の測定 :作製した懸濁液をカップに入れ、3日経過後の状態を確認した。
流動性なしを○、流動性若干ありを△、流動性ありを×で表した。
<Measurement method>
Viscosity measurement: The suspension immediately after preparation was measured with a B-type rotary viscometer and a tuning-fork type vibration viscometer.
Measurement of solidified state: The prepared suspension was put into a cup, and the state after 3 days was confirmed.
No fluidity is indicated by ○, fluidity slightly is indicated by Δ, and fluidity is indicated by ×.

Figure 2008120892
Figure 2008120892

表2に示されるように、増粘抑制剤の固形分が非晶質微粒子シリカと硬化材の合計量100部に対して、0.1〜20部の場合に、増粘抑制効果があり、固化状態も良好であることが確認された(実験No.1-6、No.2-6〜No.2-12、No.2-14〜No.2-17)。
これに対して、非晶質微粒子シリカと硬化材だけで、増粘抑制剤を配合しない場合には、固化状態は良好であるが、粘度が高くなってしまい好ましくない(実験No.2-2〜No.2-4)。
また、増粘抑制剤の固形分が非晶質微粒子シリカと硬化材の合計量100部に対して、20を超えると、増粘抑制効果は飽和し、固化状態が悪くなる(実験No.2-13)。
As shown in Table 2, when the solid content of the thickening inhibitor is 0.1 to 20 parts with respect to 100 parts of the total amount of the amorphous fine particle silica and the curing material, there is a thickening suppressing effect, It was confirmed that the solidified state was also good (Experiment No. 1-6, No. 2-6 to No. 2-12, No. 2-14 to No. 2-17).
On the other hand, in the case where only the amorphous fine particle silica and the curing material are added and no thickening inhibitor is blended, the solidified state is good, but the viscosity increases, which is not preferable (Experiment No. 2-2). ~ No.2-4).
On the other hand, when the solid content of the thickening inhibitor exceeds 20 with respect to 100 parts of the total amount of the amorphous fine particle silica and the curing material, the thickening suppressing effect is saturated and the solidified state is deteriorated (Experiment No. 2). -13).

実施例1、2より選択した注入材、及び非晶質微粒子シリカと硬化材の配合割合を表3のように変化させた注入材について、実施例1、2と同様に懸濁液を作製し、浸透性評価試験を行なった。結果を表3に示す。   A suspension was prepared in the same manner as in Examples 1 and 2 for the injection material selected from Examples 1 and 2 and the injection material in which the blending ratio of the amorphous fine particle silica and the curing material was changed as shown in Table 3. A permeability evaluation test was conducted. The results are shown in Table 3.

<測定方法>
直径5cmの土木学会基準ビニル袋に豊浦硅砂を20cmになるように充填し、作製した注入材200mlを上部面より静かに注ぎ入れ自然浸透させ、その浸透長さを測定した。
<Measurement method>
A civil engineering society standard vinyl bag with a diameter of 5 cm was filled with Toyoura cinnabar so as to be 20 cm, and 200 ml of the prepared injection material was gently poured from the upper surface to allow natural penetration, and the penetration length was measured.

Figure 2008120892
Figure 2008120892

表3に示されるように、硬化材が、非晶質微粒子シリカと硬化材の合計量100質量部中、40質量部以下であり、増粘抑制剤を配合した注入材は、浸透長さが長く、優れた浸透性を有することが確認された(実験No.1-6、No.2-6、No.2-9〜No.2-13、No.3-1〜No.3-3)。
これに対して、非晶質微粒子シリカと硬化材だけで、増粘抑制剤を配合しない場合、増粘抑制剤を配合しても、硬化材が、非晶質微粒子シリカと硬化材の合計量100質量部中、40質量部を超える場合には、浸透性が悪くなる(実験No.2-2、No.2-7)。
As shown in Table 3, the curing material is 40 parts by mass or less in 100 parts by mass of the total amount of the amorphous fine particle silica and the curing material, and the injection material containing the thickening inhibitor has a penetration length. Long and excellent permeability was confirmed (Experiment No.1-6, No.2-6, No.2-9 to No.2-13, No.3-1 to No.3-3) ).
On the other hand, when only the amorphous fine particle silica and the curing material are not blended with the thickening inhibitor, even if the thickening inhibitor is blended, the curing material is the total amount of the amorphous fine particle silica and the curing material. When the amount exceeds 40 parts by mass in 100 parts by mass, the permeability is deteriorated (Experiment No. 2-2, No. 2-7).

アルカリ性の硬化材を使用したときのシリカスラリーの増粘を抑制することで、従来の懸濁液型注入材以上の浸透が可能となることが期待できるから、各種土木工事における地盤改良工事や止水工事で用いられる地盤注入材として有用である。   Suppressing the thickening of the silica slurry when using an alkaline curing agent can be expected to allow more penetration than conventional suspension-type injection materials. It is useful as a ground injection material used in water works.

Claims (6)

非晶質微粒子シリカ、アルカリ性の硬化材、水、及びカルボン酸又はその塩を主要構成単量体単位とする重量平均分子量が80,000以下の重合体である増粘抑制剤を含有してなる地盤注入材において、前記硬化材が、非晶質微粒子シリカと硬化材の合計量100質量部中、40質量部以下であり、さらに、前記増粘抑制剤の固形分が、非晶質微粒子シリカと硬化材の合計量100質量部に対して、0.1〜20質量部であることを特徴とする地盤注入材。   It contains a thickening inhibitor that is a polymer having a weight average molecular weight of 80,000 or less having amorphous fine particle silica, an alkaline curing material, water, and carboxylic acid or a salt thereof as main constituent monomer units. In the ground injection material, the curing material is 40 parts by mass or less in 100 parts by mass of the total amount of the amorphous fine particle silica and the curing material, and the solid content of the thickening inhibitor is amorphous fine particle silica. The ground injection material, which is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the curing material. 前記増粘抑制剤のカルボン酸又はその塩が、アクリル酸又はメタクリル酸の塩であることを特徴とする請求項1に記載の地盤注入材。   The ground injection material according to claim 1, wherein the carboxylic acid of the thickening inhibitor or a salt thereof is a salt of acrylic acid or methacrylic acid. 前記増粘抑制剤が、アクリル酸とスルホン酸の共重合体又はそのナトリウム塩であることを特徴とする請求項1又は2に記載の地盤注入材。   The ground injection material according to claim 1 or 2, wherein the thickening inhibitor is a copolymer of acrylic acid and sulfonic acid or a sodium salt thereof. 前記硬化材が、カルシウムを含有し、さらにpHが9以上のアルカリ性を呈する無機質粉末であることを特徴とする請求項1〜3のいずれか一項に記載の地盤注入材。   The ground injection material according to any one of claims 1 to 3, wherein the hardener is an inorganic powder containing calcium and further exhibiting alkalinity having a pH of 9 or more. さらに、硬化促進剤としてアルカリ金属炭酸塩を含有してなることを特徴とする請求項1〜4のいずれか一項に記載の地盤注入材。   Furthermore, an alkali metal carbonate is contained as a hardening accelerator, The ground injection material as described in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれか一項に記載の地盤注入材を用いたことを特徴とする地盤注入工法。   A ground injection construction method using the ground injection material according to any one of claims 1 to 5.
JP2006304915A 2006-11-10 2006-11-10 Ground injection material and ground injection method using the same Expired - Fee Related JP5189274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304915A JP5189274B2 (en) 2006-11-10 2006-11-10 Ground injection material and ground injection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304915A JP5189274B2 (en) 2006-11-10 2006-11-10 Ground injection material and ground injection method using the same

Publications (2)

Publication Number Publication Date
JP2008120892A true JP2008120892A (en) 2008-05-29
JP5189274B2 JP5189274B2 (en) 2013-04-24

Family

ID=39505995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304915A Expired - Fee Related JP5189274B2 (en) 2006-11-10 2006-11-10 Ground injection material and ground injection method using the same

Country Status (1)

Country Link
JP (1) JP5189274B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299291A (en) * 2008-06-10 2009-12-24 Denki Kagaku Kogyo Kk Construction method of grout
JP2010150431A (en) * 2008-12-25 2010-07-08 Denki Kagaku Kogyo Kk Grouting material and grout work using the same
WO2010143630A1 (en) * 2009-06-09 2010-12-16 株式会社竹中工務店 Slurry composition for soil improvement containing blast furnace slag cement and method for preparing soil cement slurry using same
JP2011059044A (en) * 2009-09-14 2011-03-24 Japan Atomic Energy Agency Grout injection method
JP2012131882A (en) * 2010-12-21 2012-07-12 Denki Kagaku Kogyo Kk Inorganic paint composition
WO2015122333A1 (en) * 2014-02-12 2015-08-20 電気化学工業株式会社 Soil erosion prevention agent

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147849A (en) * 1986-09-29 1988-06-20 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト Slurry of fume-form silica
JPH05132347A (en) * 1991-11-06 1993-05-28 Takemoto Oil & Fat Co Ltd Method for preventing placed skin surface of concrete from blackening
JPH07257950A (en) * 1994-03-15 1995-10-09 N M B:Kk Silica slurry for cement composition
JPH0841455A (en) * 1994-07-29 1996-02-13 Japan Found Eng Co Ltd Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JPH08199165A (en) * 1995-01-19 1996-08-06 Denki Kagaku Kogyo Kk High-strength grouting material
JP2002212557A (en) * 2001-01-23 2002-07-31 Denki Kagaku Kogyo Kk Grouting material and method for application
JP2003306368A (en) * 2002-04-16 2003-10-28 Denki Kagaku Kogyo Kk Grout and injection method using it
WO2006051875A1 (en) * 2004-11-11 2006-05-18 Denki Kagaku Kogyo Kabushiki Kaisha Composition for ground-improving material, grouting material comprising the same, and method of using the same
JP2006182821A (en) * 2004-12-27 2006-07-13 Denki Kagaku Kogyo Kk Highly penetrative grouting material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147849A (en) * 1986-09-29 1988-06-20 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト Slurry of fume-form silica
JPH05132347A (en) * 1991-11-06 1993-05-28 Takemoto Oil & Fat Co Ltd Method for preventing placed skin surface of concrete from blackening
JPH07257950A (en) * 1994-03-15 1995-10-09 N M B:Kk Silica slurry for cement composition
JPH0841455A (en) * 1994-07-29 1996-02-13 Japan Found Eng Co Ltd Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JPH08199165A (en) * 1995-01-19 1996-08-06 Denki Kagaku Kogyo Kk High-strength grouting material
JP2002212557A (en) * 2001-01-23 2002-07-31 Denki Kagaku Kogyo Kk Grouting material and method for application
JP2003306368A (en) * 2002-04-16 2003-10-28 Denki Kagaku Kogyo Kk Grout and injection method using it
WO2006051875A1 (en) * 2004-11-11 2006-05-18 Denki Kagaku Kogyo Kabushiki Kaisha Composition for ground-improving material, grouting material comprising the same, and method of using the same
JP2006182821A (en) * 2004-12-27 2006-07-13 Denki Kagaku Kogyo Kk Highly penetrative grouting material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299291A (en) * 2008-06-10 2009-12-24 Denki Kagaku Kogyo Kk Construction method of grout
JP2010150431A (en) * 2008-12-25 2010-07-08 Denki Kagaku Kogyo Kk Grouting material and grout work using the same
WO2010143630A1 (en) * 2009-06-09 2010-12-16 株式会社竹中工務店 Slurry composition for soil improvement containing blast furnace slag cement and method for preparing soil cement slurry using same
JPWO2010143630A1 (en) * 2009-06-09 2012-11-22 株式会社竹中工務店 Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
JP5545678B2 (en) * 2009-06-09 2014-07-09 株式会社竹中工務店 Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
US8822567B2 (en) 2009-06-09 2014-09-02 Takemoto Yushi Kabushiki Kaisha Method of producing soil cement slurry
JP2011059044A (en) * 2009-09-14 2011-03-24 Japan Atomic Energy Agency Grout injection method
JP2012131882A (en) * 2010-12-21 2012-07-12 Denki Kagaku Kogyo Kk Inorganic paint composition
WO2015122333A1 (en) * 2014-02-12 2015-08-20 電気化学工業株式会社 Soil erosion prevention agent
JPWO2015122333A1 (en) * 2014-02-12 2017-03-30 デンカ株式会社 Soil erosion inhibitor
US10479939B2 (en) 2014-02-12 2019-11-19 Denka Company Limited Soil erosion prevention agent

Also Published As

Publication number Publication date
JP5189274B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5189274B2 (en) Ground injection material and ground injection method using the same
JP6404629B2 (en) High fluidity retention type underwater non-separable grout composition
JP2008189526A (en) Admixture for grout and cement composition for grout
JP2010235721A (en) Grouting method
JP2005139060A (en) Setting accelerator for cement
JP2006176397A (en) High-fluidity mortar composition and its manufacturing method
JP5432431B2 (en) High strength grout material
JP2004175989A (en) Additive for foundation-improving cement composition, foundation-improving cement composition produced by using the additive and foundation improving method
JP2007269609A (en) Polymer cement grouting material composition and grouting material
JPWO2019142775A1 (en) High-strength grout material composition and high-strength grout mortar using it
JP4976803B2 (en) Grout composition and grout material using the same
JP2007326728A (en) Concrete production method and concrete
JP2010215865A (en) Injection material and injection method
JPH1161125A (en) Grouting material
JP5498695B2 (en) Ground injection material and ground injection method using the same
JP7299869B2 (en) Ground improvement method
JP2009149457A (en) Antiwashout underwater cement-based packing composition and antiwashout underwater cement mortar
JP2008308612A (en) Slag-based grouting material and grouting method using the same
JP2006290739A (en) Spraying material and spraying method using same
JP6306973B2 (en) High fluidity retention type low exothermic grout composition
JP5519148B2 (en) Injection material and injection method using the same
JP2004256585A (en) Slurry for ground improving work, improved ground formed by using the slurry, and dispersant for slurry for ground improving work
JP5717945B2 (en) Injection material, injection material and injection method
JPWO2020115790A1 (en) Additives for hydraulic compositions and hydraulic compositions
JP2006160577A (en) Hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees