[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPWO2019142775A1 - High-strength grout material composition and high-strength grout mortar using it - Google Patents

High-strength grout material composition and high-strength grout mortar using it Download PDF

Info

Publication number
JPWO2019142775A1
JPWO2019142775A1 JP2019566462A JP2019566462A JPWO2019142775A1 JP WO2019142775 A1 JPWO2019142775 A1 JP WO2019142775A1 JP 2019566462 A JP2019566462 A JP 2019566462A JP 2019566462 A JP2019566462 A JP 2019566462A JP WO2019142775 A1 JPWO2019142775 A1 JP WO2019142775A1
Authority
JP
Japan
Prior art keywords
cement
parts
mass
strength grout
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019566462A
Other languages
Japanese (ja)
Inventor
高木 聡史
聡史 高木
拓海 前田
拓海 前田
佐々木 崇
崇 佐々木
盛岡 実
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2019142775A1 publication Critical patent/JPWO2019142775A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

5μm以下の粒子の含有量が5質量%以下であり、メジアン径が15μm以上であるセメント、ポゾラン微粉末、水溶性カルシウム塩、減水剤、発泡剤、消泡剤、及び細骨材を含有する高強度グラウト材組成物である。Contains cement, pozzolan fine powder, water-soluble calcium salt, water reducing agent, foaming agent, defoaming agent, and fine aggregate having a particle content of 5 μm or less of 5% by mass or less and a median diameter of 15 μm or more. It is a high-strength grout material composition.

Description

本発明は、主に、土木・建築分野で使用される高強度グラウト材組成物及びそれを用いた高強度グラウトモルタルに関する。 The present invention mainly relates to a high-strength grout material composition used in the fields of civil engineering and construction, and a high-strength grout mortar using the same.

従来から、土木・建築分野で使用されるセメントモルタルのグラウトとしては、セメントに減水剤を加えたものが一般的である。これにさらに、カルシウムサルフォアルミネート系膨張材又は石灰系膨張材や、アルミ粉等の発泡剤を添加して無収縮材料とし、これらに川砂や珪砂等を配合し、コンクリート構造物の細かい空隙や逆打ち工法での空隙、構造物の補修や補強箇所、機械装置のベースプレート下や軌道床板下等への充填に広く使用されている。 Conventionally, as a grout of cement mortar used in the fields of civil engineering and construction, a cement to which a water reducing agent is added is generally used. Further, a calcium sulfate-based expansion material or a lime-based expansion material or a foaming agent such as aluminum powder is added to the non-shrinkage material, and river sand, silica sand, etc. are mixed with these to make fine voids in the concrete structure. It is widely used for filling voids in the reverse striking method, repairing and reinforcing points of structures, under the base plate of mechanical devices, under the track floor plate, etc.

一般に、土木・建築工事において充填施工されるセメントモルタルは、グラウトといわれる。グラウトには、PCグラウト、プレパックドコンクリート用グラウト、トンネルやシールドの裏込めグラウト、プレキャスト用グラウト、構造物の補修・補強グラウト、鉄筋継手グラウト、橋梁の支承下グラウト、舗装版下グラウト、軌道下グラウト、及び原子力発電所格納容器下グラウトなどがある。 Generally, cement mortar that is filled in civil engineering and construction work is called grout. Grout includes PC grout, prepacked concrete grout, tunnel and shield backfill grout, precast grout, structure repair / reinforcement grout, reinforced joint grout, bridge support grout, paving slab grout, under-track grout. There are grouts and grouts under the storage container of nuclear power plants.

近年、土木・建築構造物に使われるコンクリートの品質が高性能化し、グラウトとして使用されるセメントモルタルに要求される性能も、用途によっては、高流動、高強度等が要求されている。
高流動性や高い強度発現性を得るために、セメント、カルシウムアルミノフェライト系膨張材、二酸化珪素(SiO)含有量が90%以上で水素イオン濃度が酸性領域にあるシリカ質微粉末、ポリカルボン酸系減水剤、及び細骨材を含有してなる高強度グラウトモルタルを使用することが知られている(特許文献1参照)。
In recent years, the quality of concrete used for civil engineering and building structures has improved, and the performance required for cement mortar used as grout is also required to be high flow and high strength depending on the application.
In order to obtain high fluidity and high strength development, cement, calcium aluminoferrite-based expansion material, siliceous fine powder with silicon dioxide (SiO 2 ) content of 90% or more and hydrogen ion concentration in the acidic region, polycarboxylic acid It is known to use a high-strength grout mortar containing an acid-based water reducing agent and a fine aggregate (see Patent Document 1).

又、さらなる高流動性や高い強度発現性を得るために、膨張材を使用しないで、水溶性カルシウム塩を併用することによって、高流動性を付与させる高強度グラウトモルタルを使用することも知られている(特許文献2参照)。
しかしながら、これらの高強度グラウトモルタルは、圧縮強度が最大でも180N/mm程度しか発現せず、200N/mm以上の強度を発現する高強度グラウトモルタルは存在しなかった。
It is also known to use a high-strength grout mortar that imparts high fluidity by using a water-soluble calcium salt in combination without using an expansion material in order to obtain further high fluidity and high strength development. (See Patent Document 2).
However, these high strength grout mortar, compressive strength not only not expressed 180 N / mm 2 approximately at a maximum, high strength grout mortar expressing 200 N / mm 2 or more intensity did not exist.

高強度グラウトモルタルの水/セメント比を低減して強度発現性を向上させようとしても、モルタルの流動性の確保に多量の減水剤を用いる必要があるため、経済的負担が大きくなるばかりか、多くの泡が発生して細骨材が沈降し、逆に強度発現性が阻害される場合があった。 Even if the water / cement ratio of high-strength grout mortar is reduced to improve the strength development, it is necessary to use a large amount of water reducing agent to ensure the fluidity of the mortar, which not only increases the economic burden but also increases the economic burden. In some cases, many bubbles were generated and the fine aggregate settled, and conversely, the strength development was inhibited.

一方、高強度コンクリートのひび割れを低減する目的で、ブレーン比表面積で1000〜2400cm/gの粗粒セメントを使用する提案もなされている(特許文献3)。しかしながら、単にブレーン比表面積が小さくなるように粉砕処理したセメントは、微粒子をカットしているわけではなく、コンクリートを調製する際に、水/セメント比を低減できなかった。On the other hand, for the purpose of reducing cracks in high-strength concrete, it has been proposed to use coarse-grained cement having a brain specific surface area of 1000 to 2400 cm 2 / g (Patent Document 3). However, the cement pulverized so as to have a small brain specific surface area does not cut fine particles, and the water / cement ratio could not be reduced when preparing concrete.

高強度コンクリートの調製を目的として、粗粒セメントを含む結合材、β−1,3グルカン、及び高性能減水剤を含有する水硬性組成物が提案されている(特許文献4)。この水硬性組成物は40μm〜100μmの範囲の粗粒セメントを適用するが、セメントの粒度構成が歪なため粒子の最密充填がなされず、100N/mmを超えるような高強度コンクリートの調製が難しいという課題があった。又、材料分離が生じやすく、耐久性が阻害されるという課題もあった。For the purpose of preparing high-strength concrete, a hydraulic composition containing a binder containing coarse-grained cement, β-1,3 glucan, and a high-performance water reducing agent has been proposed (Patent Document 4). For this hydraulic composition, coarse-grained cement in the range of 40 μm to 100 μm is applied, but because the particle size composition of the cement is distorted, the particles are not densely packed, and high-strength concrete exceeding 100 N / mm 2 is prepared. There was a problem that it was difficult. In addition, there is also a problem that material separation is likely to occur and durability is impaired.

特開2008−094675号公報Japanese Unexamined Patent Publication No. 2008-094675 特開2010−150072号公報Japanese Unexamined Patent Publication No. 2010-150072 特開2006−117439号公報Japanese Unexamined Patent Publication No. 2006-117439 特開平06−263506号公報Japanese Unexamined Patent Publication No. 06-263506

以上から、本発明は、低い水/セメント比で練り混ぜても流動性を確保でき、例えば200N/mm以上の圧縮強度を発現する高強度グラウトモルタルを提供できる高強度グラウト材組成物を提供することを目的とする。From the above, the present invention provides a high-strength grout material composition capable of ensuring fluidity even when kneaded at a low water / cement ratio and providing a high-strength grout mortar exhibiting a compressive strength of, for example, 200 N / mm 2 or more. The purpose is to do.

本発明者らは、前記課題を解決すべく種々検討を行った結果、セメントを分級して微粉を取り除いたセメントと、特定の原材料を組み合わせることにより、水/セメント比を著しく小さくしても流動性を確保でき、例えば圧縮強度で200N/mm以上の強度を発現する高強度グラウトモルタルが得られることを知見し、本発明を完成するに至った。As a result of various studies to solve the above problems, the present inventors have combined cement from which fine powder has been removed by classifying cement with a specific raw material to flow even if the water / cement ratio is significantly reduced. It has been found that a high-strength grout mortar capable of ensuring properties and exhibiting a strength of 200 N / mm 2 or more at a compressive strength can be obtained, and the present invention has been completed.

即ち、本発明は、(1)5μm以下の粒子の含有量が5質量%以下であり、メジアン径が15μm以上であるセメント、ポゾラン微粉末、水溶性カルシウム塩、減水剤、発泡剤、消泡剤、及び細骨材を含有してなる高強度グラウト材組成物であり、
(2)前記セメントの5μm〜40μmの粒子の含有量が、75質量%以上である高強度グラウト材組成物であり、
(3)前記ポゾラン微粉末が、SiO含有量が90質量%以上で、酸化ジルコニウムを含有し、水素イオン濃度が酸性領域であるシリカ質微粉末である高強度グラウト材組成物であり、
(4)前記ポゾラン微粉末が、セメントとポゾラン微粉末の合計100質量部中、20〜30質量部である高強度グラウト材組成物であり、
(5)前記水溶性カルシウム塩が、セメントとポゾラン微粉末の合計100質量部に対して、0.2〜1質量部である高強度グラウト材組成物であり、
(6)前記細骨材が、密度3g/cm以上の重量骨材である高強度グラウト材組成物であり、
(7)前記細骨材が、セメントとポゾラン微粉末の合計100質量部に対して、60〜100質量部である高強度グラウト材組成物であり、
(8)前記高強度グラウト材組成物と水とを混錬してなる高強度グラウトモルタルであり、
(9)前記高強度グラウト材組成物100質量部に対して、水を15〜18質量部添加、混練する、高強度グラウトモルタルの製造方法である。
That is, in the present invention, (1) cement, pozzolan fine powder, water-soluble calcium salt, water reducing agent, foaming agent, defoaming agent having a particle content of 5 μm or less of 5% by mass or less and a median diameter of 15 μm or more. A high-strength grout composition containing an agent and a fine aggregate.
(2) A high-strength grout material composition in which the content of particles of 5 μm to 40 μm of the cement is 75% by mass or more.
(3) The pozzolan fine powder is a high-strength grout material composition which is a siliceous fine powder having a SiO 2 content of 90% by mass or more, containing zirconium oxide, and having a hydrogen ion concentration in an acidic region.
(4) The pozzolan fine powder is a high-strength grout material composition in which 20 to 30 parts by mass out of a total of 100 parts by mass of cement and pozzolan fine powder.
(5) The water-soluble calcium salt is a high-strength grout material composition in which the amount is 0.2 to 1 part by mass with respect to 100 parts by mass in total of cement and pozzolan fine powder.
(6) The fine aggregate is a high-strength grout material composition which is a heavy aggregate having a density of 3 g / cm 3 or more.
(7) The fine aggregate is a high-strength grout material composition having 60 to 100 parts by mass with respect to 100 parts by mass in total of cement and pozzolan fine powder.
(8) A high-strength grout mortar obtained by kneading the high-strength grout material composition with water.
(9) A method for producing a high-strength grout mortar, in which 15 to 18 parts by mass of water is added and kneaded with respect to 100 parts by mass of the high-strength grout material composition.

本発明の高強度グラウト材組成物を用いることにより、低い水/セメント比で練り混ぜても流動性を確保でき、例えば200N/mm以上の圧縮強度を発現する高強度グラウトモルタルを提供することができる。By using the high-strength grout material composition of the present invention, it is possible to secure fluidity even when kneaded at a low water / cement ratio, and to provide, for example, a high-strength grout mortar exhibiting a compressive strength of 200 N / mm 2 or more. Can be done.

以下、本発明を詳細に説明する。
本発明で使用する部や%は特に規定のない限り質量基準である。
Hereinafter, the present invention will be described in detail.
Parts and% used in the present invention are based on mass unless otherwise specified.

本発明のセメントとして、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらセメントに、高炉スラグ、フライアッシュ又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)を挙げることができる。 The cement of the present invention includes various Portland cements such as ordinary, early-strength, ultra-fast-strength, low-heat, and moderate-heat, various mixed cements obtained by mixing these cements with blast furnace slag, fly ash, or silica, limestone powder, and blast furnace Xu. Examples include filler cement mixed with cold slag fine powder and environment-friendly cement (eco-cement) manufactured from city waste incineration ash and sewage sludge incineration ash as raw materials.

本発明のセメントは、5μm以下の粒子の含有量が5質量%以下であり、メジアン径が15μm以上である。さらに、5μm〜40μmの粒子の含有量が、75質量%以上であることが好ましい。5μm以下の粒子の含有量が5質量%を超えると、水/セメント比を低減できないほか、モルタル練り混ぜ時の粘性が高くなり負荷が大きくなる。5μm〜40μmの粒子の含有量が75質量%未満であると、初期の強度発現性が悪くなり、ブリーディングが発生し易くなる。
なお、5μm以下の粒子の含有量、メジアン径、5μm〜40μmの粒子の含有量は実施例に記載の方法により測定することができる。
The cement of the present invention has a particle content of 5 μm or less of 5% by mass or less and a median diameter of 15 μm or more. Further, the content of the particles of 5 μm to 40 μm is preferably 75% by mass or more. If the content of particles of 5 μm or less exceeds 5% by mass, the water / cement ratio cannot be reduced, and the viscosity at the time of kneading the mortar becomes high, resulting in a large load. If the content of the particles of 5 μm to 40 μm is less than 75% by mass, the initial strength development is deteriorated and bleeding is likely to occur.
The content of particles having a diameter of 5 μm or less and the content of particles having a median diameter of 5 μm to 40 μm can be measured by the method described in Examples.

5μmの粒子の含有量が5質量%以下であり、メジアン径が15μm以上であるセメントは、通常、CS固溶体が50〜70質量部、CS固溶体が10〜30質量部、CAが5〜20質量部、CAFが2〜20質量部、セッコウが0.1〜5質量部から構成される。
ブレーン比表面積は、1500cm/g〜3500cm/gの範囲にあることが好ましく、1600cm/g〜3000cm/gの範囲にあることがより好ましい。
And the content of particles of 5μm is 5 mass% or less, cement median diameter of 15μm or more, usually, C 3 S solid solution 50 to 70 parts by mass, C 2 S solid solution of 10 to 30 parts by mass, C 3 A is composed of 5 to 20 parts by mass, C 4 AF is composed of 2 to 20 parts by mass, and cement is composed of 0.1 to 5 parts by mass.
Blaine specific surface area is preferably in the range of 1500cm 2 / g~3500cm 2 / g, and more preferably in the range of 1600cm 2 / g~3000cm 2 / g.

本発明のポゾラン微粉末としては、高炉スラグ微粉末、フライアッシュ、シリカフュームから選ばれる1種又は2種以上が挙げられる。
本発明では、低い水/セメント比で良好な流動性を確保する目的で、SiO含有量が90質量%以上で、酸化ジルコニウムを含有し、水素イオン濃度が酸性領域であるジルコニア起源シリカフュームの使用が好ましい。
ここで言う水素イオン濃度とは、シリカフューム20gを純水100gに入れ、マグネティックスタラーにて5分間攪拌した後、懸濁液の水素イオン濃度(PH)をpHメータにより計測した値である。
Examples of the pozzolan fine powder of the present invention include one or more selected from blast furnace slag fine powder, fly ash, and silica fume.
In the present invention, for the purpose of ensuring good fluidity at a low water / cement ratio, use of zirconia-derived silica fume having a SiO 2 content of 90% by mass or more, containing zirconium oxide, and having an acidic hydrogen ion concentration is used. Is preferable.
The hydrogen ion concentration referred to here is a value obtained by putting 20 g of silica fume in 100 g of pure water, stirring for 5 minutes with a magnetic stirrer, and then measuring the hydrogen ion concentration (PH) of the suspension with a pH meter.

JIS A 6207で規定されるように、シリカフュームとは非晶質の二酸化けい素を主成分とする球状の超微粒子であり、金属シリコンやフェロシリコンをアーク炉で製造する際に発生ずる排ガスから捕集される。その他、金属シリコン微粉末を火炎中で酸化させる方法や、高温火炎中でシリカ質原料微粉末を溶融する方法において、原料の熱処理条件を調整し、捕集温度を550℃以上にすることによっても製造することができる。又、電気炉においてジルコンサンドを電融した際に、サイクロンなどで捕集し、分級して製造される、いわゆる、ジルコニア起源シリカフュームと呼ばれるものもある。 As specified in JIS A 6207, silica fume is spherical ultrafine particles containing amorphous silicon dioxide as the main component, and is captured from the exhaust gas generated when metallic silicon and ferrosilicon are manufactured in an arc furnace. Gathered. In addition, in the method of oxidizing metallic silicon fine powder in a flame and the method of melting a siliceous raw material fine powder in a high-temperature flame, the heat treatment conditions of the raw material are adjusted and the collection temperature is set to 550 ° C. or higher. Can be manufactured. There is also a so-called zirconia-derived silica fume, which is produced by collecting zircon sand with a cyclone or the like and classifying it when the zircon sand is melted in an electric furnace.

本発明では、ジルコニア起源シリカフュームの使用が好ましい。ジルコニア起源シリカフュームは、耐火物、研磨・研削材、電子材料、及び窯業顔料等に使用される電融ジルコニア(酸化ジルコニウムZrO)を製造する際に副生されるもので、ジルコンサンド(ZrSiO)を、例えば、2,200℃で電融した際に生じる排ガスを集塵したものである。
その平均粒子径は1μm程度であり、金属シリコンやフェロシリコンをアーク炉で製造する際に発生ずる排ガスから捕集される、平均粒子径0.1〜0.3μmのシリカフュームより大きい。
In the present invention, it is preferable to use silica fume of zirconia origin. Zirconia origin silica fume, refractories, grinding-polishing materials, electronic materials, and the invention is by-produced in the manufacture of fused zirconia used (zirconium oxide ZrO 2) in ceramic pigment, zircon sand (ZrSiO 4 ), For example, is a collection of exhaust gas generated when electric fusion is performed at 2,200 ° C.
Its average particle size is about 1 μm, which is larger than silica fume having an average particle size of 0.1 to 0.3 μm collected from exhaust gas generated when metallic silicon or ferrosilicon is produced in an arc furnace.

ポゾラン微粉末の使用量は、セメントとポゾラン微粉末の合計100部中、20〜30部が好ましい。20部未満では強度発現が不十分であったり、練り混ぜ時の負荷が大きくなる場合があり、一方、30部を超えても練り混ぜ時の負荷が大きくなり、所定の水量で流動性が得られない場合がある。 The amount of pozzolan fine powder used is preferably 20 to 30 parts out of a total of 100 parts of cement and pozzolan fine powder. If it is less than 20 parts, the strength development may be insufficient or the load at the time of kneading may be large, while if it exceeds 30 parts, the load at the time of kneading will be large and fluidity will be obtained with a predetermined amount of water. It may not be possible.

本発明の水溶性カルシウム塩は、優れた流動性を得るために用いる。一般に、水溶性カルシウム塩には、酢酸カルシウム、蟻酸カルシウム、及び硝酸カルシウムなどが挙げられるが、本発明では酢酸カルシウムの使用が好ましい。 The water-soluble calcium salt of the present invention is used to obtain excellent fluidity. Generally, examples of the water-soluble calcium salt include calcium acetate, calcium formate, calcium nitrate and the like, but the use of calcium acetate is preferable in the present invention.

低い水/セメント比で優れた流動性を得るには、SiO含有量が90%以上で、酸化ジルコニウムを含有し、水素イオン濃度が酸性領域にあるシリカフュームと、ポリカルボン酸系減水剤を用いることによっても可能であるが、セメントの種類によっては、減水剤を多量に添加しなければならない場合がある。減水剤の多量添加は、初期強度発現性に悪影響を及ぼすので、減水剤の添加量を一定範囲内に抑えるため、水溶性カルシウム塩を併用する。To obtain excellent fluidity at a low water / cement ratio, use silica fume with a SiO 2 content of 90% or more, zirconium oxide, and a hydrogen ion concentration in the acidic region, and a polycarboxylic acid-based water reducing agent. This is also possible, but depending on the type of cement, it may be necessary to add a large amount of water reducing agent. Since the addition of a large amount of water reducing agent adversely affects the initial strength development, a water-soluble calcium salt is used in combination in order to keep the addition amount of the water reducing agent within a certain range.

水溶性カルシウム塩の使用量は、セメントとポゾラン微粉末の合計100部に対して、0.2〜1部が好ましく、0.4〜0.6部がより好ましい。0.2部未満では流動性が不十分な場合があり、一方、1部を超えると逆に流動性が低下する場合もある。 The amount of the water-soluble calcium salt used is preferably 0.2 to 1 part, more preferably 0.4 to 0.6 part, based on 100 parts in total of the cement and the pozzolan fine powder. If it is less than 0.2 parts, the fluidity may be insufficient, while if it exceeds 1 part, the fluidity may decrease.

本発明の減水剤とは、セメントに対する分散作用や空気連行作用を有し、流動性の改善や強度を増進するものの総称であり、一般的には、ナフタレンスルホン酸系減水剤、メラミンスルホン酸系減水剤、リグニンスルホン酸系減水剤、及びポリカルボン酸系減水剤等が挙げられる。
減水剤の使用形態は粉体、液体のいずれでも使用できるが、プレミックス製品として使用する際には粉体が好ましい。
The water reducing agent of the present invention is a general term for those having a dispersing action and an air entraining action on cement to improve fluidity and strength, and generally, a naphthalene sulfonic acid-based water reducing agent and a melamine sulfonic acid-based. Examples thereof include water reducing agents, lignin sulfonic acid-based water reducing agents, and polycarboxylic acid-based water reducing agents.
The water reducing agent can be used in either powder or liquid, but powder is preferable when used as a premix product.

減水剤の使用量は、セメントとポゾラン微粉末の合計100部に対して、0.2〜1部が好ましく、0.4〜0.6部がより好ましい。0.2部未満では流動性が不充分となる場合があり、一方、1部を超えると気泡が発生して強度発現が不十分になる場合や、著しい凝結遅延を起こす場合がある。 The amount of the water reducing agent used is preferably 0.2 to 1 part, more preferably 0.4 to 0.6 part, based on 100 parts in total of cement and pozzolan fine powder. If it is less than 0.2 parts, the fluidity may be insufficient, while if it exceeds 1 part, bubbles may be generated and the strength development may be insufficient, or a significant delay in condensation may occur.

本発明の発泡剤とは、モルタルを無収縮性とするために、水と練り混ぜた際にガスを発生し、初期膨張を得るものである。
発泡剤としては特に限定されるものではなく、例えば、金属粉末や過酸化物等が挙げられる。なかでも添加量と効果の点からアルミニウム粉末が好ましい。アルミニウム粉末の表面は酸化されやすく、酸化皮膜で覆われると反応性が低下するため、植物油、鉱物油、又はステアリン酸等で表面処理したアルミニウム粉末の使用がより好ましい。
The foaming agent of the present invention generates gas when mixed with water in order to make the mortar non-shrinkable, and obtains initial expansion.
The foaming agent is not particularly limited, and examples thereof include metal powder and peroxide. Of these, aluminum powder is preferable from the viewpoint of the amount of addition and the effect. Since the surface of the aluminum powder is easily oxidized and the reactivity is lowered when it is covered with an oxide film, it is more preferable to use the aluminum powder surface-treated with vegetable oil, mineral oil, stearic acid or the like.

発泡剤の使用量は、セメントとポゾラン微粉末の合計100部に対して、0.0003〜0.002部が好ましく、0.0005〜0.0009部がより好ましい。0.0003部未満では発泡効果が不十分となる場合があり、一方、0.002部を超えると発泡が大き過ぎ、強度が低下する場合がある。 The amount of the foaming agent used is preferably 0.0003 to 0.002 parts, more preferably 0.0005 to 0.0009 parts, based on 100 parts in total of the cement and pozzolan fine powder. If it is less than 0.0003 parts, the foaming effect may be insufficient, while if it exceeds 0.002 parts, the foaming may be too large and the strength may be lowered.

本発明の消泡剤とは、モルタル練り混ぜ時の巻き込み空気量を低減し、強度発現性を向上する役割を担う。
消泡剤としては特に限定されるものではないが、ポリオキシエチレンアルキルエーテル系消泡剤やプルロニック系化合物消泡剤等が挙げられる。
The defoaming agent of the present invention plays a role of reducing the amount of air entrained during mortar kneading and improving the strength development.
The defoaming agent is not particularly limited, and examples thereof include a polyoxyethylene alkyl ether-based defoaming agent and a pluronic compound defoaming agent.

消泡剤の使用量は、セメントとポゾラン微粉末の合計100部に対して、0.02〜0.2部が好ましく、0.04〜0.15部がより好ましい。0.02部未満では消泡効果が不充分で、強度発現性に悪影響を及ぼす場合があり、一方、0.2部を超えても効果が頭打ちとなり、経済的負担が大きくなる場合がある。 The amount of the defoaming agent used is preferably 0.02 to 0.2 parts, more preferably 0.04 to 0.15 parts, based on 100 parts in total of the cement and pozzolan fine powder. If it is less than 0.02 parts, the defoaming effect is insufficient and may adversely affect the strength development, while if it exceeds 0.2 parts, the effect may reach a plateau and the economic burden may increase.

本発明で使用する細骨材としては、重量骨材の使用が好ましい。
重量骨材は、流動性の保持性能、強度発現性等が得られ、密度が3g/cm以上で、砕砂であれば特に限定されるものではない。例えば、磁鉄鉱石、赤鉄鉱石、橄欖岩、フェロクロムスラグ、フェロニッケルスラグ、銅スラグ、及び電気炉酸化スラグなどの砕砂が挙げられる。本発明では、これらのうち一種又は二種以上を併用することが可能である。プレミックス製品として使用する際には乾燥砂の使用が好ましい。
As the fine aggregate used in the present invention, it is preferable to use a heavy aggregate.
The heavy aggregate is not particularly limited as long as it has fluidity retention performance, strength development, etc., has a density of 3 g / cm 3 or more, and is crushed sand. For example, crushed sand such as magnetite, hematite, peridotite, ferrochrome slag, ferronickel slag, copper slag, and electric furnace oxide slag can be mentioned. In the present invention, one or more of these can be used in combination. When used as a premix product, it is preferable to use dry sand.

細骨材の使用量は、セメントとポゾラン微粉末の合計100部に対して、60〜100部が好ましく、70〜90部がより好ましい。60部未満ではモルタルの自己収縮や乾燥収縮量が大きくなり、ひび割れが発生しやすくなる場合があり、一方、100部を超えると流動性や強度発現性が低下する場合がある。 The amount of fine aggregate used is preferably 60 to 100 parts, more preferably 70 to 90 parts, based on 100 parts in total of cement and pozzolan fine powder. If it is less than 60 parts, the amount of self-shrinkage and drying shrinkage of the mortar becomes large, and cracks may easily occur. On the other hand, if it exceeds 100 parts, the fluidity and strength development may decrease.

本発明の高強度グラウトモルタルは、既述の本発明の高強度グラウト材組成物と水とを混錬してなる。当該高強度グラウトモルタルは、例えば、本発明の高強度グラウト材組成物100質量部に対して、水を15〜18質量部添加、混練することで製造される。 The high-strength grout mortar of the present invention is obtained by kneading the above-mentioned high-strength grout material composition of the present invention with water. The high-strength grout mortar is produced, for example, by adding 15 to 18 parts by mass of water to 100 parts by mass of the high-strength grout material composition of the present invention and kneading.

本発明の練り混ぜ水量は、高強度グラウト材組成物100部に対して15〜18部が好ましい。この範囲外では、流動性が大きく低下したり、強度が低下する場合がある。
本発明において、高強度グラウト材組成物と水との練り混ぜ方法は特に限定されるものではないが、回転数が900rpm以上のハンドミキサ、通常の高速グラウトミキサ、又は二軸型の強制ミキサを使用することが好ましい。
The amount of kneading water of the present invention is preferably 15 to 18 parts with respect to 100 parts of the high-strength grout material composition. Outside this range, fluidity may be significantly reduced or strength may be reduced.
In the present invention, the method of kneading the high-strength grout material composition and water is not particularly limited, but a hand mixer having a rotation speed of 900 rpm or more, a normal high-speed grout mixer, or a biaxial forced mixer is used. It is preferable to use it.

ハンドミキサや高速グラウトミキサでの練り混ぜは、例えば、ペール缶等の容器やミキサにあらかじめ所定の水を入れ、その後ミキサを回転させながら高強度グラウト材組成物を投入し、3分以上練り混ぜることが好ましい。又、強制ミキサでの練り混ぜは、例えば、あらかじめ高強度グラウト材組成物をミキサに投入し、ミキサを回転させながら所定の水を投入し、少なくとも4分以上練り混ぜることが好ましい。練り混ぜ時間が所定時間未満では、練り不足のため適切な高強度グラウトモルタルの流動性が得られない場合がある。
練り混ぜられた高強度グラウトモルタルは、通常、手動式注入ガン、ダイヤフラム式手押しポンプ、あるいは、スクイズ式等のモルタルポンプにより施工箇所まで圧送し、充填施工される。
For kneading with a hand mixer or a high-speed grout mixer, for example, a container such as a pail can or a mixer is filled with predetermined water in advance, and then the high-strength grout material composition is added while rotating the mixer, and the mixture is kneaded for 3 minutes or more. Is preferable. Further, for kneading with the forced mixer, for example, it is preferable to put the high-strength grout material composition into the mixer in advance, add predetermined water while rotating the mixer, and knead for at least 4 minutes or more. If the kneading time is less than a predetermined time, appropriate high-strength grout mortar fluidity may not be obtained due to insufficient kneading.
The kneaded high-strength grout mortar is usually pumped to the construction site by a manual injection gun, a diaphragm type hand pump, or a squeeze type mortar pump, and filled.

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(実験例1)
セメント(A)〜(H)を使用し、高強度グウウト材組成物を作製した。配合は、セメントとポゾラン微粉末の合計100部中にポゾラン微粉末(イ)が20部、並びに、セメントとポゾラン微粉末の合計100部に対して、水溶性カルシウム塩0.5部、減水剤0.5部、発泡剤0.0007部、消泡剤0.09部、及び細骨材(I)80部である。この高強度グラウト材組成物100部に対して、水を16部加えて練り混ぜ、高強度グウウトモルタルを作製し、流動性と圧縮強度を測定した。練り混ぜにはハンドミキサを使用し、温度20℃、湿度60%の実験室内で5分間混練した。結果を表1に示す。
(Experimental Example 1)
High-strength gout material compositions were prepared using cements (A) to (H). The composition is 20 parts of pozzolan fine powder (a) in a total of 100 parts of cement and pozzolan fine powder, and 0.5 part of water-soluble calcium salt and water reducing agent for a total of 100 parts of cement and pozzolan fine powder. 0.5 parts, 0.0007 parts of foaming agent, 0.09 parts of antifoaming agent, and 80 parts of fine aggregate (I). To 100 parts of this high-strength grout material composition, 16 parts of water was added and kneaded to prepare a high-strength grout mortar, and the fluidity and compressive strength were measured. A hand mixer was used for kneading, and the mixture was kneaded in a laboratory at a temperature of 20 ° C. and a humidity of 60% for 5 minutes. The results are shown in Table 1.

(使用材料)
セメント(A):普通ポルトランドセメント、デンカ株式会社製市販品、ブレーン比表面積3,200cm2/g、5μm以下の粒子含有量28%、メジアン径12μm、5〜40μmの粒子含有量61%
セメント(B):セメントAを分級処理したもの、ブレーン比表面積2,400cm2/g、5μm以下の粒子含有量5%、メジアン径15μm、5〜40μmの粒子含有量75%
セメント(C):セメントAを分級処理したもの、ブレーン比表面積1,700cm2/g、5μm以下の粒子含有量3%、メジアン径19μm、5〜40μmの粒子含有量82%
セメント(D):セメントAと同一のセメントクリンカーを用い、セッコウ添加量を同一にして調製した普通ポルトランドセメント。ブレーン比表面積1,700cm2/g、5μm以下の粒子含有量6%、メジアン径14μm、5〜40μmの粒子含有量70%
セメント(E):早強ポルトランドセメント、デンカ株式会社製市販品、ブレーン比表面積4,500cm2/g。5μm以下の粒子含有量37%、メジアン径7μm、5〜40μmの粒子含有量61%
セメント(F):セメントEを分級処理したもの、ブレーン比表面積2,300cm2/g、5μm以下の粒子含有量4%、メジアン径15μm、5〜40μmの粒子含有量85%
セメント(G):高炉セメントB種、デンカ株式会社製市販品、ブレーン比表面積3,800cm2/g、5μm以下の粒子含有量30%、メジアン径8μm、5〜40μmの粒子含有量78%
セメント(H):セメントGを分級処理したもの、ブレーン比表面積2,300cm2/g、5μm以下の粒子含有量4%、メジアン径17μm、5〜40μmの粒子含有量84%
ポゾラン微粉末(イ):シリカフューム、SiO含有量95.2%、pH(水素イオン濃度)=2.90、酸化ジルコニウム含有、市販品
(Material used)
Cement (A): Ordinary Portland cement, commercially available product manufactured by Denka Co., Ltd., brain specific surface area 3,200 cm 2 / g, particle content of 5 μm or less 28%, median diameter 12 μm, particle content of 5-40 μm 61%
Cement (B): Classified cement A, brain specific surface area 2,400 cm 2 / g, particle content 5% with 5 μm or less, median diameter 15 μm, particle content 75% with 5-40 μm
Cement (C): Classified cement A, brain specific surface area 1,700 cm 2 / g, particle content of 5 μm or less 3%, median diameter 19 μm, particle content of 5-40 μm 82%
Cement (D): Ordinary Portland cement prepared by using the same cement clinker as cement A and adding the same amount of gypsum. Brain specific surface area 1,700 cm 2 / g, particle content of 5 μm or less 6%, median diameter 14 μm, particle content of 5-40 μm 70%
Cement (E): Early-strength Portland cement, commercially available product manufactured by Denka Co., Ltd., brain specific surface area 4,500 cm 2 / g. Particle content of 5 μm or less 37%, median diameter 7 μm, particle content of 5-40 μm 61%
Cement (F): Classified cement E, brain specific surface area 2,300 cm 2 / g, particle content of 5 μm or less 4%, median diameter 15 μm, particle content of 5-40 μm 85%
Cement (G): Blast furnace cement type B, commercially available product manufactured by Denka Co., Ltd., brain specific surface area 3,800 cm 2 / g, particle content of 5 μm or less 30%, median diameter 8 μm, particle content of 5 to 40 μm 78%
Cement (H): Classified cement G, brain specific surface area 2,300 cm 2 / g, particle content of 5 μm or less 4%, median diameter 17 μm, particle content of 5-40 μm 84%
Pozzolan fine powder (a): silica fume, SiO 2 content 95.2%, pH (hydrogen ion concentration) = 2.90, zirconium oxide content, commercial product

水溶性カルシウム塩:酢酸カルシウム
減水剤:ポリカルボン酸系減水剤、市販品(BASF社製、商品名:メルフラックスAP101F)
発泡剤:アルミニウム粉末、市販品(100メッシュパス品)
消泡剤:ポリオキシエチレンアルキルエーテル系消泡剤、市販品(ADEKA社製、商品名:アデカネートB115F)
細骨材(I):フェロニッケルスラグ、密度3.15g/cm、1.5mm下品、市販品
水:水道水
Water-soluble calcium salt: Calcium acetate Water reducing agent: Polycarboxylic acid-based water reducing agent, commercially available product (manufactured by BASF, trade name: Melflux AP101F)
Foaming agent: Aluminum powder, commercial product (100 mesh pass product)
Defoamer: Polyoxyethylene alkyl ether-based defoamer, commercially available product (manufactured by ADEKA, trade name: Adecanate B115F)
Fine aggregate (I): Ferronickel slag, density 3.15 g / cm 3 , 1.5 mm vulgar, commercially available water: tap water

(試験方法)
粒度分布測定:レーザー回折装置(Sympatec社製HELOS&RODOS)を用い、試料を乾式分散して粒度分布を測定した。これにより、5μm以下の粒子の含有量、メジアン径、5μm〜40μmの粒子の含有量を求めた。なお、メジアン径は、頻度の累積が50%になる粒子径である。
流動性:日本規格協会JIS R 5201「セメントの物理試験方法」に準拠し、静置フローを測定した。
圧縮強度:土木学会JSCE−G 505「円柱供試体を用いたモルタル又はセメントペーストの圧縮強度試験方法」に準じて測定。材齢1日で脱型後、20℃水中養生を行い、材齢28日及び56日で測定した。
(Test method)
Particle size distribution measurement: Using a laser diffractometer (HELOS & RODOS manufactured by Sympatec), the sample was dry-dispersed and the particle size distribution was measured. As a result, the content of particles having a size of 5 μm or less and the content of particles having a median diameter of 5 μm to 40 μm were determined. The median diameter is a particle diameter at which the cumulative frequency is 50%.
Fluidity: The static flow was measured in accordance with JIS R 5201 "Physical test method for cement" of the Japanese Standards Association.
Compressive strength: Measured according to JSCE-G 505, "Compressive strength test method for mortar or cement paste using cylindrical specimen". After demolding at the age of 1 day, the mixture was cured in water at 20 ° C. and measured at the ages of 28 and 56 days.

Figure 2019142775
Figure 2019142775

(実験例2)
セメント(F)を用い、セメントとポゾラン微粉末の合計100部に対する、ポゾラン微粉末の種類と添加量を変えたこと以外は実験例1と同様に行った。結果を表2に示す。
(Experimental Example 2)
Using cement (F), the same procedure as in Experimental Example 1 was carried out except that the type and amount of pozzolan fine powder added were changed for a total of 100 parts of cement and pozzolan fine powder. The results are shown in Table 2.

(使用材料)
ポゾラン微粉末(ロ):高炉スラグ、密度2.92g/cm、比表面積11,090cm/g、市販品
ポゾラン微粉末(ハ):フライアッシュ、密度2.27g/cm、比表面積3,526cm/g、市販品
(Material used)
Pozzolan fine powder (b): blast furnace slag, density 2.92 g / cm 3 , specific surface area 11,090 cm 2 / g, commercially available pozzolan fine powder (c): fly ash, density 2.27 g / cm 3 , specific surface area 3 , 526 cm 2 / g, commercially available

Figure 2019142775
Figure 2019142775

(実験例3)
セメント(F)を用い、セメントとポゾラン微粉末の合計100部に対する、水溶性カルシウム塩の添加量変えたこと以外は実験例1と同様に行った。結果を表3に示す。
(Experimental Example 3)
Using cement (F), the same procedure as in Experimental Example 1 was carried out except that the amount of water-soluble calcium salt added to a total of 100 parts of cement and pozzolan fine powder was changed. The results are shown in Table 3.

Figure 2019142775
Figure 2019142775

(実験例4)
セメント(F)を用い、セメントとポゾラン微粉末の合計100部に対する、減水剤の添加量を変えたこと以外は実験例1と同様に行った。結果を表4に示す。
(Experimental Example 4)
Using cement (F), the same procedure as in Experimental Example 1 was carried out except that the amount of the water reducing agent added to a total of 100 parts of cement and pozzolan fine powder was changed. The results are shown in Table 4.

Figure 2019142775
Figure 2019142775

(実験例5)
セメント(F)を用い、セメントとポゾラン微粉末の合計100部に対する、発泡剤の添加量を変えて、膨張収縮率を測定したこと以外は実験例1と同様に行った。結果を表5に示す。
(Experimental Example 5)
Using cement (F), the expansion and contraction rate was measured by changing the amount of foaming agent added to a total of 100 parts of cement and pozzolan fine powder, as in Experimental Example 1. The results are shown in Table 5.

(試験方法)
膨張収縮率:土木学会JSCE−F 533「PCグラウトのブリーディング率及び圧縮強度試験方法」に準じて測定。材齢1日の測定値。
(Test method)
Expansion and contraction rate: Measured according to JSCE-F 533 "Test method for bleeding rate and compressive strength of PC grout" of the Japan Society of Civil Engineers. Measured value for one day of age.

Figure 2019142775
Figure 2019142775

(実験例6)
セメント(F)を用い、セメントとポゾラン微粉末の合計100部に対する、消泡剤の添加量を変えたこと以外は実験例1と同様に行った。結果を表6に示す。
(Experimental Example 6)
Using cement (F), the same procedure as in Experimental Example 1 was carried out except that the amount of antifoaming agent added to a total of 100 parts of cement and pozzolan fine powder was changed. The results are shown in Table 6.

Figure 2019142775
Figure 2019142775

(実験例7)
セメント(F)を用い、セメントとポゾラン微粉末の合計100部に対する、細骨材の添加量と種類を変え、長さ変化を測定したこと以外は実験例1と同様に行った。結果を表7に示す。
(Experimental Example 7)
Using cement (F), the amount and type of fine aggregate added to a total of 100 parts of cement and pozzolan fine powder were changed, and the length change was measured in the same manner as in Experimental Example 1. The results are shown in Table 7.

(使用材料)
細骨材(II):硅砂、密度2.60g/cm、1.5mm下品、市販品
(Material used)
Fine aggregate (II): silica sand, density 2.60 g / cm 3 , 1.5 mm vulgar, commercially available

(試験方法)
長さ変化:JIS A 1129−3「モルタル及びコンクリートの長さ変化試験方法−第3部:ダイヤルゲージ方法」に準じて測定。材齢28日まで、温度20℃、湿度60%の条件で養生し、長さ変化を測定した。
(Test method)
Length change: Measured according to JIS A 1129-3 "Mortar and concrete length change test method-Part 3: Dial gauge method". The material was cured under the conditions of a temperature of 20 ° C. and a humidity of 60% until the age of the material was 28 days, and the change in length was measured.

Figure 2019142775
Figure 2019142775

(実験例8)
実験例1-6の高強度グラウト材組成物100部に対して、水の添加量を変えて高強度グラウトモルタルを作製したこと以外は実験例1と同様に行った。結果を表8に示す。
(Experimental Example 8)
The same procedure as in Experimental Example 1 was carried out except that a high-strength grout mortar was prepared by changing the amount of water added to 100 parts of the high-strength grout material composition of Experimental Example 1-6. The results are shown in Table 8.

Figure 2019142775
Figure 2019142775

本発明の高強度グラウト材組成物を使用することにより、低い水/セメント比で練り混ぜても流動性を確保でき、200N/mm以上の圧縮強度を発現する高強度グラウトモルタルが得られる。By using the high-strength grout material composition of the present invention, fluidity can be ensured even when kneaded at a low water / cement ratio, and a high-strength grout mortar exhibiting a compressive strength of 200 N / mm 2 or more can be obtained.

Claims (9)

5μm以下の粒子の含有量が5質量%以下であり、メジアン径が15μm以上であるセメント、ポゾラン微粉末、水溶性カルシウム塩、減水剤、発泡剤、消泡剤、及び細骨材を含有してなる高強度グラウト材組成物。 Contains cement, pozzolan fine powder, water-soluble calcium salt, water reducing agent, foaming agent, defoaming agent, and fine aggregate having a particle content of 5 μm or less of 5% by mass or less and a median diameter of 15 μm or more. High-strength grout material composition. 前記セメントの5μm〜40μmの粒子の含有量が、75質量%以上である請求項1に記載の高強度グラウト材組成物。 The high-strength grout material composition according to claim 1, wherein the content of particles of 5 μm to 40 μm of the cement is 75% by mass or more. 前記ポゾラン微粉末が、SiO含有量が90質量%以上で、酸化ジルコニウムを含有し、水素イオン濃度が酸性領域であるシリカ質微粉末である請求項1又は請求項2に記載の高強度グラウト材組成物。The high-strength grout according to claim 1 or 2, wherein the pozzolan fine powder is a siliceous fine powder having a SiO 2 content of 90% by mass or more, containing zirconium oxide, and having a hydrogen ion concentration in an acidic region. Material composition. 前記ポゾラン微粉末が、前記セメントとポゾラン微粉末の合計100質量部中、20〜30質量部である請求項1〜請求項3のいずれか一項に記載の高強度グラウト材組成物。 The high-strength grout material composition according to any one of claims 1 to 3, wherein the pozzolan fine powder is 20 to 30 parts by mass in a total of 100 parts by mass of the cement and the pozzolan fine powder. 前記水溶性カルシウム塩が、前記セメントとポゾラン微粉末の合計100質量部に対して、0.2〜1質量部である請求項1〜請求項4のいずれか一項に記載の高強度グラウト材組成物。 The high-strength grout material according to any one of claims 1 to 4, wherein the water-soluble calcium salt is 0.2 to 1 part by mass with respect to a total of 100 parts by mass of the cement and pozzolan fine powder. Composition. 前記細骨材が、密度3g/cm以上の重量骨材である請求項1〜請求項5のいずれか一項に記載の高強度グラウト材組成物。The high-strength grout composition according to any one of claims 1 to 5, wherein the fine aggregate is a heavy aggregate having a density of 3 g / cm 3 or more. 前記細骨材が、前記セメントとポゾラン微粉末の合計100質量部に対して60〜100質量部である請求項1〜請求項6のいずれか一項に記載の高強度グラウト材組成物。 The high-strength grout material composition according to any one of claims 1 to 6, wherein the fine aggregate is 60 to 100 parts by mass with respect to a total of 100 parts by mass of the cement and pozzolan fine powder. 請求項1〜請求項7のいずれか一項に記載の高強度グラウト材組成物と水とを混錬してなる高強度グラウトモルタル。 A high-strength grout mortar obtained by kneading the high-strength grout material composition according to any one of claims 1 to 7 with water. 請求項1〜請求項7のいずれか一項に記載の高強度グラウト材組成物100質量部に対して、水を15〜18質量部添加、混練する、高強度グラウトモルタルの製造方法。
A method for producing a high-strength grout mortar, wherein 15 to 18 parts by mass of water is added and kneaded with respect to 100 parts by mass of the high-strength grout material composition according to any one of claims 1 to 7.
JP2019566462A 2018-01-16 2019-01-15 High-strength grout material composition and high-strength grout mortar using it Pending JPWO2019142775A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018004710 2018-01-16
JP2018004710 2018-01-16
PCT/JP2019/000896 WO2019142775A1 (en) 2018-01-16 2019-01-15 High strength grout composition and high strength grout mortar using same

Publications (1)

Publication Number Publication Date
JPWO2019142775A1 true JPWO2019142775A1 (en) 2021-01-14

Family

ID=67302391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019566462A Pending JPWO2019142775A1 (en) 2018-01-16 2019-01-15 High-strength grout material composition and high-strength grout mortar using it

Country Status (3)

Country Link
JP (1) JPWO2019142775A1 (en)
TW (1) TWI778211B (en)
WO (1) WO2019142775A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137320A1 (en) * 2020-12-22 2022-06-30 中国電力株式会社 Mortar composition and cured product
CN113480284B (en) * 2021-06-09 2022-07-01 山东大学 Cement-based pollutant blocking grouting material and preparation method thereof
CN115057652B (en) * 2022-06-15 2023-06-20 河北筑盛科技股份有限公司 Volcanic ash-based composite synergistic regulator and volcanic ash-based cement paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428254A (en) * 1987-07-22 1989-01-30 Sumitomo Cement Co Portland cement having adjusted particle size
JPH06206745A (en) * 1992-11-13 1994-07-26 Sumitomo Cement Co Ltd Improved portland cement and production of alc
JP2010150072A (en) * 2008-12-25 2010-07-08 Denki Kagaku Kogyo Kk Filler composition for reinforcement joint, filler for reinforcement joint using the same and method of filling reinforcement joint by using the filler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9890082B2 (en) * 2012-04-27 2018-02-13 United States Gypsum Company Dimensionally stable geopolymer composition and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428254A (en) * 1987-07-22 1989-01-30 Sumitomo Cement Co Portland cement having adjusted particle size
JPH06206745A (en) * 1992-11-13 1994-07-26 Sumitomo Cement Co Ltd Improved portland cement and production of alc
JP2010150072A (en) * 2008-12-25 2010-07-08 Denki Kagaku Kogyo Kk Filler composition for reinforcement joint, filler for reinforcement joint using the same and method of filling reinforcement joint by using the filler

Also Published As

Publication number Publication date
WO2019142775A1 (en) 2019-07-25
TWI778211B (en) 2022-09-21
TW201934518A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP6022747B2 (en) High strength mortar composition
JP6511203B1 (en) Concrete composition and method for producing the same
JP7218083B2 (en) Method for producing cement composition
JP5588613B2 (en) Cement mortar
JPWO2019142775A1 (en) High-strength grout material composition and high-strength grout mortar using it
JP6568291B1 (en) Cement admixture, expansion material, and cement composition
WO2020100925A1 (en) Cement admixture, expansion material, and cement composition
JP2011136863A (en) Superhigh strength grout composition
JP5588612B2 (en) Reinforcing bar joint filler composition, reinforcing bar joint filler using the same, and reinforcing bar joint filling method
JP3267895B2 (en) Cement clinker and cement composition
JP5160762B2 (en) Cement mortar composition for grout
JP2015009993A (en) Method for producing high strength mortar composition
JP2020001954A (en) Cement composition
JP6641057B1 (en) Cement admixture, expander, and cement composition
JP5612504B2 (en) High strength mortar composition
JP5160763B2 (en) Cement mortar composition
JP2015163589A (en) high-strength mortar composition
JP7574091B2 (en) High-strength underwater non-segregating mortar composition for high-temperature environments and mortar using the same
JP7082038B2 (en) Method for manufacturing non-shrink mortar composition and heavy-duty concrete
WO2023145563A1 (en) Filler for rebar joints
JP2000128604A (en) Highly flowable mortar
JP2006282442A (en) Quick-setting and high-fluidity mortar
JP2020158332A (en) Mortar composition and mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230214