[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2568030C2 - Демпфирующее устройство для уменьшения пульсаций камеры сгорания - Google Patents

Демпфирующее устройство для уменьшения пульсаций камеры сгорания Download PDF

Info

Publication number
RU2568030C2
RU2568030C2 RU2013147342/06A RU2013147342A RU2568030C2 RU 2568030 C2 RU2568030 C2 RU 2568030C2 RU 2013147342/06 A RU2013147342/06 A RU 2013147342/06A RU 2013147342 A RU2013147342 A RU 2013147342A RU 2568030 C2 RU2568030 C2 RU 2568030C2
Authority
RU
Russia
Prior art keywords
combustion chamber
damping
combustion
primary
air
Prior art date
Application number
RU2013147342/06A
Other languages
English (en)
Other versions
RU2013147342A (ru
Inventor
Мирко Рубен БОТИН
Яан ХЕЛЛАТ
Бруно ШУЕРМАНС
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Publication of RU2013147342A publication Critical patent/RU2013147342A/ru
Application granted granted Critical
Publication of RU2568030C2 publication Critical patent/RU2568030C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/02Plural gas-turbine plants having a common power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/045Air intakes for gas-turbine plants or jet-propulsion plants having provisions for noise suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/964Preventing, counteracting or reducing vibration or noise counteracting thermoacoustic noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Узел камеры сгорания содержит камеру сгорания, первичную камеру сгорания, вторичную камеру сгорания и демпфирующее устройство. Узел камеры сгорания предназначен для уменьшения пульсации камеры сгорания, возникающей внутри газотурбинной установки, по существу содержащей, по меньшей мере, один компрессор, первичную камеру сгорания, которая присоединена ниже по потоку от компрессора, и горячие газы из первичной камеры сгорания впускаются во вторичную камеру сгорания. Демпфирующее устройство содержит, по меньшей мере, одну жаровую трубу камеры сгорания, содержащую отверстия для смесительного воздуха. По меньшей мере, одно из отверстий для смесительного воздуха выполнено в виде демпфирующей горловины, соединенной с демпфирующим объемом, который является частью соединительного канала, выполненного с возможностью продолжения между воздушной напорной камерой компрессора и узлом камеры сгорания. По меньшей мере одно из отверстий для смесительного воздуха выполнено с возможностью впрыска воздуха в горячие продукты сгорания между первичной камерой сгорания и вторичной камерой сгорания. Изобретение направлено на уменьшение выбросов СО2 и обеспечение стабильного процесса сгорания. 2 н. и 13 з.п. ф-лы, 12 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к способу работы газотурбинной установки с впрыском смесительного воздуха в камеру сгорания. Кроме того, изобретение относится к газотурбинной установке для реализации способа работы газотурбинной установки с впрыском смесительного воздуха в камеру сгорания.
УРОВЕНЬ ТЕХНИКИ
Предпочтительно, впрыскивание смесительного воздуха в камеру сгорания газотурбинной установки выполняется ниже по потоку от горелки.
Существует необходимость уменьшения выбросов СО газотурбинных двигателей в целях сохранения окружающей среды. Поскольку известно, что такие выбросы возникают в случае отсутствия в камере сгорания достаточного времени для гарантии окисления СО до CO2, и/или локальной остановки этой реакции окисления вследствие контакта с холодными участками в камере сгорания. Поскольку в условиях работы при частичных нагрузках температуры воспламенения ниже, то реакция окисления СО и из СО в CO2 протекает медленнее, и, таким образом, при этих условиях обычно имеется тенденция увеличения выбросов СО.
Помимо низких выбросов, должен быть гарантирован стабильный процесс сгорания. В таких газотурбинных установках, процесс сгорания может привести к динамическому взаимодействию. Такое динамическое или термоакустическое взаимодействие в трубчатой камере сгорания газотурбинной установки или в кольцевых камерах сгорания может привести к сильным пульсациям, в частности, к сильным низкочастотным пульсациям, которые отрицательно влияют на стабильность и срок службы камеры сгорания. Это может привести к уменьшенному сроку службы или, в крайних случаях, к механической неисправности газотурбинной установки. Для ослабления термоакустических пульсаций, обычно в камере сгорания устанавливаются демпферы или резонаторы, и/или выполняется ступенчатое изменение подачи топлива, как описано, например, в US 2010/0313568. Поскольку для низкочастотных демпферов требуются большие объемы, это решение не является предпочтительным. Ступенчатая подача топлива оказывает негативное влияние на характеристики выбросов вследствие создания участков местного перегрева (приводящих к выбросам NOx) и участков местного недогрева (приводящих к дополнительным выбросам СО).
Уменьшение выбросов СО, в свою очередь, может быть использовано для понижения нагрузки на газотурбинную установку в режиме ожидания газотурбинной установки. Это уменьшает воздействие на окружающую среду вследствие уменьшенных выбросов CO2 и полной стоимости электричества вследствие меньшего расхода топлива в режиме ожидания.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение основано на задаче предложении способа работы газотурбинной установки, содержащей кольцевую камеру сгорания и/или множество трубчатых камер сгорания, расположенных вокруг ротора, в каждой из которых имеется отдельная область сгорания или поэтапное сгорание, которые позволяют обеспечить работу с увеличенной мощностью и уменьшенными выбросами СО. В ней, за компрессором следует секция камеры сгорания, которая состоит из кольцевой камеры сгорания или множества камер сгорания. Внутри этих камер сгорания, за первичной камерой сгорания следует вторичная камера сгорания. Между этими двумя камерами сгорания, может быть введен смесительный воздух для управления температурой на впуске вторичной камеры сгорания и, следовательно, временем самовоспламенения введенного в нее топлива. В конечном счете, горячие газообразные продукты сгорания подаются в турбину.
Ключевой характеристикой такой камеры сгорания является впрыскивание холодного воздуха в горячие продукты сгорания первичной камеры сгорания в качестве этапа способа поэтапного сгорания. Качество смешивания является крайне важным, поскольку в процессе сгорания, во вторичной камере сгорания требуется однородный поток на впуске. По меньшей мере часть указанного воздуха может быть введена из выпускной напорной камеры компрессора.
Это означает, что существует по меньшей мере один соединительный канал между большой напорной камерой компрессора и камерой сгорания (и не осуществляющий подачу через первичную камеру сгорания). В соответствии с изобретением такой впрыскиваемый воздух приводит к высокой температуре, которая принимается во внимание для того, чтобы в зависимости от объема напорной камеры компрессора, соединительные каналы были выполнены с возможностью работы в виде акустического демпфирующего устройства.
Инжекционные каналы выполняют функцию демпфирующей горловины, в то время как напорная камера компрессора или секции напорной камеры компрессора работают в качестве демпфирующего объема. Получаемая в результате эффективность затухания колебаний является высокой и очень значительной, и могут быть устранены низкие частоты.
Задача изобретения заключается в дополнительном обеспечении демпфирующего устройства для ослабления пульсаций в камере сгорания, возникающих внутри газотурбинной установки, таким образом, чтобы было возможно достижение улучшенных характеристик затухания колебаний посредством демпфирующих устройств, которые являются легкими в производстве и простыми в работе. Кроме того, должно быть возможно использование относительно больших демпфирующих объемов без существенных помех в известных конструкциях камер сгорания, причем эти относительно большие демпфирующие объемы имеют характеристики гашения колебаний, которые до настоящего времени были недосягаемы.
Акустическая энергия, сталкивающаяся с демпфирующим устройством, дает в результате колебание потока внутри демпфирующих горловин. Это получаемое в результате усиление струи, выходящей из отверстий для смесительного воздуха, увеличивает смешивание воздуха, независимо от того, доставляется ли он горячим или холодным.
Множество воздушных отверстий или проходов может быть предусмотрено в одной или нескольких расположенных по окружности секциях во внутренней жаровой трубе. Воздушные отверстия могут иметь форму прорезей, которые продолжаются сквозь всю толщину внутренней жаровой трубы. Воздушные отверстия могут иметь любые подходящие размеры или форму поперечного разреза. Например, воздушные отверстия могут быть круглыми, овальными, щелевыми, прямоугольными, треугольными или многоугольными. Аналогичную конструкцию также имеет поперечное сечение потока демпфирующей горловины.
Каждое из воздушных отверстий может иметь по существу постоянную площадь поперечного сечения вдоль ее кольцеобразной секции жаровой трубы камеры сгорания, или площадь поперечного разреза по меньшей мере одного из воздушных отверстий может изменяться по меньшей мере в одной части ее кольцеобразной секции.
Воздушные отверстия по существу могут быть идентичны друг другу или по меньшей мере одному из воздушных отверстий в одном или нескольких отношениях, включающих в себя любой из описанных выше вариантов.
Каждое из воздушных отверстий может иметь непосредственную и/или косвенную связь по текучей среде с соответствующим по меньшей мере одним из демпфирующих объемов, расположенным по окружности или кольцеобразно снаружи жаровой трубы (жаровых труб) камеры сгорания.
Соединение промежутка между внешним демпфирующим объемом и воздушными отверстиями может быть выполнено посредством демпфирующих горловин, трубок или капиллярных трубок. Указанные демпфирующие элементы, а именно, демпфирующие горловины, расположены заподлицо с внутренней жаровой трубой, или они могут перфорировать внутреннюю жаровую трубу камеры сгорания. В последнем случае, воздух протекает непосредственно из соответствующего демпфирующего объема и/или по меньшей мере через одну боковую открытую часть вдоль демпфирующей горловины трубчатой формы в камеру сгорания.
Как отмечено выше, демпфирующие горловины могут быть расположены любым подходящим образом. В некоторых случаях, демпфирующие горловины могут быть расположены во множестве рядов, разнесенных по поверхности жаровой трубы камеры сгорания.
Например, множество охладительных проходов, связанных с первым рядом демпфирующих горловин, могут быть расположены таким образом, чтобы их впускные отверстия, выполняющие функцию охладительных проходов, были расположены выше по потоку от демпфирующей горловины, и, например, охладительные проходы, связанные со вторым рядом демпфирующих горловин, могут быть расположены ниже по потоку от демпфирующих горловин. Термины «выше по потоку» и «ниже по потоку» используются относительно направления потока жидкости внутри камеры сгорания.
Трубка, в соответствии с функциональным назначением демпфирующего устройства, может быть выполнена в виде изогнутого инжектора, который расположен таким образом, чтобы вводить газожидкостную смесь в камеру сгорания, и может быть ориентирована любым подходящим образом. В одном варианте осуществления, инжектор может быть ориентирован в горизонтальном направлении камеры сгорания. В других вариантах осуществления, один или несколько инжекторов могут быть направлены в различных направлениях относительно одного или нескольких других инжекторов.
Изобретение никоим образом не ограничено использованием на основании смежных демпфирующих объемов. Учитывая подходящую конструкцию демпфирующих объемов, эти объемы могут, аналогичным образом, быть реализованы в пространстве, образованном между внутренней жаровой трубой и другими напорными камерами в корпусе.
Термины первичная и вторичная камеры сгорания относятся к порядку, в котором камеры сгорания расположены на пути потока, то есть, что вторичная камера сгорания расположена ниже по потоку от первичной камеры сгорания. Теплоотдача или количество топлива, сожженного во вторичной камере сгорания, могут быть больше, равны или меньше теплоотдачи или количества топлива, сожженного в первичной камере сгорания.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение схематически изображено на фиг. 1-5 на основании иллюстративных вариантов осуществления. Схематично, на чертежах:
Фиг. 1 изображает характерную газотурбинную установку, в которой используется поэтапное сгорание, имеющую трубчатую конструкцию;
Фиг. 1b изображает характерную газотурбинную установку, в которой используется поэтапное сгорание, имеющую кольцевую конструкцию;
Фиг. 2а изображает простое демпфирующее устройство, имеющее трубчатую конструкцию;
Фиг. 2b изображает простое демпфирующее устройство, имеющее кольцевую конструкцию;
Фиг. 3а изображает дополнительную характерную газотурбинную
установку, в которой используется поэтапное сгорание, имеющую трубчатую конструкцию;
Фиг. 3b изображает дополнительную характерную газотурбинную установку, в которой используется поэтапное сгорание, имеющую кольцевую архитектуру;
Фиг. 4а изображает двойное демпфирующее устройство, имеющее трубчатую конструкцию;
Фиг. 4b изображает двойное демпфирующее устройство, имеющее кольцевую конструкцию;
Фиг. 5а-5d изображают различные демпфирующие элементы.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Характерный схематический чертеж газотурбинной установки изображен, например, на фиг. 1а. На ней за компрессором следует секция камеры сгорания, которая состоит из множества жаровых труб. Трубчатая конструкция содержит множество жаровых труб, расположенных в кольцевой схеме расположения вокруг окружности вала турбины. Одна жаровая труба позволяет выполнять отдельную операцию сгорания каждой трубчатой камеры сгорания, и которая не будет иметь никаких вредных взаимодействий между трубчатыми камерами сгорания в процессе сгорания.
Фиг. 1а изображает газотурбинную установку 100, содержащую множество жаровых труб. Жаровая труба содержит области поэтапного сгорания или камеры 101, 102 сгорания, предназначенные для реализации способа в соответствии с изобретением. Кроме того, с принципиальной точки зрения, газовая турбина содержит компрессор 103, по меньшей мере одну горелку 104, и по меньшей мере одну турбину 105. Можно расположить вдоль жаровой трубы промежуточную турбину (не показана) и, кроме того, ниже по потоку от этой турбины, вторую систему горелки (не показана).
Как правило, система газотурбинной установки включает в себя генератор (не показан), который расположен на холодном конце газотурбинной установки, то есть, в компрессоре 103, соединен с валом 106 газотурбинной установки 100. Первичная камера 101 сгорания и вторичная камера 102 сгорания работают в конструкции с жаровыми трубами, в то время как указанная промежуточная турбина является возможной.
Топливо впрыскивается в первичную камеру 101 сгорания через первое средство 123 впрыска топлива, и во вторичную камеру 102 сгорания через второе средство 124 впрыска топлива.
Внутри этих камер сгорания, за первичной камерой сгорания следует вторичная камера сгорания. Между этими двумя камерами сгорания может впрыскиваться смесительный воздух для управления температурой на впуске вторичной камеры сгорания, и, следовательно, временем самовоспламенения введенного в нее топлива посредством второго средства впрыска топлива. В итоге, горячие газообразные продукты сгорания подаются непосредственно в турбину 105 или в промежуточную или первую турбину.
Как только начинается процесс работы вторичной камеры 102 сгорания, к горячим газам в первичной камере 101 сгорания добавляется дополнительное топливо (не показано). Горячие газы распространяются в последующей турбине 105, и, тем самым, выполняют работу. Выхлопные газы 107, предпочтительно, могут быть поданы в котел-утилизатор избыточного тепла электростанции с комбинированным циклом или в другое устройство утилизации избыточного тепла.
Одна или несколько камер сгорания могут быть выполнены в виде кольцевых камер сгорания, например, с множеством отдельных горелок 104. В каждую из этих горелок 104 подводится топливо через систему распределения топлива и систему подачи топлива.
На основании этих данных, может предполагаться концепция работы двигателя, который работает с поэтапным сгоранием (с турбиной высокого давления или без нее) в трубчатой конструкции и не только.
Что касается поэтапного сгорания, комбинация камер сгорания может быть расположена следующим образом:
По меньшей мере, одна камера сгорания выполнена в виде трубчатой конструкции по меньшей мере с одной работающей турбиной.
Как первичная, так и вторичная камеры сгорания выполнены в виде последовательной трубчатой конструкции по меньшей мере с одной работающей турбиной.
Первичная камера сгорания выполнена в виде кольцевой камеры сгорания, а вторичная камера сгорания встроена в трубчатую конструкцию по меньшей мере с одной работающей турбиной.
Первичная камера сгорания выполнена в виде трубчатой конструкции, а вторичная камера сгорания выполнена в виде кольцевой камеры сгорания по меньшей мере с одной работающей турбиной.
Как первичная, так и вторичная камеры сгорания выполнены в виде кольцевых камер сгорания по меньшей мере с одной работающей турбиной.
Как первичная, так и вторичная камеры сгорания выполнены в виде кольцевых камер сгорания с промежуточной работающей турбиной.
Соответственно, касательно выбросов СО в трубчатой конструкции, взаимодействие между трубчатыми камерами сгорания является минимальным или несущественным. На примере этих утечек в соединительных плоскостях, которые, как известно, влияют на выбросы СО для концепций кольцевой камеры сгорания, не будут влиять на выбросы СО для двигателя с трубчатыми камерами сгорания, поскольку для такой конструкции эти утечки внутрь камеры сгорания по линиям соединения существуют исключительно в самом конце переходной части канала. Следовательно, для варианта с трубчатыми камерами сгорания, описанная конструкция будет даже более эффективной, чем для кольцевой конструкции двигателя.
Предметом изобретения является газотурбинная установка в соответствии с настоящим изобретением для реализации способа работы демпфирующего устройства.
Если предусмотрены горелки предварительного смешивания для камеры сгорания или для кольцевой камеры сгорания (см. ЕР 0620362 А1), то они, предпочтительно, должны быть образованы посредством процесса и целей сгорания в соответствии с документами ЕР 0321809 А1 и/или ЕР 0704657 А1, причем эти документы образуют неотъемлемые части настоящего описания. В частности, указанные горелки предварительного смешивания могут приводиться в действие посредством жидкого и/или газообразного топлива всех видов. Таким образом, легко можно предоставлять различное топливо внутрь трубчатых камер сгорания. Также это означает, что горелки предварительного смешивания также могут приводиться в действие одновременно при помощи различных видов топлива.
Вторая или последующая камеры сгорания, предпочтительно, выполнены в соответствии с патентами ЕР 0620362 А1 или DE 10312971 А1, причем эти документы образуют неотъемлемые части настоящего описания.
Кроме того, следующие указанные документы также образуют неотъемлемые части настоящего описания:
ЕР 0321809 А и В относятся к горелке, состоящей из полых частично конических корпусов, составляющих корпус в сборе, имеющей направленные по касательной щели для впуска воздуха и питающие каналы для газообразного и жидкого топлива, при этом центральные оси полых частичных конусообразных частей имеют угол конусности, который увеличивается в направлении потока и выполняют работу в продольном направлении с взаимным смещением. Топливная форсунка, средство впрыска топлива которой расположено в середине соединительной линии центральных осей, имеющих взаимное смещение частично конических корпусов, расположена в сопле горелки в конической внутренней части, образованной посредством частично конических корпусов.
ЕР 0704657 А и В относятся к устройству горелки для теплового генератора, по существу состоящему из вихревого генератора, по существу в соответствии с ЕР 0321809 А и В для потока воздуха, поступающего в область горения, и средство для впрыска топлива так же, как и смесительный тракт, выполненный ниже по потоку от указанного вихревого генератора, в котором указанный смесительный тракт содержит соединительные каналы, продолжающиеся в пределах первой части тракта в направлении потока для преобразования потока, образованного в указанном вихревом генераторе, в поперечное сечение потока указанного смесительного маршрута, который объединяется ниже по потоку от указанных соединительных каналов.
Кроме того, предлагается использование топливного инжектора для работы в камере сгорания промежуточного подогрева газотурбинной установки, с использованием самовоспламенения топлива для улучшения образования топливовоздушной смеси для заданного времени пребывания. Второе изображенное средство впрыска топлива может являться, например, топливной трубкой. Однако может быть использован любой тип средства впрыска топлива, известный для вторичных камер сгорания, такой как, например, желоба или обтекаемые корпуса с вихревыми генераторами, такие как, выступающие части. Кроме того, предусмотрены следующие конкретные варианты осуществления этого инжектора с впрыском периодически изменяющегося газообразного топлива:
Периодически изменяющееся газообразное топливо впрыскивается в поток окислителя в направлении поперечного потока в нормальном режиме.
Периодически изменяющееся газообразное топливо впрыскивается параллельно потоку окислителя в направлении линейной конструкции.
Периодически изменяющееся газообразное топливо впрыскивается под углом наклона между 0° и 90° к потоку окислителя.
ЕР 0646705 А1, относится к способу установления работы с частичной загрузкой в совокупности газотурбинных установок с последовательным сгоранием, патент ЕР 0646704 А1, относится к способу управления газотурбинной установкой, выполненной с двумя камерами сгорания, и
ЕР 0718470 А1, относящийся к способу работы совокупности газотурбинных установок, выполненных двумя камерами сгорания, при обеспечении работы с частичной загрузкой, также образуют неотъемлемые части настоящего описания.
Часть сжатого воздуха 108 спускается в качестве охлаждающего воздуха под высоким давлением, подаваемого в качестве охлаждающего воздуха в первую и/или вторичную камеру сгорания, или повторно охлаждается через охлаждающее устройство для охлаждающего воздуха под высоким давлением (не показано) и подается в качестве охладительного воздуха в первую и/или вторичную камеру сгорания, и, в случае необходимости, на первую и/или вторую турбину.
Характерная особенность изобретения в соответствии с фиг. 2а состоит в осуществлении впрыска холодного воздуха 110 в горячие продукты 109 сгорания первичной камеры 101 сгорания. Качество смешивания применительно к этой операции является крайне важным, поскольку для системы горелки вторичной камеры 102 сгорания требуется однородный поток на впуске.
По меньшей мере, часть этого холодного воздуха впрыскивается непосредственно из выходной напорной камеры компрессора или, в дальнейшем, воздухоохладителя (не показан). Для такого варианта реализации, существует соединительный канал 111 между относительно большой напорной камерой компрессора и первичной и/или вторичной камерой 101, 102 сгорания. В зависимости от объема напорной камеры компрессора, соединительный канал 111, предпочтительно, должен быть выполнен таким образом, чтобы система действовала в качестве первого акустического демпфирующего объема 112 применительно к его объему, тогда как часть соединительного канала 111 может принять на себя часть или все функции первого демпфирующего объема 112.
В зависимости от большого объема, получаемая в результате производительность является высокой, и могут быть устранены низкие частоты. Акустическая энергия, сталкивающаяся с демпфирующим устройством, дает в результате колебание потока внутри демпфирующей горловины 113. Это усиление струи, выпущенной посредством отверстий 114 для смесительного воздуха, увеличивает смешивание горячего и холодного воздуха.
Множество отверстий 114 для смесительного воздуха может быть предусмотрено в одной или более расположенных по кругу секциях 115 демпфирующей горловины на жаровой трубе камеры сгорания, то есть на внутренней жаровой трубе 116. Отверстия 114 для смесительного воздуха могут иметь форму прорезей, которые продолжаются сквозь всю толщину внутренней жаровой трубы 116. Отверстия 114 для смесительного воздуха могут иметь любые подходящие размеры или форму поперечного сечения. Например, воздушные отверстия могут быть круглыми, овальными, щелевыми, прямоугольными, треугольными или многоугольными.
Каждое из отверстий 114 для смесительного воздуха может иметь по существу постоянную площадь поперечного сечения вдоль ее кольцеобразной секции 115 демпфирующей горловины на жаровой трубы камеры сгорания, или площадь поперечного сечения по меньшей мере одного из воздушных отверстий может изменяться по меньшей мере в одной части ее кольцеобразной секции. Поперечное сечение отверстий 114 для смесительного воздуха может быть аналогичным поперечному сечению демпфирующих горловин 113, и, по сути, иметь ту же самую функцию. Также они могут иметь различное поперечное сечение, для обеспечения проникновения струй воздуха в продукты 109 сгорания, которые отличаются от струй воздуха, обеспеченных посредством демпфирующих горловин 113, для лучшего смешивания холодного воздуха 110 с продуктами 109 сгорания.
Воздушные отверстия могут быть по существу идентичны друг другу или по меньшей мере одному из воздушных отверстий в одном или более отношениях, включающих в себя любое из описанных выше.
Указанные установленные зависимости могут быть выражены математически применительно к резонансной частоте демпфирующего устройства следующим образом:
Формула, относящаяся к первому демпфирующему объему 112 (фиг. 2а, 2b):
Figure 00000001
со следующими обозначениями:
с = Скорость звука
А = Площадь горловины
L = Длина горловины
V = Демпфирующий объем.
Применительно к фиг. 3а, аналогичная конструкция изображена на фиг. 1а. Чтобы избежать ненужного повторения, выполняется ссылка на фиг. 1а.
Фиг. 4а изображает расширенную версию применительно к фиг. 2а. В дополнение к первому демпфирующему объему 112а, в соответствии с первым демпфирующим объемом 112 из фиг. 2а, предусмотрен второй демпфирующий объем 117, который накладывается снаружи концентрически. Оба демпфирующих объема 112а, 117 соединены по отдельности с различными секциями демпфирующей горловины, а именно внутренний первый демпфирующий объем 112а соединен по текучей среде с первыми демпфирующими горловинами 118 первой секции 115а, а внешний второй демпфирующий объем 117 соединен по текучей среде с вторыми демпфирующими горловинами 119 второй секции 115b.
Соединение промежутка между внешним вторым демпфирующим объемом 117 и воздухом, поступающим в камеру 101 сгорания относительно 102 (см. фиг. 1а) может быть выполнено посредством демпфирующей горловины, труб или капиллярных трубок. Указанные элементы расположены заподлицо с внутренней жаровой трубой 116 камеры сгорания, или они могут перфорировать жаровую трубу камеры сгорания на различную глубину. В последнем случае, направленные потоки воздуха из соответствующего демпфирующего объема 112, 112а, 117 непосредственно через демпфирующую горловину 118, 119 в камеру сгорания.
На фиг. 1b изображена конструкция, аналогичная фиг. 1а, но для применения в кольцевой конструкции. Чтобы избежать ненужного повторения, выполняется ссылка на фиг. 1а, на которой изображены соответствующие элементы.
Фиг. 2b изображает простое демпфирующее устройство, соответствующее устройству по фиг. 2а, выполненное в кольцевой конструкции. Поскольку на фиг. 2b изображен продольный разрез кольцевой камеры сгорания, демпфирующая горловина 113 и отверстия 114 для смесительного воздуха расположены на наружных и внутренних жаровых трубах.
Со ссылкой на фиг. 3b, аналогичная конструкция изображена на фиг. 1b. Чтобы избежать ненужного повторения, выполняется ссылка на фиг. 1b.
На фиг. 4b изображена конструкция, аналогичная конструкции из фиг. 4а, но для применения в кольцевой конструкции. Чтобы избежать ненужного повторения, выполняется ссылка на фиг. 4а, на которой изображены соответствующие элементы. Поскольку на фиг. 4b изображен продольный разрез кольцевой камеры сгорания, первая демпфирующая горловина 118 и вторая демпфирующая горловина 119 расположены на наружной и внутренней жаровой трубе.
Следует понимать, что возможна работа с демпфирующим устройством с множеством отдельных демпфирующих объемов.
Указанные установленные зависимости могут быть выражены математически, применительно к резонансным частотам демпфирующего устройства, следующим образом:
Формула, относящаяся к первому демпфирующему объему 112а (фиг. 4а, 4b)
Figure 00000002
Формула, относящаяся ко второму демпфирующему объему 117 (фиг. 4а, 4b)
Figure 00000003
со следующими обозначениями:
с = Скорость звука
A1, А2 = Площадь горловины
L1, L2 = Длина горловины
V1, V2 = Демпфирующий объем.
На фиг. 5а-5d изображены различные варианты расположения демпфирующих горловин, которые уже были описаны выше:
На фиг. 5а первая и вторая демпфирующие горловины 118, 119 в сборе заподлицо с внутренней жаровой трубой 116 камеры сгорания, причем демпфирующие горловины отличаются тем, что имеют следующие размеры относительно газотурбинной установки, имеющей среднюю мощность:
D = Диаметр
А = Площадь поперечного разреза = Сквозной поток
L = Длина
и соответствуют следующим отношениям:
L>5 мм
А>5 мм2, как правило, >50 мм2, предпочтительно >100 мм2.
Сумма всех потоков холодного воздуха, впрыскиваемого через отверстия 114 для смесительного воздуха и демпфирующие горловины 113, 118, 119, 120, 121, 122, может находиться в диапазоне 5-50% удельного массового расхода продуктов 109 сгорания.
Фиг. 5b и 5с изображают различные конструкции, в которых демпфирующие горловины 120 вертикально перфорируют жаровую трубу камеры сгорания. В этом случае холодный воздух вытекает непосредственно из соответствующего демпфирующего объема в камеру сгорания (фиг. 5b) и/или по меньшей мере через одно боковое отверстие 110а вдоль демпфирующей горловины 121 в камеру сгорания (фиг. 5с).
Фиг. 5d изображает трубку в соответствии с назначением демпфирующего устройства. Она может быть выполнена в виде углового инжектора 122, который расположен таким образом, чтобы вводить газожидкостную смесь в камеру сгорания, и может быть ориентирован любым подходящим образом. В одном варианте осуществления, инжектор может быть ориентирован в горизонтальном направлении камеры сгорания. В других вариантах осуществления, один или несколько инжекторов могут быть ориентированы в различных направлениях от одного или нескольких других инжекторов.
Конструкции с демпфирующими горловинами 120, 121, изображенные на фиг. 5b и 5с, или наклонными инжекторами 122, как показано на фиг. 5d, могут быть использованы в качестве первой и второй демпфирующих горловин 118, 119.
Второе средство впрыска топлива, изображенное на фиг. 1-4, имеет форму трубки. Однако может быть использовано средство впрыска топлива любого типа, известное для вторичных камер сгорания, такое, как, например, желобки и выступы.
ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ПОЗИЦИЙ
100 - Газотурбинная установка
101 - Первичная камера сгорания
102 - Вторичная камера сгорания
103 - Компрессор
104 - Горелка
105 - Турбина
106 - Вал
107 - Выхлопные газы
108 - Сжатый воздух
109 - Продукты сгорания
110 - Холодный воздух
110а - Боковое отверстие
111 - Соединительный канал
112 - Первый демпфирующий объем
112а - Первый демпфирующий объем
113 - Демпфирующая горловина
114 - Отверстие для смесительного воздуха
115 - Секция демпфирующей горловины
116 - Внутренняя жаровая труба
117 - Второй демпфирующий объем
118 - Первая демпфирующая горловина
119 - Вторая демпфирующая горловина
120 - Демпфирующая горловина
121 - Демпфирующая горловина
122 - Инжектор в виде демпфирующей горловины
123 - Первое средство впрыска топлива
124 - Второе средство впрыска топлива.

Claims (15)

1. Узел камеры сгорания, содержащий камеру сгорания, первичную камеру (101) сгорания, вторичную камеру (102) сгорания и демпфирующее устройство, причем узел камеры сгорания предназначен для уменьшения пульсации камеры сгорания, возникающей внутри газотурбинной установки (100), по существу содержащей по меньшей мере один компрессор (103), первичную камеру (101) сгорания, которая присоединена ниже по потоку от компрессора (103), и горячие газы (109) из первичной камеры (101) сгорания впускаются во вторичную камеру (102) сгорания,
при этом демпфирующее устройство содержит по меньшей мере одну жаровую трубу (116) камеры сгорания, содержащую отверстия (114) для смесительного воздуха, причем по меньшей мере одно из отверстий (114) для смесительного воздуха выполнено в виде демпфирующей горловины (113), соединенной с демпфирующим объемом (112), который является частью соединительного канала (111), выполненного с возможностью продолжения между воздушной напорной камерой компрессора и узлом камеры сгорания, причем по меньшей мере одно из отверстий (114) для смесительного воздуха выполнено с возможностью впрыска воздуха в горячие продукты сгорания между первичной камерой (101) сгорания и вторичной камерой (102) сгорания.
2. Узел камеры сгорания по п. 1, отличающийся тем, что первичная (101) и вторичная (102) камеры сгорания расположены в трубчатой конструкции.
3. Узел камеры сгорания по п. 1, отличающийся тем, что, первичная камера (101) сгорания расположена в кольцевой конструкции, а вторичная камера (102) сгорания расположена в трубчатой конструкции.
4. Узел камеры сгорания по п. 1, отличающийся тем, что первичная камера (101) сгорания расположена в трубчатой конструкции, а вторичная камера (102) сгорания расположена в кольцевой конструкции.
5. Узел камеры сгорания по п. 1, отличающийся тем, что первичная (101) и вторичная (102) камеры сгорания расположены в кольцевой конструкции.
6. Узел камеры сгорания по п. 1, отличающийся тем, что отверстия (114) для смесительного воздуха и/или демпфирующие горловины (113) имеют круглое, овальное, щелевое, прямоугольное, треугольное или многоугольное поперечное сечение потока.
7. Узел камеры сгорания по п. 1, отличающийся тем, что демпфирующие горловины (113) расположены в круговом направлении относительно жаровой трубы (116) камеры сгорания.
8. Узел камеры сгорания по п. 1, отличающийся тем, что демпфирующие горловины (113) расположены во множестве рядов взаимно разнесенным образом на поверхности жаровой трубы (116) камеры сгорания.
9. Узел камеры сгорания по п. 1, отличающийся тем, что по меньшей мере один демпфирующий объем (112) расположен в круговом направлении относительно жаровой трубы (116) камеры сгорания.
10. Узел камеры сгорания по п. 1, отличающийся тем, что демпфирующая горловина (113) соединяет радиально промежуток между смежным или внешним демпфирующим объемом (112) и жаровой трубой (116) камеры сгорания или отверстиями (114) для смесительного воздуха.
11. Узел камеры сгорания по п. 1, отличающийся тем, что демпфирующая горловина (113) расположена заподлицо с жаровой трубой (116) камеры сгорания или проходит во внутреннюю часть камеры сгорания.
12. Узел камеры сгорания по п. 11, отличающийся тем, что часть демпфирующей горловины (113), расположенная во внутренней части камеры сгорания, имеет прямую ориентацию или угловую ориентацию.
13. Узел камеры сгорания по п. 1, отличающийся тем, что первичная (101) и/или вторичная (102) камера сгорания имеет по меньшей мере одну горелку предварительного смешивания.
14. Узел камеры сгорания по любому из пп. 1-13, отличающийся тем, что одна или более из демпфирующих горловин имеет следующие размеры или соотношения:
длина =>5 мм
площадь поперечного сечения >5 мм2,
при этом сумма всех площадей поперечного сечения составляет 5-50% от площади потока для продуктов (109) камеры сгорания выше по потоку от демпфирующего устройства.
15. Газотурбинная установка, содержащая узел камеры сгорания по любому из пп. 1-14.
RU2013147342/06A 2012-10-24 2013-10-23 Демпфирующее устройство для уменьшения пульсаций камеры сгорания RU2568030C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12189685.6 2012-10-24
EP12189685 2012-10-24

Publications (2)

Publication Number Publication Date
RU2013147342A RU2013147342A (ru) 2015-04-27
RU2568030C2 true RU2568030C2 (ru) 2015-11-10

Family

ID=47115484

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2015119543A RU2627759C2 (ru) 2012-10-24 2013-04-25 Последовательное сгорание со смесителем разбавляющего газа
RU2013147342/06A RU2568030C2 (ru) 2012-10-24 2013-10-23 Демпфирующее устройство для уменьшения пульсаций камеры сгорания

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2015119543A RU2627759C2 (ru) 2012-10-24 2013-04-25 Последовательное сгорание со смесителем разбавляющего газа

Country Status (10)

Country Link
US (3) US10718520B2 (ru)
EP (2) EP2912381B1 (ru)
JP (2) JP6231114B2 (ru)
KR (3) KR20150074155A (ru)
CN (2) CN104755844B (ru)
CA (2) CA2887454A1 (ru)
IN (1) IN2015DN03238A (ru)
RU (2) RU2627759C2 (ru)
SA (1) SA113340951B1 (ru)
WO (1) WO2014063835A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612449C1 (ru) * 2016-02-09 2017-03-09 Владимир Леонидович Письменный Камера сгорания авиационного газотурбинного двигателя
RU2757313C1 (ru) * 2019-10-17 2021-10-13 Мицубиси Пауэр, Лтд. Камера сгорания газовой турбины

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821367B2 (ja) * 2011-07-28 2015-11-24 日産自動車株式会社 燃料噴射制御装置
EP2888531B1 (en) 2012-08-24 2020-06-17 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
US20160245519A1 (en) * 2013-10-18 2016-08-25 United Technologies Corporation Panel with cooling holes and methods for fabricating same
EP2865947B1 (en) * 2013-10-28 2017-08-23 Ansaldo Energia Switzerland AG Damper for gas turbine
EP2894405B1 (en) 2014-01-10 2016-11-23 General Electric Technology GmbH Sequential combustion arrangement with dilution gas
EP2966356B1 (en) 2014-07-10 2020-01-08 Ansaldo Energia Switzerland AG Sequential combustor arrangement with a mixer
EP2993404B1 (en) * 2014-09-08 2019-03-13 Ansaldo Energia Switzerland AG Dilution gas or air mixer for a combustor of a gas turbine
EP3037725B1 (en) 2014-12-22 2018-10-31 Ansaldo Energia Switzerland AG Mixer for admixing a dilution air to the hot gas flow
EP3037728B1 (en) 2014-12-22 2020-04-29 Ansaldo Energia Switzerland AG Axially staged mixer with dilution air injection
EP3037726B1 (en) 2014-12-22 2018-09-26 Ansaldo Energia Switzerland AG Separate feedings of cooling and dilution air
EP3051206B1 (en) 2015-01-28 2019-10-30 Ansaldo Energia Switzerland AG Sequential gas turbine combustor arrangement with a mixer and a damper
CN104676649A (zh) * 2015-02-05 2015-06-03 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种阻尼热声振荡声学火焰筒
EP3182008A1 (en) 2015-12-18 2017-06-21 Ansaldo Energia IP UK Limited Helmholtz damper for a gas turbine and gas turbine with such helmholtz damper
US10724739B2 (en) 2017-03-24 2020-07-28 General Electric Company Combustor acoustic damping structure
US10415480B2 (en) 2017-04-13 2019-09-17 General Electric Company Gas turbine engine fuel manifold damper and method of dynamics attenuation
US11156162B2 (en) 2018-05-23 2021-10-26 General Electric Company Fluid manifold damper for gas turbine engine
US11506125B2 (en) 2018-08-01 2022-11-22 General Electric Company Fluid manifold assembly for gas turbine engine
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
JP7289752B2 (ja) * 2019-08-01 2023-06-12 三菱重工業株式会社 音響減衰器、筒アッセンブリ、燃焼器、ガスタービン及び筒アッセンブリの製造方法
CN112902230A (zh) * 2021-03-11 2021-06-04 西北工业大学 一种倾斜式入口双头部的双级旋流器燃烧室
US11808454B2 (en) 2021-11-11 2023-11-07 General Electric Company Combustion liner
US11754284B2 (en) 2021-11-11 2023-09-12 General Electric Company Combustion liner
US11686473B2 (en) 2021-11-11 2023-06-27 General Electric Company Combustion liner
US11859820B1 (en) * 2022-11-10 2024-01-02 General Electric Company Gas turbine combustion section having an integrated fuel cell assembly
US20240230095A1 (en) * 2023-01-06 2024-07-11 Ge Infrastructure Technology Llc Gas turbine combustor with multiple fuel stages and method of operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1097017A1 (ru) * 1982-10-18 1991-12-23 Предприятие П/Я М-5147 Устройство дл гашени пульсаций вибрационного горени в форсажной камере газотурбинного двигател
EP0576717A1 (de) * 1992-07-03 1994-01-05 Abb Research Ltd. Gasturbinen-Brennkammer
EP0646704A1 (de) * 1993-09-06 1995-04-05 ABB Management AG Verfahren zur Regelung einer mit zwei Brennkammern bestückten Gasturbogruppe
US5431018A (en) * 1992-07-03 1995-07-11 Abb Research Ltd. Secondary burner having a through-flow helmholtz resonator
DE19640980A1 (de) * 1996-10-04 1998-04-16 Asea Brown Boveri Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
RU2219439C1 (ru) * 2002-09-03 2003-12-20 Андреев Анатолий Васильевич Камера сгорания

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391535A (en) * 1966-08-31 1968-07-09 United Aircraft Corp Burner assemblies
FR2222124A1 (en) * 1973-03-23 1974-10-18 Pillard Chauffage Combustion gases homogenizing equipment - ensures uniform temperatures for drying plants, gas turbines and jet engines
JPS5121011A (ja) * 1974-08-16 1976-02-19 Mitsubishi Heavy Ind Ltd Nenshosochi
US4173118A (en) * 1974-08-27 1979-11-06 Mitsubishi Jukogyo Kabushiki Kaisha Fuel combustion apparatus employing staged combustion
US4301657A (en) 1978-05-04 1981-11-24 Caterpillar Tractor Co. Gas turbine combustion chamber
US4297842A (en) * 1980-01-21 1981-11-03 General Electric Company NOx suppressant stationary gas turbine combustor
US4590769A (en) * 1981-01-12 1986-05-27 United Technologies Corporation High-performance burner construction
US4475344A (en) 1982-02-16 1984-10-09 Westinghouse Electric Corp. Low smoke combustor for land based combustion turbines
JPS6014017A (ja) * 1983-07-05 1985-01-24 Toshiba Corp ガスタ−ビン燃焼器
JPS6121011A (ja) 1984-07-10 1986-01-29 株式会社クボタ 田植機
CN85107191A (zh) 1984-10-04 1986-09-24 西屋电气公司 具有内气膜冷却的冲击式冷却燃气轮机燃烧室
CH674561A5 (ru) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
US5211536A (en) * 1991-05-13 1993-05-18 General Electric Company Boltless turbine nozzle/stationary seal mounting
CH687269A5 (de) * 1993-04-08 1996-10-31 Abb Management Ag Gasturbogruppe.
JPH06307641A (ja) 1993-04-23 1994-11-01 Mitsubishi Heavy Ind Ltd 燃焼器
EP0646705B1 (de) 1993-09-06 1999-06-09 Asea Brown Boveri Ag Verfahren zur Erstellung eines Teillastbetriebes bei einer Gasturbogruppe
DE4426351B4 (de) * 1994-07-25 2006-04-06 Alstom Brennkammer für eine Gasturbine
DE4435266A1 (de) 1994-10-01 1996-04-04 Abb Management Ag Brenner
DE4441235A1 (de) * 1994-11-19 1996-05-23 Abb Management Ag Brennkammer mit Mehrstufenverbrennung
DE4446610A1 (de) 1994-12-24 1996-06-27 Abb Management Ag Verfahren zum Betrieb einer Gasturbogruppe
US6047550A (en) 1996-05-02 2000-04-11 General Electric Co. Premixing dry low NOx emissions combustor with lean direct injection of gas fuel
US6145319A (en) 1998-07-16 2000-11-14 General Electric Company Transitional multihole combustion liner
US6205789B1 (en) 1998-11-13 2001-03-27 General Electric Company Multi-hole film cooled combuster liner
DE19963374B4 (de) * 1999-12-28 2007-09-13 Alstom Vorrichtung zur Kühlung einer, einen Strömungskanal umgebenden Strömungskanalwand mit wenigstens einem Rippenelement
DE10020598A1 (de) 2000-04-27 2002-03-07 Rolls Royce Deutschland Gasturbinenbrennkammer mit Zuleitungsöffnungen
DE10040869A1 (de) 2000-08-21 2002-03-07 Alstom Power Nv Verfahren und Vorrichtung zur Unterdrückung von Strömungswirbeln innerhalb einer Strömungskraftmaschine
US6530221B1 (en) * 2000-09-21 2003-03-11 Siemens Westinghouse Power Corporation Modular resonators for suppressing combustion instabilities in gas turbine power plants
WO2003023281A1 (de) 2001-09-07 2003-03-20 Alstom Technology Ltd Dämpfungsanordnung zur reduzierung von brennkammerpulsationen in einer gasturbinenanlage
WO2003038242A1 (de) * 2001-10-30 2003-05-08 Alstom Technology Ltd Turbomaschine
DE10205839B4 (de) 2002-02-13 2011-08-11 Alstom Technology Ltd. Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen
DE10214574A1 (de) * 2002-04-02 2003-10-16 Rolls Royce Deutschland Brennkammer für ein Luftstrahltriebwerk mit Sekundärluftzuführung
US6826913B2 (en) * 2002-10-31 2004-12-07 Honeywell International Inc. Airflow modulation technique for low emissions combustors
JP3999644B2 (ja) * 2002-12-02 2007-10-31 三菱重工業株式会社 ガスタービン燃焼器、及びこれを備えたガスタービン
US6868676B1 (en) * 2002-12-20 2005-03-22 General Electric Company Turbine containing system and an injector therefor
DE10312971B4 (de) * 2003-03-24 2017-04-06 General Electric Technology Gmbh Verfahren zum Betreiben einer Gasturbogruppe
JP2005076982A (ja) * 2003-08-29 2005-03-24 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
US7007482B2 (en) * 2004-05-28 2006-03-07 Power Systems Mfg., Llc Combustion liner seal with heat transfer augmentation
EP1624251B1 (de) * 2004-08-03 2012-02-29 Siemens Aktiengesellschaft Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in Brennkammern mit veränderbarer Resonanzfrequenz
US7216485B2 (en) * 2004-09-03 2007-05-15 General Electric Company Adjusting airflow in turbine component by depositing overlay metallic coating
US7334408B2 (en) * 2004-09-21 2008-02-26 Siemens Aktiengesellschaft Combustion chamber for a gas turbine with at least two resonator devices
EP1828684A1 (de) * 2004-12-23 2007-09-05 Alstom Technology Ltd Vormischbrenner mit mischstrecke
US7614235B2 (en) * 2005-03-01 2009-11-10 United Technologies Corporation Combustor cooling hole pattern
US7509809B2 (en) 2005-06-10 2009-03-31 Pratt & Whitney Canada Corp. Gas turbine engine combustor with improved cooling
JP2007132640A (ja) 2005-11-14 2007-05-31 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
WO2007119115A2 (en) * 2005-12-14 2007-10-25 Rolls-Royce Power Engineering Plc Gas turbine engine premix injectors
JP5415276B2 (ja) * 2006-12-01 2014-02-12 アルストム テクノロジー リミテッド ガスタービンを運転する方法
GB2444736B (en) * 2006-12-12 2009-06-03 Rolls Royce Plc Combustion Chamber Air Inlet
US7984615B2 (en) * 2007-06-27 2011-07-26 Honeywell International Inc. Combustors for use in turbine engine assemblies
US8146364B2 (en) * 2007-09-14 2012-04-03 Siemens Energy, Inc. Non-rectangular resonator devices providing enhanced liner cooling for combustion chamber
WO2009078891A2 (en) 2007-09-14 2009-06-25 Siemens Energy, Inc. Secondary fuel delivery system
US8061141B2 (en) * 2007-09-27 2011-11-22 Siemens Energy, Inc. Combustor assembly including one or more resonator assemblies and process for forming same
FR2922629B1 (fr) 2007-10-22 2009-12-25 Snecma Chambre de combustion a dilution optimisee et turbomachine en etant munie
US8616004B2 (en) * 2007-11-29 2013-12-31 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors
US9297306B2 (en) 2008-09-11 2016-03-29 General Electric Company Exhaust gas recirculation system, turbomachine system having the exhaust gas recirculation system and exhaust gas recirculation control method
US8490744B2 (en) 2009-02-27 2013-07-23 Mitsubishi Heavy Industries, Ltd. Combustor and gas turbine having the same
US8141365B2 (en) * 2009-02-27 2012-03-27 Honeywell International Inc. Plunged hole arrangement for annular rich-quench-lean gas turbine combustors
US20100236245A1 (en) * 2009-03-19 2010-09-23 Johnson Clifford E Gas Turbine Combustion System
US8689559B2 (en) * 2009-03-30 2014-04-08 General Electric Company Secondary combustion system for reducing the level of emissions generated by a turbomachine
US8408004B2 (en) 2009-06-16 2013-04-02 General Electric Company Resonator assembly for mitigating dynamics in gas turbines
EP2302302A1 (en) * 2009-09-23 2011-03-30 Siemens Aktiengesellschaft Helmholtz resonator for a gas turbine combustion chamber
EP2385303A1 (en) * 2010-05-03 2011-11-09 Alstom Technology Ltd Combustion Device for a Gas Turbine
US9178952B2 (en) 2010-06-02 2015-11-03 International Business Machines Corporation Systems and methods for service assurance using virtualized federated presence infrastructure
US8769955B2 (en) * 2010-06-02 2014-07-08 Siemens Energy, Inc. Self-regulating fuel staging port for turbine combustor
US9810081B2 (en) * 2010-06-11 2017-11-07 Siemens Energy, Inc. Cooled conduit for conveying combustion gases
EP2397759A1 (en) * 2010-06-16 2011-12-21 Alstom Technology Ltd Damper Arrangement
US20120036859A1 (en) * 2010-08-12 2012-02-16 General Electric Company Combustor transition piece with dilution sleeves and related method
US9068748B2 (en) * 2011-01-24 2015-06-30 United Technologies Corporation Axial stage combustor for gas turbine engines
US8720204B2 (en) * 2011-02-09 2014-05-13 Siemens Energy, Inc. Resonator system with enhanced combustor liner cooling
DE102011012414A1 (de) 2011-02-25 2012-08-30 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer
CH704829A2 (de) * 2011-04-08 2012-11-15 Alstom Technology Ltd Gasturbogruppe und zugehöriges Betriebsverfahren.
US9062884B2 (en) * 2011-05-26 2015-06-23 Honeywell International Inc. Combustors with quench inserts
RU118029U1 (ru) * 2012-03-12 2012-07-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Жаровая труба малоэмиссионной камеры сгорания с направленным вдувом воздуха
EP2888531B1 (en) 2012-08-24 2020-06-17 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1097017A1 (ru) * 1982-10-18 1991-12-23 Предприятие П/Я М-5147 Устройство дл гашени пульсаций вибрационного горени в форсажной камере газотурбинного двигател
EP0576717A1 (de) * 1992-07-03 1994-01-05 Abb Research Ltd. Gasturbinen-Brennkammer
US5431018A (en) * 1992-07-03 1995-07-11 Abb Research Ltd. Secondary burner having a through-flow helmholtz resonator
EP0646704A1 (de) * 1993-09-06 1995-04-05 ABB Management AG Verfahren zur Regelung einer mit zwei Brennkammern bestückten Gasturbogruppe
DE19640980A1 (de) * 1996-10-04 1998-04-16 Asea Brown Boveri Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
RU2219439C1 (ru) * 2002-09-03 2003-12-20 Андреев Анатолий Васильевич Камера сгорания

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612449C1 (ru) * 2016-02-09 2017-03-09 Владимир Леонидович Письменный Камера сгорания авиационного газотурбинного двигателя
RU2757313C1 (ru) * 2019-10-17 2021-10-13 Мицубиси Пауэр, Лтд. Камера сгорания газовой турбины
RU2757313C9 (ru) * 2019-10-17 2021-12-24 Мицубиси Пауэр, Лтд. Камера сгорания газовой турбины

Also Published As

Publication number Publication date
US10330319B2 (en) 2019-06-25
US10718520B2 (en) 2020-07-21
EP2725300A1 (en) 2014-04-30
JP2015533412A (ja) 2015-11-24
KR20150074155A (ko) 2015-07-01
KR101576462B1 (ko) 2015-12-10
CN104755844B (zh) 2017-11-07
EP2912381B1 (en) 2018-06-13
US20140109591A1 (en) 2014-04-24
JP6231114B2 (ja) 2017-11-15
CA2887454A1 (en) 2014-05-01
CN104755844A (zh) 2015-07-01
KR20140052874A (ko) 2014-05-07
RU2015119543A (ru) 2016-12-20
CA2829989A1 (en) 2014-04-24
WO2014063835A1 (en) 2014-05-01
US20160040885A1 (en) 2016-02-11
JP2014085108A (ja) 2014-05-12
EP2912381A1 (en) 2015-09-02
IN2015DN03238A (ru) 2015-10-02
CN103776061B (zh) 2017-01-04
US20150226122A1 (en) 2015-08-13
JP5882285B2 (ja) 2016-03-09
SA113340951B1 (ar) 2018-01-15
CN103776061A (zh) 2014-05-07
RU2627759C2 (ru) 2017-08-11
KR20160023658A (ko) 2016-03-03
EP2725300B1 (en) 2019-09-18
US10502423B2 (en) 2019-12-10
RU2013147342A (ru) 2015-04-27
CA2829989C (en) 2016-02-23

Similar Documents

Publication Publication Date Title
RU2568030C2 (ru) Демпфирующее устройство для уменьшения пульсаций камеры сгорания
RU2632073C2 (ru) Узел впрыска топлива и установка, содержащая узел впрыска топлива
RU2561956C2 (ru) Газотурбинная система сгорания
RU2443943C2 (ru) Инжекционный узел камеры сгорания
US9506654B2 (en) System and method for reducing combustion dynamics in a combustor
JP5528756B2 (ja) 二次燃料ノズル用の管状燃料噴射器
CN105716116B (zh) 喷射稀释空气的轴向分级混合器
EP1826485B1 (en) Burner and method of combustion with the burner
RU2655107C2 (ru) Камера сгорания газовой турбины и установка, содержащая камеру сгорания (варианты)
CN105715378B (zh) 冷却和稀释空气的分开供给
US8869533B2 (en) Combustion system for a gas turbine comprising a resonator
US7340900B2 (en) Method and apparatus for decreasing combustor acoustics
KR101626692B1 (ko) 연소기
WO2015053004A1 (ja) ガスタービンの燃料噴射装置
RU2541478C2 (ru) Система форсунок и способ демпфирования такой системы форсунок
CN113464979B (zh) 紧凑型涡轮机燃烧器
US10323574B2 (en) Mixer for admixing a dilution air to the hot gas flow
JP4854613B2 (ja) 燃焼装置及びガスタービン燃焼器
US20120180486A1 (en) Gas turbine fuel system for low dynamics

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170518