[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008111340A - ロケット用噴射器及び燃焼器 - Google Patents

ロケット用噴射器及び燃焼器 Download PDF

Info

Publication number
JP2008111340A
JP2008111340A JP2006293248A JP2006293248A JP2008111340A JP 2008111340 A JP2008111340 A JP 2008111340A JP 2006293248 A JP2006293248 A JP 2006293248A JP 2006293248 A JP2006293248 A JP 2006293248A JP 2008111340 A JP2008111340 A JP 2008111340A
Authority
JP
Japan
Prior art keywords
combustion chamber
lox
rocket
fuel
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006293248A
Other languages
English (en)
Inventor
Mitsuru Inada
満 稲田
Akira Ogawara
彰 小河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006293248A priority Critical patent/JP2008111340A/ja
Publication of JP2008111340A publication Critical patent/JP2008111340A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Engines (AREA)

Abstract

【課題】ロケット用噴射器からの定在波に起因する燃焼室内における燃焼振動の増幅を抑制することができるロケット用噴射器及びロケット用燃焼器を提供する。
【解決手段】酸化剤と燃料とが混合して燃焼可能な燃焼室3と、筒状に形成され内部に設けられた酸化剤流路23から前記燃焼室3に向けて前記酸化剤を噴射可能であると共に前記燃料が噴射される前記燃焼室3の噴射面31より先端部21aが前記燃焼室3側に突出した内筒21とを備えるので、ロケット用噴射器からの定在波に起因する燃焼室3内における燃焼振動の増幅を抑制することができる。
【選択図】図1

Description

本発明は、ロケット用噴射器及びロケット用燃焼器に関し、特に、酸化剤と燃料とを混合し燃焼させることによって推力を得るロケットエンジンに適用されるロケット用噴射器及びロケット用燃焼器に関するものである。
従来のロケットエンジンに搭載されるロケット用燃焼器は、多数の噴射器(Injector) 、燃焼室(Combust ion Chamber)、ノズル(Nozzle)等から構成され、推進剤である燃料の化学反応によるエネルギーを排気運動に変換することで推力を得るものである。すなわち、噴射器から燃料(例えば水素ガス:GH2) と酸化剤(例えば液体酸素:LOx)が燃焼室に噴射注入され、着火された後、燃焼室内部で発生した燃焼ガスがノズルにより絞られ、燃焼ガス排出方向へ排出され推力を生じる。
このようなロケット用燃焼器では、近年のロケットエンジンの高効率化要求により、燃焼室で局所的にエネルギー密度の非常に高い高負荷の燃焼を行う必要があるため、燃焼室において、面モードの音響と共鳴する燃焼振動の発生が問題となる。特に、燃焼室の内径が一定であるような燃焼器においては、固有振動数をもつ燃焼振動が生じ、燃焼時に問題となる。
このような燃焼室内における共鳴現象を抑制するため、従来のロケット用燃焼器では、燃焼室内における燃料及び酸化剤の噴射面近傍にバッフルブレード(Baffle Blade)及びバッフルハブ(Baffle Hub)を装着し、これにより燃焼室内において面モードの発生を抑え、燃焼振動を抑制するものがある。
しかしながら、この場合、高温の燃焼ガス中にバッフルブレード及びバッフルハブを挿入するため、これらを冷却する必要があり、燃焼器の構造が複雑化すると伴に、冷却効果により燃焼効率の低下を招くことがある。また、バッフルブレード及びバッフルハブの装着そのものがロケット用燃焼器の自重の増加となり、ロケットエンジンの高効率化要求に反した要因となる。
この問題に対し、例えば、特許文献1に記載されたロケット用噴射器では、燃焼室の噴射面が形成される壁の背面に接続されたLOxポストと、LOxポスト内に設けられ、LOxの流れを整流するオリフィスとを備え、LOxポスト内に形成される定在波と燃焼室の面モードの音響周波数とが共鳴しないように、噴射時にLOxポスト内に形成される定在波の周波数が燃焼室の面モードの音響周波数から離調するように、又は定在波を抑制するように、オリフィスのLOxポスト内での設置位置、オリフィスの形状と部材、又はLOxポスト内に設けられる緩衝部材が決定される。そしてこれにより、ロケット用噴射器からの定在波の周波数が、燃焼室内の面モードの音響周波数からズラされ、燃焼器内におけるロケット用噴射器からの定在波に起因する燃焼振動の増幅が抑制される。
特開2006−97639号公報
ところで、このようなロケット用燃焼器において、多数の噴射管から構成される噴射器は、上述のようにLOx及びGH2を燃焼室内に噴射し、微細化混合させて燃焼させるものであり、ロケットエンジンの性能を決定する主な要素の1つである。そして、このような従来の噴射器として、例えば、内側にLOxを10〜20m/Sの速度で通す流路が形成された内筒と、内筒との間にアニューラ状外側空隙を形成し、この空隙にGH2をLOxの約10倍の速度で通す外筒とを備え、さらに、内筒を外筒よりも短くすることで内筒の燃焼室側端部にリセスを設け、このリセス内でLOxとGH2とがぶつかり合うことでその微粒化及び混合を促進させるものがある。
しかしながら、このような従来の噴射器では、噴射器出口においてLOxとGH2との混合に乱れが生じ、これによりリセス内の圧力変動が大きくなり、この圧力変動が内筒内に伝播すると共にGH2の一部が内筒内上流側に入ったり出たりすることで、内筒内のLOx流量が周期的に変動してしまう。この結果、内筒内のLOx液柱において固有振動数の定在波を励振し、この定在波と燃焼室の面モードの音響周波数とが共鳴し、燃焼振動を増幅してしまうおそれがある。
そこで本発明は、ロケット用噴射器からの定在波に起因する燃焼室内における燃焼振動の増幅を抑制することができるロケット用噴射器及びロケット用燃焼器を提供することを目的とする。
上記の目的を達成するための請求項1の発明のロケット用噴射器は、酸化剤と燃料とが混合して燃焼可能な燃焼室と、筒状に形成され内部に設けられた酸化剤流路から前記燃焼室に向けて前記酸化剤を噴射可能であると共に前記燃料が噴射される前記燃焼室の噴射面より先端部が前記燃焼室側に突出した内筒とを備えることを特徴とする。
請求項2の発明のロケット用噴射器では、前記内筒は、前記噴射面からの前記先端部の突出量が少なくとも0より大きく、かつ、該内筒の外径の1.0倍以下に設定されることを特徴とする。
請求項3の発明のロケット用噴射器では、前記内筒の先端部は、内径が前記燃焼室に向かって小さくなることを特徴とする。
請求項4の発明のロケット用噴射器では、前記内筒の外周を覆って筒状に形成され前記噴射面に接続されると共に前記内筒との間の燃料流路から前記燃焼室に向けて前記燃料を噴射可能な外筒を備えることを特徴とする。
請求項5の発明のロケット用噴射器では、前記燃料流路の先端部は、外径が前記燃焼室に向かって小さくなることを特徴とする。
請求項6の発明のロケット用噴射器では、前記燃料流路の先端部は、内径が前記燃焼室に向かって小さくなることを特徴とする。
上記の目的を達成するための請求項7の発明のロケット用燃焼器は、酸化剤と燃料とが混合し燃焼して燃焼ガスが発生する燃焼室と、筒状に形成され内部に設けられた酸化剤流路から前記燃焼室に向けて前記酸化剤を噴射可能であると共に前記燃料が噴射される前記燃焼室の噴射面より先端部が前記燃焼室側に突出した内筒と、前記内筒の外周を覆って筒状に形成され前記噴射面に接続されると共に前記内筒との間の燃料流路から前記燃焼室に向けて前記燃料を噴射可能な外筒とを有する複数の噴射器と、前記燃焼室に接続され、該燃焼室から噴射される前記燃焼ガスの出口を絞り込むことで推力を上げるノズルとを備えることを特徴とする。
請求項1の発明のロケット用噴射器によれば、筒状に形成され内部に設けられた酸化剤流路から燃焼室に向けて酸化剤を噴射可能である内筒の先端部を燃料が噴射される燃焼室の噴射面より燃焼室側に突出して設けたことで、酸化剤と燃料とが比較的に容積の大きい燃焼室内で混合されるため酸化剤と燃料との混合の乱れに起因した圧力変動が抑制され、これにより、内筒内に伝播する圧力変動が小さくなると共に燃料が内筒内上流側に流入することが抑制され、この結果、内筒内における固有振動数の定在波の励振が防止されるので、ロケット用噴射器からの定在波に起因する燃焼室内における燃焼振動の増幅を抑制することができる。
請求項2の発明のロケット用噴射器によれば、内筒先端部の噴射面からの突出量を少なくとも0より大きく、かつ、この内筒の外径の1.0倍以下に設定することで、内筒の先端部を燃料が噴射される噴射面より燃焼室側に突出させて酸化剤と燃料との混合の乱れに起因した圧力変動を確実に抑制すると共に燃焼室内で酸化剤と燃料とが混合して燃焼するとき、この燃焼により内筒の先端部が焼けてしまうことを防止することができる。
請求項3の発明のロケット用噴射器によれば、内筒先端部の内径を燃焼室に向かって小さくなるように形成することで、内筒先端部における内側壁面近傍を流れる酸化剤の流速が増加するため、内筒内において酸化剤の流速が低い領域が形成されることが防止され、内筒内の酸化剤の流速を均一にすることができるので、内筒内への燃料の逆流を確実に防止することができる。
請求項4の発明のロケット用噴射器によれば、内筒の外周を覆って筒状に形成され噴射面に接続されると共に内筒との間の燃料流路から燃焼室に向けて燃料を噴射可能な外筒を設けたので、内筒と外筒との間にこの内筒を覆うように燃料流路を形成することができ、これにより、内筒の内側の酸化剤流路から燃焼室に向けて噴射される酸化剤と内筒の外側の燃料流路から燃焼室に向けて噴射される燃料とを確実に接触させ混合することができる。
請求項5の発明のロケット用噴射器によれば、燃料流路の先端部の外径を燃焼室に向かって小さくなるように形成することで、内筒と外筒との間の燃料流路から噴射される燃料が内筒の内側の酸化剤流路から噴射される酸化剤に向けて噴射されるので、燃料と酸化剤の衝突効果によって微粒化が促進され、燃料と酸化剤とをより効率的に混合することができる。
請求項6の発明のロケット用噴射器によれば、燃料流路の先端部の内径を燃焼室に向かって小さくなるように形成することで、内筒と外筒との間の燃料流路から噴射される燃料をより確実に酸化剤に向けて噴射することができるので、燃料と酸化剤との混合の効率をさらに向上することができる。
請求項7の発明のロケット用燃焼器によれば、酸化剤と燃料とが混合し燃焼して燃焼ガスが発生する燃焼室と、筒状に形成され内部に設けられた酸化剤流路から燃焼室に向けて酸化剤を噴射可能であると共に燃料が噴射される燃焼室の噴射面より先端部が燃焼室側に突出した内筒と、内筒の外周を覆って筒状に形成され噴射面に接続されると共に内筒との間の燃料流路から燃焼室に向けて燃料を噴射可能な外筒とを有する複数の噴射器と、燃焼室に接続され、該燃焼室から噴射される燃焼ガスの出口を絞り込むことで推力を上げるノズルとを備えることから、噴射器から燃焼室に向けて噴射される酸化剤と燃料が混合しこの燃焼室内で燃焼することで燃焼ガスが発生し、さらに、ノズルにより燃焼室から噴射される燃焼ガスの出口を絞り込むことで推力を上げて、推力を得ることができる。この間、筒状に形成され内部に設けられた酸化剤流路から燃焼室に向けて酸化剤を噴射可能である内筒の先端部を燃料が噴射される燃焼室の噴射面より燃焼室側に突出して設けたことで、酸化剤と燃料とが比較的に容積の大きい燃焼室内で混合されるため酸化剤と燃料との混合の乱れに起因した圧力変動が抑制され、これにより、内筒内に伝播する圧力変動が小さくなると共に燃料が内筒内上流側に流入することが抑制され、この結果、内筒内における固有振動数の定在波の励振が防止されるので、ロケット用噴射器からの定在波に起因する燃焼室内における燃焼振動の増幅を抑制することができる。
以下に添付図面を参照して、本発明に係るロケット用噴射器及びロケット用燃焼器の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではない。
図1は、本発明の実施例1に係るロケット用噴射器の概略構成を示す模式的断面図、図2は、本発明の実施例1に係るロケット用噴射器を適用したロケット用燃焼器の概略構成を示す模式的斜視図、図3は、本発明の実施例1に係るロケット用噴射器の概略構成を示す模式的斜視図、図4は、本発明の実施例1に係るロケット用噴射器を適用したロケット用燃焼器のCFD解析結果の一例を示す模式図である。
本実施例において、図2及び図3に示すように、ロケット用燃焼器1は、多数のロケット用噴射器(Injector)2と、燃焼室(Combustion Chamber)3と、ノズル(Nozzle)4を含んで構成され、推進剤である燃料の化学反応によるエネルギーを排気運動に変換することで推力を得るものである。すなわち、噴射器2から燃焼室3に向けて噴射される酸化剤(例えば液体酸素、以下「LOx」と称する)と燃料(例えば水素ガス、以下「GH2」と称する)とが燃焼室3内で混合され燃焼し、これにより燃焼ガスを発生させ、さらに、ノズル4により燃焼室3から噴射される燃焼ガスの出口を絞り込むことで推力を上げて、推力を得ることができる。
具体的には、各ロケット用噴射器2は、上述のように、LOx及びGH2を燃焼室3内に噴射するためのものであり、内筒としてのLOxポスト21と外筒としてのスリーブ22を備える。LOxポスト21は、円筒状に形成され内部に酸化剤流路としてのLOx流路23が形成される。LOxポスト21は、供給装置によって供給されるLOxを一端側からLOx流路23に取り込み、他端側から燃焼室3に向けてこの取り込んだLOxを噴射可能である。また、LOxポスト21の内部、すなわち、LOx流路23の一端側には、オリフィス24が設けられており、このオリフィス24によりLOx流路23に取り込まれるLOxを整流することができる。
さらに、LOxポスト21の外周面には、スリーブ取付部25及び凹部26が設けられている。スリーブ取付部25は、LOxポスト21の外方に突出した円盤形状に形成される。また、スリーブ取付部25は、このLOxポスト21の軸線方向に対して垂直に形成される。凹部26は、LOx流路23を流れるLOxの流動方向に対してこのスリーブ取付部25よりも下流側、すなわち、燃焼室3側に形成される。凹部26は、LOxポスト21の外径をスリーブ取付部25の上流側の外径よりも小さく設定することで形成される円筒状の部分であり、燃焼室3側の端部まで延設されている。
スリーブ22は、LOxポスト21とほぼ同軸の円筒状に形成され、このLOxポスト21の外周を覆うように設けられる。具体的には、スリーブ22は、一端部がスリーブ取付部25に当接すると共に他端部が後述する燃焼室3の噴射面31に接続される(図1も参照)。そして、スリーブ22は、その内周面においてLOxポスト21の外周面に設けられた凹部26を空隙を有して覆うことで、LOxポスト21との間にGH2流路27を形成する。このGH2流路27は、円環状の流路断面をなす。また、スリーブ22には、その外周面からGH2流路27まで延設される複数の導入口28が形成されており、このスリーブ22は、供給装置によって供給されるGH2を導入口28を介してGH2流路27に取り込み、LOxポスト21との間のこのGH2流路27から燃焼室3に向けてこの取り込んだGH2を噴射可能である。なお、LOx流路23から燃焼室3に噴射されるLOxの流速は例えば10〜20m/S程度であるのに対して、GH2流路27から燃焼室3に噴射されるGH2はLOxの約10倍の流速で噴射される。
燃焼室3は、ロケット用噴射器2から噴射され、微粒化され混合されたLOxとGH2とが燃焼するものであり、噴射面31と隔壁32により画成される。燃焼室3の隔壁32は、円筒状に形成され一端に噴射面31が設けられると共に他端にノズル4が設けられる。燃焼室3は、隔壁32の内径が噴射面31側においてほぼ一定であると共にノズル4に向かって径方向断面積が小さくなるように形成される。燃焼室3の噴射面31は、その背面側にロケット用噴射器2のスリーブ22が接続され、したがって、ロケット用噴射器2から燃焼室3に向けたGH2は、この噴射面31から噴射される(図1も参照)。ロケット用噴射器2は、ロケットエンジンの推力にもよるが、通常数百本が燃焼室3の噴射面31の背面側に、ロケット用燃焼器1の推力方向の中心軸に対して概ね円周方向に均一になるように配設される。ノズル4は、燃焼室3の隔壁32に連続して形成されると共に内部が燃焼室3と連通する。また、ノズル4は、燃焼室3側に向かって先細となる円錐状に形成され、これにより、燃焼室3で発生する燃焼ガスの出口断面を絞り込む。
上記のように構成されるロケット用燃焼器1は、ロケット用噴射器2のLOx流路23を介して燃焼室3にLOxが噴射され、GH2流路27を介して燃焼室3にGH2が噴射される。燃焼室3に噴射されたLOxとGH2とは、燃焼室3内で微粒化し混合する。そして、燃焼室3内で混合したLOxとGH2は、点火手段により着火された後、この燃焼室3内で燃焼され、その結果、燃焼ガスが発生する。そしてこの燃焼ガスがノズル4を介して燃焼室3から噴射され、このとき、このノズル4により燃焼ガスの出口断面が絞り込まれていることから、燃焼ガスの噴射による推力が向上し、推力を得ることができる。
ここで、このようなロケット用燃焼器1では、近年のロケットエンジンの高効率化要求により、燃焼室で局所的にエネルギー密度の非常に高い高負荷の燃焼を行う必要があるため、燃焼室において、面モードの音響と共鳴する燃焼振動の発生が問題となる。特に、燃焼室の内径が一定であるような燃焼器においては、次式(1)に示すような固有振動数をもつ燃焼振動が生じ、燃焼時に問題となる。

f=(Srn×C0×12)/(2π×Rc) ・・・・(1)

f;固有振動数
0;音速
c;燃焼室の内径
rn;面モードの固有値
ところで、通常のロケット用噴射器において、例えば、内筒としてのLOxポストを外筒してのスリーブよりも短くすることでLOxポストの燃焼室側端部にリセスを設け、このリセス内でLOxとGH2とがぶつかり合うことでその微粒化及び混合を促進させるものがある。
しかしながら、このような通常の噴射器では、噴射器出口のリセス内においてLOxとGH2との混合に乱れが生じ、これにより、燃焼室と比較して容積の小さいリセス内での圧力変動が大きくなり、この圧力変動がLOxポスト内に伝播すると共にGH2の一部がLOxポスト内上流側に入ったり出たりすることで、LOxポスト内のLOx流量が周期的に変動し、この結果、LOxポスト内のLOx液柱において固有振動数の定在波を励振し、この定在波と燃焼室の面モードの音響周波数とが共鳴し、燃焼振動を増幅してしまうおそれがある。
そこで、本実施例では、図1に示すように、LOxポスト21の先端部21aを燃焼室3の噴射面31より燃焼室3側に突出させることで、LOxポスト21内に伝播する圧力変動を小さくすると共にGH2がLOxポスト21内上流側に流入することを抑制し、ロケット用噴射器2からの定在波に起因する燃焼室3内における燃焼振動の増幅を抑制している。
具体的には、LOxポスト21は、その先端部21aが燃焼室3の噴射面31よりも燃焼室3側に突出するように設けられる。燃焼室3の噴射面31は、上述したように、その背面側にスリーブ22が接続され、GH2流路27を流動してきたGH2が燃焼室3に向かって噴射される面である。
図4は、本実施例に係るロケット用噴射器2を適用したロケット用燃焼器1についての数値流体解析、いわゆるCFD解析の結果の一例を示す模式図である。本図は、図1に点線で示す部分の所定時間毎(Δt=0.24ms)のCFD解析結果を時系列に並べたものである。図中ハッチを付した領域がLOxの領域であり、それ以外の領域がLOx以外(GH2、微粒化したGH2とLOxとの混合気等)の領域である。
LOxポスト21の先端部21aを燃焼室3の噴射面31より燃焼室3側に突出して設けたことで、本図に示すように、LOxとGH2とが、例えば、上述した従来のLOxポストの燃焼室側端部に設けられるリセスなどと比較して容積の大きい燃焼室3内で混合されるため、LOxとGH2との混合の乱れに起因した圧力変動が抑制される。そして、これにより、LOxポスト21内のLOx流路23に伝播する圧力変動が小さくなると共にGH2流路27から噴射されたGH2の一部がLOx流路23上流側に流入することが抑制される。
すなわち、GH2の一部がLOx流路23内上流側に入ったり出たりすることが抑制されることで、LOx流路23内のLOx流量が周期的に変動することがなく、この結果、LOx流路23のLOx液柱において固有振動数の定在波を励振することが抑制されるので、ロケット用噴射器2からの定在波と燃焼室3の面モードの音響周波数とが共鳴することもなく、燃焼振動を増幅してしまうこともない。
ここで、LOxポスト21は、図1に示すように、噴射面31からの先端部21aの突出量Lが少なくとも0より大きく、かつ、このLOxポスト21の先端部21aの外径D(軸方向に対する投影面積)の1.0倍以下に設定される。さらに好適には、先端部21aの突出量Lは、外径Dの0.5倍以下に設定される。このように、先端部21aの噴射面31からの突出量Lを[0<L≦1.0×D]、さらに好適には[L≒0.5]とすることで、LOxとGH2との混合の乱れに起因した圧力変動を確実に抑制すると共に燃焼室3内でLOxとGH2とが混合して燃焼するとき、この燃焼によりLOxポスト21の先端部21aが焼けてしまうことが防止される。
このように本実施例のロケット用噴射器2及びロケット用燃焼器1にあっては、LOxとGH2とが混合して燃焼可能な燃焼室3と、筒状に形成され内部に設けられたLOx流路23から燃焼室3に向けてLOxを噴射可能であると共にGH2が噴射される燃焼室3の噴射面31より先端部21aが燃焼室3側に突出したLOxポスト21とを備える。
したがって、筒状に形成され内部に設けられたLOx流路23から燃焼室3に向けてLOxを噴射可能であるLOxポスト21の先端部21aをGH2が噴射される燃焼室3の噴射面31より燃焼室3側に突出して設けたことで、LOxとGH2とが比較的に容積の大きい燃焼室3内で混合されるためLOxとGH2との混合の乱れに起因した圧力変動が抑制され、これにより、LOx流路23内に伝播する圧力変動が小さくなると共にGH2がLOx流路23上流側に流入することが抑制され、この結果、LOx流路23における固有振動数の定在波の励振が防止されるので、ロケット用噴射器2からの定在波に起因する燃焼室3内における燃焼振動の増幅を抑制することができる。
また、例えば、燃焼室3内の面モードの発生を抑制するために、燃焼室3内にバッフルブレード(Baffle Blade)及びバッフルハブ(Baffle Hub)を装着する場合と比較しても、高温の燃焼ガスにさらされうるバッフルブレード及びバッフルハブを冷却する必要もないため、ロケット用燃焼器1の構造が複雑化することがなく、また、バッフルブレード及びバッフルハブの冷却効果により燃焼効率の低下を招くこともない。さらに、バッフルブレード及びバッフルハブの装着によりロケット用燃焼器1の自重が増加してしまうこともない。すなわち、本実施例のロケット用噴射器2及びロケット用燃焼器1によれば、ロケットエンジンの高効率化にも資することができる。
また、本実施例のロケット用噴射器2及びロケット用燃焼器1では、LOxポスト21の外周を覆って筒状に形成され噴射面31に接続されると共にLOxポスト21との間のGH2流路27から燃焼室3に向けてGH2を噴射可能なスリーブ22を備える。したがって、LOxポスト21とスリーブ22との間にこのLOxポスト21を覆うようにGH2流路27を形成することができ、これにより、LOxポスト21の内側から燃焼室3に向けて噴射されるLOxとLOxポスト21の外側から燃焼室3に向けて噴射されるGH2とを確実に接触させ混合することができる。
また、本実施例のロケット用噴射器2及びロケット用燃焼器1では、LOxポスト21は、噴射面31からの先端部21aの突出量Lが少なくとも0より大きく、かつ、このLOxポスト21の外径Dの1.0倍以下に設定される。したがって、LOxポスト21の先端部21aをGH2が噴射される噴射面31より燃焼室3側に突出させてLOxとGH2との混合の乱れに起因した圧力変動を確実に抑制すると共に燃焼室3内でLOxとGH2とが混合して燃焼するとき、この燃焼によりLOxポスト21の先端部21aが焼けてしまうことを防止することができる。この結果、ロケット用噴射器2及びロケット用燃焼器1を長寿命化することができる。
図5は、本発明の実施例2に係るロケット用噴射器の概略構成を示す模式的断面図である。実施例2に係るロケット用噴射器は、実施例1に係るロケット用噴射器と略同様の構成であるが、内筒先端部の内側の形状が実施例1のロケット用噴射器とは異なる。その他、実施例1と共通する構成、作用、効果については、重複した説明はできるだけ省略するとともに、同一の符号を付す。
図5に示すように、実施例2に係るロケット用噴射器202の内筒としてのLOxポスト21は、先端部21aの内径R1が燃焼室3に向かって小さくなるように形成される。具体的には、本実施例のLOxポスト21の先端部21aは、その内面にポスト内テーパ面229が形成されている。このポスト内テーパ面229は、先端部21aにおいてLOxポスト21の壁面の肉厚を燃焼室3に向かって徐々に厚くすることにより形成される。そしてこれにより、LOxポスト21の内側に形成されるLOx流路23の径方向断面積は、燃焼室3にむかって徐々に小さくなり、このLOx流路23はLOxポスト21の軸線方向に絞られる。
上記のように構成されるロケット用噴射器202では、LOxポスト21の先端部21aにおいて、その内側に設けられるポスト内テーパ面229により、流速が低くなりやすいLOx流路23の壁際におけるLOxの流速が増加される。
このように本実施例のロケット用噴射器202にあっては、LOxポスト21の先端部21aは、内径R1が燃焼室3に向かって小さくなる。したがって、LOxポスト21の先端部21aにおける内側壁面近傍を流れるLOxの流速が増加するため、LOxポスト21内においてLOxの流速が低い領域が形成されることが防止され、LOx流路23のLOxの流速を均一にすることができるので、LOx流路23へのGH2の逆流を確実に防止することができる。
図6は、本発明の実施例3に係るロケット用噴射器の概略構成を示す模式的断面図である。実施例3に係るロケット用噴射器は、実施例2に係るロケット用噴射器と略同様の構成であるが、外筒先端部の内側の形状が実施例2のロケット用噴射器とは異なる。その他、実施例2と共通する構成、作用、効果については、重複した説明はできるだけ省略するとともに、同一の符号を付す。
図6に示すように、実施例3に係るロケット用噴射器302のGH2流路27の先端部322aは、外径R2が燃焼室3に向かって小さくなるように形成される。円環状に形成されるGH2流路27の外径R2は、言い換えれば、スリーブ22の内径である。すなわち、外筒としてのスリーブ22は、先端部322aの内径が燃焼室3に向かって小さくなるように形成される。具体的には、先端部322aは、その内面にスリーブ内テーパ面330が形成されている。このスリーブ内テーパ面330は、先端部322aにおいてスリーブ22の壁面の肉厚を燃焼室3に向かって徐々に厚くすることにより形成される。そしてこれにより、スリーブ22の内側に円環状断面に形成されるGH2流路27の径方向断面積は、燃焼室3にむかって徐々に小さくなり、このGH2流路27はスリーブ22の軸線方向に絞られる。
上記のように構成されるロケット用噴射器302では、先端部322aにおいて、その内側に設けられるスリーブ内テーパ面330により、GH2流路27を流れるGH2がスリーブ22の軸線方向、すなわち、LOxポスト21から噴射されるLOxの方向に向けて噴射される。
このように本実施例のロケット用噴射器302にあっては、GH2流路27の先端部322aは、外径R2が燃焼室3に向かって小さくなる。したがって、LOxポスト21とスリーブ22との間のGH2流路27から噴射されるGH2がLOxポスト21内側のLOx流路23から噴射されるLOxに向けて噴射されるので、GH2とLOxとの衝突効果によって各々微粒化が促進され、GH2とLOxとをより効率的に混合することができる。
図7は、本発明の実施例4に係るロケット用噴射器の概略構成を示す模式的断面図である。実施例4に係るロケット用噴射器は、実施例3に係るロケット用噴射器と略同様の構成であるが、内筒先端部の外側の形状が実施例3のロケット用噴射器とは異なる。その他、実施例3と共通する構成、作用、効果については、重複した説明はできるだけ省略するとともに、同一の符号を付す。
図7に示すように、実施例4に係るロケット用噴射器402のスリーブ22の先端部322aは、内径R3が燃焼室3に向かって小さくなるように形成される。円環状に形成されるGH2流路27の内径R3は、言い換えれば、LOxポスト21の外径である。すなわち、内筒としてのLOxポスト21は、先端部21aの外径が燃焼室3に向かって小さくなるように形成される。具体的には、本実施例のLOxポスト21の先端部21aは、実施例2のポスト内テーパ面229(図5参照)に代えて、屈曲部431が形成されている。この屈曲部431では、先端部21aにおいてLOxポスト21の壁面の肉厚自体は変わらないものの、この壁面がLOxポスト21の軸線方向に屈曲することで、LOxポスト21の先端部21aの内径R1を燃焼室3に向かって小さくすると共にGH2流路27の内径R3も燃焼室3に向かって小さくしている。これにより、LOxポスト21の内側に形成されるLOx流路23の径方向断面積は、燃焼室3にむかって徐々に小さくなり、このLOx流路23はLOxポスト21の軸線方向に絞られる。そしてさらに、スリーブ22の内側に円環状断面に形成されるGH2流路27の径方向断面は、燃焼室3にむかって徐々に軸線方向にすぼまる。
上記のように構成されるロケット用噴射器402では、LOxポスト21の先端部21aに設けられる屈曲部431により、GH2流路27を流れるGH2がスリーブ22の軸線方向、すなわち、LOxポスト21から噴射されるLOxの方向に向けて確実に噴射される。
このように本実施例のロケット用噴射器402にあっては、GH2流路27の先端部322aは、内径R3が燃焼室3に向かって小さくなる。したがって、LOxポスト21とスリーブ22との間のGH2流路27から噴射されるGH2をより確実にLOxに向けて噴射することができるので、GH2とLOxとの混合の効率をさらに向上することができる。
本発明に係るロケット用噴射器及びロケット用燃焼器は、ロケット用噴射器からの定在波に起因する燃焼室内における燃焼振動の増幅を抑制するものであり、いずれのロケット用噴射器及びロケット用燃焼器にも適用することができる。
本発明の実施例1に係るロケット用噴射器の概略構成を示す模式的断面図である。 本発明の実施例1に係るロケット用噴射器を適用したロケット用燃焼器の概略構成を示す模式的斜視図である。 本発明の実施例1に係るロケット用噴射器の概略構成を示す模式的斜視図である。 発明の実施例1に係るロケット用噴射器を適用したロケット用燃焼器のCFD解析結果の一例を示す模式図である。 本発明の実施例2に係るロケット用噴射器の概略構成を示す模式的断面図である。 本発明の実施例3に係るロケット用噴射器の概略構成を示す模式的断面図である。 本発明の実施例4に係るロケット用噴射器の概略構成を示す模式的断面図である。
符号の説明
1 ロケット用燃焼器
2、202、302、402 ロケット用噴射器
3 燃焼室
4 ノズル
21 LOxポスト(内筒)
21a 先端部
22 スリーブ(外筒)
23 LOx流路(酸化剤流路)
24 オリフィス
25 スリーブ取付部
26 凹部
27 GH2流路(燃料流路)
28 導入口
31 噴射面
32 隔壁
229 ポスト内テーパ面
322a 先端部
330 スリーブ内テーパ面
431 屈曲部
D LOxポスト外径
L 先端部突出量
R1 LOxポスト先端部内径
R2 GH2流路先端部外径
R3 GH2流路先端部内径

Claims (7)

  1. 酸化剤と燃料とが混合して燃焼可能な燃焼室と、
    筒状に形成され内部に設けられた酸化剤流路から前記燃焼室に向けて前記酸化剤を噴射可能であると共に前記燃料が噴射される前記燃焼室の噴射面より先端部が前記燃焼室側に突出した内筒とを備えることを特徴とする、
    ロケット用噴射器。
  2. 前記内筒は、前記噴射面からの前記先端部の突出量が少なくとも0より大きく、かつ、該内筒の外径の1.0倍以下に設定されることを特徴とする、
    請求項1に記載のロケット用噴射器。
  3. 前記内筒の先端部は、内径が前記燃焼室に向かって小さくなることを特徴とする、
    請求項1又は請求項2に記載のロケット用噴射器。
  4. 前記内筒の外周を覆って筒状に形成され前記噴射面に接続されると共に前記内筒との間の燃料流路から前記燃焼室に向けて前記燃料を噴射可能な外筒を備えることを特徴とする、
    請求項1乃至請求項3のいずれか1項に記載のロケット用噴射器。
  5. 前記燃料流路の先端部は、外径が前記燃焼室に向かって小さくなることを特徴とする、
    請求項4に記載のロケット用噴射器。
  6. 前記燃料流路の先端部は、内径が前記燃焼室に向かって小さくなることを特徴とする、
    請求項4又は請求項5に記載のロケット用噴射器。
  7. 酸化剤と燃料とが混合し燃焼して燃焼ガスが発生する燃焼室と、
    筒状に形成され内部に設けられた酸化剤流路から前記燃焼室に向けて前記酸化剤を噴射可能であると共に前記燃料が噴射される前記燃焼室の噴射面より先端部が前記燃焼室側に突出した内筒と、前記内筒の外周を覆って筒状に形成され前記噴射面に接続されると共に前記内筒との間の燃料流路から前記燃焼室に向けて前記燃料を噴射可能な外筒とを有する複数の噴射器と、
    前記燃焼室に接続され、該燃焼室から噴射される前記燃焼ガスの出口を絞り込むことで推力を上げるノズルとを備えることを特徴とする、
    ロケット用燃焼器。
JP2006293248A 2006-10-27 2006-10-27 ロケット用噴射器及び燃焼器 Withdrawn JP2008111340A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006293248A JP2008111340A (ja) 2006-10-27 2006-10-27 ロケット用噴射器及び燃焼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006293248A JP2008111340A (ja) 2006-10-27 2006-10-27 ロケット用噴射器及び燃焼器

Publications (1)

Publication Number Publication Date
JP2008111340A true JP2008111340A (ja) 2008-05-15

Family

ID=39443999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006293248A Withdrawn JP2008111340A (ja) 2006-10-27 2006-10-27 ロケット用噴射器及び燃焼器

Country Status (1)

Country Link
JP (1) JP2008111340A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453722C2 (ru) * 2009-10-14 2012-06-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт машиностроения" (ФГУП "НИИМаш") Камера сгорания жидкостного ракетного двигателя малой тяги
CN105633800A (zh) * 2014-10-31 2016-06-01 张蝶儿 一种火花塞
EP3252295A1 (en) * 2016-06-02 2017-12-06 Airbus DS GmbH Injection apparatus for a rocket engine
CN113339160A (zh) * 2021-07-06 2021-09-03 西安航天动力研究所 液氧甲烷推力室喷注器
CN113339159A (zh) * 2021-07-06 2021-09-03 西安航天动力研究所 基于3d打印的同轴双离心喷注器及液氧煤油火箭发动机

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453722C2 (ru) * 2009-10-14 2012-06-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт машиностроения" (ФГУП "НИИМаш") Камера сгорания жидкостного ракетного двигателя малой тяги
CN105633800A (zh) * 2014-10-31 2016-06-01 张蝶儿 一种火花塞
CN105633800B (zh) * 2014-10-31 2017-03-29 张蝶儿 一种火花塞
EP3252295A1 (en) * 2016-06-02 2017-12-06 Airbus DS GmbH Injection apparatus for a rocket engine
US20170350349A1 (en) * 2016-06-02 2017-12-07 Airbus Ds Gmbh Injection apparatus for a rocket engine
DE102016209650A1 (de) * 2016-06-02 2017-12-07 Airbus Ds Gmbh Einspritzvorrichtung für ein raketentriebwerk
DE102016209650B4 (de) 2016-06-02 2019-03-14 Arianegroup Gmbh Einspritzvorrichtung für ein raketentriebwerk
US11111882B2 (en) 2016-06-02 2021-09-07 Arianegroup Gmbh Injection apparatus for a rocket engine
CN113339160A (zh) * 2021-07-06 2021-09-03 西安航天动力研究所 液氧甲烷推力室喷注器
CN113339159A (zh) * 2021-07-06 2021-09-03 西安航天动力研究所 基于3d打印的同轴双离心喷注器及液氧煤油火箭发动机

Similar Documents

Publication Publication Date Title
JP4818895B2 (ja) 燃料混合気の噴射装置と、このような装置を備えた燃焼室およびタービンエンジン
RU2568030C2 (ru) Демпфирующее устройство для уменьшения пульсаций камеры сгорания
EP2282114B1 (en) Combustor and combustion method for combustor
EP1489358B1 (en) A gas turbine combustor and fuel supply method for same
US8033821B2 (en) Premix burner for a gas turbine
US6532742B2 (en) Combustion chamber
KR101202936B1 (ko) 가스 터빈의 연소기
EP2474784A1 (en) Combustion system for a gas turbine comprising a resonator
JP2018004138A (ja) ガスタービン燃焼器
JP2008111340A (ja) ロケット用噴射器及び燃焼器
JP4812701B2 (ja) ガスタービン燃焼器及びガスタービン燃焼器の燃料供給方法
JP4287349B2 (ja) ロケット用噴射器
WO2017077873A1 (ja) 噴射装置、燃焼器、ロケットエンジン
JP4571612B2 (ja) ガスタービン燃焼器及びその燃料供給方法
WO2017077874A1 (ja) 燃焼器及びロケットエンジン
JP4854613B2 (ja) 燃焼装置及びガスタービン燃焼器
JP5455411B2 (ja) ロケット用噴射器
US9435532B2 (en) Burner of a gas turbine
US20240085024A1 (en) Premixer injector in gas turbine engine
US20120180486A1 (en) Gas turbine fuel system for low dynamics
JP2005315457A (ja) ガスタービン用燃焼器
JPH11257663A (ja) ガスタービン燃焼器
JP7303011B2 (ja) 燃焼器及びガスタービン
JP2005283001A (ja) ガスタービンエンジン用燃焼装置
JP2017048978A (ja) ガスタービン燃焼器、ガスタービン、及びガスタービン燃焼器のバーナ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105